数控车床自动回转刀架结构设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨理工大学课程设计说明书
设计题目:数控车床自动回转刀架结构设计
班级:
学号:
姓名:
指导老师:
日期:
设计任务
题目:数控车床自动回转刀架结构设计
任务:设计一台四工位立式回转刀架,适用于C616或C6132经济型数空车床。要求绘制自动回转刀架的机械结构图。推荐刀架所用电动机的额定功率为
90W,额定转速1480r/min,换刀时要求刀架转动的速度为40r/min,减速装置的传动比为i=37。
总体结构设计
1、减速传动机构的设计
普通的三项异步电动机因转速太快,不能直接驱动刀架进行换刀,必须经过适当的减速。根据立式转位刀架的结构特点,采用蜗杆副减速时最佳选择。蜗杆副传动可以改变运动的方向,获得较大的传动比,保证传动精度和平稳性,并且具有自锁功能,还可以实现整个装置的小型化。
2、上刀体锁紧与精定位机构的设计
由于刀具直接安装在上刀体上,所以上刀体要承受全部的切削力,其锁紧与定位的精度将直接影响工件的加工精度。本设计上刀体的锁进玉定位机构选用端面齿盘,将上刀体和下刀体的配合面加工成梯形端面齿。当刀架处于锁紧状态时,上下端面齿相互啮合,这时上刀体不能绕刀架的中心轴旋转;换刀时电动机正转,抬起机构使上刀体抬起,等上下端面齿脱开后,上刀体才可以绕刀架中心轴转动,完成转位动作。
3、刀架抬起机构的设计
要想使上、下刀体的两个端面齿脱离,就必须设计适合的机构使上刀体抬起。本设计选用螺杆-螺母副,在上刀体内部加工出内螺纹,当电动机通过蜗杆-涡轮带动蜗杆绕中心轴转动时,作为螺母的上刀体要么转动,要么上下移动。当刀架处于锁紧状态时,上刀体与下刀体的端面齿相互啮合,因为这时上刀体不能与螺杆一起转动,所以螺杆的转动会使上刀体向上移动。当端面齿脱离啮合时,上刀体就与螺杆一起转动。
设计螺杆时要求选择适当的螺距,以便当螺杆转动一定的角度时,使得上刀梯与下刀体的端面齿能够完全脱离啮合状态。
下图为自动回转刀架的传动机构示意图,详细的装配图在一号图纸上。
三、自动回转刀架的工作原理
自动回转刀架的换刀流程如下图。
图上表示自动回转刀架在换刀过程中有关销的位置。其中上部的圆柱销2和下部的反靠销6起着重要作用。
当刀架处于锁紧状态时,两销的情况如图A所示,此时反靠销6落在圆盘7的十字槽内,上刀体4的端面齿和下刀体的端面齿处于啮合状态(上下端面齿在图
中未画出)。
需要换刀时,控制系统发出刀架转位信号,三项异步电动机正向旋转,通过蜗杆副带动蜗杆正向转动,与螺杆配合的上刀体4逐渐抬起,上刀体4与下刀体之间的端面齿慢慢脱开;与此同时,上盖圆盘1也随着螺杆正向转动(上盖圆盘1通过圆柱销与螺杆联接),当转过约1700时,上盖圆盘1直槽的另一端转到圆柱销2的正上方,由于弹簧3的作用,圆柱销2落入直槽内,于是上盖圆盘1就通过圆柱销2使得上刀体4转动起来(此时端面齿已完全脱开)。
上盖圆盘1、圆柱销2以及上刀体4在正转的过程中,反靠销6能够从反靠圆盘7中十字槽的左侧斜坡滑出,而不影响上刀体4寻找刀位时的正向转动。
上刀体4带动磁铁转到需要的刀位时,发信盘上对应的霍尔元件输出低电平信号,控制系统收到后,立即控制刀架电动机反转,上盖圆盘1通过圆柱销2带动上刀体4开始反转,反靠销6马上就会落入反靠圆盘7的十字槽内,至此,完成粗定位。此时,反靠销6从反靠圆盘7的十字槽内爬不上来,于是上刀体4停止转动,开始下降,而上盖圆盘1继续反转,其直槽的左侧斜坡将圆柱销2的头部压入上刀体4的销空内,之后,上盖圆盘1是下表面开始与圆柱销2的头部滑动。再次期间,上、下刀体的端面齿逐渐啮合,实现精定位,经过设定的延时时间后,刀架电动机停转,整个换刀过程结束。
由于蜗杆副具有自锁功能,所以刀架可以稳定地工作。
蜗杆-涡轮减速销连接
蜗杆-涡轮减速
主要传动部件的设计
1.蜗杆副的设计计算
自动回转刀架的动力源是三相异步电动机。其中蜗杆与电动机直联,刀架转位时
蜗轮与上刀体直联。已知电动机额定功率p
1
=90W。,额定转速n1=1480r/min,上刀体设计转速n2=40r/min,蜗杆副的传动比i=n1/n2=37。刀架从转位到锁紧时,需要蜗杆反向,工作载荷不均匀,启动时冲击较大,今要求蜗杆副的使用寿命
L h=10000h。
(1)蜗杆的选型 GB/T10085-1988推荐采用渐开线蜗杆和锥面包络蜗杆。本设计采用结构简单,制造方便的渐开线型圆柱蜗杆。
(2)蜗杆副的材料刀架中的蜗杆副传动的功率不大,但蜗杆转速干,一次,蜗杆的材料选用45钢,其螺旋齿面要淬火,硬度为45~55HRC,以提高其表面耐磨行;蜗轮的转速较低,其材料主要考虑耐磨性,选用铸锡磷青铜
ZCuSn10P1,采用金属模制造。
(3)按齿面接触疲劳强度进行设计刀架中的蜗杆副采用闭式传动,多因齿面胶合或点蚀而失效。因此,进行载荷计算时,先按齿面接触疲劳强度进行设计,再按齿根弯曲疲劳强度进行校核。
按蜗轮接触疲劳强度条件设计计算的公式
a≥√KT2(Z E Z P
[σH] )2
3
(4-1)
式中 a——蜗杆副的传动中心距,单位mm;
K——载荷系数;
T2——作用在涡轮上的转矩T2,单位;
Z E——弹性影响系数ZE;
[σH]——许用接触应力,单位为MPa。
从式4-1算出蜗杆副的中心距a之后,根据已知的传动比i=35,
查表选择一个合适的中心距a值,以及相应的蜗杆,蜗轮参数。
1)确定作用在蜗轮上的转矩T2,设蜗杆头数Z1=1,蜗杆副的传动效率η=,
由电动机的额定功率p
1=90W,可以算出蜗轮传动的功率p
2
=p
1
η,再由蜗
轮的转速n2=40r/min求得作用在蜗轮上的转矩
T2=p2
n2=p1η
n2
=·m=22923N·mm
2)确定载荷系数K 载荷系数K= KA KB K。其中KA为使用系数,有表6-3查得,由于工作载荷不均匀,启动时冲击较大,因此取KA=K A;Kβ为齿向分布系数,因工作载荷在启动和停止时有变化,故取KB Kβ=;K V为动载系数,由于转数不高。冲击不大,可取K K V=。则载荷系数K=KA KB K ≈
使用系数K A