4-三极管及放大电路基础

合集下载

第4章 三极管及放大电路基础1

第4章 三极管及放大电路基础1

与 的关系
IC IC ICBO I E ICBO IC I B ICBO
(1 ) IC I B ICBO
I CBO IC IB 1 1
IE
N
P
N
I'C ICBO IC
IC I B (1 ) ICBO
共射直流电流放大倍数: IC I B 1.7 42.5 0.04 共射交流电流放大倍数: IC I B 2.5 1.7 40 0.06 0.04 说明: 例:UCE=6V时: 曲线的疏密反映了 的大小; IC(mA ) 160mA 电流放大倍数与工作点的位置有关; I 5 140mA CM 120mA 交、直流的电流放大倍数差别不大, 4 100mA 今后不再区别;
3 80mA
___
4. 集电极最大电流ICM 当值下降到正常值的三分之二时的 集电极电流即为ICM。
IC
2.5 2 1.7
1 0 2 4 6 8
IB 40mA
IB=60mA 20mA IB=0 10 UCE(V)
六、主要参数
5. 集-射极反向击穿电压U(BR)CEO 手册上给出的数值是25C、基极开路时的击穿电压U(BR)CEO。 6. 集电极最大允许功耗PCM 集电极电流IC 流过三极管, 所发出的焦耳热为: PC =ICUCE 导致结温 上升,PC 有限制, PCPCM 7. 频率参数

扩散 I C 复合 I B
IC
C
N
IB
P N
EC
或者 IC≈IB
I E IC I B (1 ) I B
EB
E
IE
二、电流放大原理

电子电工类--三极管及放大电路基础试题及答案

电子电工类--三极管及放大电路基础试题及答案

电子电工类--三极管及放大电路基础试题及答案一、单选题1.射极跟随器就是()A、共发射极放大电路B、共基极放大电路C、共集电极放大电路D、信号的输出是从发射极输出【正确答案】:C2.在共射基本电路中,当用直流电压表测得UCE^VCC时,有可能是因为()A、Rb开路B、Rb过小C、Rc开路D、Re过小【正确答案】:A3.对于基本共射放大电路,信号源内阻Rs增大时,输入电阻Ri()。

A、增大,B、减小,C、不变D、不能确定【正确答案】:C4.画三极管放大电路的直流通路时,应()A、将耦合电容、旁路电容、直流电源看成开路B、将耦合电容、旁路电容、直流电源看成短路C、将耦合电容、旁路电容看成开路D、将耦合电容、旁路电容看成短路【正确答案】:C5.三极管作为开关管使用时,其工作状态为A、饱和状态和截止状态B、饱和状态和放大状态C、截止状态和放大状态D、放大状态和击穿状态【正确答案】:A6.在基本放大电路中,输入电阻最大的放大电路是()A、共射放大电路B、共基放大电路C、共集放大电路D、共栅极放大电路【正确答案】:C7.以下关于输出电阻的叙述中,正确的是A、输出电阻越小,带负载能力就越强B、输出电阻越小,带负载能力就越弱C、输出电阻等于集电极电阻与负载并联的等效电阻D、输出电阻就是负载电阻【正确答案】:A8.为了使高阻输出的放大电路与低阻输入的放大负载很好地配合,可以在放大电路与负载之间插入()。

A、共射电路B、共集电路C、共基电路D、电容耦合【正确答案】:B9.多级放大器的输出电阻Ro就是()A、第一级输出电阻B、最后一级输出电阻C、每级输出电阻之和D、每级输出电阻之差【正确答案】:B10.共射基本放大电路基极偏置电阻,一般取值为()A、几欧至几十欧B、几十欧至几百欧C、几百欧至几千欧D、几十千欧至几百千欧Ik2k 10kJ 碍 VT. 7 HJVT,1一心I-12VA 、4kQ【正确答案】:D11. 如图所示,该两级放大电路的输出电阻是B 、1.3kQC 、3kQD 、1.5kQ【正确答案】:C12. 以下关于三极管的说法中,正确的是A 、三极管属于单极型器件B 、三极管内存在有三个PN 结C 、三极管的穿透电流随温度升高而增大D 、三极管的正向导通电压随温度升高而增大【正确答案】:C13.在共射放大电路中,输入交流信号vi与输出信号vo相位A、相反B、相同C、正半周时相同D、负半周时相反【正确答案】:A14.在固定偏置放大电路中,若偏置电阻Rb断开,则___。

三极管及基本放大电路教案

三极管及基本放大电路教案

三极管及基本放大电路教案课程名称:三极管及基本放大电路课程时长:2小时课程对象:高中物理学生教学目标:1.了解三极管的基本结构和工作原理。

2.理解三极管的放大特性和应用。

3.掌握基本放大电路的设计和计算方法。

教学准备:1.三极管和相关电路的实物模型。

2. PowerPoint演示文稿。

3.实验器材和电路板。

教学过程:Step 1: 引入(10分钟)a.向学生解释现在我们要学习的内容:三极管及其在基本放大电路中的应用。

b.显示三极管的实物模型,并解释它的基本结构。

c.引导学生思考:三极管是如何工作的?我们为什么要学习它?Step 2: 三极管的工作原理(20分钟)a. 使用PowerPoint演示文稿,详细解释三极管的工作原理,包括发射极、基极和集电极之间的关系。

b.引导学生观察示意图,并帮助学生理解电流流动的过程。

c.通过演示实物模型,展示三极管的工作原理。

Step 3: 三极管的放大特性(20分钟)a.解释三极管的放大特性,包括电压放大系数、电流放大系数和功率放大系数。

b.使用示意图和示波器显示放大效果,帮助学生更好地理解放大特性。

Step 4: 三极管基本放大电路设计(30分钟)a.介绍基本放大电路的种类,如共射放大电路、共基放大电路和共集放大电路。

b. 使用PowerPoint演示文稿和实物模型,逐步讲解这些电路的特点和设计方法。

c.通过示波器演示放大效果,让学生亲自动手设计和制作一个基本放大电路。

Step 5: 实验演示(20分钟)a.分发实验器材和电路板,组织学生进行实验演示。

b.引导学生观察实验现象,记录数据,并帮助学生分析实验结果。

Step 6: 总结与提问(10分钟)a.对本节课的内容进行总结,并再次强调三极管的重要性和应用。

b.提问学生关于三极管和基本放大电路的问题,并进行讨论。

课后作业:1.复习本节课内容,整理笔记。

2.阅读相关教科书内容,进一步理解三极管的工作原理和应用。

3.设计一个简单的基本放大电路,并计算电流和电压放大系数。

三极管及放大电路基础教案

三极管及放大电路基础教案

三极管及放大电路基础教案章节一:三极管概述教学目标:1. 了解三极管的定义、结构和工作原理。

2. 掌握三极管的类型和符号。

教学内容:1. 三极管的定义:三极管是一种半导体器件,具有放大电信号的功能。

2. 三极管的结构:三极管由发射极、基极和集电极组成。

3. 三极管的工作原理:通过基极控制发射极和集电极之间的电流。

4. 三极管的类型:NPN型和PNP型。

5. 三极管的符号:NPN型三极管符号为“N”,PNP型三极管符号为“P”。

教学活动:1. 讲解三极管的定义、结构和工作原理。

2. 展示三极管的实物图和符号图。

3. 引导学生通过实验观察三极管的工作状态。

章节二:放大电路基础教学目标:1. 了解放大电路的定义和作用。

2. 掌握放大电路的基本组成和原理。

教学内容:1. 放大电路的定义:放大电路是一种通过反馈作用放大电信号的电路。

2. 放大电路的作用:放大微弱的信号,使其具有足够的功率驱动负载。

3. 放大电路的基本组成:电源、三极管、输入电阻、输出电阻和反馈电阻。

4. 放大电路的原理:通过三极管的放大作用,实现电信号的放大。

教学活动:1. 讲解放大电路的定义、作用和基本组成。

2. 展示放大电路的原理图和实际电路图。

3. 引导学生通过实验观察放大电路的工作状态。

章节三:三极管的放大特性教学目标:1. 了解三极管的放大特性。

2. 掌握三极管的放大原理。

教学内容:1. 三极管的放大特性:三极管的放大能力与基极电流、集电极电流和发射极电流之间的关系。

2. 三极管的放大原理:通过基极电流的控制,实现发射极和集电极之间电流的放大。

教学活动:1. 讲解三极管的放大特性和放大原理。

2. 分析三极管放大电路的输入和输出特性曲线。

3. 引导学生通过实验观察三极管的放大特性。

章节四:三极管放大电路的设计与应用教学目标:1. 了解三极管放大电路的设计方法。

2. 掌握三极管放大电路的应用。

教学内容:1. 三极管放大电路的设计方法:根据输入和输出信号的要求,选择合适的三极管、电阻等元件,设计合适的电路。

三极管放大电路基础

三极管放大电路基础

半导体三极管及放大电路基础第一节学习要求第二节半导体三极管第三节共射极放大电路第四节图解分析法第五节小信号模型分析法第六节放大电路的工作点稳定问题第七节共集电极电路第八节放大电路的频率响应概述第九节本章小结第一节学习要求(1)掌握基本放大电路的两种基本分析方法--图解法与微变等效电路法。

会用图解法分析电路参数对电路静态工作点的影响和分析波形失真等;会用微变等效电路法估算电压增益、电路输入、输出阻抗等动态指标。

(2)熟悉基本放大电路的三种组态及特点;掌握工作点稳定电路的工作原理。

(3)掌握频率响应的概念。

了解共发射极电路频率特性的分析方法和上、下限截止频率的概念。

第二节半导体三极管(BJT)BJT是通过一定的工艺,将两个PN结结合在一起的器件,由于PN结之间的相互影响,使BJT表现出不同于单个 PN结的特性而具有电流放大,从而使PN结的应用发生了质的飞跃。

本节将围绕BJT为什么具有电流放大作用这个核心问题,讨论BJT的结构、内部载流子的运动过程以及它的特性曲线和参数。

一、BJT的结构简介BJT又常称为晶体管,它的种类很多。

按照频率分,有高频管、低频管;按照功率分,有小、中、大功率管;按照半导体材料分,有硅管、锗管;根据结构不同,又可分成NPN型和PNP 型等等。

但从它们的外形来看,BJT都有三个电极,如图3.1所示。

图3.1是NPN型BJT的示意图。

它是由两个 PN结的三层半导体制成的。

中间是一块很薄的P型半导体(几微米~几十微米),两边各为一块N型半导体。

从三块半导体上各自接出的一根引线就是BJT的三个电极,它们分别叫做发射极e、基极b和集电极c,对应的每块半导体称为发射区、基区和集电区。

虽然发射区和集电区都是N型半导体,但是发射区比集电区掺的杂质多。

在几何尺寸上,集电区的面积比发射区的大,这从图3.1也可看到,因此它们并不是对称的。

二、BJT的电流分配与放大作用1、BJT内部载流子的传输过程BJT工作于放大状态的基本条件:发射结正偏、集电结反偏。

半导体三极管放大电路基础课件

半导体三极管放大电路基础课件
第2章 半导体三极管放大电路基础
§2.1 三极管工作原理 §2.2 共射极放大电路 §2.3 图解分析法 §2.4 微变等效电路分析法 §2.5 工作点稳定的放大电路 §2.6 共集电极放大电路和共基极放大电路
1
§2.1 三极管工作原理
BJT全称为双极型半导体三极管,内部有自由电子 和空穴两种载流子参与导电。种类很多:有硅管和锗管, 有高频管和低频管,有大、中、小功率管。
2
2.1.1 三极管的结构与符号:
NPN型 c 集电极
集电极
c PNP型
N
b
P
基极
N
P
B
N
基极
P
e
b c 发射极
e
几微米至 几十微米
e
发射极
c b
e
3
c 集电极
集电结
N
b
P
基极
N
发射结
e
发射极
4
集电区: 面积较大
b
基极
c
集电极
N P N
e
发射极
基区:较薄, 掺杂浓度低
发射区:掺 杂浓度较高
5
2.1.2 三极管放大的工作原理
0.061mA
I B 50 0.061mA 3.05m Icmax
Ic Icmax 2mA
Q 位于饱和区,此时IC 和IB 已不是 倍的关系。
二、共基极连接时的V-I特性曲线
IB
A
RE
V UEB
IC
mA R
C
V UCB EC
EE
实验线路
26
1、输入特性:
UCB=5V
8
UCB =1V
=(ICN+ICBO)+(IBN+IEP-ICBO) IE =IC+IB

三极管及放大电路基础

三极管及放大电路基础

IC(mA ) 4
3
2
1 36
截止区
100A 80A
IB= 60A 40A 20A 0 9 12 VCE(V)
IC RC
IB B C
VCE
RB
VBE EB
E IE
EC
(1-13)
特点:VBE<死区电压, IB≤0≈0, IC ≤ICEO≈ 0,VCE ≈EC
这时三极管C 、 E端相当于: 一个断开的开关。
过大,温升过高会烧坏三极管。所以要求:
PC =IC VCE≤PCM 6.集-射极反向击穿电压V(BR)CEO ——基极开路时,集电极与发射极之间允许的最大反向 电压。
(1-22)
由三个极限参数可画出三极管的安全工作区
IC ICM
ICVCE=PCM
安全工作区
O
V(BR)CEO
VCE
(1-23)
八、晶体管参数与温度的关系
IC RC
IB B
C VCE
RB
VBE EB
E IE
EC
如何判断是否截止?
若:VBE ≤0(死区电压)
或 VC>VE >VB 三极管可靠截止
IC
VCE
C RC
E
EC
(1-14)
(3) 放大区:IC=IB区域 , 发射结e正偏,集电结c反偏 特点: IC=IB , 且 IC = IB , VCE=EC-IC RC
(1-29)
三极管在电路中的应用
1、放大电路 对三极管放大电路的分析,包括静态分 析和动态分析两部分。 也就是直流方面的分析和交流方面的分 析 直流方面的分析主要是判断三极管是否 有合适的直流工作条件 交流方面的分析主要是判断放大电路是 否能够正常的放大信号。

4-三极管及放大电路基础(3)Q点稳定共射共集共基电路

4-三极管及放大电路基础(3)Q点稳定共射共集共基电路
3-2
第三章
§3.5放大电路的工作点稳定问题
为了保证放大电路的稳定工作,必须有合 适的、稳定的静态工作点。但是,温度的变 化会严重影响静态工作点。
对于前面的电路(固定偏置电路)而言, 静态工作点由VBE、和ICBO决定,这三个参 数随温度而变化,温度对静态工作点的影响 主要体现在这一方面。
VBE
RS =1 k
信号源有内阻时,电压放大倍数Aus减小。
输入电阻越大,若ri RS ,则Aus Au
3-18
第三章
+VCC RB1 C1 I1 R IB
B
C
IC
C E
C2

ui
RB2
I2
RE
RL
IE CE
例:静态工作点稳 定的放大器,各参 数如下: RB1=100k, RB2=33k, RE=2.5k, RC=5k, uo RL=5k, VCC=15V, =60。
3-24
第三章
静态工作点稳定且具有射极交流负反馈电阻 的放大器 微变等效电路及输入电阻输出电阻
Ui= Ib[rbe +(1+ )RF] Ib = Ui /[rbe +(1+ )RF]
Ii = I1 +I1 +Ib= Ui /RB1 + Ui /RB2+Ui /[rbe +(1+ )RF]
Vo
Vi
3-29
第三章
交流通道及微变等效电路 C
B E
ui
Ii

RB
Ib

RE
Ic
BC

RL
uo
Ui
RE

RB
rbe E

第二章 三极管及放大电路基础

第二章  三极管及放大电路基础

第二章三极管及放大电路基础教学重点1.了解三极管的外形特征、伏安特性和主要参数。

2.在实践中能正确使用三极管。

3.理解放大的概念、放大电路主要性能指标、放大电路的基本构成和基本分析方法。

4.掌握共发射极放大电路的组成、工作原理,并能估算电路的静态工作点、放大倍数、输入和输出电阻等性能指标。

5.能搭建分压式放大电路,并调整静态工作点。

教学难点1.三极管的工作原理。

2.放大、动态和静态以及等效电路等概念的建立。

3.电路能否放大的判断。

学时分配2.1三极管2.1.1三极管的结构与符号 通过实物认识常见的三极管三极管有三个电极,分别从三极管内部引出,其结构示意如图所示。

按两个PN 结组合方式的不同,三极管可分为PNP 型、NPN 型两类,其结构示意、电路符号和文字符号如图所示。

PNP 型 NPN 型有箭头的电极是发射极,箭头方向表示发射结正向偏置时的电流方向,由此可以判断管子是PNP 型还是NPN 型。

基区 发射区e基极 ceVTe基极 cecVT《电子技术基础与技能》配套多媒体CAI 课件 电子教案三极管都可以用锗或硅两种材料制作,所以三极管又可分为锗三极管和硅三极管。

2.1.2三极管中的电流分配和放大作用动画:三极管电流放大作用的示意做一做:三极管中电流的分配和放大作用观察分析实验参考数据:1)三极管各极电流分配关系:I E = I B + I C ,I E ≈ I C ≫I B2)基极电流和集电极电流之比基本为常量,该常量称为共发射极直流放大系数β,定义为:BCI I =β 3)基极电流有微小的变化量Δi B ,集电极电流就会产生较大的变化量Δi C ,且电流变化量之比也基本为常量,该常量称为共发射交流放大系数β,定义为:BCΔi i ∆=β1.三极管的电流放大作用,实质上是用较小的基极电流信号控制较大的集电极电流信号,实现“以小控大”的作用。

2.三极管电流放大作用的实现需要外部提供直流偏置,即必须保证三极管发射结加正向电压(正偏),集电结加反向电压(反偏)。

三极管及放大电路

三极管及放大电路
常用晶体管的 值在20 ~ 200之间。
基本放大电路
基本放大电路一般是指由一个三极管与相应元件组成放大电路。
6.3 共射极放大电路
单电源供电时常用的画法
共发射极基本电路
+UCC
RS
es
RB
RC
C1
C2
T
+
+
+

RL
ui
+

uo
+

+
+

uBE
uCE

iC
iB
iE
EC
RS
es
RB
EB
RC
C1
C2
T
(2)截止区
IB=0
20A
40A
60A
80A
100A
3
6
IC(mA )
1
2
3
4
UCE(V)
9
12
O
IB < 0 以下区域为截止区,有 IC 0 。
在截止区发射结处于反向偏置,集电结处于反向偏置,晶体管工作于截止状态。
饱和区
截止区
(3)饱和区
当UCE UBE时,晶体管工作于饱和状态。 发射结处于正向偏置,集电结也处于正偏。
放大
截止
饱和
-
+
正偏
反偏
-
+
+
-
正偏
反偏
+
-
放大Vc>Vb>Ve
放大Vc<Vb<Ve
例:
3 主要参数
1. 电流放大系数,
直流电流放大系数

三极管及放大电路基础教案

三极管及放大电路基础教案

一、教学目标:1. 让学生了解三极管的结构、种类和功能。

2. 让学生掌握三极管的导通和截止条件。

3. 让学生了解放大电路的原理和应用。

4. 让学生能够分析判断放大电路的工作状态。

二、教学内容:1. 三极管的结构和种类教学要点:三极管由发射极、基极和集电极组成,分为NPN型和PNP型。

2. 三极管的导通和截止条件教学要点:三极管导通需要基极-发射极电压大于一定值,集电极-发射极电压小于一定值;截止则相反。

3. 放大电路的原理教学要点:放大电路利用三极管的放大作用,将输入信号放大后输出。

4. 放大电路的应用教学要点:放大电路广泛应用于电子设备中,如音频放大、信号放大等。

5. 放大电路的工作状态分析教学要点:分析判断放大电路的工作状态,包括静态工作点和动态工作状态。

三、教学方法:1. 采用讲授法,讲解三极管及放大电路的基本概念、原理和应用。

2. 利用多媒体课件,展示三极管及放大电路的实物图片和电路图,增强学生的直观认识。

3. 进行实验演示,让学生亲自动手操作,观察放大电路的工作状态。

4. 案例分析,分析实际应用中的放大电路,提高学生的应用能力。

四、教学准备:1. 教学课件和教案。

2. 三极管实物和放大电路演示电路。

3. 实验器材和工具。

五、教学评价:1. 课堂问答:检查学生对三极管及放大电路的基本概念、原理和应用的理解。

2. 实验报告:评估学生在实验中的操作技能和分析判断能力。

3. 课后作业:巩固学生对三极管及放大电路的知识点掌握。

4. 期末考试:全面考核学生对三极管及放大电路的学习效果。

六、教学内容:6. 放大电路的类型教学要点:放大电路分为三种类型:共发射极放大电路、共基极放大电路、共集电极放大电路;其中共发射极放大电路应用最广泛。

7. 放大电路的静态工作点教学要点:静态工作点是指放大电路中的三极管在直流工作状态下,各极的电位处于一种稳定的状态,对于放大电路的性能有很大影响。

8. 放大电路的动态分析教学要点:动态分析是指在输入信号的作用下,放大电路中三极管的工作状态和工作参数的变化。

第4章三极管及放大电路基础

第4章三极管及放大电路基础
综上所述,三极管的放大作用,主要是依 靠它的发射极电流能够通过基区传输,然后到 达集电极而实现的。
实现这一传输过程的两个条件是:
(1)内部条件:发射区杂质浓度远大于基区 杂质浓度,且基区很薄。
(2)外部条件:发射结正向偏置,集电结反 向偏置。从电位上来看对于NPN型三极管,
UC>UB>UE
4.1.3 BJT的特性曲线
iB/uA
vvio与iBv/iu相vABE位相反6i0B;
iC
vCE
Q`
|-vo|

iC/mA
可以测量出放40大电路的电Q压放大倍数;
可以确定最大不失真输出幅度。
20 IBQ
Q``
iC/mA 交流负载线
Q`
60uA
Q
40uA
ICQ
Q`` 20uA
t
vBE/V
t
共vB射E/V极放大电路
end
4.2 共射极放大电路
电路组成 简化电路及习惯画法 简单工作原理 放大电路的静态和动态 直流通路和交流通路
4.2 共射极放大电路
1. 电路组成
输入回路(基极回路) 输出回路(集电极回路)
3.2 共 射极放
2. 简化电路及习惯画法
大电路
共射极基本放大电路
习惯画法
注意: 判断一个电路能否正常放大一般从以下 几点考虑(1)保证三极管处于放大状态,因 此直流电源及其极性要接正确。直流电源要保 证发射结正偏、集电结反偏。 (2)输入信号Ui能够加在三极管的B、E之间 (RB不能为0),输出信号U0能够从C、E两点 取出(RC不能为0)。 (3)耦合电容作用是通交流阻直流。它的极 性及位置要接正确
4.2 共 射极放
4. 放大电路的静态和动态

三极管基本放大电路

三极管基本放大电路
稳定静态工作点的原理
而UEQ=UBQ-UBEQ,因为UBQ是电源电压Vcc经Rb1、Rb2串联分压后得到的稳定值,所以UBEQ将减小。此时,IBQ减小,ICQ也将减小。
(1)温度升高,则引起ICQ增大,则IEQ流经Re产生的电压UEQ也随之增大;
所以,分压式偏置放大电路具有自动调整功能,当ICQ要增加时,电路不让其增加;当ICQ要减小时,电路不让其减小;从而迫使ICQ稳定。所以该电路具有稳定静态工作点的作用。 【稳定条件】IRb2>>IBQ ; UB>>UBEQ
多级放大电路的耦合方式
多级放大电路中每个单管放大电路称为“级”,级与级之间的连接方式叫耦合。下表为三种常用耦合方式的比较。
本章小结
三极管由两个PN结构成,按结构分为NPN和PNP两类。三极管的集电极电流受基极电流的控制,所以三极管是一种电流控制器件。在满足发射结正偏、集电结反偏的条件下,具有电流放大的作用。三极管的输出特性曲线可分成截止区、饱和区、放大区。
上述过程可表示为:
静态工作点的估算
分压式偏置放大电路的直流通路如右下图,则有:
第5节 多级放大器
实际应用中,放大电路的输入信号通常很微弱(毫伏或微伏数量级),为了使放大后的信号能够驱动负载,仅仅通过单管放大电路进行信号放大,很难达到实际要求,常常需要采用多级放大电路。采用多级放大电路可有效地提高放大电路的各种性能,如提高电路的电压增益、电流增益、输入电阻、带负载能力等
共射放大电路的交流通路
案例解析
【例2-5】画出下面图放大电路的直流通路和交流通路。 【解析】画直流通路的原则是交流信号视为零、电容视作开路,画交流通路的原则是直流电源电源、电容视作短路。画法如图所示 (a)放大电路 (b)直流通路 (c) 交流通路

ACH4-双极结型三极管及放大电路4

ACH4-双极结型三极管及放大电路4
4 半导体三极管及放大电路基础
4.0 引言 4 1 半导体BJT 4.1 4.2 共射极放大电路 4 3 图解分析法 4.3 4.4 小信号模型分析法 4.5 放大电路的工作点稳定问题 4.6 共集电极电路和共基极电路 *4.7 放大电路的频率响应 4.8 8单极放大电路的瞬态响应 *4
1
北京交通大学 王昕
VCC RB Cb1 Rs vs + vi ' R L A V rbe
共集电极电路CC (电压跟随器)
Rb c VCC
共基极电路CB (电流跟随器)
+VCC Rb1 C1 Rc C2
RC
Cb2 + vo RL + Rs vs vi _ b e Re + vo _ RL
Cb
V o
V i
射极偏置电路
直流通路
5
4.5.2 射极偏置电路
2. Q点计算:
Rb 2 VB V CC 4 V R b1 R b2
Rb1 39k Rc 2k β=40 Rb2 20k Re 2k
+VCC
V E VB VBE IC I E 1.7mA Re Re
I B I C / 40 A
RC 2k
e Rb1 Rb2 39k 20k I Re e _ 2k
rbe
I b
+ vo RL 2k
射极偏置电路的小信号等效电路
+ vi -
Rb2 20k
射极偏置电路
7
4.5.2 射极偏置电路
b
I b I c
c + Rc V o 2k _ RL 2k
3. 指标计算
Rs 0.5k Vs

三极管及其放大电路

三极管及其放大电路

第2章 半导体三极管及其基本放大电路
2.1.3 .BJT的特性曲线
BJT的特性曲线是指各电极电压与电流之间 的关系曲线,它是BJT内部载流子运动的外部 表现。
工程上最常用的是BJT的输入特性和输出特 性曲线。
第2章 半导体三极管及其基本放大电路
以共射放大电路为例:
输入特性:iBf vBEvCE 常 数 输出特性: iCf vCEiB常数
第2章 半导体三极管及其基本放大电路
输出特性曲线可以划分为三个区域: 饱和区——iC受vCE控制的区域,该区域内vCE的 数值较小。此时Je正偏,Jc正偏
iC /mA
25℃
=80μA =60μA =40μA
=20μA
vCE /V
第2章 半导体三极管及其基本放大电路
饱和区——iC受vCE显著控制的区域,该区域内vCE的数值较 小。此时Je正偏,Jc正偏。
电压增益2= 0lgAV dB 电流增益2= 0lgAI dB
由于功率与电压(或电流)的平方成比例, 因此功率增益表示为:
功率增益=10lgAP
【 AP
Po 】 Pi
第2章 半导体三极管及其基本放大电路
2.2.2
+
VS
-
R

i
Vi I i
输入电阻Ri
I i
Io
+
+
Rs Vi
放大电路 Ri (放大器)
2.3 共射基本放大电路
共射基本放大电路组成
放大的外部条件
输入回 路
输出回 路
两个回路 正确的直流偏置
ui为小信号 ui和VBB串接 RB为基极偏置电阻
RC为集电极偏置电

第2章 半导体三极管及其基本放大电路

4_1三极管及其基本放大电路PPT课件

4_1三极管及其基本放大电路PPT课件

一.放大原理
三极管工作在放大区:
发射结正偏,
集电结反偏。
放大原理:
VBB
UI

Ui
→△UBE
→△IB →△IC(b△IB


→△UCE(-△IC×Rc)→ Uo
电压放大倍数:


Au =
Uo

Ui
+VCC ( +12V)
RC
IC +△IC
B C Rb 1 E IB +△IB
3
T2 U CE
+△U CE
AU=UO/UI(重点)
AI=IO/II
Ar=UO/II Ag=IO/UI
模 拟电子技术
2. 输入电阻Ri——从放大电路输入端看进去的
RS ii
uS ~
ui
信号源 输入端
等效电阻
Ri
Au
输出端
输入电阻:
Ri=ui / ii
一般来说, Ri越大越好。 (1)Ri越大,ii就越小,从信号源索取的电流越小。 (2)当信号源有内阻时, Ri越大, ui就越接近uS。
+
UO
U BE +△U BE
-
模 拟电子技术
ui
+VCC(+12V)
O
t
RC IC +△IC
iB
Rb 1
3 T2
+
VBB
IB +△IB
UCE +△U CE UO
IBQ O
t
UI
UBE+△U BE
-
iC ICQ
符号说明
uBE = U BE ube

三极管及放大电路基础教案

三极管及放大电路基础教案

三极管及放大电路基础教案一、教学目标:1.了解三极管的基本概念和结构;2.掌握三极管的工作原理;3.掌握三极管的基本参数和测量方法;4.理解放大电路的基本原理。

二、教学内容:1.三极管的概念和结构;2.三极管的工作原理;3.三极管的基本参数和测量方法;4.放大电路的基本原理;5.放大电路中的三极管应用。

三、教学重点:1.三极管的工作原理;2.三极管的基本参数和测量方法;3.放大电路的基本原理。

四、教学难点:1.三极管的工作原理;2.放大电路的基本原理。

五、教学过程:(一)导入新知识(5分钟)1.引入放大电路的概念;2.提问:你们知道什么是放大电路吗?3.学生回答。

(二)学习三极管的概念和结构(15分钟)1.展示三极管的实物图,并简要介绍其结构;2.学生观察三极管,了解其结构;3.解释三极管的引脚功能。

(三)学习三极管的工作原理(20分钟)1.展示三极管的工作原理原理图;2.以NPN型三极管为例,介绍其工作原理;3.以电流流动的方式讲解三极管的工作过程。

(四)学习三极管的基本参数和测量方法(20分钟)1.介绍三极管的常见参数,如放大倍数、输出电阻等;2.讲解如何测量三极管的放大倍数和输入、输出电阻;3.展示测量三极管参数的仪器,实际操作演示。

(五)学习放大电路的基本原理(15分钟)1.介绍放大电路的基本组成,包括输入端、输出端和放大电路;2.讲解放大电路的基本工作原理;3.展示一种常见的放大电路,如共射放大电路,并通过示意图进行讲解。

(六)了解放大电路中的三极管应用(20分钟)1.介绍三种常见的放大电路:共射放大电路、共基放大电路和共集放大电路;2.分别讲解三种放大电路的特点和应用;3.学生思考并回答:你认为在哪些场合下可以使用这些电路?(七)小结与反思(5分钟)1.小结本节课学习的内容;2.提问:你掌握了这节课的重点吗?3.学生回答。

六、教学资源:1.三极管实物图;2.三极管工作原理原理图;3.测量三极管参数的仪器;4.放大电路示意图。

4-三极管及放大电路基础(2)共射放大电路及分析方法资料

4-三极管及放大电路基础(2)共射放大电路及分析方法资料

h fe
iC iB
VC E
hre
v BE vCE
IB
hoe
iC vCE
IB
β输出端交流短路时的正向电流传输比或电 流放大系数(无量纲);
μr 输入端交流开路时的反向电压传输比(无 量纲);
1/rce输入端交流开路时的输出电导,单位 为西门子(S);
hie,hre,hfe,hoe称为BJT在共射极接法下的H参数
(3-8)
第三章
§3.3 图解分析法
放大器两 种工作状 态
静态:当放大电路没有输入信号 时,电路中各处的电压、电流都 是不变的直流,则称为直流工作 状态或静止状态。
动态:当放大电路有输入信号时, 电路中各处的电压、电流都是变 动状态,则称为电路处在动态工 作情况或动态。
(3-9)
第三章
放大电路的分析步骤
Rb C1 +
RS + Ui US -
画直流通路
Rc C2 +
V RL
+UCC +
Uo -
①电容视为开路;②电感线圈视 为短路;③信号源视为短路,但 应保留其内阻。
(3-12)
第三章
分析动态时,通常用交流通路。
+UCC
交流通路:输入信号作 用下交流信号流经的 通路,它用于研究动 态参数及性能指标。
(3-36)
第三章
2、三极管H参数的等效电路
vbe hieib hrevce
ic hfeib hoevce
其中,hie为电阻,hrevce为电压源,hfeib为电流源,hoe为电导
定的电流和电压(IB、IC、VCE);当vi≠0时,
iB、iC、vCE都在原来的直流量上叠加了一个交
流量
虽然这些电流、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


最大输出幅值:又称动态范围,是指输出波形的非线性失真 在允许的范围内,放大电路可能输出的最大信号的峰值。
4.3.2 小信号模型分析法
1. BJT的H参数及小信号模型 建立小信号模型的思路 当放大电路的输入信号电压很小时,就可以把三极 管小范围内的特性曲线近似地用直线来代替,从而可以 把三极管这个非线性器件所组成的电路当作线性电路来 处理。
vBE h re vCE i C h oe vCE
IB
输入端交流开路时(ib=0,iB=IBQ)的反向电压 传输比; 输入端交流开路时的输出电导。
IB
H参数小信号模型 根据
vbe= hieib+ hrevce ic= hfeib+ hoevce
可得小信号模型
BJT双口网络
BJT的H参数模型
4.3.1 图解分析法
1. 静态工作点的图解分析 首先,画出直流通路
列输入回路方程
vBE VBB iB Rb
列输出回路方程(直流负载线) VCE=VCC-iCRc
直流通路
在输入特性曲线上,作出直线 vBE VBB iB Rb ,两线的交点 即是Q点,得到IBQ。 在输出特性曲线上,作出直流负载线 VCE=VCC-iCRc,与IBQ曲 线的交点即为Q点,从而得到VCEQ 和ICQ。
4.1.3 BJT的V-I 特性曲线
1. 输入特性曲线
(以共射极放大电路为例)
iB=f(vBE) vCE=const
(1) 当vCE=0V时,相当于发射结的正向伏安特性曲线。 (2) 随vCE的增加,曲线右移。 等于1V时集电结已进入反偏状态,开 始收集电子,基区复合减少,同样的vBE下 IB减小,特性曲线右移。
VBB VBEQ Rb
ICQ βIBQ ICEO βIBQ
VCEQ=VCC-ICQRc
2. 动态
输入正弦信号vs后,电路将处在动态工作情况。此时, BJT各极电流及电压都将在静态值的基础上随输入信号作相
应的变化。
动态信号作用时: uI iB iC uRc uCE (uo ) 放大电路为什么要设置直流呢?
VCC:使UCE≥UBE,同时作为 负载的能源。 Rc:将ΔiC转换成ΔuCE(uO) 。 Vi:待放大的时变输入信号。
4.2.2 基本共射极放大电路的工作原理
通常,放大电路中直流电源的作用和交流信号的作用共 存,这使得电路的分析复杂化。为简化分析,将它们分开 作用,引入直流通路和交流通路的概念。 1. 静态(直流工作状态)
画交流通路的原则: 对交流信号,内阻小的电压源视为短路,内阻大的电流源 视为开路 对一定频率范围内的交流信号,较大的电容视为短路

交流通路
放大电路组成原则
• 静态工作点合适:合适的直流电源、合适的电路参数。 • 动态信号能够作用于晶体管的输入回路,在负载上能够 获得放大了的动态信号。
4.3 放大电路的分析方法
这可不是 好办法!
• 消除方法:增大Rb,减小Rc,减小β,减小VBB,增大VCC。 • 最大不失真输出电压Uom :比较UCEQ与( VCC- UCEQ ),取 其小者,除以 2 。
图解法分析放大电路的步骤

由直流通路写出直流负载方程


在特性曲线上作直流负载线,确定Q
在特性曲线上作交流负载线 画输出电压、电流的波形,分析放大过程,求放大
1. BJT的H参数及小信号模型 H参数的引出 对于BJT双口网络,已知输入输 出特性曲线如下: iB=f(vBE) vCE=const iC=f(vCE) iB=const 可以写成: vBE f1 (iB , vCE )
iC f 2 (iB , vCE )
BJT双口网络
在小信号情况下,对上两式取全微分得 vBE vBE dvBE VCE diB I B dvCE iB vCE iC iC diC VCE diB I B dvCE iB vCE 用小信号交流分量表示 vbe= hieib+ hrevce
第四章
三极管及放大电路基础
重点: 1.了解三极管的基本构造、工作原理和特性 曲线,理解主要参数的意义; 2.理解三极管的电流分配和电流放大作用; 3.会判断三极管的工作状态。 4.掌握各类三极管放大电路的分析方法:(1)静 态的工作点估算法; (2)动态的微变等效电路 分析法,即AV、Ri 和Ro的计算方法。
4.1.2 放大状态下BJT的工作原理
(发射结正偏) uBE U on 放大的条件 (集电结反偏) uCB 0,即 uCE uBE
1. 内部载流子的传输过程
少数载流 子的运动 因集电区面积大,在外电场作用下大 部分扩散到基区的电子漂移到集电区 因基区薄且多子浓度低,使扩散到基 区的电子(非平衡少子)中的极少数 与空穴复合 因发射区多子浓度高使大量电子从发 射区扩散到基区
(4) 共基极交流电流放大系数α α =IC/IEvCB=const
当ICBO和ICEO很小时, ≈、 ≈,可以不加区分。
2. 极间反向电流
(1) 集电极-基极间反向饱和电流ICBO

ICBO是由少数载流子的漂移运动所形成的电流,受温度 的影响大。 温度ICBO
• 衡量晶体管集电结质量的重要指标。越小,管子稳定性 越好。
§4.1
晶体三极管
双极型晶体管(Bipolar Junction Transistor,简称BJT)
(a) 小功率管
(b) 小功率管
(c) 大功率管
(d) 中功率管
4.1.1 BJT的结构简介
半导体三极管有两
种类型:NPN型和PNP 型。
特点:

基区薄,惨杂浓度低


发射区惨杂浓度最高
集电区面积最大
2.温度对晶体管特性的影响
T (℃) I CEO ,故输出特性曲线上移 ,且距离增大 uBE 不变时iB ,即iB不变时uBE ,即输入特性曲线左移
4.2
共射极放大电路的工作原理
4.2.1 基本共射极放大电路的组成
VBB、Rb:使UBE> Uon,且有 合适的IB。
ic= hfeib+ hoevce
H参数的意义
vbe= hieib+ hrevce ic= hfeib+ hoevce
vBE h ie iB
h fe iC iB
VCE
VCE
输出端交流短路时(vce=0,vCE=VCEQ)的输入 电阻; 输出端交流短路时的正向电流传输比或电 流放大系数;
I CEO (1 ) I CBO
穿透电流 为什么基极开路集电极回 路会有穿透电流?
综上所述,三极管的放大作用,主要是依靠它的 发射极电流能够通过基区传输,然后到达集电极而实 现的。 实现这一传输过程的两个条件是:
(1)内部条件:发射区杂质浓度远大于基区杂质浓
度,且基区很薄。 (2)外部条件:发射结正向偏置,集电结反向偏置。
输入回路 负载线 IBQ Q
负载线
ICQ
Q
IBQ
UBEQ
UCEQ
2. 动态工作情况的图解分析 根据vs的波形,在BJT的输入特性曲线图上画出vBE 、 iB 的 波形
设 vs Vsm sin ωt
则输入回路 vBE VBB vs iB Rb
根据iB的变化范围在输出特性曲线图上画出iC和vCE 的波形
4.1.5 温度对BJT参数及特性的影响
1. 温度对BJT参数的影响
(1) 温度对ICBO的影响
温度每升高10℃,ICBO约增加一倍。 (2) 温度对 的影响 温度每升高1℃, 值约增大0.5%~1%。 (3) 温度对反向击穿电压V(BR)CBO、V(BR)CEO的影响
温度升高时,V(BR)CBO和V(BR)CEO都会有所提高。
PCM= ICVCE
(3) 反向击穿电压

V(BR) EBO——集电极开路时,发射结的反向击穿电压。 V(BR)CBO——发射极开路时,集电结反向击穿电压。
V(BR)CEO——基极开路时,集电极和发射极间的击穿 电压。 几个击穿电压有如下关系 V(BR)CBO>V(BR)CEO>V(BR) EBO
(2) 集电极-发射极间的反向饱和电流ICEO
ICEO=(1+ )ICBO
3. 极限参数
(1) 集电极最大允许电流ICM
集电极电流 IC上升会导致三极管的值的下降。一 般把β 减小到额定值的1/2时,所对应的IC值。IC 超过 ICM 后,β 显著减小,放大性能降低。
(2) 集电极最大允许功率损耗PCM
一般也用公式估算 rbe (忽略 r'e ) rbe= r'bb + (1+ ) re 其中对于低频小功率管 r'bb≈200
VT (mV) 26(mV) (T=300K) 而 re I EQ (mA) I EQ (mA)

26( mV ) rbe 200 (1 ) I EQ ( mA )
vCE VCC iC Rc
共射极放大电路中的电压、 电流波形
3. 静态工作点对波形失真的影响 • 截止失真
t
截止失真是在输入回路首先产生失真!
消除方法:增大VBB,即向上平移输入回路负载线。
• 饱和失真 :饱和失真是输出回路产生失真。
Rc↓或VCC↑
Q '''
Q''
Rb↑或 β↓或 VBB ↓
(3) 当vCE≥1V时, 特性曲线基本重合。集电结的电场足够强,已收集
绝大部分电子,故随VCE,IB电流无明显变化。
共射极连接
2. 输出特性曲线
iC=f(vCE) iB=const
相关文档
最新文档