2015-2016学年北京市海淀区八年级下学期期末数学试题(含答案)

合集下载

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。

每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。

点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。

BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。

对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。

使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。

2015-2016学年八年级下学期期末质量检测数学试题带答案

2015-2016学年八年级下学期期末质量检测数学试题带答案

E ODC BA2015-2016学年度第二学期期末质量检测八年级 数学一、选择题(本大题共10题,每题3分,共30分) 1.下列二次根式中,是最简二次根式的是A. B. 0.5 C.50 D.5下列计算正确的是 A.752=+ C. D.4. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 A .120° B .90° C .60° D .45°5. 已知一组数据5、3、5、4、6、5、14.关于这组数据的中位数、众数、平均数, 下列说法正确的是A.中位数是4B.众数是14C.中位数和众数都是5D.中位数和平均数都是5 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点, 则下列式子中,一定成立的是A.OE BC 2=B. OE AC 2=C.OE AD =D.OE OB = 7. 要得到y=2x-4的图象,可把直线y=2xA . 向左平移4个单位 B. 向右平移4个单位 C. 向上平移4个单位 D. 向下平移4个单位 8. 对于函数y=-3x+1,下列结论正确的是A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大9.甲、乙两班举行电脑汉字录入比赛,参加学生每分钟录入汉字的个数统计计算后填入下表:某同学根据上表分析得出如下结论:22540=÷15)15(2-=-5112题①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀); ③甲班的成绩波动情况比乙班的成绩波动大. 其中正确结论的序号是A. ①②③ B .①② C .①③ D .②③10.王老师开车从甲地到相距240千米的乙地,如果油箱剩余油量Y (升)与行驶路程X (千米)之间是一次函数关系,如图,那么到达乙地时油 箱剩余油量是A. 10升B.20升C. 30升D. 40升二.填空题(本大题共6题,每题3分, 共18分)11 .函数3X2X Y +=的自变量X 的取值范围是______________12. 四边形ABCD 是周长为20cm 的菱形,点A 的坐标是则点B 的坐标为___________13.已知样本x 1 ,x 2 , x 3 , x 4的平均数是3,则x 1+3,x 2+3, x 3+3, x 4+3的平均数为 ____14.若一次函数y =(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是____15.如图,以Rt △ABC 的三边为斜边分别向外作等 腰直角三角形,若斜边AB =3,则图中阴影部分 的面积为________.16.如图,矩形ABCD 中,AB=3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B落在点B ′处,当△AEB ′为直角三角形时,BE 的长为___三、解答题(本大题共8题,共72分,解答时要写出必要的文字说明,演算步骤或推证过程)17.计算(本题共2小题,每小题5分,共10分) (1) 32)48312123(÷+-(2) (18.(本题满分8分)已知一次函数的图象经过(-2,1)和(1,4)两点, (1)求这个一次函数的解析式; (2)当x =3时,求y 的值。

北京市海淀区2016-2017学年八年级(下)期末数学试题及答案

北京市海淀区2016-2017学年八年级(下)期末数学试题及答案

1 3
B. 3
C.
1 2
D. 5 x
y1
m 4 6
0 3 n
2 t -1
二、填空题: (本题共 18 分,每小题 3 分) 11. x 2 在实数范围内有意义, 那么 x 的取值范围是 12.已知 .
y2
2 x (y 1) 0 ,那么 y 的值是
2
x

13.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四 边形 ABCD 中, AB 3 , AC 2 ,则 BD 的长为
y 5 4 3
y 2 x 的图象与直线 AB 交于点 M .
(1)求直线 AB 的函数解析式及 M 点的坐标; (2)若点 N 是 x 轴上一点,且△ MNB 的面积为 6,求点 N 的坐标.
-5 -4 -3 -2 -1
2 1 O 1 -1 -2 2 3 4 5 x
21. 如图, 在△ ABC 中, 点 D ,E ,F 分别是边 AB , AC ,
D
E'
E C
我想沿用小明的想法,把点 E 选在 CD 垂直平分线上的另一个特殊位 置,我选择的位置是……
F
我没有沿用小明的想法,我的想法 是……
我选择
小明的想法; (填“用”或“不用” )并简述求直线 AF 与 AD 所夹锐角度数的思路.
A B
D
C
5
25.对于正数 x ,用符号 [ x] 表示 x 的整数部分,例如:[0.1] 0 , [2.5] 2 , [3] 3 .点 A(a, b) 在第 一象限内,以 A 为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直. 其中垂直于 y 轴 的边长为 a , 垂直于 x 轴的边长为 [b] 1 , 那么, 把这个矩形覆盖的区域叫做点 A 的矩形域. 例

2015-2016学年北京市海淀区八年级下学期期末考试数学试卷(含答案)

2015-2016学年北京市海淀区八年级下学期期末考试数学试卷(含答案)

海淀区八年级第二学期期末练习数 学(分数:100分 时间:90分钟) 2018.7学校 班级 姓名 成绩一、选择题:(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个....是正确的. 1.下列各式中,运算正确的是A .3=B =C .=D 2=- 2.下列各组数中,以它们为边长的线段不能构成直角三角形的是A .1B .3,4,5C .5,12,13D .2,2,3 3.如图,矩形ABCD 中,对角线AC ,BD 交于O 点.若∠AOB =60°,AC =8,则AB 的长为A .4B .C .3D .54.已知P 1(-1,y 1),P 2(2,y 2)是一次函数1y x =-+图象上的两个点,则y 1,y 2的大小关系是 A .12y y = B .12y y < C .12y y > D .不能确定5.2022年将在北京—张家口举办冬季奥运会,很多学校开设了相关的课程.下表记录了某校4名同学短道速滑选拔赛成绩的平均数x 与方差2s :根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 A .队员1 B .队员2 C .队员3 D .队员46.用配方法解方程2230x x --=,原方程应变形为A .2(1)2x -=B .2(1)4x +=C .2(1)4x -=D .2(1)2x +=7.如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,若BF =12,AB =10,则AE 的长为 A .13 B .14 C .15 D .168.一个有进水管与出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图所示.则8min 时容器内的水量为 A .20 L B .25 L C .27L D .30 L9.若关于x 的方程2(1)10kx k x -++=的根是整数,则满足条件的整数k 的个数为 A .1个 B .2个 C .3个 D .4个10.如图1,在菱形ABCD 中,∠BAD =60°,AB =2,E 是DC 边上一个动点,F 是AB 边上一点,∠AEF =30°.设DE =x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的A .线段ECB .线段AEC .线段EFD .线段BF图1 图2二、填空题:(本题共18分,每小题3分)11.写出一个以0,1为根的一元二次方程.12.若关于x的一元二次方程240x x m+-=有两个不相等的实数根,则m的取值范围是.13.如图,为了检查平行四边形书架ABCD的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC,BD的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理.14.若一次函数y kx b=+(0k≠)的图象如图所示,点P(3,4)在函数图象上,则关于x的不等式4kx b+≤的解集是.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.16.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE +三、解答题:(本题共22分,第17—19题每小题4分,第20—21题每小题5分)17.计算:PFED CB18.解方程:(4)12y y y -=--.19.已知1x =是方程2230x ax a -+=的一个根,求代数式2391a a -+的值.20.在平面直角坐标系xOy 中,一次函数的图象经过点A (2,3)与点B (0,5). (1)求此一次函数的表达式;(2)若点P 为此一次函数图象上一点,且△POB 的面积为10,求点P 的坐标.21.如图,四边形ABCD 中,AB =10,BC =13,CD =12,AD =5,AD ⊥CD ,求四边形ABCD 的面积.四、解答题:(本题共10分,第22题5分,第23题5分)22.阅读下列材料:北京市为了紧抓疏解非首都功能这个“牛鼻子”,迁市场、移企业,人随业走.东城、西城、海淀、丰台……人口开始出现负增长,城六区人口2018年由升转降.而现在,海淀区许多地区人口都开始下降。

海淀区2014—2015学年度第二学期八年级期末考试数学

海淀区2014—2015学年度第二学期八年级期末考试数学

海淀区2014—2015学年度第二学期八年级期末考试2015月6月一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个....是符合题意的,请将正确答案前的字母填入下面的答题表中. ( )1.抛物线y=2(x ﹣3)2+1的顶点坐标是( )A . (3,1)B . (3,﹣1)C . (﹣3,1)D . (﹣3,﹣1)( )2、已知,那么的值为( )A .-lB .1C .32007D .( )3.已知一次函数1+=kx y ,y 随x 的增大而减小,则该函数的图象一定经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限( )4.已知2=x 是一元二次方程2280x ax ++=的一个根,则a 的值为 A .1 B .-1 C .3 D .-3( )5.将抛物线24x y =向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为 A .()2413y x =++ B .()2413y x =-+ C .()2413y x =+-D .()2413y x =--( )6.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为( )A .6,6B .7,6C .7,8D .6,8( )7.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于E ,∠BED=150°,则∠A 的大小为A .150°B .130°C .120°D .100°( )8.如图,正方形ABCD 的边长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B →C 和A →D →C 的路径向点C 运动,设运动时间为x (单位:s ),四边形PBDQ 的面积为y (单位:cm 2),则y 与x (0≤x ≤8)之间的函数图象大致是8O84y x8O84yx8O84yx8O84yxA .B .C .D . 二、填空题(本题共16分,每小题4分) 9.如果二次根式13-x 有意义,则x 的取值范围是 .10.如图,在直角三角形ABC 中,∠C=90°,AB=10,AC=8, 点E 、F 分别为AC 和AB 的中点,则EF= .11.某一型号的飞机着陆后滑行的距离S (单位:m )与滑行时间t (单位:s )之间的函数关系式是25.160t t S -=,则该型号飞机着陆后滑行 m 才能停下来.12.方程4x(x-1)=2(x+2)+8化成一般形式是____________________,二次项系数是 ,一次项系数是 ,常数项是 .三、解答题(本题共26分.第13题~14题,每题各3分;第15题~18题,每题各5分) 13.计算:863⨯-. 14.解方程:263x x -=.15.已知:如图,AB= AC ,∠DAC=∠EAB ,∠B=∠C .求证:BD = CE .证明:16.已知022=--x x ,求代数式)1)(1()12(-+--x x x x 的值17.列方程解应用题:“美化城市,改善人民居住环境”是城市建设的一项重要内容.某市近年来,通过植草、栽树、修建公园等措施,使城区绿地面积不断增加,2011年底该市城区绿地总面积约为75公顷,截止到2013年底,该市城区绿地总面积约为108公顷,求从2011年底至2013年底该市城区绿地总面积的年平均增长率.18.若关于x 的一元二次方程0342=++x kx 有实根. (1)求k 的取值范围;(2)当k 取得最大整数值时,求此时方程的根.四、解答题(本题共20分,每题各5分) 19.已知二次函数224y x x -=.(1)将此函数解析式用配方法化成k h x a y +2)(-=的形式;(2)在给出的直角坐标系中画出此函数的图象(不要求列对应数值表,但要求尽可能画准确); (3)当0<x <3时,观察图象直接写出函数值y 的取值范围: .20.如图,在□ABCD 中,对角线AC ,BD 相交于点O ,且OA =OB . (1)求证:四边形ABCD 是矩形;(2)若AD =4,∠AOD =60°,求AB 的长.21.下表是某校八年级(1)班20名学生某次数学测验的成绩统计表成绩(分) 60 70 80 90 100 人数(人) 15xy2(1)若这20名学生成绩的平均分数为82分,求x 和y 的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a ,中位数为b ,求a ,b 的值.OABCD65-2-144123yxO 32-1-2122. 如图,在平面直角坐标系xOy 中,正比例函数y =x 的图象与一次函数y =kx -k 的图象的交点坐标为A (m ,2).(1)求m 的值和一次函数的解析式;(2)设一次函数y =kx -k 的图象与y 轴交于点B ,求△AOB 的面积;(3)直接写出使函数y =kx -k 的值大于函数y =x 的值的自变量x 的取值范围.五、解答题(本题共14分,每题各7分)23.已知抛物线217222y x mx m -+-=的顶点为点C .(1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点; (2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标; (3)如图,直线1y x -=与(2)中的抛物线交于A 、B 两点,并与它的对称轴交于点D .直线k x =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C ,D ,M ,N 为顶点的四边形是平行四边形.x =kDM NO3-11A CBx =3xy24.定义:如图⑴,若分别以△ABC 的三边AC ,BC ,AB 为边向三角形外侧作正方形ACDE ,BCFG 和ABMN ,则称这三个正方形为△ABC 的外展三叶正方形,其中任意两个正方形为△ABC 的外展双叶正方形.(1)作△ABC 的外展双叶正方形ACDE 和BCFG ,记△ABC 的面积为S 1,△DCF 的面积分别为S 2.① 如图⑵,当∠ACB =90°时,求证:S 1=S 2.② 如图⑶,当∠ACB ≠90°时,S 1与S 2是否仍然相等,请说明理由.(2)如图⑴,已知△ABC 中,AC =3,BC =4,作其外展三叶正方形,记△DCF ,△AEN ,△BGM的面积和...为S ,请利用图⑴探究:当∠ACB 的度数发生变化时,S 的值是否发生变化,若不变,求出S 的值;若变化,求出S 的最大值.图⑴ 图⑵图⑶GFED CBAABCDEFGA B CD M NEF G数学试卷参考答案与评分标准 2014年7月一、选择题(本题共24分,每小题3分) A .B .A .D . C .A .B .D . 二、填空题(本题共16分,每小题4分)9.3≥x ; 10.3; 11.600; 12.(0,1), 4n三、解答题(本题共26分.第13题~14题,每题各3分;第15题~18题,每题各5分) 13.原式=2322- ………2分=2-. ………3分 14.解法一:93962+=+-x x ,1232=-)(x , …………1分323±=-x , …………2分∴ 3231+=x ,3232-=x . ………3分解法二:361-=-==c b a ,,, 04831462>=⨯⨯=∆)(--)(-, ………1分∴ 1248)6(⨯±--=x ………2分∴ 3231+=x ,3232-=x . …………3分15.证法1:在□ABCD 中,AB =CD ,∠A =∠C . ………2分∵AE =CF ,∴△ABE ≌△CDF (SAS ), ……4分 ∴BE =DF . …………5分证法2:在□ABCD 中,AD =BC ,AD ∥BC ,∴ED ∥BF . …………2分 ∵AE =CF ,∴AD -AE =BC -CF ,即ED =BF , ………3分 ∴四边形EBFD 是平行四边形, ………4分 ∴BE =DF . ……5分 16.解:把A (-3,0),B (3,4)的坐标分别代入c bx x y ++=231中得,⎪⎪⎩⎪⎪⎨⎧+⨯+⨯=+-⨯+-⨯=,33314,)3()3(31022c b c b ………2分 解得 ⎪⎩⎪⎨⎧==,1,32-c b ……………4分频数(人)3090120600m (条)DC B A12010080604020∴这个二次函数的解析式132312-x x y +=. …………5分 17.解:设从2011年底至2013年底该市城区绿地总面积的年平均增长率为x , ……1分根据题意得 1081752=+)(x , …………2分解得2.01=x ,2.22-=x (不合题意,舍去). …………4分 答:从2011年底至2013年底该市城区绿地总面积的年平均增长率为20%.…………5分 18.解:(1) ∵ 关于x 的一元二次方程0342=++x kx 有实根,∴0≠k …………1分 且 012163442≥-=⨯⨯=∆k k -, 解得 34≤k ∴ k 的取值范围是34≤k ,且0≠k . ……2分 (2) 在34≤k ,且0≠k 的范围内,最大整数k 为1. ……………3分 此时,方程化为0342=++x x .∴ 方程的根为11=x ,32=x . ………5分四、解答题(本题共20分,每题各5分)19.(1) x x y 422-==2122-)(-x ; ………2分 (2) 此函数的图象如图; ……4分(3) 观察图象知:-2≤y <6. ……5分20.(1)证明:在□ABCD 中,OA =OC =21AC ,OB =OD =21BD , ………1分又∵OA =OB ,∴AC =BD , ……2分∴平行四边形ABCD 是矩形. ……3分(2)∵四边形ABCD 是矩形,∴∠BAD =90°,OA =OD .又∵∠AOD =60°,∴△AOD 是等边三角形, ∴OD =AD =4,∴BD =2OD =8, ………4分在Rt △ABD 中,AB =22AD BD -=34484822==-. ……5分21.(1)在表中:a =0.4,b =60; …………2分(2)补全频数分布直方图如图; …………3分 (3) B ; …………4分(4)5301.05.172.05.124.05.73.05.2⨯⨯+⨯+⨯+⨯)( =4240(万条). ……………5分-223-111-1O x =1x y22.(1)………1分菱形面积为5,或菱形面积为4. …………2分(2)∵2=a ,52=b , …………4分∴ab =252=10. …………5分 五、解答题(本题共14分,每题各7分) 23.(1)Δ=74)272(214)(22+-=-⨯⨯-m m m m - =3)2(2+-m . ……………1分 ∵不论m 为何实数,总有0)2(2≥-m ,∴Δ=3)2(2+-m >0,∴无论m 为何实数,方程0272212=-+-m mx x 总有两个不相等的实数根, ∴无论m 为何实数,抛物线272212-+-=m mx x y 与x 轴总有两个不同的交点.…2分(2)∵ 抛物线的对称轴为直线x =3,∴ 212⨯--m=3,即m =3, ……………3分 此时,抛物线的解析式为y =253212+-x x =()21322x --,∴顶点C 坐标为(3,-2). …………4分(3) ∵CD ∥MN ,C ,D ,M ,N 为顶点的四边形是平行四边形,∴四边形CDMN 是平行四边形或四边形CDNM 是平行四边形.由已知D (3,2),M (k ,k -1),N (k ,253212+-k k ), ∵C (3,-2),∴ CD =4.∴MN =)25321(12+---k k k =CD =4. ………………5分 ①当四边形CDMN 是平行四边形,MN =k -1-(253212+-k k )=4, 整理得 1582+-k k =0,解得 k 1=3(不合题意,舍去),k 2=5. ………6分②当四边形CDNM 是平行四边形,BCDABCDANM =253212+-k k -(k -1)=4, 整理得 182--k k =0,解得 k 3=174+,k 4=174-.综上所述,k =5,或k =174+,或k =174-时,可使得C 、D 、M 、N 为顶点的四边形是平行四边形. …………………7分24.(1)证明:∵正方形ACDE 和正方形BCFG ,∴AC =DC ,BC =FC ,∠ACD =∠BCF =90°, 又∵∠ACB =90°,∴∠DCF =90°, ∴∠ACB =∠DCF =90°, ∴△ABC ≌△DFC .∴S 1=S 2. …………2分 (2) S 1=S 2. ……………3分 理由如下:如图,过点A 作AP ⊥BC 于点P , 过点D 作DQ ⊥FC 交FC 的延长线于点Q .∴∠APC =∠DQC =90°. ∵四边形ACDE ,BCFG 均为正方形,∴AC =CD ,BC =CF ,∠ACP +∠ACQ =90°,∠DCQ +∠ACQ =90°. ∴∠ACP =∠DCQ . ∴△APC ≌△DQC .(AAS ) …………………4分 ∴AP =DQ . 又∵S 1=12BC •AP ,S 2=12FC •DQ , ∴S 1=S 2.. …………………5分(3) 由(2)得,S 是△ABC 面积的三倍,要使S 最大,只需三角形ABC 的面积最大,∴当△ABC 是直角三角形,即∠ACB =90°时,S 有最大值. …………………6分 此时,S =3S △ABC =3×12×3×4=18. …………………7分 说明:各解答题的其他正确解法请参照以上标准按分步给分的原则酌情评分.P QA B CD EF G。

海淀区2015—2016八年级数学期末试题

海淀区2015—2016八年级数学期末试题

海淀区2015—2016八年级数学期末试题海淀区八年级第一学期期末练数学2016.1分数:100分时间:90分钟)一、选择题:(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的。

请将正确选项前的字母填在表格中相应的位置。

1.下列图形中,不是轴对称图形的是A)(B)(C)(D)2.下列运算中正确的是A)2x+3y=5xy (B)x÷x=x (C)(xy)=xy (D)2x·x=2x3.在平面直角坐标系xOy中,点P(-3,5)关于x轴的对称点的坐标是A)(3,5)(B)(3,-5)(C)(5,-3)(D)(-3,-5)4.如果3x+2在实数范围内有意义,那么x的取值范围是A)x≠-2,-3 (B)x<-2,-3 (C)x≥-2,-3 (D)x≥-2,35.下列各式中,从左到右的变形是因式分解的是A)3x+3y-5=3(x+y)-5 (B)(x+1)(x-1)=x-1 (C)x+2x+1=(x+1) (D)x(x-y)=x-xy6.下列三个长度的线段能组成直角三角形的是A)1,2,3 (B)1,3,5 (C)2,4,6 (D)5,5,67.计算2(3-12),结果为A)6 (B)-6 (C)6-6 (D)6/-68.下列各式中,正确的是A)b/(b+2a) (B)b/2a+1 (C)-a+b/a+2a (D)-(a-2)/(a-2c)9.若x+m与2-x的乘积中不含x的一次项,则实数m的值为A)-2 (B)2 (C)0 (D)110.如图,在△ABC和△___中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是A)△ABC≌△CDE (B)CE=AC (C)AB⊥CD (D)E为BC中点11.如图,由四个全等的直角三角形与一个小正方形拼成一个大正方形。

如果大正方形的面积是25,小正方形的面积是1,直角三角形的两条直角边的长分别是a和b,那么(a+b)的值为A)49 (B)25 (C)13 (D)112.当x分别取-2014、-2013、-2012、…。

北京市海淀区2015-2016学年八年级下期末数学试卷含答案解析

北京市海淀区2015-2016学年八年级下期末数学试卷含答案解析

北京市海淀区 2015-2016 学年八年级下期末数学试卷含答案分析一、选择题:(此题共 30 分,每题 3 分)在以下各题的四个备选答案中,只有一个是正确的.1.以下各式中,运算正确的选项是()A.B.C.D.2.以下各组数中,以它们为边长的线段不可以组成直角三角形的是()A.1,,B.3, 4,5 C.5, 12, 13 D.2,2,33.如图,矩形 ABCD 中,对角线 AC,BD 交于点 O.若∠ AOB=60°,BD=8,则 AB 的长为()A.4 B.C.3 D.54.已知 P1(﹣ 1,y1),P2(2,y2)是一次函数 y=﹣x+1 图象上的两个点,则 y1,y2 的大小关系是()A.y1=y2 B.y1<y2 C.y1>y2 D.不可以确立5.2022 年将在北京﹣张家口举办冬天奥运会,特意多学校开设了相关的课程.如表记录了某校 4 名同学短道速滑选拔赛成绩的均匀数与方差s 2:队员1队员2队员3队员4均匀数(秒)51505150方差s2(秒2) 3.5 3.514.515.5依照表中数据,要从中选择一名成绩好又发挥牢固的运动员参加比赛,应当选择()A.队员 1 B.队员 2C.队员 3D .队员 46.用配方法解方程x2﹣2x﹣3=0,原方程应变形为()A.(x﹣1)2=2 B.(x+1)2=4 C.(x﹣ 1)2=4D.(x+1)2=27.如图,在平行四边形ABCD 中,∠BAD 的均分线交 BC 于点 E,∠ABC 的均分线交 AD 于点 F,若 BF=12,AB=10 ,则 AE 的长为()A.13 B.14 C.15 D.168.一个有进水管与出水管的容器,从某时辰开始4min 内只进水不出水,在随后的 8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量 y(单位:L )与时辰 x(单位: min)之间的关系以下图.则8min 时容器内的水量为()A.20 L B.25 L C. 27L D.30 L9.若对于 x 的方程 kx2﹣(k+1)x+1=0 的根是整数,则知足条件的整数 k 的个数为()A.1 个 B.2 个C.3 个D.4 个10.如图 1,在菱形 ABCD 中,∠ BAD=60 °, AB=2 ,E 是 DC 边上一个动点, F 是 AB 边上一点,∠ AEF=30°.设 DE=x ,图中某条线段长为y, y与x 知足的函数关系的图象大概如图 2 所示,则这条线段可能是图中的()A.线段 EC B.线段 AE C.线段 EF D.线段 BF二、填空题:(此题共 18 分,每题 3 分)11.写出一个以 0,1 为根的一元二次方程.12.若对于 x 的一元二次方程x2+4x﹣m=0 有实数根,则 m 的取值范畴是.13.如图,为了检查平行四边形书架 ABCD 的侧边能否与上、下面都垂直,工人师傅用一根绳索比较了其对角线 AC,BD 的长度,若两者长度相等,则该书架的侧边与上、下面都垂直,请你讲出此中的数学原理.14.若一次函数 y=kx+b (k≠0)的图象以下图,点P(3,4)在函数图象上,则对于x 的不等式 kx+b ≤4 的解集是.15.以下图,DE 为△ ABC 的中位线,点 F 在 DE 上,且∠ AFB=90 °,若 AB=5 ,BC=8,则 EF 的长为.16.如图,正方形ABCD 的面积是2,E,F,P 分不是AB ,BC, AC 上的动点, PE+PF 的最小值等于.三、解答题:(此题共 22 分,第 17-19 题每题 4 分,第 20-21 题每题4分)17.运算:.18.解方程: y( y﹣4)=﹣1﹣2y.19.已知 x=1 是方程 x2﹣3ax+a2=0 的一个根,求代数式3a2﹣9a+1 的值.20.在平面直角坐标系xOy 中,一次函数的图象经过点A(2, 3)与点 B(0,5).(1)求此一次函数的表达式;(2)若点 P 为此一次函数图象上一点,且△ POB 的面积为 10,求点 P 的坐标.21.如图,四边形 ABCD 中, AB=10 ,BC=13,CD=12,AD=5, AD ⊥CD,求四边形 ABCD 的面积.四、解答题:(此题共 10 分,第 22 题 5 分,第 23 题 5 分)22.阅读以下资料:北京市了抓疏解非国都功能那个“牛鼻子”,迁市、移企,人随走.城、西城、海淀、丰台⋯人口开始增,城六区人口20 16年由升降.而在,海淀区多地域人口都开始降落.数字示:2015 年区常住外来人口150 万人,同比降落 1.1%,减少 1.7 万人,初次了增.和海淀一,丰台也在2015 年初次了常住外来人口增,同比降落 1.4%,减少 1.2 万人;、西城,常住外来人口同呈降落:2015 年城同比降落 2.4%,减少 5000 人,西城同比降落 5.5%,减少 1.8 万人;石景山,常住外来人口最近几年来增速放,估计到2016 年年末,全区常住外来人口可降至63.5 万,比 2015 年减少 1.7 万人,初次增;⋯2016 年初,市改委流露, 2016 年本市将保证达成人口控目城六区常住人口2015 年降落 3%,迎来人口由升降的拐点.人口降落背后,是本市密鼓疏解非国都功能的大略.依照以上资料解答以下咨:(1)石景山区 2015 年常住外来人口万人;(2)2015 年城、西城、海淀、丰台四个城区常住外来人口同比降落率最高的是区;依照资猜中的信息估计2015年四个城区常住外来人口数最多的是区;(3)假如 2017 年海淀区常住外来人口降到121.5 万人,求从 2015 年至 2017 年均匀每年外来人口的降落率.23.如,四形ABCD 是矩形,点 E 在 CD 上,点 F 在 DC 延上, AE=BF .(1)求:四形 ABFE 是平行四形;(2)若∠ BEF=∠DAE ,AE=3,BE=4,求 EF 的.五、解答:(本共 20 分,第 24 6 分,第 25-26 每小 6 分)24.如 1,将1 的正方形 ABCD 扁 1 的菱形 ABCD.在菱形 ABCD 中,∠ A 的大小α,面 S.(1)全表:α30°45°60°90°120°135°150°S1(2)填空:由(1)能位正方形在扁的程中,菱形的面跟着∠ A 大小的化而化,不如把位菱形的面S S(α).比如:当α=30°,S=S(30°)= ;当α=135° , S=S=.由上表能获得S(60°)=S(°);S=S(°),⋯,由此能出S=(°).(3)两同样的等腰直角三角板按 2 的方式搁置, AD=,∠AOB =α,研究中两个暗影的三角形面能否相等,并明原因(注:能利用( 2)中的).25.如,在正方形 ABCD 中,点 M 在 CD 上,点 N 在正方形 AB CD 外面,且足∠ CMN=90 °, CM=MN .接 AN ,CN,取 AN 的中点E,接 BE,AC,交于 F 点.(1)①依意全形;②求: BE⊥ AC.(2)研究段 BE,AD ,CN 所足的等量关系,并明你的.(3) AB=1 ,若点 M 沿着段 CD 从点 C 运到点 D,在运程中,段 EN 所的面(斩钉截铁写出答案).26.在平面直角坐系 xOy 中,形 G 的投影矩形定以下:矩形的两分不平行于 x , y ,形 G 的点在矩形的上或内部,且矩形的面最小.矩形的的与短的的比 k,我称常数 k形 G 的投影比.如 1,矩形 ABCD △ DEF 的投影矩形,其投影比.(1)如图 2,若点 A (1,3),B(3,5),则△ OAB 投影比 k 的值为.(2)已知点 C(4,0),在函数 y=2x﹣4(此中 x<2)的图象上有一点 D,若△ OCD 的投影比 k=2,求点 D 的坐标.(3)已知点 E(3,2),在直线 y=x+1 上有一点 F(5,a)和一动点 P,若△ PEF 的投影比 1<k<2,则点 P 的横坐标 m 的取值范围(直截了当写出答案).2015-2016 学年北京市海淀区八年级(下)期末数学试卷参照答案与试题分析一、选择题:(此题共 30 分,每题 3 分)在以下各题的四个备选答案中,只有一个是正确的.1.以下各式中,运算正确的选项是(A.B.C.)D.【考点】二次根式的加减法.【剖析】分不依照归并同类项的法例、二次根式的化简法例对各选项进行逐个剖析即可.【解答】解: A 、3﹣=2≠3,故本选项错误;B、=2,故本选项正确;C、2 与不是同类项,不可以归并,故本选项错误;D、=2≠﹣ 2,故本选项错误.应选 B.2.以下各组数中,以它们为边长的线段不可以组成直角三角形的是()A.1,,B.3, 4,5 C.5, 12, 13 D.2,2,3【考点】勾股定理的逆定理.【剖析】欲求证能否为直角三角形,利用勾股定理的逆定理即可.那个地址给出三边的长,只需考证两小边的平方和等于最长边的平方即可.【解答】解: A、12+()2=3=()2,故是直角三角形,故错误;B、42+32=25=52,故是直角三角形,故错误;C、52+122=169=132,故是直角三角形,故错误;D、22+22=8≠32,故不是直角三角形,故正确.应选 D.3.如图,矩形 ABCD 中,对角线 AC,BD 交于点 O.若∠ AOB=60°,BD=8,则 AB 的长为()A.4 B.C.3 D.5【考点】矩形的性质.【剖析】先由矩形的性质得出OA=OB ,再证明△ AOB 是等边三角形,得出 AB=OB=4 即可.【解答】解:∵四边形ABCD 是矩形,∴O A= AC, OB= BD=4,AC=BD ,∴O A=OB ,∵∠ AOB=60 °,∴△ AOB 是等边三角形,∴A B=OB=4 ;应选: A.4.已知 P1(﹣ 1,y1),P2(2,y2)是一次函数 y=﹣x+1 图象上的两个点,则 y1,y2 的大小关系是()A.y1=y2 B.y1<y2 C.y1>y2 D.不可以确立【考点】一次函数图象上点的坐标特色.【剖析】先依照一次函数y=﹣x+1 中 k=﹣1 判断出函数的增减性,再依照﹣ 1<2 进行解答即可.【解答】解:∵ P1(﹣ 1,y1)、P2(2,y2)是 y=﹣x+1 的图象上的两个点,∴y1=1+1=2,y2=﹣2+1=﹣1,∵2>﹣ 1,∴y1>y2.应选 C.5.2022 年将在北京﹣张家口举办冬天奥运会,特意多学校开设了相关的课程.如表记录了某校 4 名同学短道速滑选拔赛成绩的均匀数与方差s 2:队员1队员2队员3队员4均匀数(秒)51505150方差s2(秒2) 3.5 3.514.515.5依照表中数据,要从中选择一名成绩好又发挥牢固的运动员参加比赛,应当选择()A.队员 1 B.队员 2C.队员 3D .队员 4【考点】方差;加权均匀数.【剖析】据方差的意义可作出判断.方差是用来权衡一组数据颠簸大小的量,方差越小,表示这组数据散布比较集中,各数据偏离均匀数越小,即颠簸越小,数据越牢固.【解答】解:由于队员 1 和 2 的方差最小,但队员 2 均匀数最小,所以成绩好,所以队员 2 成绩好又发挥牢固.应选 B.6.用配方法解方程x2﹣2x﹣3=0,原方程应变形为()A.(x﹣1)2=2 B.(x+1)2=4 C.(x﹣ 1)2=4D.(x+1)2=2【考点】解一元二次方程-配方法.【剖析】先移项,再配方,即方程两边同时加前一次项系数同样的平方.【解答】解:移项得,x2﹣2x=3,配方得, x2﹣2x+1=4,即( x﹣1)2=4,应选 C.7.如图,在平行四边形ABCD 中,∠BAD 的均分线交 BC 于点 E,∠ABC 的均分线交 AD 于点 F,若 BF=12,AB=10 ,则 AE 的长为()A.13 B.14 C.15 D.16【考点】平行四边形的性质.【剖析】先证明四边形 ABEF 是平行四边形,再证明邻边相等即可得出四边形 ABEF 是菱形,得出 AE⊥BF,OA=OE,OB=OF= BF=6,由勾股定理求出 OA,即可得出 AE 的长.【解答】解:以下图:∵四边形 ABCD 是平行四边形,∴A D ∥BC,∴∠ DAE= ∠AEB ,∵∠ BAD 的均分线交 BC 于点 E,∴∠ DAE= ∠BEA ,∴∠ BAE= ∠BEA ,∴A B=BE ,同理可得 AB=AF ,∴A F=BE ,∴四边形 ABEF 是平行四边形,∵A B=AF ,∴四边形 ABEF 是菱形,∴A E⊥BF,OA=OE,OB=OF= BF=6,∴OA===8,∴A E=2OA=16 ;应选: D.8.一个有进水管与出水管的容器,从某时辰开始4min 内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量 y(单位:L )与时辰 x(单位: min)之间的关系以下图.则8min 时容器内的水量为()A.20 L B.25 L C. 27L D.30 L【考点】函数的图象.【剖析】用待定系数法求对应的函数关系式,再代入解答即可.【解答】解:设当4≤x≤12 时的直线方程为: y=kx+b(k≠0).∵图象过( 4,20)、( 12,30),∴,解得:,∴y= x+15 (4≤x≤12);把 x=8 代入解得: y=10+15=25,应选 B9.若对于 x 的方程 kx2﹣(k+1)x+1=0 的根是整数,则知足条件的整数 k 的个数为()A.1 个 B.2 个C.3 个D.4 个【考点】根的判不式.【剖析】当 k=0 时,可求出 x 的值,依照 x 的值为整数可得出 k=0 切合题意;k≠0 时,利用分解因式法解一元二次方程可求出x 的值,再依照x 的值为整数联合 k 的值为整数即可得出 k 的值.综上即可得出结论.【解答】解:当 k=0 时,原方程为﹣ x+1=0,解得: x=1,∴k=0 切合题意;当k≠0 时,kx2﹣(k+1)x+1=(kx﹣1)(x﹣1)=0,解得: x1=1,x2= ,∵方程的根是整数,∴为整数, k 为整数,∴k=±1.综上可知:知足条件的整数k 为 0、1 和﹣ 1.应选 C.10.如图 1,在菱形 ABCD 中,∠ BAD=60 °, AB=2 ,E 是 DC 边上一个动点, F 是 AB 边上一点,∠ AEF=30°.设 DE=x ,图中某条线段长为y, y 与 x 知足的函数关系的图象大概如图 2 所示,则这条线段可能是图中的()A.线段 EC B.线段 AE C.线段 EF D.线段 BF 【考点】动点咨询题的函数图象.【剖析】求出当点 E 与点 D 重合时,即 x=0 时 EC、AE、EF、BF 的长可清除 C、D;当点 E 与点 C 重合时,即 x=2 时,求出 EC、AE 的长可清除A,可得答案.【解答】解:当点 E 与点 D 重合时,即 x=0 时,EC=DC=2,AE=AD= 2,∵∠ A=60 °,∠ AEF=30°,∴∠ AFD=90 °,在 RT△ADF 中,∵ AD=2 ,∴A F= AD=1, EF=DF=ADcos∠ADF= ,∴B F=AB ﹣AF=1 ,联合图象可知 C、D 错误;当点 E 与点 C 重合时,即 x=2 时,如图,连结 BD 交 AC 于 H,此刻 EC=0,故 A 错误;∵四边形 ABCD 是菱形,∠ BAD=60 °,∴∠ DAC=30 °,∴AE=2AH=2ADcos ∠DAC=2 ×2×=2,故B正确.应选: B.二、填空题:(此题共 18 分,每题 3 分)11.写出一个以 0,1 为根的一元二次方程x2﹣x=0.【考点】根与系数的关系.【剖析】先依照 1+0=1,1×0=0,而后依照根与系数的关系写出知足条件的一个一元二次方程.【解答】解:∵ 1+0=1,1×0=0,∴以 1 和 0 的一元二次方程可为x2﹣x=0.故答案为 x2﹣x=0.12.若对于 x 的一元二次方程 x2+4x﹣m=0 有实数根,则 m 的取值范围是 m≥﹣ 4 .【考点】根的判不式.【剖析】依照对于 x 的一元二次方程 x2+4x﹣m=0 有实数根,可得△≥0,从而可求得 m 的取值范围.【解答】解:∵对于x 的一元二次方程x2+4x﹣m=0 有实数根,∴△ =42﹣4×1×(﹣ m)≥ 0,解得, m≥4,故答案为: m≥4.13.如图,为了检查平行四边形书架ABCD 的侧边能否与上、下面都垂直,工人师傅用一根绳索比较了其对角线AC,BD 的长度,若两者长度相等,则该书架的侧边与上、下面都垂直,请你讲出此中的数学原理对角线相等的平行四边形是矩形,矩形的四个角差不多上直角.【考点】矩形的判断;平行四边形的性质.【剖析】依照矩形的判断定理:对角线相等的平行四边形是矩形即可判断.【解答】解:这类做法的依照是对角线相等的平行四边形为矩形,故答案为:对角线相等的平行四边形是矩形,矩形的四个角差不多上直角.(“矩形的四个角差不多上直角”没写不扣分)14.若一次函数 y=kx+b (k≠0)的图象以下图,点 P(3,4)在函数图象上,则对于 x 的不等式 kx+b ≤4 的解集是 x≤3 .【考点】一次函数与一元一次不等式;待定系数法求一次函数分析式.【剖析】先依照待定系数法求得一次函数分析式,再解对于 x 的一元一次不等式即可.P(3,4)和【解答】解法 1:∵直线 y=kx+b (k≠0)的图象经过点(0,﹣ 2),∴,解得,∴一次函数分析式为y=2x﹣2,当 y=2x﹣2≤4 时,解得 x≤3;解法 2:点 P(3,4)在一次函数 y=kx+b (k≠0)的图象上,则当 kx+b≤4 时, y≤4,故对于 x 的不等式 kx+b≤ 4 的解集为点 P 及其左边部分图象对应的横坐标的会合,∵P 的横坐标为 3,∴不等式 kx+b≤4 的解集为: x≤3.故答案为: x≤315.以下图,DE 为△ ABC 的中位线,点 F 在 DE 上,且∠ AFB=90 °,若 AB=5 ,BC=8,则 EF 的长为.【考点】三角形中位线定理;直角三角形斜边上的中线.【剖析】利用直角三角形斜边上的中线等于斜边的一半,可求出DF的长,再利用三角形的中位线平行于第三边,同时等于第三边的一半,可求出 DE 的长,从而求出EF 的长【解答】解:∵∠ AFB=90 °, D 为 AB 的中点,∴DF=AB=2.5 ,∵D E 为△ ABC 的中位线,∴DE= BC=4,∴EF=DE﹣DF=1.5,故答案为: 1.5.16.如图,正方形ABCD 的面积是 2,E,F,P 分不是 AB ,BC, AC上的动点, PE+PF 的最小值等于.【考点】轴对称 -最短路线咨询题;正方形的性质.【剖析】过点 P 作 MN ∥ AD 交 AB 于点 M ,交 CD 于点 N,依照正方形的性质可得出MN ⊥AB ,且PM≤PE、PN≤PF,由此即可得出AD ≤PE +PF,再由正方形的面积为 2 即可得出结论.【解答】解:过点 P 作 MN ∥AD 交 AB 于点 M ,交 CD 于点 N,以下图.∵四边形 ABCD 为正方形,∴M N ⊥AB ,∴P M≤PE(当 PE⊥AB 时取等号),PN≤PF(当 PF⊥BC 时取等号),∴M N=AD=PM+PN ≤PE+PF,∵正方形 ABCD 的面积是 2,∴A D= .故答案为:.三、解答题:(此题共 22 分,第 17-19 题每题 4 分,第 20-21 题每题4分)17.运算:.【考点】二次根式的混淆运算.【剖析】先化简,而后依照混淆运算的法例,先算括号里面的,而后算乘法,最后算减法.【解答】解:=,====.18.解方程: y( y﹣4)=﹣1﹣2y.【考点】解一元二次方程-配方法.【剖析】先去括号,移项归并同类项获得y2﹣2y+1=0,再依照完整平方公式即可求解.【解答】解: y( y﹣4)=﹣1﹣2y,y2﹣2y+1=0,(y﹣1)2=0,y1=y2=1.19.已知 x=1 是方程 x2﹣3ax+a2=0 的一个根,求代数式3a2﹣9a+1 的值.【考点】一元二次方程的解.【剖析】依照方程解的定义,把x=1 代入得出对于 a 的方程,求得a 的值,再代入即可得出答案.【解答】解:∵ x=1 是方程 x2﹣3ax+a2=0 的一个根,∴1﹣3a+a2=0.∴a2﹣3a=﹣1.∴3a2﹣9a+1=3(a2﹣3a)+1=3×(﹣ 1)+1=﹣2.或解:∵ x=1 是方程 x2﹣3ax+a2=0 的一个根,∴1﹣3a+a2=0.∴a2﹣3a+1=0.解方程得.把代入得 3a2﹣ 9a+1 得 3a2﹣9a+1=﹣2.20.在平面直角坐标系xOy 中,一次函数的图象经过点A(2, 3)与点 B(0,5).(1)求此一次函数的表达式;(2)若点 P 为此一次函数图象上一点,且△ POB 的面积为 10,求点 P 的坐标.【考点】待定系数法求一次函数分析式.【剖析】(1)设此一次函数的表达式为 y=kx+b(k≠0).由点 A、B 的坐标利用待定系数法即可求出该函数的表达式;(2)设点 P 的坐标为( a,﹣ a+5).依照三角形的面积公式即可列出对于 a 的含绝对值符号的一元一次方程,解方程即可得出结论.【解答】解:(1)设此一次函数的表达式为 y=kx+b(k≠0).∵一次函数的图象经过点 A (2,3)与点 B( 0,5),∴,解得.∴此一次函数的表达式为y=﹣x+5.(2)设点 P 的坐标为( a,﹣ a+5).∵B(0,5),∴OB=5.∵S△POB=10,∴.∴|a|=4.∴a=±4.∴点 P 的坐标为( 4,1)或(﹣ 4,9).21.如,四形 ABCD 中, AB=10 ,BC=13,CD=12,AD=5, AD ⊥CD,求四形 ABCD 的面.【考点】勾股定理.【剖析】接 AC,点 C 作 CE⊥AB 于点 E,在 Rt△ACD 中依照勾股定理求出 AC 的,由等腰三角形的性得出 AE=BE= AB ,在 Rt△CA E 中依照勾股定理求出 CE 的,再由 S 四形 ABCD=S △DAC+S △ABC即可得出.【解答】解:接AC,点 C 作 CE⊥AB 于点 E.∵A D ⊥CD,∴∠ D=90°.在 Rt△ACD 中, AD=5 ,CD=12,AC=.∵B C=13,∴AC=BC .∵C E⊥AB ,AB=10 ,∴AE=BE= AB=.在 Rt△CAE 中,CE=.∴S 四形 ABCD=S △DAC+S △ABC=.四、解答:(本共 10 分,第 22 5 分,第 23 5 分)22.以下资料:北京市了抓疏解非国都功能那个“牛鼻子”,迁市、移企,人随走.城、西城、海淀、丰台⋯人口开始增,城六区人口20 16年由升降.而在,海淀区多地域人口都开始降落.数字示:2015 年区常住外来人口150 万人,同比降落 1.1%,减少 1.7 万人,初次了增.和海淀一,丰台也在2015 年初次了常住外来人口增,同比降落 1.4%,减少 1.2 万人;、西城,常住外来人口同呈降落:2015 年城同比降落 2.4%,减少 5000 人,西城同比降落 5.5%,减少 1.8 万人;石景山,常住外来人口最近几年来增速放,估计到2016 年年末,全区常住外来人口可降至63.5 万,比 2015 年减少 1.7 万人,初次增;⋯2016 年初,市改委流露, 2016 年本市将保证达成人口控目城六区常住人口2015 年降落 3%,迎来人口由升降的拐点.人口降落背后,是本市密鼓疏解非国都功能的大略.依照以上资料解答以下咨:(1)石景山区 2015 年常住外来人口 65.2 万人;(2)2015 年城、西城、海淀、丰台四个城区常住外来人口同比降落率最高的是西城区;依照资猜中的信息估计 2015 年四个城区常住外来人口数最多的是海淀区;(3)假如 2017 年海淀区常住外来人口降到121.5 万人,求从 2015 年至 2017 年均匀每年外来人口的降落率.【考点】一元二次方程的用;用本估计体.【剖析】(1)由 2016 年全区常住外来人口63.5 万,比 2015 年减少 1.7 万人,列式 63.5+1.7=65.2;(2)挨次把四个区人口的同比降落率作比即可得出同比降落率最高的是西城区,再运算四个城区 2015 年的人口数行比;(3)海淀均匀每年常住外来人口的降落率x,原数 150 万人,以后数 121.5 万人,降落了两年,依照降低率公式列方程解出即可.【解答】解:(1)63.5+1.7=65.2,故答案: 65.2,(2)由于海淀区同比降落 1.1%,丰台同比降落 1.4%,东城同比降落2.4%,西城则同比降落 5.5%,所以同比降落率最高的是西城,2015 年这四个城区常住外来人口数:海淀区:约为 150 万人,丰台: 1.2×104÷1.4%﹣ 12000≈845142≈85(万人),东城:5000÷24%﹣5000≈15833≈1.6(万人),西城:18000÷5.5%﹣18000≈309272≈31(万人),则常住外来人口数最多的是海淀区;故答案为:西城,海淀;(3)解:设海淀均匀每年常住外来人口的降落率为x.由题意,得 150(1﹣x)2=121.5.解得, x1=0.1=10%,x2=1.9.(不合题意,舍去)答:海淀均匀每年常住外来人口的降落率为 10%.23.如图,四边形 ABCD 是矩形,点 E 在 CD 边上,点 F 在 DC 延伸线上, AE=BF .(1)求证:四边形 ABFE 是平行四边形;(2)若∠ BEF=∠DAE ,AE=3,BE=4,求 EF 的长.【考点】矩形的性质;平行四边形的判断与性质.【剖析】(1)欲证明四边形 ABFE 是平行四边形,只需证明 AE∥ BF,EF∥ AB 即可.(2)先证明△ AEB 是直角三角形,再依照勾股定理运算即可.【解答】(1)证明:∵四边形 ABCD 是矩形,∴AD=BC ,∠ D=∠BCD=90°.∴∠ BCF=180°﹣∠ BCD=180°﹣ 90°=90°.∴∠ D=∠BCF.在 Rt△ADE 和 Rt△BCF 中,∴R t△ADE ≌Rt△BCF.∴∠ 1=∠F.∴A E∥BF.∵AE=BF ,∴四边形 ABFE 是平行四边形.(2)解:∵∠ D=90°,∴∠ DAE+∠1=90°.∵∠BEF=∠DAE ,∴∠BEF+∠1=90°.∵∠ BEF+∠1+∠AEB=180°,∴∠ AEB=90 °.在 Rt△ABE 中, AE=3,BE=4,AB=.∵四边形 ABFE 是平行四边形,∴E F=AB=5 .五、解答题:(此题共 20 分,第 24 题 6 分,第 25-26 题每题 6 分)24.如图 1,将边长为 1 的正方形 ABCD 压扁为边长为 1 的菱形 ABC D.在菱形 ABCD 中,∠ A 的大小为α,面积记为 S.(1)请补全表:α30°45°60°90°120°135°150°S1(2)填空:由(1)可以觉察单位正方形在压扁的过程中,菱形的面积跟着∠ A 大小的变化而变化,不如把单位菱形的面积S 记为 S(α).比如:当α=30°,S=S(30°)=;当α=135° , S=S=.由上表能获得S(60°)=S(120°);S=S(30°),⋯,由此能出S=(α°).(3)两同样的等腰直角三角板按 2 的方式搁置,AD=,∠AOB =α,研究中两个暗影的三角形面能否相等,并明原因(注:能利用( 2)中的).【考点】四形合.【剖析】(1) D 作 DE⊥AB 于点 E,当α=45° ,可求得 DE,从而可求得菱形的面 S,同理可求当α=60° S 的,当α=120° ,D 作 DF⊥AB 交 BA 的延于点 F,可求得 DF,可求得 S 的,同应当α=135° S 的;(2)依照表中所运算出的 S 的,可得出答案;(3)将△ ABO 沿 AB 翻折获得菱形 AEBO ,将△ CDO 沿 CD 翻折获得菱形 OCFD.利用( 2)中的,可求得△ AOB 和△ COD 的面,从而可求得.【解答】解:(1)当α=45° ,如 1, D 作 DE⊥AB 于点 E,DE= AD= ,∴S=AB? DE= ,同应当α=60° S= ,当α=120° ,如 2, D 作 DF⊥AB ,交 BA 的延于点 F,∠ DAE=60 °,∴D F= AD= ,∴S=AB? DF= ,同应当α=150° ,可求得 S= ,故表中挨次填写:;;;;(2)由( 1)可知 S(60°) =S,S=S(30°),∴S=S(α)故答案为: 120;30;α;(3)两个带暗影的三角形面积相等.证明:如图 3 将△ ABO 沿 AB 翻折获得菱形 AMBO ,将△ CDO 沿 CD 翻折获得菱形 OCND .∵∠ AOD= ∠COB=90°,∴∠ COD+∠AOB=180 °,∴S△AOB= S 菱形 AMBO= S(α)S△CDO= S 菱形 OCND=S由( 2)中结论 S(α) =S∴S△AOB=S△ CDO.25.如图,在正方形 ABCD 中,点 M 在 CD 边上,点 N 在正方形 AB CD 外面,且知足∠ CMN=90 °, CM=MN .连结 AN ,CN,取 AN 的中点E,连结 BE,AC,交于 F 点.(1)①依题意补全图形;②求证: BE⊥ AC.(2)请研究线段 BE,AD ,CN 所知足的等量关系,并证明你的结论.(3)设 AB=1 ,若点 M 沿着线段 CD 从点 C 运动到点 D,则在该运动过程中,线段 EN 所扫过的面积为(斩钉截铁写出答案).【考点】四边形综合题.【剖析】(1)①依照题意补全图形即可;②连结 CE,由正方形以及等腰直角三角形的性质可得出∠ ACD= ∠MCN=45 °,从而得出∠ ACN=90°,再依照直角三角形的性质以及点 E 为 AN 的中点即可得出 AE=CE,由此即可得出B、E 在线段 AC 的垂直均分线上,由此即可证得 BE⊥AC;(2)BE= AD+ CN.依照正方形的性质可得出 BF= AD ,再联合三角形的中位线性质可得出 EF= CN,由线段间的关系即可证出结论;(3)找出 EN 所扫过的图形为四边形 DFCN.依照正方形以及等腰直角三角形的性质可得出BD∥CN,由此得出四边形DFCN 为梯形,再由A B=1,可算出线段 CF、 DF、CN 的长度,利用梯形的面积公式即可得出结论.【解答】解:(1)①依题意补全图形,如图 1 所示.②证明:连结 CE,如图 2 所示.∵四边形 ABCD 是正方形,∴∠ BCD=90°, AB=BC ,∴∠ ACB= ∠ACD=∠BCD=45°,∵∠ CMN=90 °, CM=MN ,∴∠ MCN=45 °,∴∠ ACN= ∠ACD+ ∠MCN=90 °.∵在 Rt△ACN 中,点 E 是 AN 中点,∴A E=CE= AN .∵AE=CE ,AB=CB ,∴点 B,E 在 AC 的垂直均分线上,∴B E 垂直均分 AC,∴B E⊥AC.(2)BE= AD+ CN.证明:∵ AB=BC ,∠ ABE= ∠CBE,∴A F=FC.∵点 E是 AN 中点,∴A E=EN ,∴F E 是△ ACN 的中位线.∴F E= CN.∵BE⊥AC,∴∠ BFC=90°,∴∠ FBC+∠ FCB=90°.∵∠ FCB=45°,∴∠ FBC=45°,∴∠ FCB=∠ FBC,∴B F=CF.在 Rt△BCF 中, BF2+CF2=BC2,∴BF= BC.∵四边形 ABCD 是正方形,∴BC=AD ,∴BF=AD .∵BE=BF+FE,∴BE= AD+ CN.(3)在点 M 沿着线段 CD 从点 C 运动到点 D 的过程中,线段 EN 所扫过的图形为四边形DFCN.∵∠ BDC=45°,∠ DCN=45°,∴B D∥CN,∴四边形 DFCN 为梯形.∵A B=1 ,∴C F=DF= BD= ,CN= CD= ,∴S 梯形 DFCN=(DF+CN)? CF=(+)×=.故答案为:.26.在平面直角坐标系 xOy 中,图形 G 的投影矩形定义以下:矩形的两组对边分不平行于 x 轴, y 轴,图形 G 的极点在矩形的边上或内部,且矩形的面积最小.设矩形的较长的边与较短的边的比为 k,我们称常数 k 为图形 G 的投影比.如图 1,矩形 ABCD 为△ DEF 的投影矩形,其投影比.(1)如图 2,若点 A (1,3),B(3,5),则△ OAB 投影比 k 的值为.(2)已知点 C(4,0),在函数 y=2x﹣4(此中 x<2)的图象上有一点 D,若△ OCD 的投影比 k=2,求点 D 的坐标.(3)已知点 E(3,2),在直线 y=x+1 上有一点 F(5,a)和一动点 P,若△ PEF 的投影比 1<k<2,则点 P 的横坐标 m 的取值范围1<m<3 或m>5(斩钉截铁写出答案).【考点】一次函数综合题.【剖析】(1)在图 2 中作出△ OAB 的投影矩形 ACBD ,依照投影比的定义即可得出结论;(2)设出 D 点的坐标,分0≤x≤2 和 x<0 两种情况考虑,找出两种情况下△ OCD 的投影矩形,依照投影比的定义列出对于x 的方程,解方程即可得出结论;(3)依照题意画出图形,依照投影矩形的不一样分四种情况考虑(m≤1,1< m<3,3≤m≤5 和 m>5),找出每种情况下的投影矩形投影比,依照 m的取值范围确立k 的取值范围,由此即可得出结论.【解答】解:(1)在图 2 中过点 B 作 BC⊥x 轴于点 C,作 BD⊥y 轴于点 D,则矩形 ACBD 为△ O AB 的投影矩形,∵点 B(3,5),∴O C=3,BC=5,∴△ OAB 投影比 k 的值为= .(2)∵点 D 为函数 y=2x﹣4(此中 x<2)的图象上的点,设点 D 坐标为( x,2x﹣4)(x<2).分以下两种情况:①当 0≤x≤2 时,如图 3 所示,作投影矩形 OMNC .∵O C≥OM ,,∴解得 x=1,∴D(1,﹣ 2);②当 x<0 时,如图 4 所示,作投影矩形 MDNC .∵点 D 坐标为( x,2x﹣4),点 M 点坐标为( x,0),∴D M=|2x ﹣4|=4﹣2x,MC=4 ﹣x,∵x<0,∴D M >CM,∴,但此方程无解.∴当 x<0 时,知足条件的点 D 不存在.综上所述,点 D 的坐标为 D(1,﹣ 2).(3)令 y=x+1 中 y=2,则 x+1=2,解得: x=1.①当 m≤1 时,作投影矩形 A′FB′P,如图 5 所示.此刻点 P(m,m+1),PA′=5﹣ m,FA′=6﹣(m+1)=5﹣ m,△PEF 的投影比 k==1,∴m≤1 不切合题意;②当 1<m<3 时,作投影矩形A′FB′Q,如图 6 所示.此刻点 P(m,m+1),FB′=5﹣ m,FA′ =6﹣2=4,△PEF 的投影比 k ==,∵1<m<3,∴1<k<2,∴1<m<3 切合题意;③当 3≤m≤5 时,作投影矩形 A′FB′E,如图 7 所示.此刻点 E(3,2),FA′=6﹣2=4,FB′=5﹣3=2,△PEF的投影比 k= =2,∴3≤m≤5 不切合题意;④当 m>5 时,作投影矩形A′PB′E,如图 8 所示.此刻点 P(m,m+1),点 E(3,2),PB′ =m+1﹣2=m﹣1,PA′ =m ﹣3,△ PEF 的投影比 k==,∵m>5,∴1<k<2,∴m>5 切合题意.综上可知:点 P 的横坐标 m 的取值范围为 1<m<3 或 m>5.故答案为: 1<m<3 或 m>5.2017年 2月 18日。

八年级数学下学期第9周周清试卷(含解析) 北师大版-北师大版初中八年级全册数学试题

八年级数学下学期第9周周清试卷(含解析) 北师大版-北师大版初中八年级全册数学试题

2015-2016学年某某省某某市中英文实验学校八年级(下)第9周周清数学试卷一、选择题1.一袋牛奶的包装盒上标重(200±2)g,则这袋牛奶的实际重量x满足()A.x=200g B.x=202g C.x=202g或198g D.198g≤x≤202g2.2013年6月某某市某天最高气温是29℃,最低气温21℃,则当天某某市的气温t℃的变化X围是()A.t>29 B.t≤21 C.21<t<29 D.21≤t≤293.由a>b得到am<bm,需要的条件是()A.m>0 B.m<0 C.m≥0 D.m≤04.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.5.小明和小丽是同班同学,小明的家距学校2千米远,小丽的家距学校5千米远,设小明家距小丽家x千米远,则x的值应满足()A.x=3 B.x=7 C.x=3或x=7 D.3≤x≤76.在图示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B. C. D.7.如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长8.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向下平移2个单位二、填空题9.如图,三角形DEF是由三角形ABC通过平移得到,且点B,E,C,F在同一条直线上,若BF=14,EC=6,则BE的长度是.10.直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为.11.将函数y=﹣x的图象向上平移1个单位长度后得到的图象所对应的函数关系式是.12.满足不等式x﹣3<0的非负整数解为.13.如图,AB=AC,∠BAC=100°,若MP,NQ分别垂直平分AB,AC,则∠PAQ的度数为.14.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.三、解答题15.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)16.解不等式组:,并在数轴上表示出不等式组的解集.17.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象经过点A(﹣2,4),且与正比例函数y=﹣x的图象交于点B(a,2).(1)求a的值及一次函数y=kx+b的解析式;(2)若一次函数y=kx+b的图象与x轴交于点C,且正比例函数y=﹣x的图象向下平移m(m>0)个单位长度后经过点C,求m的值;(3)直接写出关于x的不等式﹣x>kx+b的解集.2015-2016学年某某省某某市中英文实验学校八年级(下)第9周周清数学试卷参考答案与试题解析一、选择题1.一袋牛奶的包装盒上标重(200±2)g,则这袋牛奶的实际重量x满足()A.x=200g B.x=202g C.x=202g或198g D.198g≤x≤202g【考点】不等式的定义.【专题】计算题.【分析】“(200±2)g”的字样表示在200上下2g的X围内.【解答】解:∵一袋牛奶的包装盒上标重(200±2)g,∴(200﹣2)g≤x≤(200+2)g,即198g≤x≤202g.故选:D.【点评】此题考查不等式的定义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.2013年6月某某市某天最高气温是29℃,最低气温21℃,则当天某某市的气温t℃的变化X围是()A.t>29 B.t≤21 C.21<t<29 D.21≤t≤29【考点】不等式的定义.【分析】最高气温是29℃,即气温小于或等于29°,最低气温21℃即温度大于或等于21°,据此即可判断.【解答】解:某天最高气温是29℃,最低气温21℃,则当天某某市的气温t℃的变化X围是21≤t ≤29.故选D.【点评】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:><≤≥≠.3.由a>b得到am<bm,需要的条件是()A.m>0 B.m<0 C.m≥0 D.m≤0【考点】不等式的性质.【分析】根据已知不等式与所得到的不等式的符号的方向可以判定m的符号【解答】解:∵由a>b得到am<bm,不等号的方向改变,∴m<0.故选:B.【点评】本题考查了不等式的基本性质.(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组的解集,再在数轴上表示出来即可.【解答】解:有①得:x>﹣1;有②得:x≤1;所以不等式组的解集为:﹣1<x≤1,在数轴上表示为:故选C.【点评】本题考查的是数轴上表示不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别,这是此题的易错点.5.小明和小丽是同班同学,小明的家距学校2千米远,小丽的家距学校5千米远,设小明家距小丽家x千米远,则x的值应满足()A.x=3 B.x=7 C.x=3或x=7 D.3≤x≤7【考点】三角形三边关系.【专题】应用题.【分析】小明家、小丽家和学校可能三点共线,也可能构成一个三角形,由此可列出不等式5﹣2≤x≤5+2,化简即可得出答案.【解答】解:依题意得:5﹣2≤x≤5+2,即3≤x≤7.故选D.【点评】本题考查的是三角形三边关系定理的应用,解此类题目时要注意三个地点的位置关系.6.在图示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B. C. D.【考点】生活中的平移现象.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【解答】解:根据平移的概念,观察图形可知图案D通过平移后可以得到.故选:D.【点评】本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.7.如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长【考点】生活中的平移现象.【专题】探究型.【分析】可理解为将最左边一组电线向右平移所得,由平移的性质即可得出结论.【解答】解:∵a、b、c三户家用电路接入电表,相邻电路的电线等距排列,∴将a向右平移即可得到b、c,∵图形的平移不改变图形的大小,∴三户一样长.故选D.【点评】本题考查的是生活中的平移现象,熟知图形平移的性质是解答此题的关键.8.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向下平移2个单位【考点】坐标与图形变化-平移.【分析】根据网格结构,可以利用一对对应点的平移关系解答.【解答】解:根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选:A.【点评】本题考查了坐标与图形变化﹣平移,利用对应点的平移规律确定图形的平移规律是解题的关键.二、填空题9.如图,三角形DEF是由三角形ABC通过平移得到,且点B,E,C,F在同一条直线上,若BF=14,EC=6,则BE的长度是 4 .【考点】平移的性质.【专题】计算题.【分析】根据平移的性质得BE=CF,再利用BE+EC+CF=BF得到BE+6+BE=14,然后解方程即可.【解答】解:∵三角形DEF是由三角形ABC通过平移得到,∴BE=CF,∵BE+EC+CF=BF,∴BE+6+BE=14,∴BE=4.故答案为4.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.10.直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为(﹣2,﹣1).【考点】坐标与图形变化-平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减进行计算即可.【解答】解:点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为(2﹣4,1﹣2),即(﹣2,﹣1),故答案为:(﹣2,﹣1).【点评】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.11.将函数y=﹣x的图象向上平移1个单位长度后得到的图象所对应的函数关系式是y=﹣x+1 .【考点】一次函数图象与几何变换.【分析】先判断出直线经过坐标原点,然后根据向上平移,横坐标不变,纵坐标加求出平移后与坐标原点对应的点,然后利用待定系数法求一次函数解析式解答.【解答】解:直线y=﹣x经过点(0,0),向上平移1个单位后对应点的坐标为(0,1),∵平移前后直线解析式的k值不变,∴设平移后的直线为y=﹣x+b,则0×0+b=1,解得b=1,∴所得到的直线是y=﹣x+1.故答案为:y=﹣x+1.【点评】本题考查了一次函数图象与几何变换,利用点的变化解答图形的变化是常用的方法,一定要熟练掌握并灵活运用.12.满足不等式x﹣3<0的非负整数解为0,1,2 .【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【解答】解:不等式的解集是x<3,故不等式x﹣3<0的非负整数解为0,1,2.故答案为0,1,2.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.13.如图,AB=AC,∠BAC=100°,若MP,NQ分别垂直平分AB,AC,则∠PAQ的度数为20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由AB=AC,∠BAC=100°,可求得∠B+∠C的度数,又由MP,NQ分别垂直平分AB,AC,根据线段垂直平分线的性质,可得AP=BP,AQ=CQ,继而求得∠BAP+∠CAQ的度数,则可求得答案.【解答】解:∵AB=AC,∠BAC=100°,∴∠B+∠C=180°﹣∠BAC=80°,∵MP,NQ分别垂直平分AB,AC,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∴∠BAP+∠CAQ=80°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=20°.故答案为:20°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.14.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8 .【考点】勾股定理;直角三角形斜边上的中线.【专题】计算题.【分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【解答】解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD===8.故答案是:8.【点评】本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得AC的长度是解题的难点.三、解答题15.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)【考点】作图-旋转变换;轴对称-最短路线问题;作图-平移变换.【专题】压轴题.【分析】(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象;(2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2;(3)作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P 点坐标即可.【解答】解;(1)如图所示:(2)如图所示:(3)如图所示:作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).【点评】此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求最小值问题是考试重点,同学们应重点掌握.16.解不等式组:,并在数轴上表示出不等式组的解集.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【专题】计算题.【分析】分别解两个不等式得到x>3和x>1,则利用同大取大可得到不等式组的解集,然后利用数轴表示解集.【解答】解:解①得x>3,解②得x>1,所以不等式组的解集为x>3,用数轴表示为:【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象经过点A(﹣2,4),且与正比例函数y=﹣x的图象交于点B(a,2).(1)求a的值及一次函数y=kx+b的解析式;(2)若一次函数y=kx+b的图象与x轴交于点C,且正比例函数y=﹣x的图象向下平移m(m>0)个单位长度后经过点C,求m的值;(3)直接写出关于x的不等式﹣x>kx+b的解集.【考点】两条直线相交或平行问题;一次函数图象与几何变换;一次函数与一元一次不等式.【分析】(1)先确定B的坐标,然后根据待定系数法求解析式;(2)先求得C的坐标,然后根据题意求得平移后的直线的解析式,把C的坐标代入平移后的直线的解析式,即可求得M的值;(3)根据图象即可求得不等式﹣x>kx+b的解集.【解答】解:(1)∵正比例函数y=﹣x的图象经过点B(a,2).∴2=﹣a,解得,a=﹣3,∴B(﹣3,2),∵一次函数y=kx+b的图象经过点A(﹣2,4),B(﹣3,2),∴,解得,,∴一次函数y=kx+b的解析式为y=2x+8;(2)∵一次函数y=2x+8的图象与x轴交于点C,∴C(﹣4,0),∵正比例函数y=﹣x的图象向下平移m(m>0)个单位长度后经过点C,∴平移后的函数的解析式为y=﹣x﹣m,∴0=﹣×(﹣4)﹣m,解得,m=;(3)∵B(﹣3,2),∴根据图象可知﹣x>kx+b的解集为:x<﹣3.【点评】本题考查了两条直线相交或平行的问题,应用的知识点有:待定系数法,直线上点的坐标特征,直线的平移,一次函数和一元一次不等式的关系.。

北京市海淀区2023-2024学年八年级下学期期末数学试题

北京市海淀区2023-2024学年八年级下学期期末数学试题

北京市海淀区2023-2024学年八年级下学期期末数学试题一、单选题1.下列二次根式中,最简二次根式是( )AB C D 2.以下列长度的三条线段为边,能组成直角三角形的是( ) A .1,2,3B .3,3,4C .3,4,5D .4,4,43.下列各式中,计算正确的是( )A B 4=CD 4.如图,ABCD Y 的对角线AC BD ,相交于点O ,点E 是AD 的中点,连接OE ,若3OE =,则CD 的长为( )A .8B .6C .4D .35.在平面直角坐标系xOy 中,正比例函数y kx =的图象经过点()111,P y -,()222,P y ,且12y y >,则k 的值可能为( ) A .2B .1C .0D .1-6.如图,矩形ABCD 的对角线AC BD ,相交于点O ,120AOD ∠=︒,2AB =,则AC 长为( )A .B .4C .D .87.如图,数轴上点O A B C D ,,,,所对应的数分别是0,1,2,3,4.若点P 则点P 落在( )A .点O 和点A 之间B .点B 和点A 之间C .点B 和点C 之间D .点C 和点D8.下表是魔方比赛中甲、乙、丙、丁四位选手的复原时间统计表,同一行表示同一位选手四次复原的时间(单位:秒),则下列说法正确的是( )A .乙选手的最短复原时间小于甲选手的最短复原时间B .丙选手复原时间的平均数大于丁选手复原时间的平均数C .甲选手复原时间的中位数小于丁选手复原时间的中位数D .乙选手复原时间的方差大于丁选手复原时间的方差二、填空题9x 的取值范围是 .10.把直线2y x =向上平移2个单位得到的直线解析式为:.11.如图,在ABC V 中,AB AC =,AD 平分BAC ∠,点E 是AB 的中点,40BAC ∠︒=,则ADE ∠=︒.12.一家鞋店在一段时间内销售了某款女鞋30双,各种尺码鞋的销售数量如下表所示.在由鞋的尺码组成的数据中,这组数据的众数是.13.用一根长20cm 的铁丝围一个矩形ABCD ,设AB 的长为cm x ,BC 的长为cm y ,则y 关于x 的函数解析式为(不写自变量的取值范围).14.如图,在矩形ABCD 中,BE 平分ABC ∠交AD 于点E ,BED ∠的平分线刚好经过点C ,则BCE ∠=︒.15.如图,在ABC V 中,90ACB ∠=︒,分别以边AC BC AB ,,为直径画半圆.记两个月牙形图案ADCE 和CGBF 面积之和(图中阴影部分)为1S ,ABC V 的面积为2S ,则1S 2S (填“>”,“=”或“<”).16.磁力棋的棋盘为99⨯的正方形网格,每个小正方形网格的边长为1.磁力珠(近似看成点)可放在网格交点处,摆放时要求任意两颗磁力珠不吸到一起.若两颗磁力珠不吸到一起,根据以上规则,回答下列问题:(1)如图,小颖在棋盘A ,B ,C 三处放置了互不相吸的三颗磁力珠.若她想从21P P ,中选择一个位置再放一颗磁力珠,与其他磁力珠互不相吸,则她选择的位置是; (2)棋盘最多可摆放颗互不相吸的磁力珠.三、解答题 17.计算:(2)(33.18.如图,在ABCD Y 中,点E F ,为对角线AC 上的两个点,且DE BF ∥,求证:DE BF =.19.团扇是中国传统工艺品,代表着团圆友善、吉祥如意.某社团组织学生制作团扇,扇面有圆形和正方形两种,每种扇面面积均300平方厘米.为了提升团扇的耐用性和美观度,需对扇面边缘用缎带进行包边处理,如图所示.(1)圆形团扇的半径为_____________厘米,正方形团扇的边长为__________厘米;(2)请你通过计算说明哪种形状的扇面所用的包边长度更短.V.20.已知:如图1,ABCY.求作:ABCD∠的平分线BM;作法:①作ABC②以点A为圆心,AB长为半径画弧,交射线BM于点N,作射线AN;③以点A为圆心,BC长为半径画弧,交射线AN于点D,连接CD;∴四边形ABCD为所求.(1)使用直尺和圆规,依作法在图2中补全图形(保留作图痕迹);(2)完成下面证明.∵AB AN=,∠________,∴ABN=∠的平分线,∵BN是ABC∠=∠,∴ABN CBN∠=________,∴CBN∥,∴AD BC∵AD BC =,∴四边形ABCD 为平行四边形(___________)(填推理的依据). 21.在平面直角坐标系xOy 中,一次函数2y kx =-的图象与正比例函数12y x =的图象交于点(),2A m . (1)求k m ,的值;(2)当1x >-时,对于x 的每一个值,函数()0y ax a =≠的值大于一次函数2y kx =-的值,则a 的取值范围是.22.一个有进水管和排水管的水池,每小时进水量和排水量分别为恒定的数值. 从某时刻开始3小时内仅进行进水操作而不排水.在随后的2小时内,水池同时进行进水和排水操作.在最后1小时内,水池仅排水而不再进水.该水池内的水量y (单位:吨)与时间x (单位:小时)之间的函数关系如图所示. 根据图象,回答下列问题(1)该水池进水管每小时进水_______吨,排水管每小时排水________吨; (2)当4x =时,求水池内的水量; (3)这6个小时,排水管共排水______吨.23.如图,在ABC V 中,90CAB ∠=︒,点D ,E 分别是BC AC ,的中点.连接DE 并延长至点F ,使得EF DE =. 连接AF CF AD ,,.(1)求证:四边形ADCF 是菱形;(2)连接BF .若60ACB ∠=︒,2AF =,求BF 的长.24.咖啡是世界三大饮品之一,在我国广受欢迎.云南新培育的咖啡豆经五位专家多角度评测,数据已整理,以下是部分信息:a . 咖啡豆评测统计表:b . 咖啡豆评测的平均分统计图:根据以上信息,回答下列问题:(1)咖啡豆评测统计表中m =__________,n =; (2)补全条形统计图;(3)在这6个评测角度中,五位评委测评打分差异最大的是__________.25.如图1,正方形ABCD 的边长为,AC BD 交于点O ,点P 从点A 出发,沿线段AO OB →运动,点P 到达点B 时停止运动. 若点P 运动的路程为x ,DPC △的面积为y ,探究y 与x 的函数关系.(1)x 与y 的两组对应值如下表,则m =______________;(2)当点P 在线段AO 上运动时,y 关于x 的函数解析式为()402y x x =-+≤≤. 当点P 在线段OB 上运动时,y 关于x 的函数解析式为______________,此时,自变量的取值范围是_______________;(3)① 在图2中画出函数图象;② 若直线12y x b =+与此函数图象只有一个公共点,则b 的取值范围是_________________. 26.如图1,AC 和BD 是ABCD Y 的对角线,AB BD =.点E 为射线BD 上的一点,连接AE .(1)当点E 在线段BD 的延长线上,且DE BD =时, ①依题意补全图1; ②求证:AE AC =;(2)如图2,当点E 在线段BD 上,且2AEB ACD ∠=∠时,用等式表示线段AE ,BE 和AB 的数量关系,并证明.27.甲、乙、丙三人相约到某游乐园游玩. 该园区在地图上的形状可近似看成等腰直角三,,.角形,共有三个入口A B C(1)园区附近有四个公交车站点,即1号、2号、3号和4号车站.甲和乙想到园区附近汇合后一起入园,乙在其中一个站点下车后,两人通过手机共享位置得知甲的位置如图1所示.两人约定如下:I.确定距离自己最近的入口;II.如果两人确定的入口相同,则到此入口处汇合并入园;III.如果两人确定的入口不同,则到这两个入口的中点处汇合后,再沿逆时针...方向绕园区外围至最近的入口入园.①若乙在4号车站下车,则甲、乙入园的入口应为;②若甲、乙最终在B入口处入园,则乙下车的站点可以为;(2)丙从C入口先行入园,此时甲、乙还未入园.丙在地图上建立平面直角坐标系xOy,如-.园区内有行驶路线为CG的图2所示,其中入口A,B,C的坐标分别为(0,4),(4,0),(4,0)-,.丙想乘坐摆渡车和甲、摆渡车(乘客可以在路线上任意一点上下车).点G坐标为(31)乙汇合,其下车点记为M,M到三个入口A,B,C的最大距离记为a,到M的距离最近的入口记为“理想入口”.①如果丙希望在a最小处下车,则点M的坐标为_______________;②若对于摆渡车行驶路线上任意一段长度为m的路段,都同时存在“理想入口”分别为A,B,C的下车点,则m的最小值为_______________.。

八年级下学期数学期末测试题及答案

八年级下学期数学期末测试题及答案

八年级下学期数学期末测试题一、选择题(每小题3分)1.下列各数是无理数的是()A.B.﹣C.πD.﹣2.下列关于四边形的说法,正确的是()A.四个角相等的菱形是正方形B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形3.使代数式有意义的x的取值范围()A.x>2B.x≥2C.x>3D.x≥2且x≠34.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=45°,∠B′=110°,则∠BCA′的度数是()A.55°B.75°C.95°D.110°5.已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较6.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD 的面积为()A.6B.12C.20D.247.不等式组的解集是 x>2,则m的取值范围是()A.m<1B.m≥1C.m≤1D.m>18.若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A .﹣1B .1C .52015D .﹣520159.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是( )A .①B.②C.③D.④10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是( )①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A .①③B.②③C.③④D.②④11.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝,DE 平分∠ADC 交BC 边于点E ,则BE 等于( )A. 2cmB. 4cmC. 6 cmD. 8cm 12.一果农贩卖的西红柿,其重量与价钱成一次函数关系.小华向果农买一竹篮的西红柿,含竹篮称得总重量为15公斤,付西红柿的钱26元,若再加买0.5公斤的西红柿,需多付1元,则空竹篮的重量为多少?( )A .1.5B .2C .2.5D .313.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,过点O 作EF ⊥AC 交BC 于点E ,交AD 于点F ,连接AE 、CF .则四边形AECF 是( )A .梯形B .矩形C .菱形D .正方形14.已知xy >0,化简二次根式x 的正确结果为( )A .B .C .﹣D .﹣15.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打( )A .六折B .七折C .八折D .九折16.已知2+的整数部分是a ,小数部分是b ,则a 2+b 2=( ) A .13﹣2B .9+2C .11+D .7+4A B C D第11题图 E17.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里17.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()A.x>﹣2B.x<﹣2C.﹣3<x<﹣2D.﹣3<x<﹣119.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12D.2420.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A.5B.4C.3D.2二、填空题(本大题共4小题,满分12分)21.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是.22.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.23.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分被为(﹣1,﹣1),(1,﹣2),将△ABC绕着点C顺时针旋转90°,则点A的对应点的坐标为.24.若关于x的不等式组有4个整数解,则a的取值范围是.三、解答题(本大题共5个小题,共48分)25.(1)计算(+1)(﹣1)++﹣3(2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.26.如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A(1)求点C的坐标与直线l2的解析式;(2)求△ABC的面积.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.(1)若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a(0<a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w与a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润?2015-2016学年XX省泰安市新泰市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分)1.下列各数是无理数的是()A.B.﹣C.πD.﹣【考点】无理数.【分析】根据无理数的判定条件判断即可.【解答】解: =2,是有理数,﹣ =﹣2是有理数,∴只有π是无理数,故选C.【点评】此题是无理数题,熟记无理数的判断条件是解本题的关键.2.下列关于四边形的说法,正确的是()A.四个角相等的菱形是正方形B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形【考点】多边形.【分析】根据菱形的判断方法、正方形的判断方法逐项分析即可.【解答】解:A、四个角相等的菱形是正方形,正确;B、对角线互相平分且垂直的四边形是菱形,错误;C、邻边相等的平行四边形是菱形,错误;D、两条对角线平分且垂直的四边形是菱形,错误;故选A【点评】本题考查了对菱形、正方形性质与判定的综合运用,特殊四边形之间的相互关系是考查重点.3.使代数式有意义的x的取值范围()A.x>2B.x≥2C.x>3D.x≥2且x≠3【考点】二次根式有意义的条件;分式有意义的条件.【分析】分式有意义:分母不为0;二次根式有意义,被开方数是非负数.【解答】解:根据题意,得,解得,x≥2且x≠3.故选D.【点评】本题考查了二次根式有意义的条件、分式有意义的条件.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=45°,∠B′=110°,则∠BCA′的度数是()A.55°B.75°C.95°D.110°【考点】旋转的性质.【分析】根据旋转的性质可得∠B=∠B′,然后利用三角形内角和定理列式求出∠ACB,再根据对应边AC、A′C 的夹角为旋转角求出∠ACA′,然后根据∠BCA′=∠ACB+∠ACA′计算即可得解.【解答】解:∵△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠B=∠B′=110°,∠ACA′=50°,在△ABC中,∠ACB=180°﹣∠A﹣∠B=180°﹣45°﹣110°=25°,∴∠BCA′=∠ACB+∠ACA′=50°+25°=75°.故选B.【点评】本题考查了旋转的性质,三角形的内角和定理,熟记旋转变换的对应的角相等,以与旋转角的确定是解题的关键.5.已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【考点】一次函数图象上点的坐标特征.【分析】直线系数k<0,可知y随x的增大而减小,﹣3<1,则y1>y2.【解答】解:∵直线y=kx+2中k<0,∴函数y随x的增大而减小,∵﹣3<1,∴y1>y2.故选A.【点评】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.6.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD 的面积为()A.6B.12C.20D.24【考点】平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.【分析】根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.【解答】解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BCBD=4×(3+3)=24,故选:D.【点评】本题考查了平行四边形的判定与性质,利用了勾股定理得出CE的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.7.不等式组的解集是 x>2,则m的取值范围是()A.m<1B.m≥1C.m≤1D.m>1【考点】解一元一次不等式组;不等式的性质;解一元一次不等式.【分析】根据不等式的性质求出不等式的解集,根据不等式组的解集得到2≥m+1,求出即可.【解答】解:,由①得:x>2,由②得:x>m+1,∵不等式组的解集是 x>2,∴2≥m+1,∴m≤1,故选C.【点评】本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集和已知得出2≥m+1是解此题的关键.8.若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1B.1C.52015D.﹣52015【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据非负数的性质,几个非负数的和是0,则每个非负数等于0列方程组求得a和b的值,然后代入求解.【解答】解:根据题意得:,解得:,则(b﹣a)2016=(﹣3+2)2016=1.故选B.【点评】本题考查了非负数的性质,几个非负数的和是0,则每个非负数等于0,正确解方程组求得a和b的值是关键.9.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【分析】根据中心对称图形的特点进行判断即可.【解答】解:应该将②涂黑.故选B.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④【考点】中点四边形.【分析】有一个角是直角的平行四边形是矩形,根据此可知顺次连接对角线垂直的四边形是矩形.【解答】解:AC⊥BD,E,F,G,H是AB,BC,CD,DA的中点,∵EH∥BD,FG∥BD,∴EH∥FG,同理;EF∥HG,∴四边形EFGH是平行四边形.∵AC⊥BD,∴EH⊥EF,∴四边形EFGH是矩形.所以顺次连接对角线垂直的四边形是矩形.而菱形、正方形的对角线互相垂直,则菱形、正方形均符合题意.故选:D.【点评】本题考查矩形的判定定理和三角形的中位线的定理,从而可求解.11.已知a,b,c为△ABC三边,且满足(a2﹣b2)(a2+b2﹣c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】等腰直角三角形.【分析】首先根据题意可得(a2﹣b2)(a2+b2﹣c2)=0,进而得到a2+b2=c2,或a=b,根据勾股定理逆定理可得△ABC的形状为等腰三角形或直角三角形.【解答】解:(a2﹣b2)(a2+b2﹣c2)=0,∴a2+b2﹣c2,或a﹣b=0,解得:a2+b2=c2,或a=b,∴△ABC的形状为等腰三角形或直角三角形.故选D.【点评】此题主要考查了勾股定理逆定理以与非负数的性质,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.12.已知果农贩卖的西红柿,其重量与价钱成一次函数关系.今小华向果农买一竹篮的西红柿,含竹篮称得总重量为15公斤,付西红柿的钱26元,若他再加买0.5公斤的西红柿,需多付1元,则空竹篮的重量为多少公斤?()A.1.5B.2C.2.5D.3【考点】一次函数的应用.【分析】设价钱y与重量x之间的函数关系式为y=kx+b,由(15,26)、(15.5,27)利用待定系数法即可求出该一次函数关系式,令y=0求出x值,即可得出空蓝的重量.【解答】解:设价钱y与重量x之间的函数关系式为y=kx+b,将(15,26)、(15.5,27)代入y=kx+b中,得:,解得:,∴y与x之间的函数关系式为y=2x﹣4.令y=0,则2x﹣4=0,解得:x=2.故选B.【点评】本题考查了待定系数法求函数解析式,解题的关键是求出价钱y与重量x之间的函数关系式.本题属于基础题,难度不大,根据给定条件利用待定系数法求出函数关系式是关键.13.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形【考点】菱形的判定;平行四边形的性质.【分析】首先利用平行四边形的性质得出AO=CO,∠AFO=∠CEO,进而得出△AFO≌△CEO,再利用平行四边形和菱形的判定得出即可.【解答】解:四边形AECF是菱形,理由:∵在▱ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∴在△AFO和△CEO中,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形.故选:C.【点评】此题主要考查了菱形的判定以与平行四边形的判定与性质,根据已知得出EO=FO是解题关键.14.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【分析】二次根式有意义,y<0,结合已知条件得y<0,化简即可得出最简形式.【解答】解:根据题意,xy>0,得x和y同号,又x中,≥0,得y<0,故x<0,y<0,所以原式====﹣.故答案选D.【点评】主要考查了二次根式的化简,注意开平方的结果为非负数.15.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里【考点】函数的图象.【分析】直接利用函数图象进而分析得出符合题意跌答案.【解答】解:A、小强乘公共汽车用了60﹣30=30(分钟),故此选项错误;B、小强在公共汽车站等小颖用了30﹣20=10(分钟),正确;C、公共汽车的平均速度是:15÷0.5=30(公里/小时),正确;D、小强从家到公共汽车站步行了2公里,正确.故选:A.【点评】此题主要考查了函数图象,正确利用图象得出正确信息是解题关键.16.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打()A.六折B.七折C.八折D.九折【考点】由实际问题抽象出一元一次不等式.【分析】由题意知保持利润不低于26%,就是利润大于等于26%,列出不等式.【解答】解:设打折为x,由题意知,解得x≥7,故至少打七折,故选B.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.17.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()A.x>﹣2B.x<﹣2C.﹣3<x<﹣2D.﹣3<x<﹣1【考点】一次函数与一元一次不等式.【分析】解不等式x+3>0,可得出x>﹣3,再根据两函数图象的上下位置关系结合交点的横坐标即可得出不等式﹣x+m>x+3的解集,结合二者即可得出结论.【解答】解:∵x+3>0∴x>﹣3;观察函数图象,发现:当x<﹣2时,直线y=﹣x+m的图象在y=x+3的图象的上方,∴不等式﹣x+m>x+3的解为x<﹣2.综上可知:不等式﹣x+m>x+3>0的解集为﹣3<x<﹣2.故选C.【点评】本题考查了一次函数与一元一次不等式,解题的关键是根据函数图象的上下位置关系解不等式﹣x+m>x+3.本题属于基础题,难度不大,解集该题型题目时,根据函数图象的上下位置关键解不等式是关键.18.已知2+的整数部分是a,小数部分是b,则a2+b2=()A.13﹣2B.9+2C.11+D.7+4【考点】估算无理数的大小.【分析】先估算出的大小,从而得到a、b的值,最后代入计算即可.【解答】解:∵1<3<4,∴1<<2.∴1+2<2+<2+2,即3<2+<4.∴a=3,b=﹣1.∴a2+b2=9+3+1﹣2=13﹣2.故选:A.【点评】本题主要考查的是估算无理数的大小,根据题意求得a、b的值是解题的关键.19.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12D.24【考点】菱形的性质.【分析】设对角线相交于点O,根据菱形的对角线互相垂直平分求出AO、BO,再利用勾股定理列式求出AB,然后根据菱形的面积等对角线乘积的一半和底乘以高列出方程求解即可.【解答】解:如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=ABDH=ACBD,即5DH=×8×6,解得DH=.故选A.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分的性质,难点在于利用菱形的面积的两种表示方法列出方程.20.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A.5B.4C.3D.2【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】由正方形和等边三角形的性质得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,①正确;②正确;由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,③正确;设EC=x,由勾股定理和三角函数就可以表示出BE与EF,得出④错误;由三角形的面积得出⑤错误;即可得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF..设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=AB﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△AEC=CEAB,S△ABC=BCAB,CE<BC,∴S△AEC<S△ABC,故⑤错误;综上所述,正确的有①②③,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题(本大题共4小题,满分12分)21.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是7≤a≤9 .【考点】一次函数图象上点的坐标特征.【分析】根据题意得到x的取值范围是2≤x≤3,则通过解关于x的方程2x+(3﹣a)=0求得x的值,由x的取值范围来求a的取值范围.【解答】解:∵直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),∴2≤x≤3,令y=0,则2x+(3﹣a)=0,解得x=,则2≤≤3,解得7≤a≤9.故答案是:7≤a≤9.【点评】本题考查了一次函数图象上点的坐标特征.根据一次函数解析式与一元一次方程的关系解得x的值是解题的突破口.22.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为2.【考点】轴对称-最短路线问题;正方形的性质.【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.【解答】解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故答案为:2.【点评】此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.23.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分被为(﹣1,﹣1),(1,﹣2),将△ABC绕着点C顺时针旋转90°,则点A的对应点的坐标为(5,﹣1).【考点】坐标与图形变化-旋转.【分析】先利用B,C两点的坐标画出直角坐标系得到A点坐标,再画出△ABC绕点C顺时针旋转90°后点A的对应点的A′,然后写出点A′的坐标即可.【解答】解:如图,A点坐标为(0,2),将△ABC绕点C顺时针旋转90°,则点A的对应点的A′的坐标为(5,﹣1).故答案为:(5,﹣1).【点评】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.24.若关于x的不等式组有4个整数解,则a的取值范围是﹣≤a<﹣.【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:,由①得,x>8,由②得,x<2﹣4a,∵此不等式组有解集,∴解集为8<x<2﹣4a,又∵此不等式组有4个整数解,∴此整数解为9、10、11、12,∵x<2﹣4a,x的最大整数值为12,,∴12<2﹣4a≤13,∴﹣≤a<﹣.【点评】本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于a的不等式组,临界数的取舍是易错的地方,要借助数轴做出正确的取舍.三、解答题(本大题共5个小题,共48分)25.(1)计算(+1)(﹣1)++﹣3(2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.【考点】二次根式的混合运算;在数轴上表示不等式的解集;解一元一次不等式组.【分析】(1)利用平方差公式、二次根式的性质化简计算即可;(2)利用解一元一次不等式组的一般步骤解出不等式组,把解集在数轴上表示出来.【解答】解:(1)原式=()2﹣12++×3﹣3×=3﹣1++﹣2=2+;(2),解①得,x<2,解②得,x≥﹣1,则不等式组的解集为:﹣1≤x<2.【点评】本题考查的是二次根式的混合运算、一元一次不等式组的解法,掌握二次根式的和和运算法则、一元一次不等式组的解法是解题的关键.26.如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A(1)求点C的坐标与直线l2的解析式;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)首先利用待定系数法求出C点坐标,然后再根据D、C两点坐标求出直线l2的解析式;(2)首先根据两个函数解析式计算出A、B两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.【解答】解:(1)∵直线l1的解析式为y=﹣x+2经过点C(﹣1,m),∴m=1+2=3,∴C(﹣1,3),设直线l2的解析式为y=kx+b,∵经过点D(0,5),C(﹣1,3),∴,解得,∴直线l2的解析式为y=2x+5;(2)当y=0时,2x+5=0,解得x=﹣,则A(﹣,0),当y=0时,﹣x+2=0解得x=2,则B(2,0),△ABC的面积:×(2+)×3=.【点评】此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】全等三角形的判定与性质;矩形的判定.【分析】(1)由AF与BC平行,利用两直线平行内错角相等得到一对角相等,再一对对顶角相等,且由E为AD 的中点,得到AE=DE,利用AAS得到三角形AFE与三角形DCE全等,利用全等三角形的对应边相等即可得证;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形,理由为:由AF与BD平行且相等,得到四边形AFBD为平行四边形,再由AB=AC,BD=CD,利用三线合一得到AD垂直于BC,即∠ADB为直角,即可得证.【解答】解:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E为AD的中点,∴AE=DE,在△AFE和△DCE中,,∴△AFE≌△DCE(AAS),∴AF=CD,∵AF=BD,∴CD=BD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形,理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴四边形AFBD是矩形.【点评】此题考查了全等三角形的判定与性质,以与矩形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【分析】(1)根据正方形的性质得AB=AD,∠BAD=90°,再利用旋转的性质得AP=AP′,∠PAP′=∠DAB=90°,于是可判断△APP′是等腰直角三角形;(2)根据等腰直角三角形的性质得PP′=PA=,∠APP′=45°,再利用旋转的性质得PD=P′B=,接着根据勾股定理的逆定理可证明△PP′B为直角三角形,∠P′PB=90°,然后利用平角定义计算∠BPQ的度数.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADP沿点A旋转至△ABP′,∴AP=AP′,∠PAP′=∠DAB=90°,∴△APP′是等腰直角三角形;(2)解:∵△APP′是等腰直角三角形,∴PP′=PA=,∠APP′=45°,∵△ADP沿点A旋转至△ABP′,∴PD=P′B=,在△PP′B中,PP′=,PB=2,P′B=,∵()2+(2)2=()2,∴PP′2+PB2=P′B2,∴△PP′B为直角三角形,∠P′PB=90°,∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和勾股定理的逆定理.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.(1)若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a(0<a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w与a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润?【考点】一次函数的应用;一元一次不等式的应用;一次函数的性质.【分析】(1)设购进甲种运动鞋x双,根据题意列出关于x的一元一次不等式,解不等式得出结论;(2)找出总利润w关于购进甲种服装x之间的关系式,根据一次函数的性质判断如何进货才能获得最大利润.【解答】解:(1)设购进甲种运动鞋x双,由题意可知:80x+60(100﹣x)≤7500,解得:x≤75.答:甲种运动鞋最多购进75双.(2)因为甲种运动鞋不少于65双,所以65≤x≤75,总利润w=(120﹣80﹣a)x+(90﹣60)(100﹣x)=(10﹣a)x+3000,∵当10<a<20时,10﹣a<0,w随x的增大而减少,∴当x=65时,w有最大值,此时运动鞋店应购进甲种运动鞋65双,乙种运动鞋35双.【点评】本题主要考查了一次函数的应用和解一元一次不等式,解题的关键是:根据题意列出关于x的一元一次不等式,找出利润w关于x的关系式.在一次函数y=kx+b中,当k<0时,y随x的增大而减小,这是判断的依据.。

2015-2016学年八年级(下)期中数学试卷含答案解析

2015-2016学年八年级(下)期中数学试卷含答案解析

2015-2016学年八年级(下)期中数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.使式子有意义,则x的取值范围是()A.x>5 B.x≠5 C.x≥5 D.x≤52.下列二次根式中,属于最简二次根式的是()A.B.C.D.3.下列运算正确的是()A.()2=4 B. =﹣4 C. =×D.﹣=4.如图,直角三角形的三边长分为a、b、c,下列各式正确的是()A.a2+b2=c2B.b2+c2=a2C.c2+a2=b2D.以上都不对5.一个直角三角形的两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C. cm D.5cm 或cm6.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,157.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等 D.邻角互补9.两条对角线互相垂直平分且相等的四边形是()A.矩形 B.菱形 C.正方形D.都有可能10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12二、填空题(本题共10小题,每小题4分,共40分)11.如图,△ABC中,D、E分别是AB、AC边的中点,且DE=7cm,则BC= cm.12.写出命题“对顶角相等”的逆命题.13.比较大小:.(填“>、<、或=”)14.如果+(b﹣7)2=0,则的值为.15.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行m.16.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是cm.17.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.18.菱形的两条对角线长分别为6和8,则这个菱形的周长为.19.若两对角线长分别为4cm和6cm的菱形的面积与一个正方形的面积相等,那么该正方形的边长为cm.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是.三.解答题(共50分)21.计算:(1)(﹣)2﹣+(2)(3﹣)﹣(+)22.已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.23.如图,在四边形ABCD中,∠A=90°,AD=3,AB=4,BC=12,CD=13,试判断△BCD的形状,并说明理由.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.26.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明).2015-2016学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.使式子有意义,则x的取值范围是()A.x>5 B.x≠5 C.x≥5 D.x≤5【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子有意义,∴x﹣5≥0,解得x≥5.故选C.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.2.下列二次根式中,属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的条件进行判断即可.【解答】解: =,被开方数含分母,不是最简二次根式;=,被开方数含分母,不是最简二次根式;=2,被开方数中含能开得尽方的因数,不是最简二次根式;是最简二次根式,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.3.下列运算正确的是()A.()2=4 B. =﹣4 C. =×D.﹣=【考点】二次根式的混合运算.【分析】分别利用二次根式的性质以及结合二次根式混合运算法则化简求出答案.【解答】解:A、()2=4,正确;B、=4,故此选项错误;C、=×,故此选项错误;D、﹣无法计算,故此选项错误;故选:A.【点评】此题主要考查了二次根式的混合运算以及二次根式的化简,正确掌握二次根式的性质是解题关键.4.如图,直角三角形的三边长分为a、b、c,下列各式正确的是()A.a2+b2=c2B.b2+c2=a2C.c2+a2=b2D.以上都不对【考点】勾股定理.【分析】由勾股定理即可得出结论,注意a是斜边长.【解答】解:∵∠A=90°,∴由勾股定理得:b2+c2=a2.故选:B.【点评】本题考查了勾股定理;熟记勾股定理是解决问题的关键.5.一个直角三角形的两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C. cm D.5cm 或cm【考点】勾股定理.【分析】题中没有指明哪个是直角边哪个是斜边,故应该分情况进行分析.【解答】解:(1)当两边均为直角边时,由勾股定理得,第三边为5cm;(2)当4为斜边时,由勾股定理得,第三边为cm;故直角三角形的第三边应该为5cm或cm.故选:D.【点评】此题主要考查学生对勾股定理的运用,注意分情况进行分析.6.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、1.52+22≠32,不符合勾股定理的逆定理,故正确;B、72+242=252,符合勾股定理的逆定理,故错误;C、62+82=102,符合勾股定理的逆定理,故错误;D、92+122=152,符合勾股定理的逆定理,故错误.故选A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【考点】平行四边形的性质.【专题】几何图形问题.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,所以根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等 D.邻角互补【考点】矩形的性质;菱形的性质.【专题】证明题.【分析】与平行四边形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等.【解答】解:A、对角线互相平分是平行四边形的基本性质,两者都具有,故A不选;B、菱形四条边相等而矩形四条边不一定相等,只有矩形为正方形时才相等,故B符合题意;C、平行四边形对角都相等,故C不选;D、平行四边形邻角互补,故D不选.故选:B.【点评】考查菱形和矩形的基本性质.9.两条对角线互相垂直平分且相等的四边形是()A.矩形 B.菱形 C.正方形D.都有可能【考点】多边形.【分析】如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,理由为:利用对角线互相平分的四边形为平行四边形得到ABCD为平行四边形,再利用对角线互相垂直的平行四边形为菱形,再利用对角线相等的菱形为正方形即可得证.【解答】解:如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,已知:四边形ABCD,AC⊥BD,OA=OC,OB=OD,AC=BD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵AC⊥BD,∴平行四边形ABCD为菱形,∵AC=BD,∴四边形ABCD为正方形.故选C.【点评】此题考查了正方形的判定,以及角平分线定理,熟练掌握正方形的判定方法是解本题的关键.10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC 的面积为()A.6 B.8 C.10 D.12【考点】翻折变换(折叠问题).【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、填空题(本题共10小题,每小题4分,共40分)11.如图,△ABC中,D、E分别是AB、AC边的中点,且DE=7cm,则BC= 14 cm.【考点】三角形中位线定理.【分析】根据三角形中位线定理得出BC=2DE,代入求出即可.【解答】解:∵D、E分别是AB、AC边的中点,且DE=7cm,∴BC=2DE=14cm,故答案为:14.【点评】本题考查了三角形中位线定理的应用,能熟记三角形的中位线定理的内容是解此题的关键,注意:三角形的中位线平行于第三边,并且等于第三边的一半.12.写出命题“对顶角相等”的逆命题如果两个角相等,那么这两个角是对顶角.【考点】命题与定理.【分析】根据逆命题的定义可以写出命题“对顶角相等”的逆命题,本题得以解决.【解答】解:命题“对顶角相等”的逆命题是如果两个角相等,那么这两个角是对顶角,故答案为:如果两个角相等,那么这两个角是对顶角.【点评】本题考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.13.比较大小:<.(填“>、<、或=”)【考点】实数大小比较.【分析】先把两个实数平方,然后根据实数的大小比较方法即可求解.【解答】解:∵()2=12,(3)2=18,而12<18,∴2<3.故答案为:<.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.14.如果+(b﹣7)2=0,则的值为 3 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先利用偶次方的性质以及二次根式的性质进而得出a,b的值,进而求出答案.【解答】解:∵ +(b﹣7)2=0,∴a=2,b=7,则==3.故答案为:3.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.15.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行10 m.【考点】勾股定理的应用.【专题】应用题.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离==10m.【点评】本题主要是将现实问题建立数学模型,运用数学知识进行求解.16.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是15 cm.【考点】平面展开﹣最短路径问题.【专题】推理填空题.【分析】根据题意,可以画出长方体的展开图,根据两点之间线段最短和勾股定理,可以解答本题.【解答】解:如右图所示,点A到B的最短路径是: cm,故答案为:15.【点评】本题考查平面展开﹣最短路径问题,解题的关键是明确两点之间线段最短,能画出图形的平面展开图.17.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.【考点】矩形的性质.【专题】计算题.【分析】根据矩形的性质,画出图形求解.【解答】解:∵ABCD为矩形∴OA=OC=OB=OD∵一个角是60°∴BC=OB=cm∴根据勾股定理==∴面积=BC•CD=4×=cm2.故答案为.【点评】本题考查的知识点有:矩形的性质、勾股定理.18.菱形的两条对角线长分别为6和8,则这个菱形的周长为20 .【考点】菱形的性质;勾股定理.【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【解答】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB===5,∴此菱形的周长为:5×4=20.故答案为:20.【点评】本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.19.若两对角线长分别为4cm和6cm的菱形的面积与一个正方形的面积相等,那么该正方形的边长为2cm.【考点】正方形的性质;菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积,进一步开方求得正方形的边长即可.【解答】解:根据对角线的长可以求得菱形的面积,根据S=ab=×4×6=12cm2,∵菱形的面积与正方形的面积相等,∴正方形的边长是=2cm.故答案为:2.【点评】本题考查了菱形的面积和正方形的面积计算的方法,本题中根据菱形对角线求得菱形的面积是解题的关键.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是 6 .【考点】矩形的性质.【分析】用矩形的面积减去△ADQ和△BCP的面积求解即可.【解答】解:∵四边形ABCD为矩形,∴AD=BC=4.S阴影=S矩形ABCD﹣S△BPC﹣S△ADQ=AB•CB﹣BC•MB AD•AM=4×3﹣4×BM﹣×4×AM=12﹣2MB﹣2AM=12﹣2(MB+AM)=12﹣2×3=6.故答案为:6.【点评】本题主要考查的是矩形的性质、三角形的面积公式,将阴影部分的面积转化为S矩形ABCD﹣S△﹣S△ADQ求解是解题的关键.BPC三.解答题(共50分)21.计算:(1)(﹣)2﹣+(2)(3﹣)﹣(+)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先化简二次根式,再合并同类项即可解答本题;(2)根据去括号的法则去掉括号,然后合并同类项即可解答本题.【解答】解:(1)(﹣)2﹣+=3﹣2+3=4;(2)(3﹣)﹣(+)==.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.22.已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.【考点】二次根式的化简求值.【分析】(1)利用平方差公式分解因式后再代入计算;(2)利用完全平方差公式分解因式后再代入计算.【解答】解:当a=3+,b=3﹣时,(1)a2﹣b2,=(a+b)(a﹣b),=(3+3﹣)(3+﹣3+),=6×2,=12;(2)a2﹣2ab+b2,=(a﹣b)2,=(3﹣3+)2,=(2)2,=8.【点评】本题是运用简便方法进行二次根式的化简求值,熟练掌握平方差公式和完全平方公式是解题的关键.23.如图,在四边形ABCD中,∠A=90°,AD=3,AB=4,BC=12,CD=13,试判断△BCD的形状,并说明理由.【考点】勾股定理的逆定理;勾股定理.【分析】先根据勾股定理计算BD的长,再利用勾股定理的逆定理证明∠DBC=90°,所以:△BCD是直角三角形.【解答】解:△BCD是直角三角形,理由是:在△ABD中,∠A=90°,∴BD2=AD2+AB2=32+42=25,在△BCD中,BD2+BC2=52+122=169,CD2=132=169,∴BD2+BC2=CD2,∴∠DBC=90°∴△BCD是直角三角形.【点评】本题考查了勾股定理及其逆定理,熟练掌握定理的内容是关键,注意各自的条件和结论.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC 中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【考点】平行四边形的判定与性质;全等三角形的性质.【专题】证明题;压轴题.【分析】首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相相平分的四边形是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.【点评】此题考查了平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.26.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,可求得BC=AD=8,又由AC⊥BC,利用勾股定理即可求得AC 的长,然后由平行四边形的对角线互相平分,求得OA的长,继而求得平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,∴S平行四边形ABCD=BC•AC=8×6=48.【点评】此题考查了平行四边形的性质以及勾股定理.注意平行四边形的对边相等,对角线互相平分.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 2:1 时,四边形MENF是正方形(只写结论,不需证明).【考点】矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.【分析】(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.【点评】此题主要考查了矩形的性质,以及菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法.。

2015-2016学年度第一学期期末八年级数学试题(含答案)

2015-2016学年度第一学期期末八年级数学试题(含答案)

2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。

答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。

第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:32(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。

2015-2016学年北京市朝阳区八年级(上)期末数学试卷-含详细解析

2015-2016学年北京市朝阳区八年级(上)期末数学试卷-含详细解析

2015-2016学年北京市朝阳区八年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.下列图形中,是轴对称图形的是()A. B. C. D.2.某种流感病毒的直径在0.00 000 012米左右,将0.00 000 012用科学记数法表示应为()A. B. C. D.3.下列长度的三根木棒能组成三角形的是()A. 3,4,8B. 4,4,8C. 5,6,10D. 6,7,144.点(-2,3)关于y轴对称的点的坐标是()A. B. C. D.5.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,DE⊥AB于点E,若CD=4,则DE的长为()A. 2B. 3C. 4D. 56.下列计算正确的是()A. B. C. D.7.将一副三角尺按如图方式进行摆放,则∠1的度数为()A. B. C. D.8.下列各式中,从左到右的变形是因式分解的是()A. B.C. D.9.如图1,某温室屋顶结构外框为△ABC,立柱AD垂直平分横梁BC,∠B=30°,斜梁AC=4m.为增大向阳面的面积,将立柱增高并改变位置,使屋顶结构外框变为△EBC (点E在BA的延长线上),立柱EF⊥BC,如图2所示,若EF=3m,则斜梁增加部分AE的长为()A. B. 1m C. D. 2m10.如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是()A.B.C.D.二、填空题(本大题共6小题,共18.0分)11.使分式有意义的x的取值范围是______.12.计算:=______.13.分解因式:5a2-10ab+5b2=______.14.如图,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE≌△ACD,添加的条件是:______.15.已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是______.16.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方左右两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.根据上面的规律,(a+b)4的展开式中各项系数最大的数为______;式子75+5×74×(-5)+10×73×(-5)2+10×72×(-5)3+5×7×(-5)4+(-5)5的值为______.三、计算题(本大题共1小题,共5.0分)17.已知x2-x=5,求(2x+1)2-x(5+2x)+(2+x)(2-x)的值.四、解答题(本大题共10小题,共47.0分)18.如图,点D在△ABC的BC边的延长线上,且∠A=∠B.(1)尺规作图:作∠ACD的平分线CE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,射线CE与线段AB的位置关系是______(不要求证明)19.计算:.20.计算:.21.已知:如图,点D在△ABC的BC边上,AC∥BE,BC=BE,∠ABC=∠E,求证:AB=DE.22.若一个多边形的内角和等于外角和的3倍,求这个多边形的边数.23.解分式方程:-=1.24.中华优秀传统文化积淀着中华民族最深层的精神追求和价值取向,特别是其中蕴含的丰富深厚的道德理念,为一代又一代中华儿女提供了精神归依和心灵居所,成为涵养社会主义核心价值观的重要源泉.为了培育和践行社会主义核心价值观,大力弘扬中华优秀传统文化,某校决定为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格是每套《水浒传》连环画价格的1.5倍,用3600元购买《水浒传》连环画的套数比用相同的钱数购买《三国演义》连环画的套数多10套.求每套《水浒传》连环画的价格.25.如图,在△ABC中,AB=AC,其中AD,BE都是△ABC的高.求证:∠BAD=∠CAD=∠EBC.26.阅读下面材料:一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如:a+b+c,abc,a2+b2,…含有两个字母a,b的对称式的基本对称式是a+b和ab,像a2+b2,(a+2)(b+2)等对称式都可以用a+b,ab表示,例如:a2+b2=(a+b)2﹣2ab.请根据以上材料解决下列问题:(1)式子①a2b2②a2﹣b2③中,属于对称式的是____(填序号);(2)已知(x+a)(x+b)=x2+mx+n.①若,求对称式的值;②若n=﹣4,直接写出对称式的最小值.27.在△DEF中,DE=DF,点B在EF边上,且∠EBD=60°,C是射线BD上的一个动点(不与点B重合,且BC≠BE),在射线BE上截取BA=BC,连接AC.(1)当点C在线段BD上时,①若点C与点D重合,请根据题意补全图1,并直接写出线段AE与BF的数量关系为______;②如图2,若点C不与点D重合,请证明AE=BF+CD;(2)当点C在线段BD的延长线上时,用等式表示线段AE,BF,CD之间的数量关系(直接写出结果,不需要证明).答案和解析1.【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形可得答案.此题主要考查了轴对称图形,关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】D【解析】解:0.00 000 012=1.2×10-7.故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:A、3+4<8,不能构成三角形;B、4+4=8,不能构成三角形;C、5+6>10,能够组成三角形;D、7+6<14,不能组成三角形.故选C.根据三角形的三边关系“任意两边之和大于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.【答案】B【解析】解:点(-2,3)关于y轴对称的点的坐标是(2,3),故选:B.根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.5.【答案】C【解析】解:∵AD是∠CAB的平分线,∠C=90°,DE⊥AB,∴DE=DC=4.故选:C.根据角平分线的性质定理解答即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.【答案】A【解析】解:A、x2•x3=x5,正确;B、x2+x3,无法计算,故此选项错误;C、2x-3x=-x,故此选项错误;D、(2x)3=8x3,故此选项错误.故选:A.分别利用幂的乘方运算法则,以及合并同类项法则和同底数幂的乘法运算法则判断得出答案.此题主要考查了幂的乘方运算以及合并同类项和同底数幂的乘法运算,正确掌握运算法则是解题关键.7.【答案】C【解析】解:如图,∠1=∠2+∠3=90°+30°=120°,故选:C.根据三角形的一个外角等于和它不相邻的两个内角的和计算即可.本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.8.【答案】A【解析】解:因式分解的定义是指把一个多项式化成几个整式的积的形式,即等式的左边是一个多项式,等式的右边是几个整式的积,A、4x2-1=(2x+1)(2x-1),符合因式分解的定义,故本选项正确;B、等式的右边不是整式的积的形式,故本选项错误;C、等式的右边不是整式的积的形式,故本选项错误;D、等式的右边不是整式的积的形式,故本选项错误;故选A.判断一个式子是否是因是分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.本题考查了对因式分解的定义的理解和运用,注意:因式分解的定义是指把一个多项式化成几个整式的积的形式,即①等式的左边是一个多项式,②等式的右边是几个整式的积,③等式的左、右两边相等,题型较好,但是一道比较容易出错的题目.9.【答案】D【解析】解:∵立柱AD垂直平分横梁BC,∴AB=AC=4m,∵∠B=30°,∴BE=2EF=6m,∴AE=EB-AB=6-4=2(m).故选:D.直接利用∠B=30°,可得2EF=BE=6m,再利用垂直平分线的性质进而得出AB 的长,即可得出答案.此题主要考查了直角三角形的性质,关键是得出AB,BE的长.10.【答案】B【解析】【分析】此题考查了翻折变换(折叠问题),以及外角性质,熟练掌握折叠的性质是解本题的关键,由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【解答】解:由折叠的性质得:∠D=∠C=40°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+80°,则∠1-∠2=80°.故选B.11.【答案】x≠3【解析】解:分式有意义,则x-3≠0,解得x≠3.故答案为:x≠3.根据分式有意义,分母不为零列式进行计算即可得解.本题考查的知识点为:分式有意义,分母不为0.12.【答案】6x【解析】解:原式==6x.故答案为:6x.原式约分即可得到结果.此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.13.【答案】5(a-b)2【解析】解:原式=5(a2-2ab+b2)=5(a-b)2,故答案为:5(a-b)2原式提取公因式,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.【答案】∠B=∠C【解析】解:∠B=∠C,理由是:∵在△ABE和△ACD中∴△ABE≌△ACD(ASA),故答案为:∠B=∠C.添加条件是∠B=∠C,根据全等三角形的判定定理ASA推出即可,此题是一道开放型的题目,答案不唯一.本题考查了全等三角形的判定定理的应用,能理解全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.15.【答案】30°或120°【解析】解:当30°是等腰三角形的顶角时,顶角就是30°;当30°是等腰三角形的底角时,则顶角是180°-30°×2=120°.则该等腰三角形的顶角是30°或120°.故填30°或120°.分情况讨论:当30°是等腰三角形的顶角时或当30°是等腰三角形的底角时.再结合三角形的内角和是180°进行计算.本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.16.【答案】6;32【解析】解:根据题意得:(a+b)4的展开式中各项系数分别为1,4,6,4,1,即最大的数为6;75+5×74×(-5)+10×73×(-5)2+10×72×(-5)3+5×7×(-5)4+(-5)5=(7-5)5=32.故答案为:6;32.根据三角形的构造法则,确定出(a+b)4的展开式中各项系数最大的数;原式变形后,计算即可得到结果.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.17.【答案】解:原式=4x2+4x+1-5x-2x2+4-x2=x2-x+5,当x2-x=5时,原式=5+5=10.【解析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.18.【答案】(1)如图所示:(2)平行【解析】解:(1)如图所示:;(2)CE∥AB.∵CE平分∠ACD,∴∠ACE=∠ACD,∵∠A+∠B=∠ACD,∠A=∠B,∴∠A=∠ACD,∴∠A=∠ACE,∴AB∥CE.故答案为:平行.(1)以C为圆心,小于AC长为半径画弧,交AC、CD与M、N,再分别以M、N为圆心,大于MN长为半径,画弧,两弧交于点E,再画射线CE即可;(2)根据三角形内角与外角的关系可得∠A=∠ACD,根据角平分线的定义可得∠ACE=∠ACD,进而可得∠A=∠ACE,从而可判断出CE∥AB.此题主要考查了基本作图,以及平行线的判定,关键是掌握内错角相等,两直线平行.19.【答案】解:原式=-1+4=+3.【解析】分别进行绝对值的化简、零指数幂、负整数指数幂的运算,然后合并.本题考查了实数的运算,解答本题的关键是掌握绝对值的化简、零指数幂、负整数指数幂等运算法则.20.【答案】解:原式====.【解析】首先把分式进行通分,然后进行同分母的分式的加减即可求解.本题考查了分式的加减,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.21.【答案】证明:∵BE∥AC,∴∠C=∠DBE.在△ABC和△DEB中,,∴△ABC≌△DEB,∴AB=DE.【解析】先利用平行线的性质得∠C=∠DBE,再根据“ASA”可证明△ABC≌△DEB,然后根据全等三角形的性质可得AB=DE.本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在应用全等三角形的性质时主要是得到对应角相等或对应线段相等.22.【答案】解:设这个多边形是n边形,由题意得:(n-2)×180°=360°×3,解得:n=8.答:这个多边形的边数是8.【解析】根据多边形的外角和为360°,内角和公式为:(n-2)•180°,由题意可知:内角和=3×外角和,设出未知数,可得到方程,解方程即可.此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)•180°,外角和为360°.23.【答案】解:去分母得:x(x+2)-3=(x-1)(x+2),x2+2x-3=x2+x-2,x=1,检验:∵当x=1时,(x-1)(x+2)=0,∴x=1不是原分式方程的解,∴原分式方程无解.【解析】首先去分母、去括号、移项和合并同类项,最后系数化成1,再进行检验即可得到结果.本题主要考查了解分式方程的应用,解分式方程的关键是能把分式方程转化成整式方程.24.【答案】解:设每套《水浒传》连环画的价格是x元.由题意,得.解得x=120.检验:当x=120时,1.5x≠0.所以,原分式方程的解为x=120.答:每套《水浒传》连环画的价格是120元.【解析】设每套《水浒传》连环画的价格是x元.则《三国演义》连环画的价格是1.5x.根据“用3600元购买《水浒传》连环画的套数比用相同的钱数购买《三国演义》连环画的套数多10套”列出方程并解答.注意要验根.本题考查分式方程的应用,利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.25.【答案】证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∵BE⊥CE,AD⊥BC,∴∠BEC=∠ADC=90°,∴∠EBC+∠C=90°,∠CAD+∠C=90°,∴∠EBC=∠CAD,∴∠BAD=∠CAD=∠EBC.【解析】先根据等腰三角形三线合一的性质得出∠BAD=∠CAD,再由三角形的高的定义得出∠BEC=∠ADC=90°,根据直角三角形两锐角互余得到∠EBC+∠C=90°,∠CAD+∠C=90°,根据同角的余角相等得出∠EBC=∠CAD,等量代换得到∠BAD=∠CAD=∠EBC.本题考查了等腰三角形三线合一的性质,三角形的高的定义,直角三角形的性质,余角的性质,证明出∠BAD=∠CAD,∠EBC=∠CAD是解题的关键.26.【答案】(1)①③(2)①6.②.【解析】解:(1)式子①a2b2②a2-b2③中,属于对称式的是①③.故答案为①③;(2)∵x2+(a+b)x+ab=x2+mx+n∴a+b=m,ab=n.①a+b=-2,ab=,====6;②=a2++b2+=(a+b)2-2ab+=m2+8+=m2+,∵m2≥0,∴的最小值为.(1)根据对称式的定义进行判断;(2)①先得到a+b=-2,ab=,再变形得到==,然后利用整体代入的方法计算;②根据分式的性质变形得到=a2++b2+,再利用完全平方公式变形得到(a+b)2-2ab+,所以原式═m2+,然后根据非负数的性质可确定的最小值.本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.27.【答案】AE=BF【解析】解:(1)①如图1,∵BA=BC,∠EBD=60°,∴△ABC是等边三角形,∴AD=AB=BC,∠DAB=∠ABC=60°,∴∠EAD=∠FBD=120°,∵DE=DF,∴∠E=∠F,在△AEC与△BCF中,,∴△ADE≌△BDF,∴AE=BF;故答案为:AE=BF;②证明:在BE上截取BG=BD,连接DG,∵∠EBD=60°,BG=BD,∴△GBD是等边三角形.同理,△ABC也是等边三角形.∴AG=CD,∵DE=DF,∴∠E=∠F.又∵∠DGB=∠DBG=60°,∴∠DGE=∠DBF=120°,在△DGE与△DBF中,,∴△DGE≌△DBF,∴GE=BF,∴AE=BF+CD;(2)如图3,连接DG,由(1)知,GE=BF,AG=CD,∴AE=EG-AG;∴AE=BF-CD,如图4,连接DG,由(1)知,GE=BF,AG=CD,∴AE=AG-EG;∴AE=CD-BF.(1)①如图1,根据已知条件得到△ABC是等边三角形,由等边三角形的性质得到AD=AB=BC,∠DAB=∠ABC=60°,由邻补角的性质得到∠EAD=∠FBD=120°,推出△ADE≌△BDF,根据全等三角形的性质即可得到结论;②证明:在BE上截取BG=BD,连接DG,得到△GBD是等边三角形.同理,△ABC也是等边三角形.求得AG=CD,通过△DGE≌△DBF,得到GE=BF,根据线段的和差即可得到结论;(2)如图3,连接DG,由(1)知,GE=BF,AG=CD,根据线段的和差和等量代换即可得到结论;如图4,连接DG,由(1)知,GE=BF,AG=CD,根据线段的和差和等量代换即可得到结论.本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的性质,正确的作出辅助线是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区八年级第二学期期末练习数 学(分数:100分 时间:90分钟) 2016.7学校 班级 姓名 成绩 一、选择题:(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个....是正确的. 1.下列各式中,运算正确的是A .3333-=B .822=C .2+323=D .2(2)2-=- 2.下列各组数中,以它们为边长的线段不能构成直角三角形的是A .1,2,3B .3,4,5C .5,12,13D .2,2,3 3.如图,矩形ABCD 中,对角线AC ,BD 交于O 点.若∠AOB =60°, AC =8,则AB 的长为A .4B .43C .3D .54.已知P 1(-1,y 1),P 2(2,y 2)是一次函数1y x =-+图象上的两个点,则y 1,y 2的大小关系是 A .12y y = B .12y y < C .12y y > D .不能确定5.2022年将在北京—张家口举办冬季奥运会,很多学校开设了相关的课程.下表记录了某校4名同学短道速滑选拔赛成绩的平均数x 与方差2s :队员1 队员2 队员3 队员4 平均数x (秒) 51 50 51 50 方差2s (秒2)3.53.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 A .队员1 B .队员2 C .队员3 D .队员4 6.用配方法解方程2230x x --=,原方程应变形为A .2(1)2x -=B .2(1)4x +=C .2(1)4x -=D .2(1)2x += 7.如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,若BF =12,AB =10,则AE 的长为 A .13 B .14 C .15 D .168.一个有进水管与出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图所示.则8min 时容器内的水量为 A .20 L B .25 L C .27L D .30 L9.若关于x 的方程2(1)10kx k x -++=的根是整数,则满足条件的整数k 的个数为 A .1个 B .2个 C .3个 D .4个10.如图1,在菱形ABCD 中,∠BAD =60°,AB =2,E 是DC 边上一个动点,F 是AB 边上一点,∠AEF =30°.设DE =x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的A .线段ECB .线段AEC .线段EFD .线段BF图1 图2二、填空题:(本题共18分,每小题3分)11.写出一个以0,1为根的一元二次方程 .12.若关于x 的一元二次方程240x x m +-=有两个不相等的实数根,则m 的取值范围是 .13.如图,为了检查平行四边形书架ABCD 的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC ,BD 的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理 .14.若一次函数y kx b =+(0k ≠)的图象如图所示,点P (3,4)在函数图象上,则关于x 的不等式4kx b +≤的解集是 .15.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为 .16.如图,正方形ABCD 的面积是2,E ,F ,P 分别是AB ,BC ,AC 上的动点,PE +PF 的最小值等于 .三、解答题:(本题共22分,第17—19题每小题4分,第20—21题每小题5分) 17.计算:1(123)622+⨯-.18.解方程:(4)12y y y -=--.19.已知1x =是方程2230x ax a -+=的一个根,求代数式2391a a -+的值.20.在平面直角坐标系xOy 中,一次函数的图象经过点A (2,3)与点B (0,5). (1)求此一次函数的表达式;(2)若点P 为此一次函数图象上一点,且△POB 的面积为10,求点P 的坐标.PFEDCBA21.如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.四、解答题:(本题共10分,第22题5分,第23题5分)22.阅读下列材料:北京市为了紧抓疏解非首都功能这个“牛鼻子”,迁市场、移企业,人随业走.东城、西城、海淀、丰台……人口开始出现负增长,城六区人口2016年由升转降.而现在,海淀区许多地区人口都开始下降。

统计数字显示:2015年该区常住外来人口约为150万人,同比下降1.1%,减少1.7万人,首次实现了负增长.和海淀一样,丰台也在2015年首次实现了常住外来人口负增长,同比下降1.4%,减少1.2万人;东、西城,常住外来人口同样呈下降趋势:2015年东城同比下降2.4%,减少5000人,西城则同比下降5.5%,减少1.8万人;石景山,常住外来人口近年来增速放缓,预计到2016年年底,全区常住外来人口可降至63.5万,比2015年减少1.7万人,首次出现负增长;……2016年初,市发改委透露,2016年本市将确保完成人口调控目标——城六区常住人口较2015年下降3%,迎来人口由升转降的拐点.人口下降背后,是本市紧锣密鼓疏解非首都功能的大战略.根据以上材料解答下列问题:(1)石景山区2015年常住外来人口约为万人;(2)2015年东城、西城、海淀、丰台四个城区常住外来人口同比下降率最高的是区;根据材料中的信息估计2015年这四个城区常住外来人口数最多的是区;(3)如果2017年海淀区常住外来人口降到121.5万人,求从2015年至2017年平均每年外来人口的下降率.23.如图,四边形ABCD 是矩形,点E 在CD 边上,点F 在DC 延长线上,AE =BF . (1)求证:四边形ABFE 是平行四边形;(2)若∠BEF =∠DAE ,AE =3,BE =4,求EF 的长.五、解答题:(本题共20分,第24题6分,第25—26题每小题7分)24.如图1,将边长为1的正方形ABCD 压扁为边长为1的菱形ABCD .在菱形ABCD 中,∠A 的大小为α,面积记为S .(1)请补全下表:α 30°45° 60° 90° 120° 135°150° S12122(2)填空:由(1)可以发现单位正方形在压扁的过程中,菱形的面积随着∠A 大小的变化而变化,不妨把单位菱形的面积S 记为S (α).例如:当α=30°时,1(30)2S S =︒=;当α=135°时,2(135)2S S =︒=.由上表可以得到(60)S S ︒=( ______°);(150)S S ︒=( ______°),…,由此可以归纳出(180)()S S α︒-=.(3) 两块相同的等腰直角三角板按图2的方式放置,AD =2,∠AOB =α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).图225.如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.(1)①依题意补全图形;②求证:BE⊥AC.A(3)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为______________(直接写出答案).26.在平面直角坐标系xOy中,图形G的投影矩形定义如下:矩形的两组对边分别平行于x轴,y 轴,图形G的顶点在矩形的边上或内部,且矩形的面积最小.设矩形的较长的边与较短的边的比为k,我们称常数k为图形G的投影比.如图1,矩形ABCD为△DEF的投影矩形,其投影比BCkAB=.图1 图2备用图(1)如图2,若点A(1,3),B(3,5),则△OAB投影比k的值为.(2)已知点C(4,0),在函数24y x=-(其中2x<)的图象上有一点D,若△OCD的投影比2k=,求点D的坐标.(3)已知点E(3,2),在直线1y x=+上有一点F(5,a)和一动点P,若△PEF的投影比12k<<,则点P的横坐标m的取值范围________________(直接写出答案).八年级第二学期期末练习数 学 答 案 2016.7一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)11.20x x -=或(1)0x x -=(答案不唯一);12.4m>-;13.对角线相等的平行四边形是矩形,矩形的四个角都是直角;(“矩形的四个角都是直角”没写不扣分)14.3x ≤;15.32; 16 三、解答题(本题共22分,第17—19题每小题4分,第20—21题每小题5分) 17.解:原式=2 ----2分 ==3⨯ -------------------------------------------------------------------------------3分 = = -----------------------------------------------------------------------------------------4分 18.解:2210y y -+=, --------------------------------------------------------------------------------------1分2(1)0y -=, ------------------------------------------------------------------------------------------3分121y y ==. -------------------------------------------------------------------------------------------4分19.解法一:解:∵1x =是方程2230x ax a -+=的一个根,∴2130a a -+=. ---------------------------------------------------------------------------------------1分∴231a a -=-. --------------------------------------------------------------------------------------2分 ∴223913(3)1a a a a -+=-+ --------------------------------------------------------------------3分3(1)12=⨯-+=-. -----------------------------------------------------------------4分解法二:解:∵1x =是方程2230x ax a -+=的一个根,∴ 2130a a -+=. ---------------------------------------------------------------------------------------1分∴2310a a-+=. ------------------------------------------------------------------------------------2分解方程得352a±=. -------------------------------------------------------------------------------3分把352a±=代入得2391a a-+得23912a a-+=-. ----------------------------------------4分20.解:(1)设此一次函数的表达式为y kx b=+(0k≠).∵一次函数的图象经过点A(2,3)与点B(0,5),∴23,5.k bb+=⎧⎨=⎩-----------------------------------------------------------------------------------1分解得1,5. kb=-⎧⎨=⎩∴此一次函数的表达式为5y x=-+.----------------------------------------------------3分说明:求对k给1分,求对b给1分.(2)设点P的坐标为(a,5a-+).∵B(0,5), ∴OB=5.∵S△POB=10,∴15||10 2a⨯⨯=.∴||4a=.∴4a=±.∴点P的坐标为(4,1)或(4-,9). ----------------------------------------------5分说明:两个坐标每个1分.21.解:连接AC,过点C作CE⊥AB于点E.∵AD⊥CD,∴∠D=90°.在Rt△ACD中, AD=5, CD=12,AC=222251213AD CD+=+=. ---------------------------------------------------------1分∵BC=13,∴AC=BC. -----------------------------------------------2分∵CE⊥AB, AB=10,∴AE=BE=12AB=11052⨯=. ----------------------3分在Rt△CAE中,CE=222213512AC AE-=-=. -----------------4分∴S四边形ABCD=S△DAC+S△ABC=11512101230609022⨯⨯+⨯⨯=+=. -----------------5分E四、解答题(本题共10分,第22题5分,第23题5分)22.(1)65.2; -----------------------------------------------------------------------------------------------1分 (2)西城; 海淀;(每空1分) ------------------------------------------------------------------3分 (3)解:设海淀平均每年常住外来人口的下降率为x . 由题意,得2150(1)121.5x -=. ---------------------------------------------------------------------4分解得,10.110%x ==, 2 1.9x =.(不合题意,舍去)答:海淀平均每年常住外来人口的下降率为10%. -----------------------------------------5分23.(1)证明:∵四边形ABCD 是矩形,∴AD =BC , ∠D =∠BCD =90°. ∴∠BCF =180°-∠BCD =180°-90°=90°.∴∠D =∠BCF . ----------------------------------------------------------------------1分 在Rt △ADE 和Rt △BCF 中,,.AE BF AD BC =⎧⎨=⎩∴Rt △ADE ≌Rt △BCF . ---------------------------------------------------------2分 ∴∠1=∠F . ∴AE ∥BF .∵AE =BF ,∴四边形ABFE 是平行四边形. ---------------------------------------------------3分(2)解:∵∠D =90°,∴∠DAE +∠1=90°.∵∠BEF =∠DAE , ∴∠BEF +∠1=90°.∵∠BEF +∠1+∠AEB =180°, ∴∠AEB =90°. --------------------------------------------------------------------------4分在Rt △ABE 中, AE =3,BE =4, AB =2222345AE BE +=+=. ∵四边形ABFE 是平行四边形,∴EF =AB =5. --------------------------------------------------------------------------5分五、解答题(本题共20分,第24题6分,第25—26题每小题7分)24.(1)22;32;32;12.(说明:每对两个给1分)----------------------------------2分(2)120;30;α. -----------------------------------------------------------------------------------4分(说明:前两个都答对给1分,最后一个α答对给1分)(3)答:两个带阴影的三角形面积相等.证明:将△ABO沿AB翻折得到菱形AEBO, 将△CDO沿CD翻折得到菱形OCFD.∴S△AOB=12S菱形AEBO=12S(α) ---------------------------------------------------5分S△CDO=12S菱形OCFD=12S(180α︒-) -----------------------------------------6分由(2)中结论S(α)=S(180α︒-)∴S△AOB=S△CDO.25.(1)①依题意补全图形.---------------------------------------------------------1分②解法1:证明:连接CE.∵四边形ABCD是正方形,∴∠BCD=90°, AB=BC.∴∠ACB=∠ACD=12∠BCD=45°.∵∠CMN=90°, CM=MN,∴∠MCN=45°.∴∠ACN=∠ACD+∠MCN=90°. ∵在Rt△ACN中, 点E是AN中点,∴AE=CE=12AN. ----------------------------------------------------------------------------2分∵AE=CE, AB=CB,∴点B,E在AC的垂直平分线上. ∴BE垂直平分AC.∴BE ⊥AC . --------------------------------------------------------------------------------------3分 解法2:证明:连接CE .∵四边形ABCD 是正方形,∴∠BCD =90°, AB =BC .∴∠ACB =∠ACD =12∠BCD =45°. ∵∠CMN =90°,CM =MN ,∴△CMN 是等腰直角三角形.∴∠MCN =45°.∴∠ACN =∠ACD +∠MCN =90°.∵在Rt △ACN 中, 点E 是AN 中点,∴AE =CE =12AN . 在△ABE 和△CBE 中,,,.AE CE AB CB BE BE =⎧⎪=⎨⎪=⎩∴△ABE ≌△CBE (SSS ). -----------------------------------------------------------------2分 ∴∠ABE =∠CBE .∵AB =BC ,∴BE ⊥AC . --------------------------------------------------------------------------------------3分(2)BE =22AD +12CN (或2BE =2AD +CN ). ---------------------------------------4分 证明:∵AB =BC , ∠ABE =∠CBE ,∴AF =FC .∵点E 是AN 中点,∴AE =EN .∴FE 是△ACN 的中位线.∴FE =12CN . ∵BE ⊥AC ,∴∠BFC =90°.∴∠FBC +∠FCB =90°.∵∠FCB =45°,∴∠FBC =45°.∴∠FCB =∠FBC .∴BF =CF .在Rt △BCF 中, 222BF CF BF +=,∴BF BC . --------------------------------------------------------------------------------5分 ∵四边形ABCD 是正方形,∴BC =AD .∴BF AD . ∵BE =BF +FE ,∴BE =2AD +12CN . ----------------------------------------------------------------------6分 (3)34. ---------------------------------------------------------------------------------------------------7分 26.(1)53k =. ------------------------------------------------------------------------------------------------2分 (2)∵点D 为函数24y x =-(其中2x <)的图象上的点,设点D 坐标为(x ,24x -)(2x <).分以下两种情况:①当02x ≤≤时, 如图①所示, 作投影矩形OMNC .∵OC ≥OM , ∴442(24)OC k OM OM x ====--. 解得1x =.∴ D (1,-2). -------------------------------------------------------------------------------4分 ②当0x <时,如图②所示, 作投影矩形MDNC .∵点D 坐标为(x ,24x -), 点M 点坐标为(x ,0), ∴2442DM x x =-=-, 4MC x =-.∵0x <,∴DM >CM , ∴4224DM x k MC x-===-, 但此方程无解. ∴ 当0x <时,满足条件的点D 不存在. --------------------------------------------------5分综上所述,点D 的坐标为D (1,-2).(3)答:13m <<或5m >. ---------------------------------------------------------------------------7分(注:每对一个给1分)。

相关文档
最新文档