制药工艺学重点整理分解
生物制药工艺学知识点整理
生物制药工艺学知识点整理1.生化药物生物药物:是利用生物体、生物组织或其成分,综合应用生物学、生物化学、微生物学、免疫学、物理化学和药学的原理与方法进行加工、制造而成的一大类预防、诊断、治疗制品。
生物药物包括从动物、植物、海洋生物、微生物等生物原料制取的各种天然生物活性物质及其人工合成或半合成的天然类似物。
生物药物包括抗生素、生化药物、生物制品。
2.生物制品:用生物学方法(包括基因工程方法)和生化方法制成的,具有免疫学反应或平衡生理作用的药物制剂。
(举例:乙肝疫苗)3.抗体:指机体的免疫系统在抗原刺激下,由B淋巴细胞或记忆细胞增殖分化成的浆细胞所产生的、可与相应抗原发生特异性结合的免疫球蛋白。
4.配体:指受体具有选择性结合能力的生物性物质包括内源激素外源活性物质等。
5.半合成抗生素:将天然代谢产物用生物、化学或者生化方法进行分子结构改造而制成的各种衍生物。
6.油水分配系数:logP值指某物质在正辛醇(油)和水中的分配系数比值的对数值。
反映了物质在油水两相中的分配情况。
logP值越大,说明该物质越亲油,反之,越小,则越亲水,即水溶性越好。
7.抗生素:是生物在其生命活动过程中产生的、在低微浓度下能选择性地抑制或杀死他种生物技能的化学物质。
(举例:青霉素)8.多肽类生化药物:是以多肽激素和多肽细胞生长调节因子为主的一大类内源性活性成分,如催产素。
9.干扰素:系指由干扰素诱导有关生物细胞所产生的一类高活性、多功能的诱生蛋白质。
这类诱生蛋白质从细胞中产生和释放之后,作用于相应的其它同种生物细胞,并使其获得抗病毒和抗肿瘤等多方面的免疫力。
10.药典:药典是一个国家关于药品标准的法典,是国家管理药品生产与质量的依据.药典由国家药典委员会编纂,国家药品监督管理局批准并颁布实施.11.药物的ADMEA: absorption吸收D: distribution分布M: metabolism代谢E: excretion排泄12.医疗用抗生素的特点:难使病原菌产生耐药性,较大的差异毒力,最小抑菌浓度(MIC)要低,抗菌谱要广。
制药工艺学知识点总结高中
一、制药工艺学是指将原料药或中间体通过一系列的物理、化学、生物、药物配方、药物制备、包装和检验等技术过程,加工成符合药品注册批准文书要求的成品药的学科。
制药工艺学对药物生产的每一个环节都有着严格的要求,需要依靠科学合理的工艺流程和技术方法,确保生产出符合质量标准、安全有效的药品。
二、药物生产的工艺流程1.原料药的生产原料药生产是整个制药生产的基础,原料药的质量直接影响到成品药的质量。
原料药的生产包括原料药的合成、提纯、结晶、干燥等环节。
在原料药生产中,要特别注意反应条件的控制、反应过程的监控以及产品的提纯和析出等关键环节。
2.中间体的生产中间体在药物生产中起着至关重要的作用,它是原料药合成的核心环节。
中间体的生产工艺需要对合成路线、反应条件进行合理设计,并且要注意反应物的选择、反应条件的控制等方面。
3.成品药的制备成品药的制备是制药工艺学的最终环节,包括配方确定、制剂工艺的开发、生产工艺的设计、生产设备的选择等。
在成品药的制备过程中,需要重点关注药物的稳定性、溶解度、生物利用度等方面的问题。
三、药物生产中的质量控制1.原料药、中间体和成品药的质量控制药物的质量控制是制药工艺学的核心内容,包括对原料药、中间体和成品药的各个环节进行严格的质量控制。
需要对原辅料的质量、反应过程的控制、产品的纯度、含量、溶解度、稳定性等方面进行检验。
2.环境条件的质量控制药物生产过程中的环境条件对药物的质量有着直接的影响,因此需要对生产环境的洁净度、湿度、温度等条件进行严格的控制。
3.生产设备的质量控制生产设备对药物的质量也有着重要的影响,因此需要对生产设备进行定期检验和维护,确保设备的正常运转和质量稳定。
1.危险性品的防护在药物生产中会接触到一些危险性品,需要采取相应的防护措施,确保生产人员的安全。
2.工艺操作的安全控制药物生产工艺中的每一个环节都需要严格控制,确保操作的安全,防止事故的发生。
3.废物处理的安全控制废物处理对环境和人体健康都有着重要的影响,需要对废物处理进行严格控制,做到安全处理废物。
制药工艺学重点
制药工艺学重点整理第一章绪论一、化学合成药物生产的特点;1)品种多,更新快,生产工艺复杂;2)需要原辅材料繁多,而产量一般不太大;3)产品质量要求严格;4)基本采用间歇生产方式;5)其原辅材料和中间体不少是易燃、易爆、有毒;6)三废多,且成分复杂;二、GLP、GCP、GMP、GSP;◆GMP Good Manufacturing Practice :药品生产质量管理规范——生产◆GLP Good Laboratory Practice :实验室试验规范——研究◆GCP Good Clinical Practice :临床试用规范——临床◆GSP Good Supply Practice:医药商品质量管理规范——流通◆GAP Good Agricultural Practice:中药材种植管理规范三、药物传递系统DDS分类;◆缓释给药系统sustained release drug deliverysystem,SR-DDS◆控释给药系统controlled release drug delivery system, CR-DDS 、◆靶向药物传递系统tageting drug delivery system, T-DDS、◆透皮给药系统transdermal drug delivery system◆粘膜给药系统mucosa drug delivery system◆植入给药系统implantable drug delivery system第二章药物工艺路线的设计和选择四、药物工艺路线设计的主要方法;类型反应法、分子对称法、追溯求源法、模拟类推法、光学异构体拆分法;名词解释◆类型反应法—指利用常见的典型有机化学反应与合成方法进行的合成设计;主要包括各类有机化合物的通用合成方法,功能基的形成、转换,保护的合成反应单元;对于有明显类型结构特点以及功能基特点的化合物,可采用此种方法进行设计;◆分子对称法—有许多具有分子对称性的药物可用分子中相同两个部分进行合成;◆追溯求源法—从药物分子的化学结构出发,将其化学合成过程一步一步地逆向推导进行追溯寻源的方法,也称倒推法;首先从药物合成的最后一个结合点考虑它的前驱物质是什么和用什么反应得到,如此继续追溯求源直到最后是可能的化工原料、中间体和其它易得的天然化合物为止;药物分子中具有C-N,C—S,C—O等碳杂键的部位,是该分子的拆键部位,即其合成时的连接部位;◆模拟类推法—对化学结构复杂的药物即合成路线不明显的各种化学结构只好揣测;通过文献调研,改进他人尚不完善的概念来进行药物工艺路线设计;可模拟类似化合物的合成方法;故也称文献归纳法;必需和已有的方法对比,并注意对比类似化学结构、化学活性的差异;五、全合成、半合成;名词解释◆全合成-化学合成药物一般由结构比较简单的化工原料经过一系列化学合成和物理处理过程制得;◆半合成—由已知具有一定基本结构的天然产物经化学改造和物理处理过程制得;六、衡量生产技术高低的尺度;药物生产工艺路线的技术先进性和经济合理性,是衡量生产技术高低的尺度;七、进行药物的化学结构整体及部位剖析的要点;在设计药物的合成路线时,首先应从剖析药物的化学结构入手,然后根据其结构特点,采取相应的设计方法;◆对药物的化学结构进行整体及部位剖析时,应首先分清主环与侧链,基本骨架与功能基团,进而弄清这功能基以何种方式和位置同主环或基本骨架连接;◆研究分子中各部分的结合情况,找出易拆键部位;键易拆的部位也就是设计合成路线时的连接点以及与杂原子或极性功能基的连接部位;◆考虑基本骨架的组合方式,形成方法;◆功能基的引入、变换、消除与保护;◆手性药物,需考虑手性拆分或不对称合成等;八、外消旋体的一般性质;在化学药物合成中,若在完全没有手征性因素存在的分子中,则所得产物或中间体是由等量的左旋体-与右旋体+组成的外消旋体;分为混合物、化合物、固溶体三类;在晶态的情况下,对映体分子之间的晶间力的相互作用有明显的差异;+分子对+分子的关系、-分子对-分子的关系、-分子对+分子的关系◆外消旋混合物:当各个对映体的分子在晶体中对其相同种类的分子具有较大的亲和力时,那么只要有一个+-分子进行结晶,则将只有+-分子在上面增长;--分子的情况相似;◆外消旋化合物:当一个对映体的分子对其相反的对映体的分子比对其相同种类分子具有较大的亲和力时,相反的对映体即将在晶体的晶胞中配对,而形成在计量学意义上的真正的化合物;◆外消旋固体溶液:在某些情况下,当一个外消旋体的相同构型的分子之间和相反构型分子之间的亲和力相差很小时,则此外消旋体所形成的固体,其分子的排列是混乱的;于是得到的是外消旋固体溶液;外消旋固体溶液与两个对映体在许多方面的性质都是相同的;区分方法:加入纯的对映体1熔点上升,则为外消旋混合物;2熔点下降,则为外消旋化合物;3熔点没有变化,作为外消旋固体溶液.❖外消旋混合物为各自独立存在的对映体,故可以利用对映体溶解度差异采取诱导结晶拆分法;❖而外消旋化合物和外消旋固体溶液则为完全相同的一种晶体;因此对这两类消旋体,需要采取先形成非对映异构体,再进行拆分;九、不对称合成:系指手征性分子或前手征性分子在形成新的手征性中心的反应过程中,占优势地生成某一立体构型产物,而其非对映异构体的生成量却很少;第三章药物工艺路线的评价与选择十、药物合成工艺路线的装配方式:“直线方式”和“汇聚方式”常用十一、理想的药物工艺路线;①化学合成途径简洁,即原辅材料转化为药物的路线要简短;②所需的原辅材料品种少且易得,并有足够数量的供应;③中间体容易提纯,质量符合要求,最好是多步反应连续操作;④反应在易于控制的条件下进行,如安全、无毒;⑤设备条件要求不苛刻;⑥“三废”少且易于治理;⑦操作简便,经分离、纯化易达到药用标准;⑧收率最佳、成本最低、经济效益最好;十二、相转移催化反应、常用的相转移催化剂,影响相转移催化的因素;相转移催化PTC,它是有机合成中最引人瞩目的新技术;在水-有机相两相反应中加入相转移催化剂,作用是使一种反应物由一相转移到另一相参加反应,促使一个可溶于有机溶剂的底物和一个不溶于此溶剂的离子型试剂两者之间发生反应;常用的相转移催化剂可分为鎓盐类由中心原子、中心原子上的取代基和负离子三部分组成,中心原子一般为P、N、As、S等原子;适用于液-液和固-液体系,价廉、无毒;常用的有TEBAC三乙基卞基氯化铵、TOMAC三辛基甲基氯化铵、四丁基硫酸氢铵、冠醚类及非环多醚类三大类;影响相转移催化反应的主要因素有:催化剂、搅拌速度、溶剂和水含量等1.催化剂1分子量比较大的鎓盐比分子量小的鎓盐具有较好的催化效果;2具有一个长碳链的季铵盐 ,其碳链愈长,效果愈好;3对称的季铵离子比具有一个碳链的季铵离子的催化效果好,例如四丁基铵离子比三甲基十六烷基铵离子的催化效果好;4季磷盐的催化性能稍高于季铵盐,季磷盐的热稳定性也比相应的铵盐高;5含有芳基地铵盐不如烷基铵盐的催化效果好;常用的有TEBAC三乙基卞基氯化铵TOMAC三辛基甲基氯化铵2.搅拌速度3.溶剂在固液相转移催化过程中,最常用的溶剂是苯、二氯甲烷、氯仿以及乙腈等;乙腈可以成功用于固液相系统,却不能用于液液系统,因为它和水互溶;在液液相转移系统中,即反应物为液体时,常用该液体作为有机相使用;原则上许多有机溶剂都可以用,但是溶剂与水不互溶,以确保离子对不发生水合作用,即溶剂化;十三、相转移催化反应历程;季铵盐在两相反应中的作用,是使水相中的负离子Y-与季铵盐正离子Q+结合生成离子对Q+Y-,并有水相转移到有机相,在有机相中极迅速地与卤代烃作用生成RY和Q+X-, 新形成的Q+X-回到水相,再与负离子Y-结合成离子对后转到有机相;由于通常应用高亲脂性的催化剂,这样Q+在水相不以明显得浓度存在;如Q+保留在有机相,而只是负离子通过界面进行交换,如下列的更为简单的历程;十四、药物结构剖析的方法;同进行药物的化学结构整体及部位剖析的要点;第四章药物工艺研究与优化十五、影响药物合成反应的7个因素;◆反应物浓度与配料比:参与反应的各物料相互间物质量的比例称为配料比;通常物料以摩尔为单位,则称为投料的摩尔比;生产上常使用重量为物料数量单位,其比例称为重量比 ;◆溶剂:化学反应的介质、传热的介质◆催化:酸碱催化、金属催化、相转移催化、酶催化等,加速化学反应、缩短生产周期、提高产品的纯度和收率;◆传热:药物合成工艺研究需要考察反应时的温度对反应的影响,选择合适的温度范围;◆反应时间及反应终点的监控:适时地控制反应终点,可以确定反应的时间◆纯化技术:蒸馏、过滤、萃取、重结晶、吸附、膜分离等;◆中间体的质量控制方法:所有中间体都必须制定相应的质量控制项目,并建立有效的质量分析方法;十六、溶剂化作用及其对反应的影响;正是由于离子或极性分子处于极性溶剂中时,在溶质和溶剂分子之间,能发生溶剂化作用;在溶剂化过程中,物质放出热量而降低位能;溶剂化水化,指每一个溶解的分子或离子,被一层溶剂分子疏密程度不同地包围着;由于溶质离子对溶剂分子施加特别强的力,溶剂层的形成是溶质离子和溶剂分子间作用力的结果;如果反应过渡状态活化络合物比反应物更容易发生溶剂化;随着反应物或活化络合物位能下降ΔH,反应活化能也降低,故反应加速,溶剂的极性越大,对反应越有利;反之,如果反应物更容易发生溶剂化,则反应物的位能降低ΔH ,相当于活化能增高 ,于是反应速度降低;十七、催化剂的定义及其作用形式;某一种物质在化学反应系统中能改变化学反应速度,而本身在化学反应前后化学性质没有变化,这种物质称之为催化剂;正催化、负催化、自动催化作用机理1催化剂能降低反应活化能,增大反应速度;2催化剂具有特殊的选择性;十八、影响催化剂活性的因素;◆温度:温度对催化剂活性影响很大,温度太低时,催化剂的活性小,反应速度很慢,随着温度上升,反应速度逐渐增大,但达到最大反应速度后,又开始降低;绝大多数催化剂都有活性温度范围;◆助催化剂:在制备催化剂时,往往加入少量物质<10%,这种物质对反应的活性很小,但却能显着提高催化剂活性、稳定性或选择性;◆载体担体:常把催化剂负载在某种惰性物质上,这种物质称为载体;常用的载体活性碳、硅藻土等;使用载体可以使催化剂分散,从而使有效面积增大,既可以提高其活性,又可以节约其用量;同时还可以增加催化剂的机械强度,防止其活性组分在高温下发生熔结现象,影响催化剂的使用寿命;◆毒化剂:对于催化剂的活性有抑制作用的物质,叫做毒化剂或催化抑制剂;有些催化剂对毒物非常敏感,微量的毒化剂即可以使催化剂的活性减少甚至消失;十九、基元反应及非基元反应;◆基元反应—凡反应物分子在碰撞中一步直接转化为生成物分子的反应;◆非基元反应—凡反应物分子要经过若干步,即若干个基元反应才能转化为生成物的反应;二十、重结晶溶剂的选择策略;◆在选择精制溶剂时,应通盘考虑溶解度、溶解杂质的能力、脱色力、安全、供应情况和价格、溶剂回收的难易和回收费用等因素;◆理想的精制用溶剂应是,室温下中间体、成品仅微溶,而在该溶剂的沸点附近有较高的溶解度;该溶剂在室温或加热过程中对杂质的溶解度一定要高于中间体或成品,而且这种溶解度差异越大越好;注意:1.不能选用沸点比待结晶的物质熔点还高的溶剂2.溶剂的挥发性:低沸点溶剂◆“相似相溶”规律—溶质的极性大,就需要极性大的溶剂才能使它溶解;溶质的极性小,则需要用低极性或非极性溶剂才能使之溶解;◆重结晶溶剂的选择还必须与产品的晶型结合;对多晶型药物重结晶溶剂的选择必须结合药理药效及制剂生产实际,通过实验研究加以确定;二十一、“相似相溶”规律溶质的极性大,就需要极性大的溶剂才能使它溶解;溶质的极性小,则需要用低极性或非极性溶剂才能使之溶解;第五章化学制药工艺的放大二十二、制药工艺放大的基本方法有哪些逐级经验放大法、相似放大法和数学模拟放大法;◆逐级经验放大法—主要凭借经验通过逐级放大试验装置、中间装置、中型装置、大型装置来摸索反应器的特征;在合成药物的工艺研究中,中试放大主要采用经验放大法,也是化工研究中的主要方法;◆相似放大法—主要应用相似理论进行放大;使用于物理过程,有一定局限性;非线性◆数学模拟放大法—应用计算机技术的放大法,它是今后发展的主要方向;数字工厂二十三、物料衡算及其基准;物料衡算—是研究某一个体系内进、出物料及组成的变化,即物料平衡;所谓体系就是物料衡算的范围,可以是一个设备或多个设备,可以是一个单元操作或整个化工过程;物料衡算的理论基础为质量守恒定律:进入体系的物料量-流出体系的物料量=体系中的转化量通常采用的基准有:◆以每批操作为基础,适用于间歇操作设备、标准或定型设备的物料衡算,化学制药产品的生产间歇操作居多;◆以单位时间为基准,适用于连续操作设备的物料衡算;◆以每公斤产品为基准,以确定原辅材料的消耗定额;二十四、放大实验中的常见问题;◆原辅材料规格应将某些工业规格的原辅材料所含杂质与试剂的相应指标进行对比,并通过对比实验对反应收率和产品质量的影响,制定合理的原辅材料的规格标准,规定主要杂质的允许限度;◆设备材质和腐蚀试验◆反应条件限度试验◆原辅材料、中间体及新产品质量的分析方法研究◆反应后处理方法的研究一般说来,反应后处理是指从化学反应结束直到取得本步反应产物的整个过程;第六章化学制药厂三废的防治二十五、化学需氧量、生化需氧量;◆生化需氧量BOD—是指在一定条件下微生物分解水中有机物时所需的氧量;常用BOD5,即5日生化需氧量,表示在20 ℃下培养5日,1L水中溶解氧的减少量;单位 mg/L;◆化学需氧量COD—是指在一定条件下用强氧化剂K2Cr2O7 KMnO4使污染物氧化所消耗的氧量; COD与BOD之差,表示未能被微生物降解的污染物含量;二十六、活性污泥性能指标;◆污泥浓度—是指1L混合液中所含的悬浮固体MISS或挥发性悬浮固体MLVSS的量;◆污泥沉降比SV—是指一定量的曝气混合液静置半小时后,沉降污泥与原混合液的体积百分比;◆污泥容积指数SVI—是指一定量的曝气混合液静置半小时后,1g干污泥所占有的沉淀污泥的体积;◆BOD负荷二十七、防止“三废”的主要措施;生产工艺绿色化要尽量采用污染少甚至没有污染的生产工艺积极进行综合利用,变废为宝;一、采用新工艺使污染物从源头上被消除,不走先污染后治理的路,我们需要不断革新工艺,尽量少排放污染物;一设计新的生产工艺1.更换原辅材料1以无毒、低毒的原辅材料代替有毒、剧毒的原辅材料,降低或消除三废的毒性;2提高三废的综合利用价值,使副产物成为使用价值更高的化工产品;3减少三废的种类和数量,以便减轻处理系统的负担;2.简化合成步骤重新设计生产工艺时,应尽量简化合成步骤,减少污染物的种类和数量,从而减轻处理系统的负担;如间接电氧化法制备苯甲醛;二改进操作方法:如安乃近生产中的酸水解反应三优化工艺条件:如氯硝柳胺的乙酰苯胺硝化反应四采用新技术立体定向合成,固相酶技术、相转移催化反应等五调整化学反应的先后次序:如对氯苯氧乙酸的制备二、循环套用反应母液的循环套用或经过适当处理后套用;如氯霉素合成中的乙酰化反应三、综合利用与资源化将产生的“三废”变成我们能够利用的资源,能大大减少治污成本,还能提高企业经济效益;四、改进生产设备并加强设备管理采用能实现连续化生产的设备代替人工操作的间歇式设备避免“跑、冒、滴、漏”现象二十八、废水的处理级数;◆一级处理—主要是预处理,用物理方法或简单化学方法除去废水中的漂浮物、泥沙、油类或胶态物质,以及调整废水的pH值等;◆二级处理—主要指生物处理,适用于处理各种有机污染的废水;生化法包括好氧法和厌氧法;经生物法处理后,废水中可被微生物分解的有机物一般可去除90%左右,固体悬浮物可去除90%-95%;二级处理能大大改善水质,处理后的污水一般能达到排放的要求;◆三级处理—又称深度处理,只是有特殊要求时才使用;包括过滤、活性炭吸附、臭氧氧化、离子交换、电渗析等;二十九、废水的生物处理法基本原理;◆好氧生物处理是在有氧情况下,利用好氧微生物的作用将废水中的有机物分解为CO2和H2O,并释放出能量的代谢过程;◆厌氧生物处理是在无氧条件下,主要依靠水解产酸细菌、产氢产乙酸细菌和产甲烷细菌这三大类细菌联合作用来完成;第八章前处理工艺三十、中药净制定义,作用;净制是中药炮制的第一道工序,是将原药材加工成净药材的处理过程;主要解决药物纯净度问题,如选取特定的药用部位,除去非药用部分和其他杂质;中药净制的作用:1使药材达到一定净度标准,保证用药剂量的准确;2便于进行切制和炮制;三十一、药用部位:是指植物体中有效成分含量较高、药用效果较强的某一完整或其中一部分植物器官;第九章提取工艺三十二、中药有效成分的相关提取原理;作为中药材的有效成分,大多数都存在细胞的原生质中;在中药有效成分的提取过程中,一个关键的问题是如何将有效成分从细胞壁一侧的原生质中转移到另一侧的提取溶剂之中;三十三、提取分离的过程:浸润、溶解、扩散3个过程三十四、渗漉法:是往药材粗粉中连续不断添加浸取溶剂使其渗过药粉,下端出口连续流出浸出液的一种浸取方法;三十五、水提醇沉法和醇提水沉法;◆水提醇沉法:是以水浸出法提取中药有效成分,再以乙醇沉淀去除杂质的方法;水提醇沉法可除去大部分蛋白质、精化淀粉、黏液质、油脂、脂溶性色素、树脂等杂质;◆醇提水沉法:先用乙醇提可减少黏液质、淀粉、蛋白质等杂质的浸出,故对这类杂质较多的药材较为适宜;三十六、水蒸气蒸馏法的原理;将蒸汽直接通入,使被分离的物质能在远低于其正常沸点的温度下沸腾,生成的蒸汽和水蒸气一同逸出,经过冷凝后一般分成水油两层,可用澄清或离心分离法将水除去而得到产品;包括水中蒸馏法、水上蒸馏法、水气蒸馏法;只适用于具有挥发性的、能随水蒸气镏出而不被破坏、与水不发生反应且难溶或不溶于水的成分的提取;第十章分离纯化工艺三十七、吸附过程原理,及其分类;吸附过程是指多孔固体吸附剂与流动相接触,流动相中一种或多种溶质向固体颗粒表面选择性传递,被吸附和积累于吸附剂微孔表面的过程;相应的逆向操作称解吸过程;分类◆变温吸附-利用温度变化实现吸附和解吸附的再生循环操作;◆变压吸附-利用压力变化完成循环操作;◆变浓度吸附-液体混合物中某些组分在环境条件下选择性吸附,然后用少量强吸附性液体解吸再生;用于液体混合物的主体分离;三十八、大孔吸附树脂分离纯化工艺操作:预处理、上样、洗脱、再生三十九、吸附过程的影响因素;1树脂本身化学结构的影响2溶剂的影响3被吸附的化合物的结构的影响4上样溶液的pH值5洗脱液的选择四十、大孔吸附树脂吸附和分离中药的原理;◆大孔吸附树脂是一类不含离子交换基团的交联聚合物,由于范德华力或氢键作用具有吸附性,又因具有网状结构和很高的比表面积,而有筛选性能;◆大孔吸附树脂对中药化学成分如生物碱、黄酮、皂苷及其他一些苷类成分都有一定的吸附作用;对糖类的吸附能力很差,对色素的吸附能力较强;四十一、膜分离技术在中药制剂中的用途;◆药液澄清:除去微粒、细菌、大分子杂质等,或脱色;◆分离纯化:提取有效成分、有效部位;◆药液浓缩:除去药液中水分子或小分子,尤其适用于含有热敏成分药液的浓缩;◆有机溶剂回收:使萃取或其他分离过程所使用的有机溶剂能够循环利用,节约资源,保护环境;四十二、超临界流体定义,特性;超临界流体SF或SCF是指超临界温度和临界压力状态下的高密度流体;具有气体和液体的双重特性,其黏度与气体相似,但扩散系数比液体大得多,其密度与液体相近;萃取的工艺过程;详见书257页四十三、超临界CO2等温法、等压法、吸附法第十一、十二章浓缩工艺、干燥工艺四十四、浓缩过程原理及特点;浓缩是将溶液通过加热使其沸腾,液体在沸腾的过程中,其中的水分或其他具有挥发性的溶剂部分达到汽化状态并被不断移除,而溶质是其中不挥发性的部分,在此过程中保持不变的状态,从而达到了提高溶液浓度的目的,浓缩过程的实质就是浓缩溶液或回收溶剂的传热操作;特点◆浓缩液的沸点升高◆浓缩液理化性质的改变◆浓缩过程中的结垢现象◆能量的循环使用四十五、浓缩过程必须具备的两个基本条件;1、浓缩过程中应不断地向溶液供给热能使溶液沸腾;2、要不断地排除浓缩过程中所产生的溶剂蒸汽;四十六、薄膜浓缩工艺;薄膜浓缩是利用液体形成薄膜而蒸发,具有极大的表面,热的传播快而均匀,能较好地避免药物的过热现象,总的受热时间也有所缩短,所以膜式蒸发器适用于蒸发处理热敏性物料;四十七、单效浓缩及多效浓缩;。
制药工艺学知识点总结初中
制药工艺学知识点总结初中一、制药工艺学的概念制药工艺学是指将药物原料经过一定的物理、化学和生物方法处理,制备成满足药用要求的药品的过程。
它是现代药物工业生产中的重要环节,是药品生产中最基础、最核心的环节之一。
二、制药工艺学的主要内容1. 药物原料的提取和精制药物原料一般来自于天然植物、动物或矿物,通过提取和精制,将其纯化为固体、液体或气体的药物原料。
2. 药物合成通过化学反应合成出具有特定治疗作用的药物。
包括有机合成、无机合成、生物合成等方法。
3. 药物制剂的生产工艺将药物原料或合成的药品与辅料按照一定的配方和工艺要求,制成适合于人或动物用药的物理状态和剂型。
4. 药品包装包装是药品生产中的重要环节,它不仅可以保护药品的安全性和稳定性,还可以方便药品的使用和储存,因此包装工艺也是制药工艺学中的重要内容之一。
5. 药品质量控制药品质量控制是制药工艺学中的核心内容之一,包括药品的理化性质、微生物检验、稳定性试验等。
6. 药品生产设备药品生产设备是实施药品生产工艺的主要条件之一,包括反应釜、干燥设备、填充设备、包装设备等。
7. 药品生产管理药品生产管理包括生产计划、生产过程监控、品质管理、安全管理等,它是保障药品生产质量和安全的重要环节。
三、制药工艺学的基本原理1. 质量原理质量是药品的生命,制药工艺学中的每个环节都要以质量为中心,保证药品质量的稳定性和可靠性。
2. 安全原理制药工艺学中的生产设备、工艺和工作人员都要遵循安全原则,确保生产过程的安全。
3. 经济原理制药工艺学中要尽可能地降低生产成本,提高生产效率,保证药品的合理价格。
4. 环保原理制药工艺学中的生产过程要符合环保要求,减少对环境的污染和破坏。
四、制药工艺学的发展方向1. 绿色制药随着环保意识的增强,绿色制药正逐渐成为制药工艺学的发展方向之一,通过绿色工艺和绿色原料,降低对环境的影响。
2. 智能制药智能制药借助先进的信息技术,实现药品生产过程的自动化、智能化,提高生产效率,减少生产成本。
制药工艺学第一章资料讲解
一、制药工艺学概述
• 广义的生物药物包括:从动物、植物、微生物等生 物体中制取的以及运用现代生物技术产生的各种天 然生物活性物质及其人工合成或半合成的天然物质 类似物。由于抗生素发展迅速,已成为制药工业的 独立门类,所以生物药物主要包括除抗生素以外的 天然生化药物、生物制品和生物技术药物。
海洋生物药物
一、制药工艺学概述
中药现代饮片的含义是指凡在中医理论指 导下,符合中医处方入药要求,将药材经 过炮制(主要是切制)提取出的含有效成分的 浸膏、有效部位或单体。中药饮片的现代 化是中药制剂发展的方向。药材与饮片的 种类和规格繁多,质地及性质差别很大, 故中药制剂的制备工艺复杂,标准化存在 相当的难度。
镇定,止痛、镇静、凝血、血压、平滑肌等
人胰岛素
胰岛素由A、B两个肽链组 成。人胰岛素(Insulin Human)A链有11种21个氨 基酸,B链有15种30个氨基 酸,共26种51个氨基酸组成。 其中A7(Cys)-B7(Cys)、 A20(Cys)-B19(Cys)四个半
胱氨酸中的巯基形成两个二 硫键,使A、B两链连接起 来。此外A链中A6(Cys)与 A11(Cys)之间也存在一个二 硫键
一、制药工艺学概述
植物药材有根、茎、叶、花、果实、种子不同 药用部位;动物药料有皮、骨、角、甲、心 、脑、肺、肝甚至“全体”;矿物药料有矿 种、晶格等区别。
• 再加工炮制包括挑捡、浸泡、切制、蒸、炒 、炙、煅等工艺步骤,将药材制成适于入药( 主要为汤剂)的“饮片”。加工炮制的目的是 保留或增强“药性”、除掉或减弱非“药性 ”成分。
富含足量不饱和脂肪酸,以DHA-EPA、DPA、角鲨稀,经现代高 科技工艺加工而成的营养食品。
DHA
二十二碳六烯酸
制药工艺学重点归纳总结含典型习题
制药工艺学重点归纳总结含典型习题------------------------------------------作者xxxx------------------------------------------日期xxxx制药工艺学重点归纳总结含典型习题一、名词解释:1. 类型反应法:指利用常见的典型有机化学反应与合成方法进行合成工艺路线设计的方法。
(主要包括功能基形成的单元反应和特殊反应,以及各类物质的通用合成方法。
有明显类型结构特点以及功能基特点的化合物,可采用此种方法进行设计。
)2. 分批灭菌:指将配置好的培养基放在发酵罐或其他装置中,通入蒸气将培养基和所用设备一起进行灭菌的操作过程。
连续灭菌:指培养基在发酵罐外经过一套灭菌设备连续的加热灭菌,冷却后送入已灭菌的发酵罐的工艺过程。
3. 清污分流:指将清水(间接冷却水、雨水、生活用水等)、污水(包括药物生产过程中排放的各种废水)分别经过各自的管道进行排泄或储留,以利于清水的套用和污水的处理。
4. 质量作用定律:当温度不变时,化学反应的瞬间反应速率与直接参与反应的物质瞬间浓度的乘积成正比,并且每种反应物浓度的指数等于反应式中各反应物的系数。
5. 转化率:对于某一组分来说,反应所消耗的物料量与投入反应物料之比称为该组分的转化率。
收(产)率:某主要产物实际产量与投入原料计算的理论产量的比值。
选择性:各种产物、副产物中,主产物所占比率或者百分率。
【收率=转化率×选择性】6. 清洁生产:指将整体预防的环境策略持续应用于生产过程的产品中,以减少对人类和环境的风险的一种生产模式。
7. 第一类污染物:指能在环境或生物体内蓄积,对人体健康产生长远不良影响者。
(《国家污水综合排放标准》中规定的此类污染物有13种:总汞,烷基汞,总镉,总铬,六价铬,总砷,总铅,总镍,苯并(a)芘,总铍,总银,总α放射性,总β放射性)8. 对映体过量:指在两个对映体的混合物中,其中一个对映体相对于另一个而过量的百分数,表征对映体的光学纯度。
生物制药工艺学知识点整理
生物制药工艺学知识点整理1.生化药物生物药物:是利用生物体、生物组织或其成分,综合应用生物学、生物化学、微生物学、免疫学、物理化学和药学的原理与方法进行加工、制造而成的一大类预防、诊断、治疗制品。
生物药物包括从动物、植物、海洋生物、微生物等生物原料制取的各种天然生物活性物质及其人工合成或半合成的天然类似物。
生物药物包括抗生素、生化药物、生物制品。
2.生物制品:用生物学方法(包括基因工程方法)和生化方法制成的,具有免疫学反应或平衡生理作用的药物制剂。
(举例:乙肝疫苗)3.抗体:指机体的免疫系统在抗原刺激下,由B淋巴细胞或记忆细胞增殖分化成的浆细胞所产生的、可与相应抗原发生特异性结合的免疫球蛋白。
4.配体:指受体具有选择性结合能力的生物性物质包括内源激素外源活性物质等。
5.半合成抗生素:将天然代谢产物用生物、化学或者生化方法进行分子结构改造而制成的各种衍生物。
6.油水分配系数:logP值指某物质在正辛醇(油)和水中的分配系数比值的对数值。
反映了物质在油水两相中的分配情况。
logP值越大,说明该物质越亲油,反之,越小,则越亲水,即水溶性越好。
7.抗生素:是生物在其生命活动过程中产生的、在低微浓度下能选择性地抑制或杀死他种生物技能的化学物质。
(举例:青霉素)8.多肽类生化药物:是以多肽激素和多肽细胞生长调节因子为主的一大类内源性活性成分,如催产素。
9.干扰素:系指由干扰素诱导有关生物细胞所产生的一类高活性、多功能的诱生蛋白质。
这类诱生蛋白质从细胞中产生和释放之后,作用于相应的其它同种生物细胞,并使其获得抗病毒和抗肿瘤等多方面的免疫力。
10.药典:药典是一个国家关于药品标准的法典,是国家管理药品生产与质量的依据.药典由国家药典委员会编纂,国家药品监督管理局批准并颁布实施.11.药物的ADMEA: absorption吸收D: distribution分布M: metabolism代谢E: excretion排泄12.医疗用抗生素的特点:难使病原菌产生耐药性,较大的差异毒力,最小抑菌浓度(MIC)要低,抗菌谱要广。
制药工艺学复习重点
名词解释:一.①半合成:由具有一定基本结构的天然产物经化学结构改造和物理处理过程制得复杂化合物的过程。
②全合成:以化学结构简单的化工产品为起始原料,经过一系列化学反应和物理处理过程制得复杂化合物的过程。
二.①基元反应:反应物分子在碰撞中一步直接转化为生物分子的反应。
②非基元反应:反应物分子经过若干步,即若干个基元反应才能转化为生成物的反应。
三.①简单反应:由一个基元反应组成的化学反应。
②复杂反应:由两个以上基元反应组成的化学反应,又可分为可逆反应、平行反应和连续反应。
四.①生化需氧量(BOD):是指在一定条件下微生物分解水中有机物时所需的氧量。
②化学需氧量(COD):是指在一定条件下用强氧化剂使污染物氧化所消耗的氧量,单位mg/L. 五.①临界菌体浓度:是氧传递速率随菌体浓度变化曲线和摄氧速率随菌体浓度变化曲线的交叉点处的菌体浓度。
②临界氧浓度:是不影响呼吸或产物合成的最低溶解氧浓度。
一般在0.02到0.005m mol/L之间,发酵液的溶解氧浓度大于比浓度。
可能的简答题:一.反应浓度与配料比的确定:①可逆反应可采取增加反应物之一的浓度,或从反应系统中不断除去生成物之一的办法,以提高反应速度和增加产物的收率;②当反应生成物的生成量取决于反应液中某一反应物的浓度时,则增加其配料比。
最适合的配料比应是收率较高,同时又是单耗较低的某一范围内;③若反应中,有一反应不稳定,则可增加其用量,以保证有足够的量参与主反应;④当参与主、副反应的反应物不尽相同时,应利用这一差异,增加某一反应的用量,以增加主反应的竞争力。
二.温度对速率的影响:①反应速度随温度的升高而逐渐加快,他们之间是指数关系,这类反应最常见;②有爆炸极限的化学反应,反应开始时温度影响小,当达到一定温度极限时,反应即以爆炸速度进行;③温度不高时k随T的增高而加速,但达到某一高温以后,再生高温度,反应速度反而下降。
④温度升高,反应速度反而下降。
三.影响催化剂活性的因素:①温度:温度对催化剂活性影响较大,温度太低,催化剂的活性很小,反应速度很慢;②助催化剂:是一类能改善活性组分的催化性能的物质;③载体:在多数情况下,常常把催化剂负载于某种惰性物质上,这种惰性物质称为载体;④催化剂中毒:催化剂在使用过程中,因某些物理和化学作用破坏了催化剂原有的组织和构造,催化剂会降低或丧失活性,这种现象称为催化剂衰退或催化剂失活。
制药工艺期末复习资料整理
制药工艺期末复习知识点总结第一章绪论“三废”:废气、废水、废渣第二章药物制备工艺路线的设计和选择1.药物制备工艺路线的设计方法:类型法反应法、分子对称法、逆合成法、模拟类推法、光学异构体拆分法。
2.全合成(概念):以结构简单的化工产品为起始原料,经一系列化学反应和物理处理过程制备的方法。
3.半合成(概念):由具有一定基本结构的天然产物经化学结构改造和物理处理过程制备的方法。
4.逆合成法(概念):从药物本身出发,一步步倒推出合成此药物的各种合成路线和起始原料,也就是我们通常所说的逆合成法。
5.逆合成转化的一般顺序(简答):①由目标分子结构和反应性决定逆合成顺序。
②从合成角度考虑合成转化顺序。
③从合成反应优化合成转化顺序。
6.分子对称法(概念):具有分子对称性的化合物往往可由两个相同的分子经化学合成反应制得,或在同一步反应中将分子的相同部分同时构建起来,这就是分子对称法。
7. 药物制备工艺路线的考察、选择①化学反应的选择平顶型——易于控制尖顶型直线型装配方式汇聚型装配方式——一般多选汇聚型,此类型收率较高。
③原辅料供应基本要求是价廉易得,利用率高。
第三章药物工艺路线反应条件研究1.内因(概念):主要指参与反应的分子中原子的结合状态、键的性质、立体构型和构象、功能基的活性、各种原子和功能基之间的相互影响及其物理性质等,它们都是设计和选择合成路线的理论依据。
2.外因(概念):主要指反应时的配料比、温度、溶剂、pH值、压强、反应时间、反应终点控制、产品后处理和设备状况等。
3 .简单反应(概念):由一个基元反应组成的化学反应。
4.复杂反应(概念):由两个或两个以上基元反应构成的化学反应。
如可逆反应、平行反应和连续反应等。
5.双分子反应(概念):即二级反应,是分子碰撞时相互作用产生的反应,其反应速率与反应物浓度的乘积成正比。
6. 平行反应:又称竞争反应,是一种复杂反应,即在同一个反应物系统中同时进行着几种不同的化学反应,生成不同的产物。
化学制药工艺学~重点
化学制药⼯艺学~重点化学制药⼯艺学:是药物研究开发过程中,与设计和研究先进、经济、安全、⾼效的化学药物合成⼯艺路线有关的⼀门学科,也是研究⼯艺原理和⼯业⽣产过程、制定⽣产⼯艺规程,实现化学制药⽣产过程最优化的⼀门科学。
化学合成药物:具有治疗、缓解、预防和诊断疾病,以及具有调节机体功能的有机化合物称作有机药物,其中采⽤化学合成⼿段,按全合成或半合成⽅法研制和⽣产的有机药物称为有机合成药物,也叫做化学合成药物。
全合成:由结构简单的化⼯原料经过⼀系列化学反应过程制成。
半合成:具有⼀定基础结构的天然产物经过结构改造⽽制成。
化学制药⼯业:利⽤基本化⼯原料和天然产物,通过化学合成,制备化学结构,确定具有治疗、诊断、预防疾病或调节改善机体功能等作⽤的化学品的产业。
NCEs新化学实体:新发现的具有特定⽣物活性的新化合物。
先导化合物:也成原型药,是通过各种途径和⼿段得到的具有某种⽣物活性的化学结构,具有特定药理活性,⽤于进⼀步的结构改造和修饰,是现代新药研究的前提。
⼿性药物:是指药物的分⼦结构中存在⼿性因素,⽽且由具有药理活性的⼿性化合物组成的药物,其中只含单⼀有效对映体或者以有效对映体为主。
中试放⼤:在实验室⼩规模⽣产⼯艺路线打通后,采⽤该⼯艺在模拟⽣化条件下进⾏的⼯艺研究,以验证放⼤⽣产后原⼯艺的可⾏性,保证研发和⽣产时的⼯艺⼀致性。
化学稳定性:催化剂能保持稳定的化学平衡和化学状态。
耐热稳定性:在反应条件下,能不因受热⽽破坏其理化性质,同时在⼀定温度内,能保持良好的稳定性。
机械稳定性:固体催化剂颗粒具有⾜够的抗摩擦、冲击重压和温度、相变引起的种种应⼒的能⼒。
外消旋混合物:当各个对映体的分⼦在晶体中对其相同种类的分⼦有较⼤亲和⼒时,那么只有⼀个(+)分⼦进⾏结晶,则将只有(+)分⼦在其上增长,(-)分⼦情况与此相同,每个晶核中只含有⼀种对映体结构。
外消旋化合物:当同种对映体之间⼒⼩于相反对映体的晶间⼒时,两种相反的对映体总是配对的结晶,即在每个晶核中包含两种对映体结构,形成计量学意义上的化合物,称为外消旋化合物。
制药工艺学复习重点
制药工艺学重点名解:先导化合物:即原型物,是通过各种途径或方法得到的具有某种生物活性的化学结构。
它具有确定的药理活性,因存在某些缺陷,无法直接药用,但却作为线索物质为进一步的优化提供前提。
制药工业:以药物的研究与开发为基础,以药物的生产和销售为核心的制造业,包括原料药和制剂的生产。
药物的工艺路线:一个化学药物往往具有多种不同的制备途径,通常将具有工业生产价值的制备途径称为该药物的工艺路线。
类型反应法:利用常见的典型有机化学反应与合成方法进行合成路线设计的方法。
即包括各类化学结构的有机合成通法,又包括官能团的形成,转换或保护等合成方法。
分子对称法:具有分子对称性的化合物往往可用两个相同分子经化学反应制得,或在同一步反应中将分子的相同部位同时构建起来。
追溯求源法:从药物分子的化学结构出发,将其化学合成过程一步一步逆向推导进行寻源的思考方法。
模拟类推法:对化学结构复杂,合成路线设计困难的药物,模拟类似化合物的合成方法进行合成路线设计的方法。
倒推法:就是从最终产品的化学结构出发,将其合成过程一步一步地逆向推导进行寻源的思考方法。
该法又称追溯求源法。
一锅合成:若一个反应所用的溶剂和产生的产物对下一步反应影响不大时,可将几步反应按顺序,不经分离,在同一反应罐中进行,习称“一勺烩”或“一锅合成”。
基元反应:凡反应物分子在碰撞中一步直接转化为生成物分子的反应称为基元反应。
非基元反应:凡反应物分子要经过若干步,即若干个基元反应才能转化为生成物的反应,称为非基元反应。
简单反应:只有一个基元反应(反应物分子在碰撞中一步直接转化为生成物分子的反应)的化学反应。
复杂反应:由两个以上基元反应组成的化学反应。
又可分为可逆反应,平行反应和连续反应。
配料比:参与反应的各物料之间物质量的比例称为配料比(也称投料比)。
通常物料量以摩尔为单位,则称为物料的摩尔比。
溶剂化效应:指每一个溶解的分子或离子,被一层溶剂分子疏密程度不同的包围着。
(整理)制药工艺考试重点
制药工艺学复习材料一、名词解释发酵:通过微生物、动物细胞和植物细胞的培养,大量生成和积累特定的代谢产物或菌体的过程。
发酵工程:发酵工程又称微生物工程,是利用微生物(天然微生物、基因重组微生物)、各种来源的动植物细胞制造工业原料与产品并提供服务的技术。
初级代谢产物:是菌体对数生长期产生的产物,如氨基酸、蛋白质、核苷酸、核酸、维生素、糖类等,这类代谢产物对菌体生长、分化和繁殖都是必需的,也是重要的医药产品。
次级代谢产物:一般在菌体生长的稳定期合成,与菌体生长繁殖无明显关系,具有较大的经济价值,如抗生素、生物碱、色素、酶的抑制剂、细胞毒素等。
微生物转化:微生物代谢过程中的某一种酶或酶系将一种化合物转化为含有特殊功能基团产物的生物化学反应称为微生物转化。
自然选育:不经人工处理,利用微生物的自然突变进行菌种选育的过程称为自然选育。
诱变育种:用各种物理、化学的因素人工诱发基因突变进行的筛选,称为诱变育种。
诱变剂:能够提高生物体突变频率的物质称为诱变剂,诱变剂可分为物理、化学和生物三大类。
培养基:供微生物生长繁殖和合成目标产物所需要的,按一定比例人工配制的多种营养物质的混合物。
(广义上讲,培养基是指一切可供微生物生长、繁殖所需的一组营养物质和原料。
)前体:加入到发酵培养基中的某些化合物,能直接参与产物的生物合成,组成产物分子的一部分,而自身的结构没有发生多大的变化。
前体明显提高产品产量和质量,一定条件下还能控制菌体合成代谢产物的方向。
前体不仅有毒性,而且被菌体分解,因此采用多次少量流加工艺。
种子:将保存在砂土管、冷冻干燥管中处休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养而获得一定数量和质量的纯种过程称为种子扩大培养。
这些纯种培养物称为种子。
生物热:微生物在生长繁殖过程中产生的热能。
搅拌热:搅拌器转动引起的液体之间和液体与设备之间的摩擦所产生的热量。
蒸发热:空气进入发酵罐与发酵液广泛接触后,排出引起水分蒸发所需的热能。
制药工程师考试备考——制药工艺学要点
制药工程师考试备考——制药工艺学要点制药工程师考试备考是每位学习制药工程的学生都要面对的重要任务。
而制药工艺学作为制药工程的基础课程,是备考中必须重点掌握的内容之一。
本文将从制药工艺学的基本概念、主要内容和实践应用等方面,为大家总结制药工艺学的要点。
一、制药工艺学的基本概念制药工艺学是制药工程学科的核心内容之一,它研究的是药物的生产过程和药物生产中的各种工艺问题。
制药工艺学的研究对象包括药物的原料、生产工艺、设备和工艺控制等方面。
通过对药物的生产过程进行深入研究,制药工艺学可以为药物的生产提供科学依据,确保药物的质量和安全性。
二、制药工艺学的主要内容1. 药物的生产工艺药物的生产工艺是制药工艺学的核心内容之一。
它包括药物的合成方法、制剂工艺和包装工艺等方面。
药物的合成方法是指通过化学反应将原料转化为活性药物的过程。
制剂工艺则是指将活性药物与辅料进行混合、加工、制备成制剂的过程。
包装工艺则是指将制剂进行包装,以保证药物的质量和安全性。
2. 药物的原料药物的原料是制药工艺学的另一个重要内容。
药物的原料包括药物的活性成分和辅料等。
活性成分是指药物中具有治疗作用的成分,而辅料则是指用于制剂工艺中的辅助物质。
制药工艺学需要研究药物的原料来源、性质、质量要求等方面的问题,以确保药物的质量和疗效。
3. 工艺设备和工艺控制工艺设备和工艺控制是制药工艺学中不可忽视的内容。
工艺设备是指用于药物生产过程中的各种设备和仪器,它们对药物的生产效率和质量具有重要影响。
工艺控制则是指对药物生产过程进行监控和调控,以确保药物的质量和稳定性。
制药工艺学需要研究工艺设备的选择、设计和操作,以及工艺控制的方法和技术,以提高药物的生产效率和质量。
三、制药工艺学的实践应用制药工艺学的研究成果在制药工程实践中有着广泛的应用。
首先,制药工艺学可以为药物的生产提供科学依据,确保药物的质量和安全性。
其次,制药工艺学可以优化药物的生产工艺,提高生产效率和经济效益。
生物制药工艺学总结(大致按要求整理)
生物制药工艺学名词: 10个20分;选择10个10分;填空10个20分;简答5个30分;论述2个20分。
第一章生物药物概述1.药.、生物药物、生物制品药物:用于预防、治疗或诊断疾病或调节机体生理功能、促进机体康复保健的物质, 有4大类:预防药、治疗药、诊断药和康复保健药。
生物药物.................................., .综合应用生物与医学、生物化学与分....: .是利用生物体、生物组织、细胞或其成分子生物学、微生物学与免疫学、物理化学与工程学和药学的原理与方法进行加工、制造而成的.........................................一大类预防、诊断、治疗和康复保健的制品。
....................广义: 从动物、植物、微生物和海洋生物为原料等制取的各种天然生物活性物质以及人工合成或半合成的天然物质类似物;还包括生物工程技术制造生产的新生物技术药物。
医学生物制品:一般指:用微生物(包括细菌、噬菌体、立克次体、病毒等)、微生物代谢产物、动物毒素、人或动物的血液或组织等加工制成的预防、治疗和诊断特定传染病或其它有关疾病的免疫制剂, 主要指菌苗、疫苗、毒素、应变原与血液制品等。
《新生物制品审批办法》生物制品定义: 是应用普通的或以基因工程、细胞工程、蛋白质工程、发酵工程等生物技术获得的微生物、细胞及各种动物和人源的组织和液体等生物材料制备的, 用于人类疾病预防、治疗和诊断的药品。
2..基因重组药物(基因工程药物)与基因药物有什么区别?基因重组药物属于基因工程药物, 这类药物主要是应用基因工程和蛋白质工程技术制造的重组活性多肽、蛋白质及其修饰物。
而基因药物不是基因工程药物, 这类药物是以基因物质(RNA或DNA及其衍生物)作为治疗的物质基础, 包括基因治疗用的重组目的DNA片段、重组疫苗、反义药物和核酶等。
第二章生物制药工艺技术基础1.生化制药制备工艺的六个环节(1)原料的选择和预处理2)原料的粉碎(3)提取: 从原料中经溶剂分离有效成分, 制成粗品的工艺过程。
化学制药工艺学重点
探秘化学制药工艺学:从原料到成品化学制药工艺学作为药物制备的核心科学,是将药品原料加工转化成成品药品的关键环节。
此过程中,需要经历众多的步骤和控制条件,方能保证产出的药品符合安全、有效、稳定的要求。
第一步:原料的筛选与采购制药工艺的第一步是选择适合的原料,并从可靠供应商采购。
其重要性在于不同的原料质量和来源会直接影响到后续的加工和质量控制,对于高要求的药品制剂来说,良好的原料选择会直接影响到制药的成败。
第二步:研磨与混合对于绝大多数的药品原料来说,需要经过粉碎和混合,以便于成品的均匀性和分散性。
而不同的原料材质和形状则需要不同的研磨机器和处理工艺,同时还需要在混合过程中控制不同物料的比例和搅拌时间以确保均匀性。
第三步:溶解与混合把已研磨和混合好的原料与溶剂相结合,形成药品溶液。
不同的原料组成和药品类型需要不同的溶解剂选择以及溶解剂和药品配比的控制。
同时在溶解和混合的过程中,需要控制温度和时长等参数,确保化学反应的进行和溶液的理化特征满足药品质量标准。
第四步:分离与萃取在混合后的药品溶液中,可能会存在多种不同的化合物和成分。
通过分离和萃取工艺,可以将目标成分和杂质分离出来。
分离的方法包括但不限于晶体分离、蒸馏分离、离子交换和色谱分离等。
第五步:纯化与干燥在分离和萃取过程中,可能会残留一些杂质和溶剂。
纯化工艺则是通过物理和化学方式,将药品成分提纯到达药品标准。
然后进行粉末和干燥等后续加工,以便于药品制剂的包装和保存。
综上所述,化学制药工艺学的重要性在于它将不同种类、不同质量的药品原料加工、提纯、分离、萃取,最终实现成品药品的标准化生产。
了解和掌握好这些步骤和技术,可以有效提高药品生产的效率和质量水平,进一步保障患者的健康和安全。
制药标准工艺学重点整理
制药工艺学重点整顿第一章绪论一、化学合成药物生产旳特点;1)品种多,更新快,生产工艺复杂;2)需要原辅材料繁多,而产量一般不太大;3)产品质量规定严格;4)基本采用间歇生产方式;5)其原辅材料和中间体不少是易燃、易爆、有毒;6)三废多,且成分复杂。
二、GLP、GCP、GMP、GSP;◆GMP (Good Manufacturing Practice ):药物生产质量管理规范——生产◆GLP (Good Laboratory Practice ):实验室实验规范——研究◆GCP (Good Clinical Practice ):临床试用规范——临床◆GSP (Good Supply Practice):医药商品质量管理规范——流通◆GAP (Good Agricultural Practice):中药材种植管理规范三、药物传递系统(DDS)分类;◆缓释给药系统(sustained release drug deliverysystem,SR-DDS)◆控释给药系统(controlled release drug delivery system, CR-DDS )、◆靶向药物传递系统(tageting drug delivery system, T-DDS)、◆透皮给药系统(transdermal drug delivery system◆粘膜给药系统(mucosa drug delivery system)◆植入给药系统(implantable drug delivery system)第二章药物工艺路线旳设计和选择四、药物工艺路线设计旳重要措施;类型反映法、分子对称法、追溯求源法、模拟类推法、光学异构体拆分法;(名词解释)◆类型反映法—指运用常用旳典型有机化学反映与合成措施进行旳合成设计。
重要涉及各类有机化合物旳通用合成措施,功能基旳形成、转换,保护旳合成反映单元。
对于有明显类型构造特点以及功能基特点旳化合物,可采用此种措施进行设计。
制药工艺学考试重点.doc
制药工艺学(工程版)一、名词1、制药工艺学:研究药物的工业生产过程的共性、规律及其应用的一门学科。
2、发酵制药:利用只要微生物的生长繁殖,通过发酵,代谢合成药物,然后从中分离提取,代谢合成药物,然后从中分离提取、精制纯化,获得药品的过程3、自然选育:不经过人工诱变处理,根据菌种的自然突变而进行的菌种筛选过程。
4、分子定向育种:在分子水平,体外模拟自然进化机制,是突变、重组、选择的重复循环,获得有益突变,淘汰有害突变,使进化向有益的方向发展5、培养基:供微生物生长繁殖和合成各种代谢产物所需要的按一定比例配制的多种营养物质的混合物。
6、杂菌:除生产菌以外的任何微生物。
7、污染:感染杂菌的培养或发酵体系。
8、消毒:杀灭或清除病原微生物,达到无害化程度,杀灭率99.9%以上。
9、杀菌:杀灭或清除一切微生物,达到无活微生物存在的过程,杀灭率99.9999%以上。
10、灭菌:微生物杀灭率99.999999%以上。
11、化学灭菌:用化学物质杀灭微生物的灭菌操作。
12、物理灭菌:各种物理条件如高温、辐射、超声波及过滤等进行灭菌13、种子活化:将保存菌种接种在固体培养基上,在适宜的条件下培养,恢复其固有生物特性14、高密度培养:菌体浓度(干重)至少达到50g/L以上的一种理想培养,发酵工艺目标和方向。
16、分批式操作:培养液一次性装入发酵罐,一次性接种,经过一段时间培养,一次性卸出全部培养物。
17、流加式操作装入大部分培养液,一次性接种,在培养过程中连续不断补充新培养基,但不取出培养液。
18、半连续式操作:培养液一起装入发酵罐,一次性接种。
间歇取出部分发酵培养物(带放),同时补充同等数量的新培养基;然后继续培养,直至发酵结束。
19、连续式操作:培养液一起装入发酵罐,接种后培养过程中,不断补充新培养基,同时取出包括培养液和菌体在内的发酵液,直至发酵结束。
20、灌流式操作:培养液一起装入发酵罐,接种后培养过程中,不断补充新培养基,取出部分条件培养基,菌体仍然滞留罐内。
制药工艺整理资料
第一章0绪论1.制药工艺学研究的对象与内容:化学制药工艺学、中药制药工艺和生物技术制药2.化学制药厂三废:废渣、废水、废气3.研究的程序:一般分为实验工艺研究和中试放大研究两个时期。
4.我国现代制药工业的开发方向:1、化学制药工业向创制新药和先进生产工艺方向开发2、开发新剂型,改造老剂型3、实现中药现代化〔1〕先进生产技术和设备〔2〕建立中药质量指标和操纵体系〔3〕现代中药新剂型5.GMP的根基知识:药品生产五大要素:人、机、料、法、环8.GMP的三大目标要素:将人为的过错操纵在最低的限度防止对药品的污染和落低质量保证高质量产品的质量治理体系第一篇化学制药工艺第二章药物工艺路线的设计与选择1.几种药物工艺路线设计方法:第一、类型相应法第二、分子对称法第三、追溯求源法〔又称倒推法或逆向合成分析〕第四、模拟类推法7.追溯求源法的适用范围:药物分子中具有如C-N,C-O,C-S等碳杂原子从这些易拆键进手,选择结合点,然后追溯求源最后到明确的简单的起始原料,进而设计出药物的合成路线。
追溯求源法也适合于分子中含有C≡C、C=C、C-C键化合物的设计。
2、例④盐酸黄连素工艺路线的设计——模拟巴马汀的合成方法9.外消旋体拆分方法:非对映异构体结晶拆分法诱导结晶拆分法〔也喊播种结晶法〕微生物或酶作用下的拆分法色谱分开法化学相应类型的选择:相同的化合物引进同一个功能基,同时还存在两种极端的相应类型,即“平顶型〞和“尖顶型〞。
“一勺烩〞工艺?在合成相应中,要是一个相应所采纳的溶剂和产生的副产物对下一步相应碍事不大,可将两步或几步相应按顺序,不经分开,在同一相应罐中进行。
“一勺烩〞工艺的前提?必须弄清出各步的相应历程和工艺条件,进而了解相应进程的操纵,副相应产生的杂质及其对后处理的碍事,以及前后各步相应的溶剂、pH、副产物间的相互干扰和碍事。
第三章制药工艺的研究与优化1.工艺研究的内容:↓相应物浓度与配料比、溶剂、催化、传热、相应时刻及相应终点的监控、纯化技术、中间体的质量操纵方法2.概念〔名解〕基元相应—凡相应物分子在碰撞中一步直截了当转化为生成物分子的相应称为基元相应。
制药工艺学重点
制药工艺学重点名词解释第二章(1)工艺路线Technics route:A chemical synthetic drug can be synthesized through many routes, we often call the route with industrial production value as the technics route of the drug.一个化学合成药物往往可通过多种不同的合成途径制备,通常将具有工业生产价值的合成途径称为该药物的工艺路线。
(2)半合成semi synthesis:由具有一定基本结构的天然产物经化学结构改造和物理处理过程制得复杂化合物的过程。
(3)全合成total synthesis:以化学结构简单的化工产品为起始原料,经过一系列化学反应和物理处理过程制得复杂化合物的过程。
(4)合成synthesis:是从原料出发,经过若干步反应,最后制备出产物,或目标物、目标分子(target molecule, TM)(5)合成子synthon:已切断的分子的各个组成单元,包括电正性、电负性和自由基形式。
(6)合成等价物synthetic equivalent:具有合成子功能的化学试剂,包括亲电物种和亲核物种两类。
第三章(1)Internal cause内因(物质的性能):It mainly refers to property of the matter, including atom combination condition, bond, structure, functional groups, etc, and its interaction. 主要指参与反应的分子中原子的结合态、键的性质、立体结构、功能基活性,各种原子和功能基之间的相互影响及理化性质等。
(2)External cause外因(反应条件):It mainly refers to reaction condition, including charge ratio, concentration and purity of reaction matter, feed order, reaction time, temperature 反应时的配料比、温度、溶剂、催化剂、pH值、压强、反应时间、产物终点控制、产物后处理和设备状况等(3)反应物配料比:参加反应的各种物质间量的搭配关系,即反应物浓度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制药工艺学重点整理第一章绪论一、化学合成药物生产的特点;1)品种多,更新快,生产工艺复杂;2)需要原辅材料繁多,而产量一般不太大;3)产品质量要求严格;4)基本采用间歇生产方式;5)其原辅材料和中间体不少是易燃、易爆、有毒;6)三废多,且成分复杂。
二、GLP、GCP、GMP、GSP;◆GMP (Good Manufacturing Practice ):药品生产质量管理规范——生产◆GLP (Good Laboratory Practice ):实验室试验规范——研究◆GCP (Good Clinical Practice ):临床试用规范——临床◆GSP (Good Supply Practice):医药商品质量管理规范——流通◆GAP (Good Agricultural Practice):中药材种植管理规范三、药物传递系统(DDS)分类;◆缓释给药系统(sustained release drug deliverysystem,SR-DDS)◆控释给药系统(controlled release drug delivery system, CR-DDS )、◆靶向药物传递系统(tageting drug delivery system, T-DDS)、◆透皮给药系统(transdermal drug delivery system◆粘膜给药系统(mucosa drug delivery system)◆植入给药系统(implantable drug delivery system)第二章药物工艺路线的设计和选择四、药物工艺路线设计的主要方法;类型反应法、分子对称法、追溯求源法、模拟类推法、光学异构体拆分法;(名词解释)◆类型反应法—指利用常见的典型有机化学反应与合成方法进行的合成设计。
主要包括各类有机化合物的通用合成方法,功能基的形成、转换,保护的合成反应单元。
对于有明显类型结构特点以及功能基特点的化合物,可采用此种方法进行设计。
◆分子对称法—有许多具有分子对称性的药物可用分子中相同两个部分进行合成。
◆追溯求源法—从药物分子的化学结构出发,将其化学合成过程一步一步地逆向推导进行追溯寻源的方法,也称倒推法。
首先从药物合成的最后一个结合点考虑它的前驱物质是什么和用什么反应得到,如此继续追溯求源直到最后是可能的化工原料、中间体和其它易得的天然化合物为止。
药物分子中具有C-N,C—S,C—O等碳杂键的部位,是该分子的拆键部位,即其合成时的连接部位。
◆模拟类推法—对化学结构复杂的药物即合成路线不明显的各种化学结构只好揣测。
通过文献调研,改进他人尚不完善的概念来进行药物工艺路线设计。
可模拟类似化合物的合成方法。
故也称文献归纳法。
必需和已有的方法对比,并注意对比类似化学结构、化学活性的差异。
五、全合成、半合成;(名词解释)◆全合成-化学合成药物一般由结构比较简单的化工原料经过一系列化学合成和物理处理过程制得。
◆半合成—由已知具有一定基本结构的天然产物经化学改造和物理处理过程制得。
六、衡量生产技术高低的尺度;药物生产工艺路线的技术先进性和经济合理性,是衡量生产技术高低的尺度。
七、进行药物的化学结构整体及部位剖析的要点;在设计药物的合成路线时,首先应从剖析药物的化学结构入手,然后根据其结构特点,采取相应的设计方法。
◆对药物的化学结构进行整体及部位剖析时,应首先分清主环与侧链,基本骨架与功能基团,进而弄清这功能基以何种方式和位置同主环或基本骨架连接。
◆研究分子中各部分的结合情况,找出易拆键部位。
键易拆的部位也就是设计合成路线时的连接点以及与杂原子或极性功能基的连接部位。
◆考虑基本骨架的组合方式,形成方法;◆功能基的引入、变换、消除与保护;◆手性药物,需考虑手性拆分或不对称合成等。
八、外消旋体的一般性质;在化学药物合成中,若在完全没有手征性因素存在的分子中,则所得产物(或中间体)是由等量的左旋体(-)与右旋体(+)组成的外消旋体。
分为混合物、化合物、固溶体三类。
在晶态的情况下,对映体分子之间的晶间力的相互作用有明显的差异。
(+)分子对(+)分子的关系、(-)分子对(-)分子的关系、(-)分子对(+)分子的关系◆外消旋混合物:当各个对映体的分子在晶体中对其相同种类的分子具有较大的亲和力时,那么只要有一个(+)-分子进行结晶,则将只有(+)-分子在上面增长。
(-)-分子的情况相似。
◆外消旋化合物:当一个对映体的分子对其相反的对映体的分子比对其相同种类分子具有较大的亲和力时,相反的对映体即将在晶体的晶胞中配对,而形成在计量学意义上的真正的化合物。
◆外消旋固体溶液:在某些情况下,当一个外消旋体的相同构型的分子之间和相反构型分子之间的亲和力相差很小时,则此外消旋体所形成的固体,其分子的排列是混乱的。
于是得到的是外消旋固体溶液。
外消旋固体溶液与两个对映体在许多方面的性质都是相同的。
区分方法:加入纯的对映体1)熔点上升,则为外消旋混合物;2)熔点下降,则为外消旋化合物;3)熔点没有变化,作为外消旋固体溶液.❖外消旋混合物为各自独立存在的对映体,故可以利用对映体溶解度差异采取诱导结晶拆分法。
❖而外消旋化合物和外消旋固体溶液则为完全相同的一种晶体;因此对这两类消旋体,需要采取先形成非对映异构体,再进行拆分。
九、不对称合成:系指手征性分子或前手征性分子在形成新的手征性中心的反应过程中,占优势地生成某一立体构型产物,而其非对映异构体的生成量却很少。
第三章药物工艺路线的评价与选择十、药物合成工艺路线的装配方式:“直线方式”和“汇聚方式”(常用)十一、理想的药物工艺路线;①化学合成途径简洁,即原辅材料转化为药物的路线要简短;②所需的原辅材料品种少且易得,并有足够数量的供应;③中间体容易提纯,质量符合要求,最好是多步反应连续操作;④反应在易于控制的条件下进行,如安全、无毒;⑤设备条件要求不苛刻;⑥“三废”少且易于治理;⑦操作简便,经分离、纯化易达到药用标准;⑧收率最佳、成本最低、经济效益最好。
十二、相转移催化反应、常用的相转移催化剂,影响相转移催化的因素;相转移催化(PTC),它是有机合成中最引人瞩目的新技术。
在水-有机相两相反应中加入相转移催化剂,作用是使一种反应物由一相转移到另一相参加反应,促使一个可溶于有机溶剂的底物和一个不溶于此溶剂的离子型试剂两者之间发生反应。
常用的相转移催化剂可分为鎓盐类(由中心原子、中心原子上的取代基和负离子三部分组成,中心原子一般为P、N、As、S等原子。
适用于液-液和固-液体系,价廉、无毒。
常用的有TEBAC三乙基卞基氯化铵、TOMAC三辛基甲基氯化铵、四丁基硫酸氢铵)、冠醚类及非环多醚类三大类。
影响相转移催化反应的主要因素有:催化剂、搅拌速度、溶剂和水含量等1.催化剂1)分子量比较大的鎓盐比分子量小的鎓盐具有较好的催化效果。
2)具有一个长碳链的季铵盐,其碳链愈长,效果愈好。
3)对称的季铵离子比具有一个碳链的季铵离子的催化效果好,例如四丁基铵离子比三甲基十六烷基铵离子的催化效果好。
4)季磷盐的催化性能稍高于季铵盐,季磷盐的热稳定性也比相应的铵盐高。
5)含有芳基地铵盐不如烷基铵盐的催化效果好。
常用的有TEBAC三乙基卞基氯化铵TOMAC三辛基甲基氯化铵2.搅拌速度3.溶剂在固液相转移催化过程中,最常用的溶剂是苯、二氯甲烷、氯仿以及乙腈等。
乙腈可以成功用于固液相系统,却不能用于液液系统,因为它和水互溶。
在液液相转移系统中,即反应物为液体时,常用该液体作为有机相使用。
原则上许多有机溶剂都可以用,但是溶剂与水不互溶,以确保离子对不发生水合作用,即溶剂化。
十三、相转移催化反应历程;季铵盐在两相反应中的作用,是使水相中的负离子(Y-)与季铵盐正离子(Q+)结合生成离子对[Q+Y-],并有水相转移到有机相,在有机相中极迅速地与卤代烃作用生成RY 和[Q+X-], 新形成的[Q+X-]回到水相,再与负离子Y-结合成离子对后转到有机相。
由于通常应用高亲脂性的催化剂,这样Q+在水相不以明显得浓度存在。
如Q+保留在有机相,而只是负离子通过界面进行交换,如下列的更为简单的历程。
十四、药物结构剖析的方法。
同进行药物的化学结构整体及部位剖析的要点;第四章药物工艺研究与优化十五、影响药物合成反应的7个因素;◆反应物浓度与配料比:参与反应的各物料相互间物质量的比例称为配料比。
通常物料以摩尔为单位,则称为投料的摩尔比。
生产上常使用重量为物料数量单位,其比例称为重量比。
◆溶剂:化学反应的介质、传热的介质◆催化:酸碱催化、金属催化、相转移催化、酶催化等,加速化学反应、缩短生产周期、提高产品的纯度和收率。
◆传热:药物合成工艺研究需要考察反应时的温度对反应的影响,选择合适的温度范围。
◆反应时间及反应终点的监控:适时地控制反应终点,可以确定反应的时间◆纯化技术:蒸馏、过滤、萃取、重结晶、吸附、膜分离等。
◆中间体的质量控制方法:所有中间体都必须制定相应的质量控制项目,并建立有效的质量分析方法。
十六、溶剂化作用及其对反应的影响;正是由于离子或极性分子处于极性溶剂中时,在溶质和溶剂分子之间,能发生溶剂化作用。
在溶剂化过程中,物质放出热量而降低位能。
溶剂化(水化),指每一个溶解的分子或离子,被一层溶剂分子疏密程度不同地包围着。
由于溶质离子对溶剂分子施加特别强的力,溶剂层的形成是溶质离子和溶剂分子间作用力的结果。
如果反应过渡状态(活化络合物)比反应物更容易发生溶剂化。
随着反应物或活化络合物位能下降(ΔH),反应活化能也降低,故反应加速,溶剂的极性越大,对反应越有利。
反之,如果反应物更容易发生溶剂化,则反应物的位能降低(ΔH),相当于活化能增高,于是反应速度降低。
十七、催化剂的定义及其作用形式;某一种物质在化学反应系统中能改变化学反应速度,而本身在化学反应前后化学性质没有变化,这种物质称之为催化剂。
正催化、负催化、自动催化作用机理1)催化剂能降低反应活化能,增大反应速度。
2)催化剂具有特殊的选择性。
十八、影响催化剂活性的因素;◆温度:温度对催化剂活性影响很大,温度太低时,催化剂的活性小,反应速度很慢,随着温度上升,反应速度逐渐增大,但达到最大反应速度后,又开始降低。
绝大多数催化剂都有活性温度范围。
◆助催化剂:在制备催化剂时,往往加入少量物质(<10%),这种物质对反应的活性很小,但却能显著提高催化剂活性、稳定性或选择性。
◆载体(担体):常把催化剂负载在某种惰性物质上,这种物质称为载体。
常用的载体活性碳、硅藻土等。
使用载体可以使催化剂分散,从而使有效面积增大,既可以提高其活性,又可以节约其用量。
同时还可以增加催化剂的机械强度,防止其活性组分在高温下发生熔结现象,影响催化剂的使用寿命。
◆毒化剂:对于催化剂的活性有抑制作用的物质,叫做毒化剂或催化抑制剂。