土坡稳定安全系数的计算

合集下载

土力学习题集答案__第十章1

土力学习题集答案__第十章1

第10章土坡和地基的稳定性1.简答题1.土坡稳定有何实际意义影响土坡稳定的因素有哪些2.何为无黏性土坡的自然休止角无黏性土坡的稳定性与哪些因素有关3.简述毕肖普条分法确定安全系数的试算过程4.试比较土坡稳定分析瑞典条分法、规范圆弧条分法、毕肖普条分法及杨布条分法的异同5.分析土坡稳定性时应如何根据工程情况选取土体抗剪强度指标和稳定安全系数6.地基的稳定性包括哪些内容地基的整体滑动有哪些情况应如何考虑7.土坡稳定分析的条分法原理是什么如何确定最危险的圆弧滑动面8.简述杨布(Janbu)条分法确定安全系数的步骤。

2.填空题1.黏性土坡稳定安全系数的表达式为。

2.无黏性土坡在自然稳定状态下的极限坡角,称为自然休止角。

3.瑞典条分法稳定安全系数是指和之比。

4.黏性土坡的稳定性与土体的、、、和等5个参数有密切关系。

5.简化毕肖普公式只考虑了土条间的作用力而忽略了作用力。

3.选择题1.无粘性土坡的稳定性,( B )。

A.与坡高无关,与坡脚无关B.与坡高无关,与坡脚有关C.与坡高有关,与坡脚有关D.与坡高有关,与坡脚无关2.无黏性土坡的稳定性( B )。

A.与密实度无关B.与坡高无关C.与土的内摩擦角无关D.与坡角无关3.某无黏性土坡坡角β=24°,内摩擦角φ=36°,则稳定安全系数为( C )= B. K== D. K=4. 在地基稳定性分析中,如果采用分析法,这时土的抗剪强度指标应该采用下列哪种方法测定( C )A.三轴固结不排水试验B.直剪试验慢剪C.现场十字板试验D.标准贯入试验5. 瑞典条分法在分析时忽略了( A )。

A.土条间的作用力B.土条间的法向作用力C.土条间的切向作用力6.简化毕肖普公式忽略了( C )。

A.土条间的作用力B.土条间的法向作用力C.土条间的切向作用力4.判断改错题1.黏性土坡的稳定性与坡高无关。

X2.用条分法分析黏性土的稳定性时,需假定几个可能的滑动面,这些滑动面均是最危险的滑动面。

土压力、地基承载力和土坡稳定计算要求

土压力、地基承载力和土坡稳定计算要求
静止土压力计算
z
z
Eo
1 2
h2Ko
K0z
h h/3
静止土压力系数 采用经验公式K0 = 1-sinφ’ 计算
作用在挡土结构背K面0h的静止土压力可视为天然土层自重
应力的水平分量。
6.2 作用在挡土墙上的土压力
若墙后填土中有地下水,则计算静止土压力时, 水中土的重度应取浮重度
6.3 朗金土压力理论
基本原理
朗金土压力理论是根据半空间的应力状态和土的极限平 衡条件而得出的土压力计算方法。
弹性平衡状态
6.3 朗金土压力理论
当整个土体都处于静止状态时,各点都处于弹性平衡状态,设土的重
度为γ,应力状态如图所示,此时应力状态用莫尔圆表示为所示圆Ⅰ,该
点处于弹性平衡状态,故莫尔圆没有与抗剪强度包线相切。
力两部分,可分作两层计算,一般假设地下水位上下土层的抗剪强度
指标相同,地下水位以下土层用浮重度计算。
6.3 朗金土压力理论
土压力强度
A点
aA 0
B点
aB h1Ka
水压力强度
B点
wB 0
C点
aCh 1K ah2K a C点
wC wh2
作用在墙背的总压力为土压力和水压力之和,作用 点在合力分布图形的形心处。
=17kN/m
3
c=8kPa
=20o
h=6m
• 【解答】
2c√Ka
主动土压力系数 Ka ta2n4o 52= 0.49
6m
z0 (h-z0)/3
墙底处土压力强度
Ea
ah K a 2 cK a = 3 8 .8 k P a
hKa-2c√Ka
临界深度
z02c/( Ka)= 1.3m 4

有限元强度折减系数法计算土坡稳定安全系数.

有限元强度折减系数法计算土坡稳定安全系数.

有限元强度折减系数法计算土坡稳定安全系数摘要:有限元强度折减系数法在边坡稳定分析中的应用正逐渐受到人们的重视。

本文较为全面地分析了土体屈服准则的种类、有限元法自身计算精度以及H(坡高)、β(坡角)、C(粘聚力)、Φ(摩擦角)对折减系数法计算精度的影响,并给出了提高计算精度的具体措施。

通过对106个算例的比较分析,表明折减系数法所得稳定安全系数比简化Bishop法平均高出约5.7%,且离散度极小,这不仅验证了文中所提措施的有效性,也说明了将折减系数法用于分析土质边坡稳定问题是可行的。

关键词:强度折减系数边坡稳定屈服准则误差分析自弗伦纽期于1927年提出圆弧滑动法以来,至今已出现数十种土坡稳定分析方法,有极限平衡法、极限分析法、有限元法等。

不少研究表明,各种方法所得稳定安全系数都比较接近,可以说,这些方法已经达到了相当高的精度。

近年来,由于计算机技术的长足发展,基于有限元的折减系数法在边坡稳定分析中的应用备受重视。

与极限平衡法相比,它不需要任何假设,便能够自动地求得任意形状的临界滑移面以及对应的最小安全系数,同时它还可以真实的反映坡体失稳及塑性区的开展过程。

到目前为止,已有很多学者对折减系数法进行了较为深入的研究[1,2,3],并在一些算例中得到了与极限平衡法十分接近的结果。

但总体说来,此法仍未在工程界得到确认和推广,究其原因在于影响该法计算精度的因素很多,除了有限元法引入的误差外,还依赖于所选用的屈服准则。

此论文的目的有两点:(1)力图全面分析屈服条件和有限元法本身对折减系数法计算精度的影响,并提出应选用何种屈服准则以及提高有限元法计算精度的具体措施;(2)结合工程实例,分析对边坡稳定安全系数影响最大的4个主要参数(H坡高、β坡角、C粘聚力、Φ摩擦角)对折减系数法计算精度的影响。

从以往的计算结果来看,严格法(Spencer)所得稳定安全系数比简化Bishop法平均高出约2%~3%,而通过106个算例的比较分析,表明:折减系数法所得稳定安全系数比简化Bishop法平均高出约5.7%,且误差离散度极小,可以认为是正确的解答[4]。

土坡稳定性计算

土坡稳定性计算

土坡稳定性计算书计算依据:1、《建筑基坑支护技术规程》JGJ120-20122、《建筑施工计算手册》江正荣编著3、《实用土木工程手册》第三版杨文渊编著4、《施工现场设施安全设计计算手册》谢建民编著5、《地基与基础》第三版计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。

本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。

一、参数信息:基本参数:放坡参数:序号 放坡高度L(m) 放坡宽度W(m) 平台宽度B(m) 1 3.5 2.25 0.75 2431.5荷载参数:土层参数:1 填土 3.5 19.8 7.4 20.4 8 202 粘性土 3.5 20 16.3 45.8 21 233 粘性土 3.6 20.3 17.4 64.1 23 23二、计算原理:根据土坡极限平衡稳定进行计算。

自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。

将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着:1、土条自重,2、作用于土条弧面上的法向反力,3、作用于土条圆弧面上的切向阻力。

将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.35的要求。

圆弧滑动法示意图三、计算公式:K sj=∑{c i l i+[ΔG i b i+qb i]co sθi tanφi}/∑[ΔG i b i+qb i]sinθi式子中:K sj --第j个圆弧滑动体的抗滑力矩与滑动力矩的比值;c i --土层的粘聚力;l i--第i条土条的圆弧长度;ΔG i-第i土条的自重;θi --第i条土中线处法线与铅直线的夹角;φi --土层的内摩擦角;b i --第i条土的宽度;h i --第i条土的平均高度;q --第i条土条土上的均布荷载;四、计算安全系数:将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数K sjmin:------------------------------------------------------------------------------------计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第1步 1.820 29.190 0.775 5.746 5.798示意图如下:计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m) 第2步 1.504 33.548 1.699 11.450 11.575示意图如下:--------------------------------------------------------------------------------------计算结论如下:第1 步开挖内部整体稳定性安全系数K sjmin= 1.820>1.350 满足要求! [标高-4.000 m]第2 步开挖内部整体稳定性安全系数K sjmin= 1.504>1.350 满足要求! [标高-7.500 m]。

边坡稳定性计算方法

边坡稳定性计算方法

一、边坡稳定性计算方法在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。

根据边坡不同破裂面形状而有不同的分析模式。

边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。

这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。

(一)直线破裂面法所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。

为了简化计算这类边坡稳定性分析采用直线破裂面法。

能形成直线破裂面的土类包括:均质砂性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。

图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗剪度指标为c、φ。

如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析该滑动体的稳定性。

沿边坡长度方向截取一个单位长度作为平面问题分析。

已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(Δ ABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为:T=W · sina和则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。

对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时图9-1 砂性边坡受力示意图当 F s =1时,β=φ,表明边坡处于极限平衡状态。

此时β角称为休止角,也称安息角。

此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。

这类滑坡滑动面的深度与长度之比往往很小。

当深长比小于 0.1时,可以把它当作一个无限边坡进行分析。

图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。

取一单位长度的滑动土条进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为稳定系数。

粘性土土坡的稳定分析-PPT

粘性土土坡的稳定分析-PPT

大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
太沙基公式
• 基本假定: 1)土条两侧得推力Pi、Pi+1和摩擦力Hi、Hi+1得合
力大小相等、方向相反; 2)且她们得作用线重合。
• 受力分析: 1)土条得重力Wi 2)土条得径向反力Ni 3)侧向反力Ti
太沙基公式
• 抗转动稳定安全系数: 滑动力矩:
影响土坡稳定得因素
• 地震作用:
影响土坡稳定得因素
• 地震惯性力: 水平向地震惯性力为:
Qi K H CziWi
1)KH就是水平向地震系数,为地面水平最大加速 度得统计平均值与重力加速度之比;
2)Cz就是综合影响系数,一般取0、25; 3)Wi就是土条得自重; 4)i就是地震加速度分布系数。 • 一般只考虑水平向地震作用,但设计烈度9度以 上,应同时考虑水平向和垂直向地震作用。
抗剪强度只发挥了一部分,与侧向力相平衡;
Ti
cili Fs
Nitgi
Fs
3)当整个滑动土体处于平衡状态时,各土条对园 心得力矩之和为0,条间推力为内力,将相互抵消。
• 计算简图:
毕肖普公式
毕肖普公式
• 抗转动稳定安全系数:
Fs
cili [(Wi Hi Hi1) cosi (Pi1 Pi ) sini ]tgi
所有土条自重引起得切向力对园心得力矩。
抗滑力矩:
所有土条底部得抗剪强度对园心得力矩。
则抗转动稳定安全系数为抗滑力矩与滑动力矩之
比:
Fs
MR Ms
(cili Wi cositgi ) Wi sin i
毕肖普公式
• 基本假定: 1)考虑土条两侧得推力; 2)当土坡处于稳定状态时,任一土条内滑弧面上得

土坡稳定性分析计算方法

土坡稳定性分析计算方法

第五章 土压力和土坡稳定(7学时)内容提要 1.挡土墙的土压力 2.朗肯土压力理论 3.库仑土压力理论 4.挡土结构设计简介 5. 土坡的稳定性分析能力培养要求1.用朗肯理论计算均质土的主动土压力与被动土压力。

2.用朗肯理论计算常见情况下的主动土压力。

3.用库仑理论计算土的主动与被动土压力。

4.会分析挡土墙的稳定性,简单挡土结构设计。

5.无粘性土坡的稳定分析。

6.用条分法对粘性土土坡进行的稳定分析。

7.会分析土坡失稳的原因,提出合理的措施。

教学形式教师主讲、课堂讨论、学生讲评、提问答疑、习题分析等第一节 挡土墙的土压力教学目标1.掌握三种土压力的概念。

2.掌握静止土压力计算。

教学内容设计及安排【基本内容】一、挡土墙的位移与土体的状态 土压力的类型土压力(kN/m )⎪⎩⎪⎨⎧→⇒→⇒→⇒如桥墩墙推土被动土压力如一般的重力式挡土墙土推墙主动土压力如地下室侧墙墙不动静止土压力p a E E E 01.静止土压力——挡土墙在土压力作用下不发生任何变形和位移(移动或转动)墙后填土处于弹性平衡状态,作用在挡土墙背的土压力。

2.主动土压力——挡土墙在土压力作用下离开土体向前位移时,土压力随之减少。

当位移至一定数值时,墙后土体达到主动极限平衡状态。

此时,作用在墙背的土压力称为主动土压力。

3.被动土压力——挡土墙在外力作用下推挤土体向后位移时,作用在墙上的土压力随之增加。

当位移至一定数值时,墙后土体达到被动极限平衡状态。

此时,作用在墙上的土压力称为被动土压力。

【讨论】△a<<△p , E a <E 0<<E p二、土压力的计算简化处理——作用在挡土结构物背面上的静止土压力可视为天然土层自重应力的水平分量。

如图所示,在墙后填土体中任意深度z 处取一微小单元体,作用于单元体水平面上的应力为γz ,则该点的静止土压力,即侧压力强度为:p 0=K 0γz (kPa )K 0——土的侧压力系数,即静止土压力系数:静止土压力系数的确定方法⎪⎩⎪⎨⎧'采用经验值—较适合于砂土—-=采用经验公式:—较可靠—测定通过侧限条件下的试验ϕsin 10K由上式可知,静止土压力沿墙高为三角形分布,如图所示,取单位墙长计算,则作用在墙上的静止土压力为(由土压力强度沿墙高积分得到)E 0=0221K h γ(kN/m )——静止土压力分布图面积如图所示土压力作用点——距墙底h/3处(可用静力等效原理求得)静止土压力的应用⎪⎪⎪⎩⎪⎪⎪⎨⎧隧道涵洞侧墙底版连成整体)水闸、船闸边墙(与闸拱座(没有位移)岩基上的挡土墙地下室外墙【讨论】如果墙后有均布荷载q ,怎样求静止土压力?第二节 朗肯土压力理论 教学目标掌握朗肯土压力理论的原理与假定,并能计算各种情况下的主动、被动土压力。

基槽边坡稳定性计算

基槽边坡稳定性计算

基槽边坡稳定性计算:本工程其坡面的土质基本为砂砾土的亚园砾土,属无粘性土边坡。

在土坡上的分力有土坡下滑趋势的剪切力T、单元土自重G、阻止土体下滑的抗剪力Tf,而阻止土体下滑的抗剪力Tf则为土方单元体自重在坡面法线方向的分力N引起的摩擦力,即Tf=Ntanα=G×cosβ×tanα。

抗滑力和滑动力的比值为安全系数K=Tf/T= G×cosβ×tanα/Gsinβ= tanα/ tanβ,由此可见从理论上讲当坡角小于土方内摩擦角时(β<α)K>1土坡是稳定的,一般性土坡为保证土坡稳定安全系数取值为K>1.3-1.5,所以查中砂园砾内摩擦角为45度,则tan45=1,tanβ=5.2/10=0.52 K= tanα/ tanβ=1/0.52=1.92>1.3-1.5(安全)结论是安全稳定的。

与3#楼相邻基槽边坡稳定性计算:与三号楼边坡高度为5.55m,三号楼基础宽为13.50m,坡角至坡顶水平距离为3m,三号楼压重为(钢筋80Kg/平米、混凝土0.5×2400=1200Kg/平米,1200+80=1280×14层=17920 Kg/平米)17920 Kg/平米=179.2KN/平米,坡面为砂砾土指标为天然自重γ=19 KN,内摩擦角为38度,粘聚力0Kpa。

1、基坑剖面如图所示。

2、取滑动园弧,下端通过坡角A点,上端通过3#楼基础边缘B 点,加入3#楼共14层自重和一层工作面施工荷载7KN=186.2KN 进行验算此土坡的稳定性,取半径R=21m。

3、取土条宽B=1/10R=2.1m4、土条编号:作园心O点的垂线,垂直线处为0条,依次编号为1-9条。

5、计算AB弧长L:设园心∠AOB=α由sinα/2=AB/2/R=0.517,得α=62.26L=αЛR/180=62.26×3.14×21/180=22.816、3#楼压重179.2KN+施工荷载7KN=186.2KN分布在6个土条上,每个土条为31.2KN。

土坡稳定性分析方法_陈文龙

土坡稳定性分析方法_陈文龙

49 科技咨询导报 Science and Technology Consulting Herald工 业 技 术2007 NO.27Science and Technology Consulting Herald土坡稳定性一般用土坡稳定性安全系数来表示。

计算土坡稳定性安全系的方法通常有二种:一是对构成土体的土条进行受力分析。

但,此土条受力分析法存在静不定问题。

为解决此问题,往往将土条所受的某些应力当零处理。

因此,由此法计算的土坡稳定性系数必然存在误差比较大的问题;二对土坡圆弧滑动体进行整体稳定性分析,但假定的土坡圆弧滑动面与实际的滑动面不相符。

其计算结果精度差。

鉴于此,我们提出用对整块多边棱体土体进行受力分析的方法来计算土坡稳定性安全系数。

即将通常假定的圆弧面分解成若干个破裂平面。

相邻两破裂面的交线处于圆弧面上。

将滑动体近似看着多边棱体,然后对多边棱体土体进行受力分析。

从土的性质来说,土坡有非匀质土坡和匀质土坡二种。

匀质土坡必然存在最危险滑动面。

目前,计算最危险滑动面的方法,如摩擦圆法,计算工作量很大。

鉴于此,我们在土体受力分析法基础上提出用极值法来计算最危险滑动面。

即假定25个圆的圆弧参数,以土体受力分析法求出相应土体的土坡稳定性安全系数。

绘制圆弧参数与土坡稳定性安全系数的关系曲线,由曲线的极点求出土坡稳定性安全系数最小的圆弧参数。

1 计算土坡稳定性安全系数的方法——土体受力分析法1.1 (滑动)土体受力分析法的原理将土坡圆弧分解成若干个破裂平面。

即将滑动面的弧线分解成若干条直线段。

以整个多边棱体(滑动)土体为对象进行受力分析。

当土坡滑动面为圆弧滑动面时,滑动面上的每一直线段(除末端段外)的水平投影线长度为恒定值,即土条宽度为恒定值。

反之,为非恒定值。

在土体静止状态下,在土体每一破裂面处均存在滑动土体与固定土体(即半无限体)之间的相互作用力(亦可称为半无限体对滑动土体的支撑力),其作用点位置一般认为破裂面中点。

土力学_第8章(土坡稳定性分析)

土力学_第8章(土坡稳定性分析)

18
3
粘性土土坡的稳定性分析
瑞典(彼得森,K.E. Petterson, 1915年提出的) 瑞典圆弧法
滑动面
(a) 实际滑坡体
(b)假设滑动面是圆弧面
19
基本思想:
整体圆弧滑动。 稳定系数定义为:
f Fs
滑移面
也可定义为抗滑力矩与滑动力矩之比:
Fs
Mf Ms

f LAC R
1
i
Fs
m
[ci'bi (Wi ui bi ) tan ' ]
W sin
i
i
mi cos i (1
tani tan i ) Fs
பைடு நூலகம்27
考虑地震作用力后的计算公式:
Fs
c' bi bi (hi w hiw ) tan ' i 1 cos i (sin i tan ' ) / Fs
Ni Wi cosi P i 1 i ) 0 i 1 sin(
P i i 1 ) Tfi 0 i Wi sin i P i 1 cos(
li ci' ( N i ui li ) tan ' T fi Fs
由上面三个计算式,消去Ni、Tfi得到满足力极限平衡得方程为: 1 Pi Wi sin i [li ci' (Wi cos i ui li ) tan 'i ] Pi 1 i Fs Pi—剩余下滑力; i —传递系数。 tani ' sin( i 1 i ) i cos( i 1 i ) Fs
W x T
i i
fi

基坑放坡稳定性验算

基坑放坡稳定性验算

基坑放坡稳定性验算根据施工组织安排, 10-03 地块各楼栋基坑采用分块开挖,临时放坡的施工 方案,我司对基坑临时放坡后的坑边坡顶堆载及车载道路进行边坡稳定性验算, 验算过程如下:参数信息 :条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.50 ; 基坑内侧水位到坑顶的距离 (m):8.00 ; 放坡参数:序号 放坡高度 (m)1 2.503.80 2.00 2 3.004.50 2.00 计算原理: 根据土坡极限平衡稳定进行计算。

通常滑动面接近圆弧, 可将滑裂面近似成圆弧计算。

将土坡的土体沿竖直方向分 成若干个土条, 从土条中任意取出第 i 条,不考虑其侧面上的作用力时, 该土条r F - /■- .、”/•■上存在着: 1、土条自重2、作用于土条弧面上的法向反力3、作用于土条圆弧面上的切向阻力 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数, 考虑安全 储备的大小,按照《规范》要求,安全系数要满足 >=1.3 的要求。

放坡宽度 (m) 平台宽度 (m) 条分块数 0.00 0.00自然界匀质土坡失去稳定, 滑动面呈曲面,式子中:F s -- 土坡稳定安全系数;c -- 土层的粘聚力;l i --第i 条土条的圆弧长度;丫 -- 土层的计算重度;9 i --第i 条土到滑动圆弧圆心与竖直方向的夹角;© -- 土层的内摩擦角;b i --第i 条土的宽度;h i --第i 条土的平均高度; h ii ――第i 条土水位以上的高度;h 2i ――第i 条土水位以下的高度;丫 ’一一第i 条土的平均重度的浮重度;将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,储备的大小,按照《规范》要求,安全系数要满足 >=1.3的要求。

计算公式:考虑安全 工*£ + f (?% + r 俎)勺tan (p第i条土条土上的均布荷载;其中,根据几何关系,求得h i为:______________ __________ 2&二一[(f-0・5)xg _厶]—r + 4 -(/-0.5)xZ?Jtana!式子中:r -- 土坡滑动圆弧的半径;丨0 --坡角距圆心垂线与坡角地坪线交点长度;a --- 土坡与水平面的夹角;h ii的计算公式\( h \cos Qi- \r sm(/7 + d)- H几二九一I COSM)当h ii > h i 时,取h ii = h i当h ii < 0 时,取h ii = 0 ;h2i的计算公式:h 2i = h i -h ii ;h w 土坡外地下水位深度;i i的几何关系为:h_ 1 )x ® / i 乂 bj — Iarccos ----- --- ——-一 arccos -- ——-x 2 x 旷 x 兀360二90-碎亦上四4k计算安全系数:将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数 Fs : 计算步数 安全系数 滑裂角(度)圆心X(m)圆心丫(m)半径R(m)第 1 步 1.39145.259-0.038 8.449 示意图如下:计算结论如下:8.449第 2 步 1.32152.516 -0.028 示意图如下: 圆心X 18.947圆心Y(m) 半径R(m) 18.947■1daagw •oooml计算步数安全系数 滑裂角(度)第 1 步开挖内部整体稳定性安全系数 Fs= 1.391>1.30 满足要求 ! [ 标 高-3.60 m]第 2 步开挖内部整体稳定性安全系数 Fs= 1.321>1.30 高 -6.60 m]2018年3月8日 满足要求 ! [ 标宝山新城顾村A 单元 10-03 10-05 地块项目部。

(整理)边坡稳定性分析计算

(整理)边坡稳定性分析计算

边坡稳定性分析计算边坡岩、土体在一定坡高和坡角条件下的稳定程度。

按照成因,边坡分为天然斜坡和人工边坡两类,后者又分为开挖边坡和堤坝边坡等。

按照物质组成,边坡分为岩体边坡、土体边坡,以及岩、土体复合边坡3种。

按照稳定程度,分为稳定边坡、不稳定边坡,以及极限平衡状态边坡。

不稳定的天然斜坡和设计坡角过大的人工边坡,在岩、土体重力,水压力,振动力以及其他外力作用下,常发生滑动或崩塌破坏。

大规模的边坡岩、土体破坏能引起交通中断,建筑物倒塌,江河堵塞,水库淤填,给人民生命财产带来巨大损失。

研究边坡稳定性的目的,在于预测边坡失稳的破坏时间、规模,以及危害程度,事先采取防治措施,减轻地质灾害,使人工边坡的设计达到安全、经济的目的。

1、等厚土层土坡稳定计算------------------------------------------------------------------------[控制参数]:采用规范: 通用方法计算目标: 安全系数计算滑裂面形状: 圆弧滑动法不考虑地震[坡面信息]坡面线段数 2坡面线号水平投影(m) 竖直投影(m) 超载数1 10.000 8.000 02 10.000 0.000 1超载1 距离2.000(m) 宽6.000(m) 荷载(50.00--50.00kPa) 270.00(度)[土层信息]上部土层数 1层号层厚重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系全孔压(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值系数1 50.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- ---下部土层数 2层号层厚重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系全孔压(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值系数1 4.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- ---2 40.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- ---不考虑水的作用[计算条件]圆弧稳定分析方法: 瑞典条分法土条重切向分力与滑动方向反向时: 当下滑力对待稳定计算目标: 给定圆心、半径计算安全系数条分法的土条宽度: 1.000(m)圆心X坐标: 5.000(m)圆心Y坐标: 12.000(m)半径: 15.000(m)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------ 滑动圆心 = (5.000,12.000)(m)滑动半径 = 15.000(m)滑动安全系数 = 1.551起始x 终止x li Ci 謎条实重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力(m) (m) (度) (m) (kPa) (度) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)---------------------------------------------------------------------------------------------------------------------4.000 -3.200 -35.004 0.98 10.00 25.00 4.03 0.00 0.00 0.00 0.00 0.00 -2.31 11.31-3.200 -2.400 -31.349 0.94 10.00 25.00 11.58 0.00 0.00 0.00 0.00 0.00 -6.02 13.98-2.400 -1.600 -27.832 0.90 10.00 25.00 18.13 0.00 0.00 0.00 0.00 0.00 -8.46 16.52-1.600 -0.800 -24.426 0.88 10.00 25.00 23.78 0.00 0.00 0.00 0.00 0.00 -9.83 18.89-0.800 -0.000 -21.109 0.86 10.00 25.00 28.62 0.00 0.00 0.00 0.00 0.00 -10.31 21.030.000 0.909 -17.649 0.95 10.00 25.00 43.37 0.00 0.00 0.00 0.00 0.00 -13.15 28.810.909 1.818 -14.037 0.94 10.00 25.00 59.50 0.00 0.00 0.000.00 0.00 -14.43 36.291.8182.727 -10.481 0.92 10.00 25.00 74.63 0.00 0.00 0.00 0.00 0.00 -13.58 43.472.7273.636 -6.965 0.92 10.00 25.00 88.82 0.00 0.00 0.00 0.00 0.00 -10.77 50.273.6364.545 -3.476 0.91 10.00 25.00 102.08 0.00 0.00 0.00 0.00 0.00 -6.19 56.624.5455.455 -0.000 0.91 10.00 25.00 114.43 0.00 0.00 0.00 0.00 0.00 0.00 62.455.4556.364 3.476 0.91 10.00 25.00 125.88 0.00 0.00 0.00 0.00 0.007.63 67.706.3647.273 6.965 0.92 10.00 25.00 136.42 0.00 0.00 0.00 0.00 0.00 16.54 72.317.273 8.182 10.481 0.92 10.00 25.00 146.04 0.00 0.00 0.00 0.00 0.00 26.56 76.218.182 9.091 14.037 0.94 10.00 25.00 154.70 0.00 0.00 0.00 0.00 0.00 37.52 79.369.091 10.000 17.649 0.95 10.00 25.00 162.38 0.00 0.00 0.00 0.00 0.00 49.23 81.7010.000 10.800 21.109 0.86 10.00 25.00 143.82 0.00 0.00 0.00 0.00 0.00 51.80 71.1410.800 11.600 24.426 0.88 10.00 25.00 138.98 0.00 0.00 0.00 0.00 0.00 57.47 67.8011.600 12.400 27.832 0.90 10.00 25.00 133.33 0.00 0.00 0.00 0.00 20.00 71.58 72.2712.400 13.200 31.349 0.94 10.00 25.00 126.78 0.00 0.00 0.00 0.00 40.00 86.77 75.7813.200 14.000 35.004 0.98 10.00 25.00 119.23 0.00 0.00 0.00 0.00 40.00 91.34 70.5914.000 14.909 39.109 1.17 10.00 25.00 124.91 0.00 0.00 0.00 0.00 45.47 107.48 73.3714.909 15.819 43.753 1.26 10.00 25.00 111.73 0.00 0.00 0.00 0.00 45.47 108.72 65.5515.819 16.728 48.797 1.38 10.00 25.00 96.10 0.00 0.00 0.00 0.00 45.47 106.52 57.3016.728 17.638 54.421 1.56 10.00 25.00 77.20 0.00 0.00 0.00 0.00 45.47 99.77 48.9217.638 18.547 60.992 1.88 10.00 25.00 53.36 0.00 0.00 0.00 0.00 18.11 62.50 34.9318.547 19.457 69.555 2.61 10.00 25.00 19.97 0.00 0.00 0.00 0.00 0.00 18.71 29.32总的下滑力 = 905.096(kN)总的抗滑力 = 1403.885(kN)土体部分下滑力 = 905.096(kN)土体部分抗滑力 = 1403.885(kN)筋带在滑弧切向产生的抗滑力 = 0.000(kN)筋带在滑弧法向产生的抗滑力= 0.000(kN)2、倾斜土层土坡稳定计算------------------------------------------------------------------------[控制参数]:采用规范: 通用方法计算目标: 安全系数计算滑裂面形状: 圆弧滑动法不考虑地震[坡面信息]坡面线段数 2坡面线号水平投影(m) 竖直投影(m) 超载数1 10.000 8.000 02 10.000 0.000 1超载1 距离2.000(m) 宽6.000(m) 荷载(50.00--50.00kPa) 270.00(度)[土层信息]上部土层数 3层号定位高重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系层底线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 2.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- 2.000 ---2 4.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- -3.000 ---3 7.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- 2.000 ---下部土层数 3层号定位深重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系层顶线倾全孔压度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数1 4.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- -3.000 ---2 6.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- 5.000 ---3 9.000 18.000 --- 10.000 25.000 --- --- --- --- --- --- 4.000 ---不考虑水的作用[计算条件]圆弧稳定分析方法: 瑞典条分法土条重切向分力与滑动方向反向时: 当下滑力对待稳定计算目标: 给定圆心、半径计算安全系数条分法的土条宽度: 1.000(m)圆心X坐标: 5.000(m)圆心Y坐标: 12.000(m)半径: 15.000(m)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------ 滑动圆心 = (5.000,12.000)(m)滑动半径 = 15.000(m)滑动安全系数 = 1.551起始x 终止x li Ci 謎条实重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力(m) (m) (度) (m) (kPa) (度) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)---------------------------------------------------------------------------------------------------------------------4.000 -3.200 -35.004 0.98 10.00 25.00 4.03 0.00 0.00 0.00 0.00 0.00 -2.31 11.31-3.200 -2.400 -31.349 0.94 10.00 25.00 11.58 0.00 0.00 0.00 0.00 0.00 -6.02 13.98-2.400 -1.600 -27.832 0.90 10.00 25.00 18.13 0.00 0.00 0.00 0.00 0.00 -8.46 16.52-1.600 -0.800 -24.426 0.88 10.00 25.00 23.78 0.00 0.00 0.00 0.00 0.00 -9.83 18.89-0.800 -0.000 -21.109 0.86 10.00 25.00 28.62 0.00 0.00 0.00 0.00 0.00 -10.31 21.030.000 0.833 -17.799 0.88 10.00 25.00 39.14 0.00 0.00 0.000.833 1.667 -14.484 0.86 10.00 25.00 52.76 0.00 0.00 0.000.00 0.00 -13.20 32.431.6672.500 -11.217 0.85 10.00 25.00 65.61 0.00 0.00 0.00 0.00 0.00 -12.76 38.512.5003.333 -7.987 0.84 10.00 25.00 77.73 0.00 0.00 0.00 0.00 0.00 -10.80 44.313.3334.167 -4.782 0.84 10.00 25.00 89.13 0.00 0.00 0.00 0.00 0.00 -7.43 49.784.1675.000 -1.592 0.83 10.00 25.00 99.83 0.00 0.00 0.00 0.00 0.00 -2.77 54.875.000 5.938 1.792 0.94 10.00 25.00 124.21 0.00 0.00 0.00 0.00 0.00 3.88 67.275.9386.875 5.382 0.94 10.00 25.00 135.87 0.00 0.00 0.00 0.00 0.00 12.74 72.506.8757.8138.994 0.95 10.00 25.00 146.53 0.00 0.00 0.00 0.00 0.00 22.91 76.987.813 8.750 12.642 0.96 10.00 25.00 156.16 0.00 0.00 0.00 0.00 0.00 34.18 80.668.750 9.375 15.718 0.65 10.00 25.00 108.96 0.00 0.00 0.00 0.00 0.00 29.52 55.409.375 10.000 18.214 0.66 10.00 25.00 112.44 0.00 0.00 0.00 0.00 0.00 35.15 56.3910.000 10.800 21.109 0.86 10.00 25.00 143.82 0.00 0.00 0.00 0.00 0.00 51.80 71.1410.800 11.600 24.426 0.88 10.00 25.00 138.98 0.00 0.00 0.00 0.00 0.00 57.47 67.8011.600 12.400 27.832 0.90 10.00 25.00 133.33 0.00 0.00 0.00 0.00 20.00 71.58 72.2712.400 13.200 31.349 0.94 10.00 25.00 126.78 0.00 0.00 0.00 0.00 40.00 86.77 75.7813.200 14.000 35.004 0.98 10.00 25.00 119.23 0.00 0.00 0.00 0.00 40.00 91.34 70.5914.000 14.874 39.020 1.13 10.00 25.00 120.33 0.00 0.00 0.00 0.00 43.72 103.28 70.6914.874 15.749 43.471 1.21 10.00 25.00 108.23 0.00 0.00 0.00 0.00 43.72 104.54 63.4715.749 16.531 48.007 1.17 10.00 25.00 84.90 0.00 0.00 0.00 0.00 39.13 92.18 50.3916.531 17.314 52.709 1.29 10.00 25.00 71.55 0.00 0.00 0.00 0.00 39.13 88.05 44.1917.314 18.096 57.997 1.48 10.00 25.00 55.49 0.00 0.00 0.00 0.00 34.32 76.16 36.9618.096 19.010 64.945 2.16 10.00 25.00 38.44 0.00 0.00 0.0019.010 19.457 71.802 1.43 10.00 25.00 5.46 0.00 0.00 0.00 0.00 0.00 5.19 15.10总的下滑力 = 905.681(kN)总的抗滑力 = 1404.536(kN)土体部分下滑力 = 905.681(kN)土体部分抗滑力 = 1404.536(kN)筋带在滑弧切向产生的抗滑力 = 0.000(kN)筋带在滑弧法向产生的抗滑力= 0.000(kN)3、复杂土层土坡稳定计算------------------------------------------------------------------------[控制参数]:采用规范: 通用方法计算目标: 安全系数计算滑裂面形状: 圆弧滑动法不考虑地震[坡面信息]坡面线段数 2坡面线号水平投影(m) 竖直投影(m) 超载数1 10.000 8.000 02 10.000 0.000 1超载1 距离2.000(m) 宽6.000(m) 荷载(50.00--50.00kPa) 270.00(度)[土层信息]坡面节点数 3编号 X(m) Y(m)0 0.000 0.000-1 10.000 8.000-2 20.000 8.000附加节点数 7编号 X(m) Y(m)1 -6.000 -5.0002 9.000 -6.0003 8.000 2.0004 20.000 -6.0005 15.000 3.0006 25.000 5.0007 -8.000 0.000不同土性区域数 5区号重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系全孔压节点编号(kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值系数1 18.000 --- 10.000 25.000 --- --- --- --- --- --- --- (0,7,1,2,3,)2 18.000 --- 10.000 25.000 --- --- --- --- --- --- --- (2,4,5,3,)3 18.000 --- 10.000 25.000 --- --- --- --- --- --- --- (0,3,-1,)4 18.000 --- 10.000 25.000 --- --- --- --- --- --- --- (3,5,-2,-1,)5 18.000 --- 10.000 25.000 --- --- --- --- --- --- --- (5,4,6,-2,)不考虑水的作用[计算条件]圆弧稳定分析方法: 瑞典条分法土条重切向分力与滑动方向反向时: 当下滑力对待稳定计算目标: 给定圆心、半径计算安全系数条分法的土条宽度: 1.000(m)圆心X坐标: 5.000(m)圆心Y坐标: 12.000(m)半径: 15.000(m)------------------------------------------------------------------------计算结果:------------------------------------------------------------------------ 滑动圆心 = (5.000,12.000)(m)滑动半径 = 15.000(m)滑动安全系数 = 1.550起始x 终止x li Ci 謎条实重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力(m) (m) (度) (m) (kPa) (度) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)---------------------------------------------------------------------------------------------------------------------4.000 -3.200 -35.004 0.98 10.00 25.00 4.03 0.00 0.00 0.00 0.00 0.00 -2.31 11.31-3.200 -2.400 -31.349 0.94 10.00 25.00 11.58 0.00 0.00 0.00 0.00 0.00 -6.02 13.98-2.400 -1.600 -27.832 0.90 10.00 25.00 18.13 0.00 0.00 0.00 0.00 0.00 -8.46 16.52-1.600 -0.800 -24.426 0.88 10.00 25.00 23.78 0.00 0.00 0.00 0.00 0.00 -9.83 18.89-0.800 -0.000 -21.109 0.86 10.00 25.00 28.62 0.00 0.00 0.00 0.00 0.00 -10.31 21.030.000 0.889 -17.689 0.93 10.00 25.00 42.23 0.00 0.00 0.00 0.00 0.00 -12.83 28.090.889 1.778 -14.156 0.92 10.00 25.00 57.67 0.00 0.00 0.000.00 0.00 -14.10 35.241.7782.667 -10.677 0.90 10.00 25.00 72.18 0.00 0.00 0.00 0.00 0.00 -13.37 42.122.6673.556 -7.237 0.90 10.00 25.00 85.80 0.00 0.00 0.00 0.00 0.00 -10.81 48.653.5564.444 -3.824 0.89 10.00 25.00 98.56 0.00 0.00 0.00 0.00 0.00 -6.57 54.774.4445.333 -0.425 0.89 10.00 25.00 110.47 0.00 0.00 0.00 0.00 0.00 -0.82 60.405.3336.222 2.974 0.89 10.00 25.00 121.53 0.00 0.00 0.00 0.00 0.00 6.30 65.506.2227.111 6.382 0.89 10.00 25.00 131.74 0.00 0.00 0.00 0.00 0.00 14.64 70.007.111 8.000 9.814 0.90 10.00 25.00 141.09 0.00 0.00 0.00 0.00 0.00 24.05 73.858.000 8.571 12.655 0.59 10.00 25.00 95.20 0.00 0.00 0.00 0.00 0.00 20.86 49.178.571 9.286 15.187 0.74 10.00 25.00 123.64 0.00 0.00 0.000.00 0.00 32.39 63.059.286 10.000 18.036 0.75 10.00 25.00 128.25 0.00 0.00 0.00 0.00 0.00 39.71 64.3810.000 10.833 21.178 0.89 10.00 25.00 149.71 0.00 0.00 0.00 0.00 0.00 54.09 74.0310.833 11.667 24.637 0.92 10.00 25.00 144.42 0.00 0.00 0.00 0.00 0.00 60.20 70.3811.667 12.500 28.194 0.95 10.00 25.00 138.21 0.00 0.00 0.00 0.00 25.00 77.11 76.5312.500 13.333 31.874 0.98 10.00 25.00 130.97 0.00 0.00 0.00 0.00 41.67 91.16 78.1813.333 14.167 35.709 1.03 10.00 25.00 122.59 0.00 0.00 0.00 0.00 41.67 95.87 72.4614.167 15.000 39.740 1.08 10.00 25.00 112.90 0.00 0.00 0.00 0.00 41.67 98.82 66.2615.000 15.789 43.903 1.10 10.00 25.00 96.62 0.00 0.00 0.00 0.00 39.46 94.36 56.6815.789 16.646 48.464 1.29 10.00 25.00 91.58 0.00 0.00 0.00 0.00 42.85 100.62 54.4916.646 17.503 53.699 1.45 10.00 25.00 75.12 0.00 0.00 0.00 0.00 42.85 95.07 47.0517.503 18.360 59.711 1.70 10.00 25.00 54.81 0.00 0.00 0.00 0.00 24.84 68.78 35.7318.360 19.217 67.182 2.21 10.00 25.00 27.79 0.00 0.00 0.00 0.00 0.00 25.61 27.1419.217 19.457 72.970 0.82 10.00 25.00 1.69 0.00 0.00 0.00 0.00 0.00 1.62 8.42总的下滑力 = 905.809(kN)总的抗滑力 = 1404.302(kN)土体部分下滑力 = 905.809(kN)土体部分抗滑力 = 1404.302(kN)筋带在滑弧切向产生的抗滑力 = 0.000(kN)筋带在滑弧法向产生的抗滑力= 0.000(kN)。

(完整版)土坡稳定性计算

(完整版)土坡稳定性计算

(完整版)土坡稳定性计算第九章土坡稳定分析土坡就是具有倾斜坡面的土体。

土坡有天然土坡,也有人工土坡。

天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。

本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。

第一节概述学习土坡的类型及常见的滑坡现象。

一、无粘性土坡稳定分析学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。

要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。

二、粘性土坡的稳定分析学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。

要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。

三、边坡稳定分析的总应力法和有效应力法学习稳定渗流期、施工期、地震期边坡稳定分析方法。

四、土坡稳定分析讨论学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。

第二节基本概念与基本原理一、基本概念1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。

2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土坡。

3.滑坡(landslide):土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳定性的现象。

4.圆弧滑动法(circleslipmethod):在工程设计中常假定土坡滑动面为圆弧面,建立这一假定的稳定分析方法,称为圆弧滑动法。

它是极限平衡法的一种常用分析方法。

二、基本规律与基本原理(一)土坡失稳原因分析土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。

1.产生滑动的内部因素主要有:(1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。

土坡的安全系数K为

土坡的安全系数K为

瑞典条分法分析步骤如下: ①按一定比例绘出土坡剖面图。 ②任选一点O为圆心,以OA=R为半径作圆 弧AC,AC即为假定圆弧滑动面。 ③将滑动面以上的土体竖直分成若干宽度相 等的小土条。土条宽度b通常取为R /10。
④取其中第i个土条为隔离体,进行受力分析。 ⑤计算下滑力和抗下滑力。 ⑥计算稳定安全系数K。
i 1
Ti Ni li
R W i sin i
n
Mr K Ms
tan W i cos i cL
n
i 1
W
i 1
i 1 n
i
sin i
Mr K Ms
tan W i cos i cL
n
W
i 1
i 1 n
i
sin i
• 最危险滑动面圆心位置的确定 上述稳定安全系数K是对于某一个假定滑 动面求得的,因此需要试算许多个可能的 滑动面,相应于最小安全系数的滑动面即 为最危险滑动面。 工程上一般取Kmin≥1.2
(c)中点圆
第三节
粘性土的土坡稳定分析
• 强度参数:粘聚力C,内摩擦角 分析方法可以分为两类: (1)土坡圆弧滑动按整体稳定分析法,主要 适用于均质简单土坡。 (2)条分法分析土坡稳定,对非均质土坡、土 坡外形复杂及土坡部分在水下时均适用。
O
R
一、 均质简单粘性土坡的整体稳定分析
所谓简单土坡是指土坡顶面与底面水平,坡面 BC为一平面的土坡,如图所示。 促使土坡滑动的滑动力为重力W, 沿着滑动面AD上分布的土的抗剪强度 f
造 成 的 外在因素:剪应力的增加 土因 坡素 失 内在因素:土体自身抗剪强度 稳 的降低
滑坡的实质是土坡内滑动面上作用的滑动力 超过了土的抗剪强度。 土坡的稳定程度通常用安全系数K来衡量,它表 示土坡在预计的最不利条件下具备的安全保障。

求解边坡稳定安全系数两种方法的比较

求解边坡稳定安全系数两种方法的比较

求解边坡稳定安全系数两种方法的比较摘要:目前,边坡稳定性分析主要有刚体极限平衡法和有限元强度折减法,本文就理论基础、安全系数的定义及优缺点对以上两种方法进行了简要评述。

基于极限平衡法的发展起来的各种方法物理意义简单,便于计算,但是需要许多假设。

有限元强度折减法不需要假设,可以直接搜索临界滑动面并求出相应的安全系数,同时考虑了岩土体的弹塑性和边坡的破坏失稳过程。

通过对两种方法的认识比较,给岩土边坡工作者设计施工提供一定的参考价值。

关键词:边坡稳定性;极限平衡法;有限元法;安全系数引言边坡稳定分析是一个非常复杂的问题,从20世纪50年代以来,许多专家学者致力于这一研究,因此边坡稳定分析的内容十分丰富。

总体上来说,边坡稳定分析方法可分为两大类:定性分析方法和定量分析方法。

定性分析方法主要是通过工程地质勘探,可以综合考虑影响边坡稳定性的多种因素,对边坡岩土体的性质及演化史、影响边坡稳定性的主要因素、可能的变形破坏方式及失稳的力学机制等进行分析,从而给出边坡稳定性评价的定性说明和解释。

然而,人们更关心的是如何定量表示边坡的稳定性,即边坡稳定性分析的计算方法,定量方法将影响边坡稳定的各种因素都作为确定的量来考虑,通常以计算稳定安全系数为基础。

边坡稳定分析的定量方法有很多种,如条分法、数值分析方法、可靠度方法和模糊数学方法等[1-3]。

目前,边坡稳定分析方法中,人们较为熟知且广泛应用的有条分法和有限元方法。

条分法在边坡稳定分析中最早使用,因其力学模型概念清楚、简单实用,故广泛应用于实际工程中,已经逐渐成为边坡稳定分析的成熟方法。

随着计算机技术的发展,数值分析方法在工程领域应用越来越成熟,有限元方法考虑了土体的非线性应力-应变关系,同时弥补了条分法的不足,近年来有限元方法得到了极大的发展。

[4-6]刚体极限平衡法刚体极限平衡法是人们提出的最早的一类方法,是边坡分析的经典方法,只需要少许力学参数就能提供便于设计应用的稳定性指标即安全系数。

土坡稳定性分析计算

土坡稳定性分析计算
φ值越大,圆心越向外移。计算时从D点 向外延伸取几个试算圆心O1,O2…,分别求得 其相应的滑动稳定安全系数K1,K2…,绘出K值 曲线可得到最小安全系数值Kmin,其相应圆心 Om即为最危险滑动面的圆心。
可编辑ppt
10
费伦纽斯法
可编辑ppt
11
费伦纽斯法
实际上土坡的最危险滑动面圆心位
置有时并不一定在ED的延长线上,而可 能在其左右附近,因此圆心Om可能并不 是最危险滑动面的圆心,这时可以通过 Om点作DE线的垂线FG,在FG上取几个试 算滑动面的圆心O1′,O2′…,求得其相应 的滑动稳定安全系数K1′,K2′…,绘得K′ 值曲线,相应于K′min值的圆心O才是最危 险滑动面的圆心。
• 条分法:适用于非均质土坡、土坡外形复 杂、土坡部分在水下等情况。
可编辑ppt
2
瑞典条分法基本原理
条分法就是将圆弧滑
动体分成若干竖直的土条, 计算各土条对圆弧圆心O 的抗滑力矩与滑动力矩, 由抗滑力矩与滑动力矩之 比(稳定安全系数)来判别 土坡的稳定性。这时需要 选择多个滑动圆心,分别 计算相应的安全系数,其 中最小的安全系数对应的 滑动面为最危险的滑动圆。
若硬层埋藏较浅,则滑动面可能是坡脚圆或 坡面圆,其圆心位置须通过试算确定。
可编辑ppt
16
泰勒分析法
可编辑ppt
17
可编辑ppt
3
瑞典条分法分析步骤
(1)按比例绘出土坡截面图(右图);
(2)任意一点O作为圆心,以O点至坡 脚A作为半径r,作滑弧面AC;
(3)将滑动面以上土体竖直分成几个
等宽土条,土条宽为0.1r; (4)按图示比例计算各土条的重力Gi, 滑动面ab近似取直线,ab直线与水 平面夹角为βi;分别计算Gi在ab面

土力学粘性土土坡稳定性全解

土力学粘性土土坡稳定性全解
• 1在施工前要弄清当地的土质情况,不可盲 目开工 • 2在施工的时候要严格按照标准,不可偷工 减料,在这事件中就是由于土的干密度没 有达标才导致了隐患的发生 • 3要仔细考虑土的渗透性问题,如果通过测 算发觉土的渗透系数较大,要预先做好防 渗措施 • 在施工完后,要对项目做定期检查,防患 于未然
4补救措施
• 1)重新运土夯实坝体,使坝体干密度达到 1.5g/cm3; • 2)对左、右坝头填土与接触带进行充填灌 浆防渗处理; • 3)对迎水坡进行土工膜、混凝土面板覆盖 防渗; • 4)对右坝头小山包及溢洪道底板基岩进行 帷幕灌浆处理; • 5)按反滤要求重新堆砌背水坡;
应该吸取的经验教训
杨布法
• 杨布条分法基本可以满足所有的静力平衡 条件,所以是严格方法之一,但其推力线 的假定必须符合条间力的合理性要求(即 条间力不产生拉力和不产生剪切破坏)。 目前国内外有关边坡稳定的电算程序,大 多包含有杨布法
对它们的假定条件的对比
• 整体圆弧滑动稳定分析法,它假设的是刚性滑动 体滑动面上极限平衡 ,条件为软粘土不排水Pn=0 • 瑞典条分法假设的是滑动面为圆弧面,不考虑条 间力,可以减少2n-2个未知数。它的条件为一般 均质土。 • 毕肖普条分法假设的是滑动面为圆弧面,切向条 间力为0,减少n-1个未知数。它的条件为一般均 质土。 • 杨布条分法假设的是滑动面为任意面,法向条间 力和切向条间力之间为某函数关系,减少n-1个未 知数 。它的条件为任意土
土力学质疑
——粘性土土坡稳定分析
粘性土土坡稳定分析方法

常用的粘性土土坡稳定分析方 法可以分为两种:整体圆弧滑动稳 定分析法和条分法
一整体圆弧法
• (一)分析计算方法 • 1.假设条件:
• 均质简单粘性土坡
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档