地基与基础第三章

合集下载

地基与基础工程施工及验收规范第三章

地基与基础工程施工及验收规范第三章

第三章地基第一节灰土地基第3.1.1条灰土的土料,宜采用就地基槽中挖出的土,但不得含有有机杂质,使用前应过筛,其粒径不得大于15毫米。

第3.1.2条用作灰土的熟石灰应过筛,其粒径不得大于5毫米。

熟石灰中不得夹有未熟化的生石灰块,也不得含有过多的水分。

第3.1.3条灰土的配合比(体积比)除设计有特殊要求外,一般为2:8或3:7第3.1.4条基坑(槽)在铺打灰土前必须先行验槽。

如发现坑(槽)内有局部软弱土层或孔穴,应挖除后用素土或灰土分层填实,或通知设计单位确定处理办法。

第3.1.5条灰土施工时,应适当控制含水量。

工地检验方法,是用手将灰土紧握成团,两指轻捏即碎为宜,如土料水分过多或不足时,应晾干或洒水润湿。

第3.1.6条灰土应拌和均匀,颜色一致。

拌好后及时铺好夯实,不得隔日夯打。

第3.1.7条灰土的铺设厚度,可根据不同的施工方法按照表3.1.7选用。

各层厚度都应预先在基坑(槽)侧壁插定标志。

每层灰土的夯打遍数,应根据设计要求的干容重在现场试验确定。

灰土最大虚铺厚度表3.1.7第3.1.8条灰土分段施工时,不得在墙角、柱基及承重窗间墙下接缝。

上下两层灰土的接缝距离不得小于500毫米。

第3.1.9条在地下水位以下的基坑(槽)内施工时,应采取排水措施。

夯实后的灰土,在三天内不得受水浸泡。

第3.1.10条灰土地基打完后,应及时修建基础和回填基坑(槽),或作临时遮盖,防止日晒雨淋。

第3.1.11条雨天施工时,应采取防雨及排水措施。

刚打完毕或尚未夯实的灰土,如遭受雨淋浸泡,则应将积水及松软灰土除去并补填夯实;受浸湿的灰土,应在晾干后再夯打密实。

第3.1.12条灰土的质量检查,宜用环刀取样,测定其干容重。

质量标准可按压实系数dy鉴定,一般为0.93~0.95;也可按照表3.1.12规定执行。

用贯入仪检查灰土质量时,应先进行现场试验以确定贯入度的具体要求。

注:①dy为土在施工时实际达到的干容重γd与其最大干容重γdmax之比。

地基与基础施工手册

地基与基础施工手册

地基与基础施工手册
地基与基础施工手册是一本详细介绍地基与基础施工的书籍,它包含了许多历史上真实存在的施工技术和经验。

以下是该手册的章节划分和内容介绍:
第一章:地质勘察
地质勘察是地基与基础施工的第一步,它的目的是确定地质条件,为后续的设计和施工提供依据。

本章介绍了地质勘察的方法和技术,包括地质勘察的目的、范围、方法、内容和报告编制等。

第二章:基础设计
基础设计是地基与基础施工的核心,它的质量直接影响到整个建筑物的安全和稳定性。

本章介绍了基础设计的原则和方法,包括基础类型、荷载计算、基础尺寸、基础形式、基础材料等。

第三章:基础施工
基础施工是地基与基础施工的重要环节,它的质量直接影响到基础的承载能力和稳定性。

本章介绍了基础施工的方法和技术,包括基础开挖、基础浇筑、基础防水、基础加固等。

第四章:地基处理
地基处理是地基与基础施工的关键环节,它的目的是提高地基的承载能力和稳定
性。

本章介绍了地基处理的方法和技术,包括地基加固、地基加压、地基加筋、地基加注等。

第五章:基础验收
基础验收是地基与基础施工的最后一步,它的目的是确认基础的质量和稳定性。

本章介绍了基础验收的方法和技术,包括基础检查、基础试验、基础质量评定等。

总结:
地基与基础施工手册详细介绍了地基与基础施工的各个环节和技术,它包含了许多历史上真实存在的施工技术和经验。

这些技术和经验对于今天的地基与基础施工仍然具有重要的参考价值,是地基与基础施工领域的经典之作。

土力学地基基础 课件 第三章 渗流固结理论

土力学地基基础 课件 第三章 渗流固结理论

基本假定
1. 土层是均质且完全饱和 2. 土颗粒与水不可压缩 3. 水的渗出和土层压缩只沿竖向发生 4. 渗流符合达西定律且渗透系数保持不变 5. 压缩系数a是常数 6. 荷载均布,瞬时施加,总应力不随时间变化
基本变 量
总应力 已知
饱和土体的 连续性条件
超静孔隙水压 力的时空分布
单向固结理论——数 学 模 型
Cv 与渗透系数k成正比,与压缩系数a成反比;
单位:cm2/y;m2/y。
数学模型
渗透固结微分方程:
Hale Waihona Puke u tCv2u z2
• 反映了超静孔压的消散速度与孔压沿竖向的分布有关
• 是线性齐次微分方程式,一般可用分离变量方法求解
• 其通解的形式为:
u(z,t) (C1 cos Az C2 sin Az)eA2Cvt
• 方程的特解:(省略)
• 把方程的特解代入平均固结 度公式,得到Ut的近似解:
Ut
1
32
3
n1
(1)n1 (2n 1)3
exp[(2n 1)
2 2
4
Tv ]
(n=1,2,3…)
方程求解 – 方程的特解
三、有关沉降-时间的工程问题
求某一时刻t的固结度与沉降量 求达到某一固结度所需要的时间
按照粘土层双面排水及单面排水条件,求: (1)计算该饱和粘土的竖向固结系数。 (2)加载一年的沉降量。再经过5年,则该粘土层
的固结度将达到多少?在这5年间产生了多大的 压缩量。 (3)沉降量为153mm所需要的时间。
作业题2:
厚度为6m的饱和粘土层,其上为薄砂层,其下为基岩。已 知该粘土层的K=5×10-7cm/s,Es=0.9MPa,

第三章地基和基础工程质量事故与处理

第三章地基和基础工程质量事故与处理

3.1 地基工程质量事故3.1.1 地基工程事故原因分析1.地质勘查深度不足或者根本不勘察2.基础设计不调查、不计算3.软弱地基不处理4.忽视寒冷地区地基土的冻胀5.基础埋置深度不足6.地基基础缺乏防护、防水、排水措施7.不按图纸规范施工,粗制滥造3.1.2 地基失稳事故地基失稳破坏的原因,是由于地基中各点的剪应力随着荷载的增加而不断增加,当地基中局部范围内的剪应力达到土的抗剪极限强度时,便会产生局部剪切破坏。

如局部破坏的范围扩大而连成整体,则地基将失去稳定性,并可能引起建筑物的严重破坏。

地基的失稳破坏属剪切破坏,有以下3种情况1.整体剪切破坏当荷载大于某数值时,基础急剧下沉。

同时,在基础周围的地面有明显的隆起现象,继而,基础倾斜,甚至倒塌,地基发生整体剪切破坏。

如加拿大特朗斯康谷仓,受载后,地基发生滑动严重倾斜,是地基发生整体滑动、丧失稳定性的典型例子(见图3•1)。

该谷仓建在较厚的软黏土地基上,受荷后谷仓西侧突然陷入土中8•8m,东侧则抬高1•5m,但该谷仓的整体性很强,仓身完好无损。

2.局部剪切破坏与前类似,滑动面从基础的一边开始,终止于地基中的某点。

只有当基础发生相当大的竖向位移时,滑动面才发展到地面。

破坏时,基础周围地面也有隆起现象,但基础无明显的倾斜或倒塌。

软黏土和松沙地基易发生这一类型的破坏。

如广东海康县7层框架结构的旅馆建造在淤泥质软土地基上,设计人员在无地质勘探资料的情况下,盲目地按照100~12OkPa的承载力设计,并错误地采用独立基础,造成因地基失稳而倒塌的严重事故。

事故发生后,实测地基承载力仅为40~5OkPa,又由于少算荷载,柱的承载力也远达不到要求。

基础的严重不均匀沉降,使上部结构产生很大的附加内力,导致结构倒塌,造成直接经济损失60余万元。

3.冲切剪切破坏压缩性较大的软黏土和松沙,由于弱土层的变形使基础连续下沉,产生过大的沉降,基础就像切入土中一样。

故称为冲切剪切破坏。

土力学与地基基础-第三章.土中应力分布及计算解析

土力学与地基基础-第三章.土中应力分布及计算解析

从上式可知,自重应力随深度z线性增
加,呈三角形分布图形。
2019/8/25
土中自重应力的计算
8
3.2 土中自重应力的计算
2. 成层土的压力计算
地基土通常为成层土。当地基为成层土体时,设各土层
的厚度为hi,重度为 ,则在i 深度z处土的自重应力计算公式 为:
n
cz ihi i 1


剪应力
xy
yx

3Q xyz
2

R5
1 2 3
xy(2R z)
R3
(
R

z)2

yz
zy

3Q 2
yz 2 R5
ZX
XZ
3Q 2
xz 2 R5
3.4 集中力作用下土中应力计算
X、Y、Z轴方向的位移
分别为:
刚性基础在中心载荷作用下,地基反力呈马鞍形,随着外 力的增大,其形状相应改变。如下图
2019/8/25
基础底面压力的分布和计算
15
3.3 基础底面压力的分布和计算
2019/8/25
基础底面压力的分布和计算
16
3.3 基础底面压力的分布和计算
2. 地基反力的简化计算方法
根据弹性理论的圣维南原理及土中实测结果,当作用在 基础上的总载荷为定值时,地基反力分布的形状对土中 应力分布的影响,只在一定深度范围内,当基底的深度 超过基础宽度的1.5-2.0倍时,它的影响已不显著。因此, 在实用上采用材料力学方法,即将地基反力分布认为是 线性分布的简化计算方法。
因此,基底附加压力p0是上部结构和基础传到基底的地基反力 与基底处原先存在于土中的自重应力之差(新增加的应力)(如图)

地基与基础工程施工及验收规范GBJ202目录

地基与基础工程施工及验收规范GBJ202目录

地基与基础工程施工及验收规范GBJ202—83
目录
第一章总则
第二章井点降低地下水位
第一节一般规定
第二节轻型井点
第三节喷射井点
第四节电渗井点
第五节管井井点
第六节深井井点
第三章地基
第一节灰土地基
第二节砂和砂石地基
第三节碎砖三合土地基
第四节重锤夯实地基
第五节强夯地基
第六节预压地基
第七节砂桩
第八节土和灰土挤密桩
第九节振冲地基
第十节旋喷地基
第十一节硅化地基
第四章桩基础
第一节一般规定
第二节钢筋混凝土预制桩
第三节板桩
第四节钢管桩
第五节混凝土和钢筋混凝土灌注桩
第六节木桩
第七节工程验收
第五章地下连续墙
第一节一般规定
第二节墙体施工
第三节工程验收
第六章沉井和沉箱
第一节一般规定
第二节沉井
第三节沉箱
第四节工程验收
附录一轻便触探“检定锤击数”试验方法
附录二硫磺胶泥的配合比和主要物理力学性能指标
附录三建筑物和构筑物沉降观测要点附录四选择锤重参考表
附录五施工记录表(1)
附录五施工记录表(2)
附录五施工记录表(3)
附录五施工记录表(4)
附录五施工记录表(5)
附录五施工记录表(6)
附录五施工记录表(7)
附录六规范用词说明。

地基与基础智慧树知到答案章节测试2023年宁夏建设职业技术学院

地基与基础智慧树知到答案章节测试2023年宁夏建设职业技术学院

第一章测试1.土力学的核心理论主要是土的强度问题,变形问题和渗透问题。

()A:错B:对答案:B2.地基基础设计必须满足的两个基本条件是强度和变形条件。

()A:对B:错答案:A3.把埋入土层一定深度,建筑物向地基传递荷载的下部结构称为地基。

()A:错B:对答案:A第二章测试1.土颗粒的大小及其级配,通常是用颗粒级配曲线来表示的,级配曲线越平缓表示()。

A:土颗粒大小不均匀,级配不良B:不确定C:土颗粒大小较均匀,级配良好D:土颗粒大小不均匀,级配良好答案:D2.土的天然含水量是指()之比的百分率。

A:土中水的体积与所取天然土样体积B:土中水的质量与所取天然土样的质量C:土的孔隙与所取天然土样体积D:土中水的质量与土的固体颗粒质量答案:D3.判别粘性土软硬状态的指标是()A:压缩指数B:液性指数C:压缩系数D:塑性指数答案:B4.土的天然重度愈大,则土密实性愈好。

()A:对B:错答案:B5.甲土的饱和度大与乙土的饱和度,则甲土的含水率一定高于乙土的含水率()A:错B:对答案:A6.土的重度、含水量和孔隙比是由室内试验直接测得的。

()A:对B:错答案:B第三章测试1.地下水位长时间下降,会使()。

A:土中孔隙水压力增大B:地基土的抗剪强度减小C:地基中原水位以上的自重应力增加D:地基中原水位以下的自重应力增加答案:D2.由建筑物的荷载在地基内产生的应力称为()。

A:有效应力B:附加压力C:自重应力D:附加应力答案:D3.在均质地基中,竖向自重应力随深度线性增加,而侧向自重应力则呈非线性增加。

()A:对B:错答案:B4.竖向附加应力的分布范围相当大,它不仅分布在荷载面积之下,而且还分布到荷载面积以外,这就是所谓的附加应力集中现象。

()A:对B:错答案:B5.集中荷载作用下土中任意点的应力常用角点法来计算。

A:错B:对答案:A第四章测试1.土体产生压缩的是()A:土粒和水的压缩量均较大;B:土中孔隙体积减少,土粒体积不变;C:孔隙体积不变D:孔隙体积和土粒体积均明显减少答案:B2.评价地基土压缩性高低的指标是()A:压缩系数;B:参透系数C:固结系数;D:沉降影响系数;答案:A3.若土的压缩曲线(e-p曲线)较陡,则表明()A:土的密实度较大B:土的压缩性较小C:土的孔隙比较小D:土的压缩性较大答案:D4.对于高耸结构,主要应控制的地基变形特征值是()A:沉降量B:沉降差C:倾斜D:局部倾斜答案:C5.高压缩性土是疏松土,低压缩性土是密实土。

土力学地基基础课件第三章渗流固结理论

土力学地基基础课件第三章渗流固结理论

渗流固结理论的重要性
渗流固结理论在土木工程、水利工程 、地质工程等领域具有广泛的应用价 值。
它对于理解土体的力学行为、预测土 体的变形和稳定性、优化工程设计和 施工具有重要意义。
渗流固结理论的应用领域
01
02
03
水利工程
水库、堤防、水电站等水 利设施的设计和安全评估。
土木工程
高层建筑、高速公路、桥 梁等基础设施的建设和安 全评估。
渗透试验
通过测量土体的渗透系数、 渗透速度等参数,研究土 体的渗透特性。
现场试验方法
现场观测
通过在土体中埋设传感器和监测 仪器,实时监测土体的渗流和固
结过程。
触探试验
通过触探设备对土体进行触探,测 量土体的物理性质和强度特性。
旁压试验
通过旁压设备对土体施加压力,测 量土体的变形和强度特性。
数值模拟方法
三维固结理论通过求解偏微分方程组, 得到土体在固结过程中任意时刻的孔隙
水压力分布、土层沉降和位移场。
04
渗流固结理论的实验研究
室内试验方法
室内模型试验
通过模拟实际土体中的渗 流和固结过程,研究土体 的变形和强度特性。
土工离心机试验
利用离心加速度模拟土体 应力状态,研究土体在复 杂应力状态下的渗流和固 结行为。
06
结论
渗流固结理论的发展趋势
数值模拟与实验研究的结 合
随着计算机技术的进步,数值 模拟方法在渗流固结理论的研 究中越来越受到重视。通过与 实验研究相结合,可以更准确 地模拟复杂条件下的土体渗流 和固结过程。
多场耦合分析
考虑土体的应力、应变、渗流 和温度等多场耦合效应,对土 体的复杂行为进行更全面的分 析。
渗流固结理论可以用于分析地 下水的流动规律和土体的渗透 性能,为地下水控制提供理论 支持。

基础工程 第三章 连续基础

基础工程 第三章 连续基础

s R
其中柔度系数按分层总和法计算:
ij
k 1
m
kijH ki
Eski
弹性半空间地基模型的优缺点: 能考虑应力扩散,能考虑相邻荷载的 影响。且能考虑地基土的分层变化。但仍 不能考虑土的应力应变非线性。 弹性半空间地基模型的适用条件: 分层的各种土组成的地基。
3.4文克勒地基上梁的计算
M 02 M 0 3 M M 剪力,归纳公式为: w Bx, C x,M 0 Dx,V 0 Ax kb kb 2 2
x x Ax e (cosx sin x),Bx e sin x 式中 x x C e (cos x sin x ) , D e cosx,均可按x查表获得。 x x 当 x 0 时,取其绝对值计算,所得结果 w、M取相反符号 、V 正负条形基础、十字交叉条形基础、筏板式基础和箱形基础等 的统称。也可简称为梁板式基础。 连续基础具有以下特点: (1)基底面积大、承载能力高,适用于荷载集中的高层建筑和荷载较大的工 业建筑; (2)能增大上部结构整体刚度,减小建筑物的不均匀沉降; (3)对于埋置深度较大的箱形基础,可以考虑挖除的土重对建筑物荷载的补 偿作用; (4)连续基础造价较高; (5)连续基础设计计算较为复杂。 连续基础是地基上的多跨连续受弯构件,其弯曲内力和挠曲变形都与地基 、基础以及上部结构的相对刚度有关,因此,综合考虑地基、基础与上部结构相 互作用,并选择适宜的地基计算模型,才能经济高效地完成连续基础的工程设计 。
2.弹性半空间地基模型
假定地基为弹性半空间力学介质,由Boussinesq解,
P(1 2 ) 地基沉降:s w( x, y,0) E0 r
si i1 p1 f1 i 2 p2 f 2 ... in pn f n ij R j 第i单元地基沉降:

土力学与地基基础 第三章

土力学与地基基础 第三章

矩形竖直向均布荷载角点下的应力分布系数Kc
查表3-4
2. 矩形均布荷载非角点下任意深度处的垂直附加应力 —角点法
荷载与应力间
满足线性关系
B
角点下垂直附加 角点法
叠加原理 应力的计算公式
C
地基中任意点的附加应力
两种情况:
h
a.矩形面积内
z ( K c A K c B K c C K c D ) p 0
一. 竖直集中力作用下的附加应力计算-布辛内斯克课题
F
o
αr
x R
y M’
βz
x
z zx
y
xy
x
M
y yz
z
R 2= r2 + z 2= x 2 + y 2 + z 2 r/z=tgβ
σ x σ y σ z xy yz zx(F;x,y,z;R, α, β)
一. 竖直集中力作用下地基中的附加应力计算-布辛内斯克课题
z Kzsp0
x Kxsp0
xzKxszp0
y
b
x
K z s ,K x s ,K x s zf( b ,x ,z ) f( b x ,b z ) f( m ,n ) z
p
x
z
M
条形面积竖直均布荷载作用时的应力分布系数
查表3-8
六、 条形面积三角形分布荷载作用下的附加应力计算
σz =Kzt pt
σz=2[σz(ebo)- σz(eaf) ]=2[Ktz1(p+q)- Ktz2q] 其中q为三角形荷载(eaf)的最大值,可按三角形比例关 系计算得:q=p=100kPa,附加应力系数计算如表3-10所示。
编 荷载分布
O点(z=0m)M点(z=10m)

地基和基础的抗震设计

地基和基础的抗震设计
• (1)一般情况下,应按地面至剪切波速大于500 m/s且下卧各层岩土 的剪切波速均不小于500 m/、的土层顶面的距离确定。
上一页 下一页 返回
第一节建筑场地
• (2)当地面5 m以下存在剪切波速大于其上部各土层剪切波速 2. 5倍 的土层,且该层及其下卧各层岩土的剪切波速均不小于400 m/s时, 可按地面至该土层顶面的距离确定。
• (2)地震是有限次数不等幅的随机荷载,其等效循环荷载不超过十几 次到几十次,而多数土在有限次数的动载下强度较静载下稍高。基于 这两方面原因,新规范延续采用抗震承载力与静力承载力的比值作为 地基土承载力调整系数,其值也可通过动静强度之比求得。
• 《抗震规范》中地基抗震承载力设计值,可采用在地基静力承载力 设计值基础上乘以调整系数若。来计算。调整系数若。是综合考虑了 土在动荷载下强度的提高和可靠度指标的降低两个因素而确定的。地 基抗震承载力按下式确定:
第三章地基和基础的抗震设计
• 第一节建筑场地 • 第二节地基和基础的抗震设计 • 第三节可液化地基和抗液化措施
返回
第一节建筑场地
• 地震对建筑物的破坏作用是通过场地、地基和基础传递给上部结构 的;同时,场地与地基在地震时又支撑着上部结构,因此,建筑场地 具有双重作用。任何一个建筑物,都坐落和嵌固在建设场地的地基上。 研究工程在地震作用的震害形态、破坏机理,以及抗震设计等问题, 都离不开对场地土和地基的研究;而研究场地和地基在地震作用下的 反应及其对上部结构的影响,正是场地抗震评价的重要任务。通过对 地震地质、工程地质、地形地貌以及岩土工程环境等场地条件的分析, 研究场地条件对基础和上部结构震害的影响,从而合理地选择有利建 筑场地和地基,避免和减轻地震对建筑物或工程设施的破坏。
上一页 下一页 返回

土力学与地基基础习题集与答案第3章

土力学与地基基础习题集与答案第3章

第3章土的渗透性及渗流(答案在最底端)一、简答题1.试解释起始水力梯度产生的原因。

2.简述影响土的渗透性的因素主要有哪些。

(1)土的粒度成分及矿物成分。

土的颗粒大小、形状及级配,影响土中孔隙大小及其形状,因而影响土的渗透性。

土颗粒越粗,越浑圆、越均匀时,渗透性就大.砂土中含有较多粉土及粘土颗粒时,其渗透系数就大大降低。

(2)结合水膜厚度。

粘性土中若土粒的结合水膜厚度较厚时,会阻塞土的孔隙,降低土的渗透性。

(3)土的结构构造.天然土层通常不是各向同性的,在渗透性方面往往也是如此.如黄土具有竖直方向的大孔隙,所以竖直方向的渗透系数要比水平方向大得多。

层状粘土常夹有薄的粉砂层,它在水平方向的渗透系数要比竖直方向大得多。

(4)水的粘滞度.水在土中的渗流速度与水的容重及粘滞度有关,从而也影响到土的渗透性.3。

为什么室内渗透试验与现场测试得出的渗透系数有较大差别?4。

拉普拉斯方程适应于什么条件的渗流场?5.为什么流线与等势线总是正交的?6.流砂与管涌现象有什么区别和联系?7。

渗透力都会引起哪些破坏?二、填空题1.土体具有被液体透过的性质称为土的。

2。

影响渗透系数的主要因素有:、、、、、。

3.一般来讲,室内渗透试验有两种,即和.4.渗流破坏主要有和两种基本形式。

5.达西定律只适用于的情况,而反映土的透水性的比例系数,称之为土的。

三、选择题1。

反应土透水性质的指标是()。

A.不均匀系数 B。

相对密实度C。

压缩系数 D。

渗透系数2.下列有关流土与管涌的概念,正确的说法是( )。

A.发生流土时,水流向上渗流;发生管涌时,水流向下渗流B。

流土多发生在黏性土中,而管涌多发生在无黏性土中C。

流土属突发性破坏,管涌属渐进式破坏D。

流土属渗流破坏,管涌不属渗流破坏3.土透水性的强弱可用土的哪一项指标来反映?( )A。

压缩系数 B。

固结系数C。

压缩模量 D。

渗透系数4。

发生在地基中的下列现象,哪一种不属于渗透变形?( )A.坑底隆起 B。

基础工程第三章

基础工程第三章
4EI
1 特征长度
梁的分类
l / 4
短梁(刚性梁)
/ 4 l l
有限长梁(有限刚性梁,中长梁) 无限长梁(柔性梁)
l称为柔度指数,为无量纲数
F0
例题 如图,集中荷载 F0=2300kN 作 用 在 长 度 l=32m的基础梁中点。混 凝 土 采 用 C30 , 弹 性 模 量E=3107kPa,基础梁 的 截 面 惯 性 矩 I=1.5 101m4 , 基 础 梁 宽 度 b=3m , 基 床 系 数 k=1 103kN/m3 。 利 用 文 克 尔 地基模型计算地基梁的 反力、弯矩和剪力。
•当l时,可认为是长梁(柔性梁),可利用无限长梁或半无 限长梁的有关解答进行计算; •当/4<l<时,可认为是有限长梁(有限刚性梁) ; •当l/4时,是短梁(刚性梁),此时简单假定基底反力呈直 线变化,其截面弯距和剪力可由静力平衡条件求得。
4 bk 弹性地基梁的弹性特征
1/3以上通长配置。当肋梁腹板高≥450mm时,应设腰筋箍 筋按计算确定,做成封闭式,并局部加密。底板受力筋按 计算确定 砼强度等级≥C20,垫层为C10,厚70~100 mm
27
3.柱下条形基础、筏形和箱形基础
3.3.2 柱下条基的计算
1.基础底面尺寸确定 长度由构造要求确定,宽度由地基承载力要求确定。
l
短梁(刚性梁) 有限长梁(有限刚性梁,中长梁) 无限长梁(柔性梁)
2.集中力偶作用下的无限长梁
边界条件: w 0 x
w 0 x0
当x→∞时,w→0
M x0 M0 / 2
在集中力偶作用下,θ和V是关于O点对称的
w和M是关于O点反对称
O点左、右两侧截面上的弯矩均为M=M0/2

土力学与地基基础——第3章 地基土中的应力计算

土力学与地基基础——第3章 地基土中的应力计算
编辑ppt
三、水平向自重应力 土的水平向自重应力cx和cy可按下式计算:
cxcyK0cz
天然地面
土的侧压力系数/ 静止土压力系数
cz cx
广义虎克定律推导出
理论关系为
K0
1

值K可0 以在实验室测定。
cy
编辑ppt
z
四、例题分析
【例】一地基由多层土组成,地质剖面如下图所示,试计
算并绘制自重应力σcz沿深度的分布图
土中应力
自重应力
附加应力
编辑ppt
建筑物修建以前,地 基中由土体本身重量 所产生的应力
建筑物重量等外荷载 在地基中引起的应力 增量
土中应力计算的目的:
第一节 概述
土中应力过大时,会使土体因强度不够发生破坏, 甚至使土体发生滑动失去稳定。
土中应力的增加会引起土体变形,使建筑物发生沉 降,倾斜以及水平位移。
布。根据平衡条件求得重分布后的基底最大压应力。
pmax
pmin pmax
pmin=0
e<l/6
e=l/6
pmax
e>l/6
pmin<0 基底压力重分编布辑pppt max
2(F G) pmax 3( l e)b pmin=0
基底压力重分布
l
l/2-e e>l/6
偏心荷载作用线
应与基底压力的
b
编辑ppt
法国数学家布辛内斯克(J. Boussinesq)1885年推出了该
问题的理论解,包括六个应力分量和三个方向位移的表达

教材P48页
其中,竖向应力z:
z3 2 PR z3 52 3 [1(r1 /z)2]5/2zP 2z P 2

地基基础工程第三章_箱形基础

地基基础工程第三章_箱形基础
b bi
b1
b2
b3 B
b4
h
h1
h2
B
h2
h
第六章 箱形基础
第一节 概述 第二节 箱形基础构造要求
一、箱基底面尺寸
二、基础高度
三、墙体厚度和数量、墙体开洞
第二节 箱形基础构造要求
♠ 墙体应满足箱基整体刚度的要求
♦ 墙体数量
♧ 墙体水平截面总面积不宜小于箱基外墙外包 尺寸的水平投影面积的1/10,其中纵向墙体 水平截面积不得小于1/18
qx
H1 N1
q
N2
q
N3
q
N4 qx
H
3 1 4 2
p j w ( H H1 )
1 3 2 4
一、箱形基础的变形和受力特性
♠ 确定地基反力分布的方法
♦ 刚性法
♧ 上部结构刚度大(如现浇剪力墙体系),地 基土较软、土层均匀时,按直线分布确定
♦ 地基、基础和上部结构共同作用方法
本章标题
第六章
箱形基础
第六章 箱形基础
第一节 概述 第二节 箱形基础构造要求 第三节 箱形基础的内力分析和强度计算
第一节 概述
第一节 概述
第一节 概述
♠ 箱基组成
♦ 箱形空格结构:顶板、底板+纵墙、横墙
外横墙 900 1800 6000 5×6000 2600 外纵墙 内纵墙 Ⅰ
内横墙

- 0.03 ± 0.00 + 0.20
上层柱中心线 b nh’ h’(净高)
a=ml l (净跨) 墙体开洞示意图
第二节 箱形基础构造要求
♠ 墙体开洞
♦ 洞口应设在墙体剪力较小的部位,宜设在柱 间居中部位
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
1h1
h1
2h2
h2
加权平均重度
基础补偿性设计:高层建筑利用箱形基础或地下室, 使设计埋深部分的结构自重小于挖去的土自重,即 减小p0,从而减小地基变形。
挖槽卸荷
建造后总荷
γ·d
p0
新增荷载
【例3-3】例3-2中,基础埋深内土分为两层,重度 分别为γ1,γ2,求基底附加压力。 解题要点:
y rx
K0—静止土压力系数, 用于挡土墙土压力计算。
σcz
σcx σcy
M(x,y,z)
z
【例3-1】如图,成层土地基,
地面以下有地下水及
不透水层。
计算要点:

➢地下水位以下用有效重度计算;
➢不透水层面以上考虑浮力, ②
过不透水层面后则考虑
③上
水压力影响,不透水
③下
层面处自重应力有突变。

地基剖面图 ▽ γ1 h1 γsat2 h2 γsat3 h3 γ4 h4
单层均质土层:
cz z
σcz=γz A z σcz=γz
地基为多层土组成:
i1
cz 1z1 2 z2 n zn i zi
n
天然地面
γ1z1 γ2z2 γ3z3 γ4z4 A σcz=Σγz
σcz
γ1z1 γ1z1+γ2z2 γ1z1+γ2z2 + γ3z3 γ1z1+γ2z2 + γ3z3 + γ4z4
(1
6e ) l
14489.9.1
kPa
基础底面
M
F+G
pmin
pmax
三、基底附加压力计算
基底面处以下在原土自重应力作用下已沉降完毕, 如不考虑地基回弹,基槽开挖后只有超出基底面处土自 重应力以外的力,才能引起地基变形,基底新增加的应 力,称为基底附加压力(用于地基变形计算)。
p0 p cz p 0d
不透水层
第二节 基底压力计算
• 概要:基底压力是指基础底面传递给地基表面的压力 (地基反力),用于地基应力、变形及基础结构计算。
一、基底压力分布
基底压力分布形式与基础刚度 荷载大小及分布,基础埋深, 地基土性质有关。
实际分布形式:如图示,随 荷载增大发生变化。
计算假定:按直线规律变化, 根据材料力学公式计算。
P x
r
σz
M(x,y,z)
z
地面
水平方向
深度
水平方向
附加应力扩散规律: ➢附加应力随深度增加而减小; ➢同深度水平方向越远附加应力越小; ➢附加应力成扩散状分布。
二、竖向均布矩形荷载作用下附加应力计算
(一)均布矩形荷载角点下附加应力计算
矩形荷载(基础)角点下任意深度处附加应力值可根据 前述布氏公式,应用力的叠加原理,得如下计算公式:
z Ksz p0
z M(x,z)
式中 :Ksz—条形荷载下附加应力 计算系数(与x/b,z/b有关)。
本章小结
自重应力:
cz z
基底压力:
pmax pmin
ga b
o
ef
hd
c
Kc=Kob+Koc-Koa-Kod
Kc=KⅠ+KⅡ+KⅢ+KⅣ
ga
b
h dc
oe
f
Kc=Kob+Kod-Koa-Koc
三、竖向均布条形荷载作用下 附加应力计算
❖条形基础(l/b≥10) ——条形荷载
同样由叠加法可得基础
p0
底面以下任意点的M(x,z)
附加应力:
0 -∞
+∞
y
x
z Kc p0
矩形荷载即: 基底附加压力
l
式中: KC—矩形荷载下附加应力 计算系数(与l/b,z/b有关); p0—基底附加压力。
0
σz
M(z)
z
b
p0 x
(二)均布矩形荷载任意点下应力(角点法)利用 角点法和力的叠加原理求基底面任意点处的附加应力。 有如下四种情况:
o
Ⅰ Ⅱ
Ⅰo Ⅱ ⅣⅢ
Kc=KⅠ+KⅡ
回顾与思考
➢地基基础 设计要求:
地基有足够的强度; 地基不发生过大变形; 基础有足够的强度与刚度。
由基础的形式、尺寸、材料调节
➢设计前提:
•物理性质指标(前述) •地基受力计算(本章) •基础沉降、尺寸计算
第三章 土中应力计算
• 研究目的:建筑荷载在地基中产生应力, 应力产生应变,研究应力计算和分布规律 , 作为地基变形与强度计算依据。 • 学习要点:掌握地基中自重应力计算与附
【例3-2】基础底面尺寸l=3m,b=2m,基础顶面作用 轴心力F=450kN,弯矩M=150kN/m,基础埋深 d=1.2m,试计算基底压力。
【解】 G=γGAd=20×3×2×1.2=144kN
e 偏心矩: M 150 0.253m
F 450 144
基底压力:
pmax pmin
F
G A
z σcz=Σγz
二、地下水及不透水层影响:
• 地下水位以下土计算时用有效重度γ′; • 不透水层面及以下无浮力作用情况下应考虑
静水压力作用; • 地下水位下降时有效重度增加,会造成
地面下降; • 地下水位上升时有效重度减小,影响土性,
承载力降低。
三、水平自重应力
cx cy K0 cz
地面 0
加应力计算方法,清楚计算假定,需要运 用材料力学基本知识。 • 计算假定:地基为连续(均质)各向同性, 半无限弹性体,表面水平。
第一节 土中自重应力计算
➢概述:自重应力指土自身有效重量产生的 应力,它使土密实并具有一定强度与刚度。 地基设计计算前应知其原始的应力状态。
一、竖向自重应力 天然地面
σcz
p0 p cz p 0d
0
1h1
h1
2h2
h2
γ1 h1 γ2 h2第三节 地Fra bibliotek中附加应力计算
• 附加应力:建筑物荷载(p0)在地基中产生的应力。 • 计算假定:地基土为均质,各向同性,用弹性理论计算。
一、竖向集中力作用下 地基中附加应力
布辛内斯克(法)公式:
y
z
K
P z2
K—附加应力计算系数与(r,z有关)
基底压力分布图
二、基底压力计算
(一)轴心荷载作用下 基底压力计算
p F G A
G=γGAd(基础自重)
γG=20kN/m3(重度) A=b·l (基础底面积) d—基础平均埋深
(自设计地面算起) 条形基础取l=1m计算
基础底面 剖面图
(二)偏心荷载作用下基底压力计算(单向)
e
F+G
基础 自重
上部 荷载
M
pmin
pmax
合力偏心矩 e M A=b·l F
基底边缘压力 最大最小值
pmax pmin
F
G A
(1
6e ) l
e
•条形基础 (l/b≥10)
pmax pmin
F
G b
(1
6e ) b
pmin
pmax
(沿基础长边方向取单位长度 l=1m 为计算单位)
设计上一般pmin>0,即基底压力要求呈梯形分布。
相关文档
最新文档