二元一次方程组的应用测试卷
二元一次方程组练习题100道
二元一次方程组练习题100道二元一次方程组练题100道(卷一)(范围:代数:二元一次方程组)一、判断1.判断以下方程组是否是方程组y5=26的解:x-3y=1x+2y=3改写:判断以下方程组是否是方程组y=5/26的解:x-3y=1x+2y=32.判断以下方程组是否是方程3x-2y=13的一个解:y=1-x3x+2y=5改写:判断以下方程组是否是方程3x-2y=13的一个解:y=1-x3x+2y=53.由两个二元一次方程组成方程组一定是二元一次方程组。
改写:错误,没有必要改写。
4.判断以下方程组是否可以转化为(2y-3)x+6y=-27x+8:2y-3x=45x+3y=2改写:判断以下方程组是否可以转化为(2y-3)x+6y=-27x+8:2y-3x=45x+3y=25.若(a^2-1)x^2+(a-1)x+(2a-3)y=0是二元一次方程,则a的值为±1.改写:若(a^2-1)x^2+(a-1)x+(2a-3)y=0是二元一次方程,则a的值为±1.6.若x+y=0,且|x|=2,则y的值为2.改写:若x+y=0,且|x|=2,则y的值为-2.7.判断以下方程组是否有唯一的解,若有,则m的值为m≠-5:mx+my=m-3x4x+10y=8改写:判断以下方程组是否有唯一的解,若有,则m的值为m≠-5:mx+my=m-3x4x+10y=88.判断以下方程组是否有无数多个解:x+y=23x+y=6改写:判断以下方程组是否有无数多个解:x+y=23x+y=69.判断以下方程是否有5组整数解:x+y=5x|<5.|y|<5改写:判断以下方程是否有5组整数解:x+y=55<x<5.-5<y<510.判断以下方程组是否是方程x+5y=3的解,反过来方程x+5y=3的解:3x-y=1x+5y=3改写:判断以下方程组是否是方程x+5y=3的解,反过来方程x+5y=3的解:3x-y=1x+5y=311.若|a+5|=5,a+b=1,则a的值为-2.改写:若|a+5|=5,a+b=1,则a的值为-2.12.在方程4x-3y=7里,如果用x的代数式表示y,则x=7+3y/4.改写:在方程4x-3y=7里,如果用x的代数式表示y,则x=7+3y/4.二、选择:13.任何一个二元一次方程都有无数多个解。
二元一次方程组的应用大题专练
【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【浙教版】专题2.11二元一次方程组的应用大题专练(4)方案问题(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、解答题1.(2021春·浙江宁波·七年级校考期末)某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)作侧面和底面,加工成如图2所示的竖式和横式两种无盖的长方体纸箱.(加工时接缝材料不计)(1)若该厂仓库里有100张正方形纸板和200张长方形纸板.问竖式和横式纸箱各加工多少个,恰好将库存的两种纸板全部用完?(2)该工厂原计划用若干天加工纸箱200个,后来由于对方急需要货,实际加工时每天加工速度是原计划的1.5倍,这样提前2天超额完成了任务,且总共比原计划多加工40个,问原计划每天加工纸箱多少个?【答案】(1)加工竖式纸盒20个,横式纸盒40个(2)原计划每天加工纸箱20个【分析】(1)设加工竖式纸箱x个,横式纸箱y个,根据竖式纸箱需要4张长方形纸板,1张正方形纸板,横式纸箱需要3张长方形纸板,2张正方形纸板列出方程组,然后求解方程组即可;(2)设原计划每天加工纸箱a个,根据“实际加工时每天加工速度是原计划的1.5倍,这样提前2天完成了任务,且总共比原计划多加工40个”列出关于a的分式方程,然后求解方程验根即可.【详解】(1)解:设加工竖式纸箱x个,横式纸箱y个,由题意,得4x+3y=200x+2y=100,解得x=20y=40,2.(2022春·浙江杭州·七年级校联考期中)某公司计划印制一批宣传册.该宣传册每本共10页,由A、B 两种彩页构成.已知A种彩页制版费300元/页,B种彩页制版费200元/页,共计2400元.(注:彩页制版费与印数无关)(1)求每本宣传册中A、B两种彩页各有多少页.(2)据了解,A种彩页印刷费2.5元/页,B种彩页印刷费1.5元/页,公司准备印制这批宣传册1500本,求印制这批宣传册制版费与印刷费的总和是多少元.【答案】(1)每本宣传册中A种彩页有4页,B种彩页有6页(2)印制这批宣传册制版费与印刷费的总和是30900元【分析】(1)设每本宣传册中A种彩页有x页,B种彩页有y页,根据该宣传册每本共10页且制版费为2400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用总费用=制版费+每本宣传册的印刷费×印刷数量,即可求出结论.(1)解:设每本宣传册中A种彩页有x页,B种彩页有y页,依题意得:x+y=10300x+200y=2400,解得:x=4y=6.答:每本宣传册中A种彩页有4页,B种彩页有6页;(2)解:2400+(2.5×4+1.5×6)×1500=2400+(10+9)×1500=2400+19×1500=2400+28500=30900(元).答:印制这批宣传册制版费与印刷费的总和是30900元.【点睛】本题考查了二元一次方程组的应用以及有理数的混合运算,找准等量关系,正确列出二元一次方程组是解题的关键.3.(2021春·浙江绍兴·七年级校联考期中)确保室内空气新鲜一方面是提高生活质量的需要,另一方面也是有效防控新型冠状病毒传播的需要,因而越来越多的居民选购家用空气净化器以净化室内空气.阳光商场抓住商机,从厂家购进了A、B两种型号的净化器共140台,A型号净化器进价是900元/台,B型号净化器进价是2100元/台,购进两种型号净化器共用去174000元.(1)求商场各进了A、B两种型号的净化器多少台?(2)为使每台B型号净化器的毛利润是A型号的2倍,且保证售完这140台净化器的毛利润达到54000元,求每台A型号净化器的售价.(注:毛利润=售价—进价)【答案】(1)A型号净化器100台,B型号净水器40台;(2)1200元【分析】(1)设商场购进A型号净化器x台,B型号净水器y台,然后根据题意列出方程求解即可;(2)设销售每台A型号净化器的毛利润为m元,则销售每台B型号净化器的毛利润为2m元,然后根据题意列方程求解即可.【详解】解:(1)设商场购进A型号净化器x台,B型号净水器y台,依题意,得:x+y=140900x+2100y=174000,解得:x=100y=40.答:商场购进A型号净化器100台,B型号净水器40台.(2)设销售每台A型号净化器的毛利润为m元,则销售每台B型号净化器的毛利润为2m元,依题意,得:100m+40×2m=54000,解得:m=300,∴900+m=1200.答:每台A型号净化器的售价为1200元.【点睛】本题主要考查了一元一次方程和二元一次方程组的实际应用,解题的关键在于能够准确找出等量关系列方程求解.4.(2021春·浙江·七年级期末)为了防治“新型冠状病毒”,我市某小区准备用4800元购买医用口罩和洗手液发放给本小区住户.若医用口罩买800个,洗手液买120瓶,则钱还缺400元;若医用口罩买1200个,洗手液买80瓶,则钱恰好用完.求医用口罩的单价是多少?洗手液的单价是多少?【答案】医用口罩的单价为2.5 元/个,洗手液的单价为30元/瓶【分析】设医用口罩的单价为x元/个,洗手液的单价为y元/瓶,根据题意得出方程组,解方程组即可.【详解】解:设医用口罩的单价为x元/个,洗手液的单价为y元/瓶,根据题意得:800x+120y=4800+400 1200x+80y=4800,解得:x=2y=30,答:医用口罩的单价为2.5 元/个,洗手液的单价为30元/瓶.【点睛】本题考查了二元一次方程组的应用,找到等量关系,由题意列出二元一次方程组是解题的关键.5.(2013春·浙江衢州·七年级校联考期中)“一方有难,八方支援”是我们中华民族的传统美德.当四川雅安发生7.0级地震之后,我市迅速调集了1400顶帐篷和1600箱药品.现要安排A型和B型两种货车将这批物质运往灾区,已知A型货车每辆可运50顶帐篷和60箱药品,B型货车每辆可运40顶帐篷和40箱药品.问题:(1)需要安排A型和B型车辆各多少辆,恰好可以使物质一次性运往灾区?(2)若A型货车每辆费用1000元,B型货车每辆费用800元,则此次运送物质共需费用多少元?【答案】(1)A型20辆,B型10辆(2)28000元【分析】(1)设A型车辆为x辆,B型车辆为y辆,根据“A型货车每辆可运50顶帐篷和60箱药品,B型货车每辆可运40顶帐篷和40箱药品”即可列方程组求解;(2)根据“A型货车每辆费用1000元,B型货车每辆费用800元”即可求得结果.(1)解:设A型车辆为x辆,B型车辆为y辆,由题意得50x+40y=140060x+40y=1600,解得x=20y=10答: 需要安排A型车辆20辆,B型车辆10辆;(2)解:1000×20+800×10=28000答:此次运送物质共需费用28000元.【点睛】解题的关键是读懂题意,找到等量关系,正确列方程组求解.6.(2013春·浙江杭州·七年级统考期中)某蔬菜公司收购蔬菜260吨,准备加工后上市销售.该公司的加工能力是:每天精加工8吨或粗加工20吨.现计划在22天内完成加工任务,且尽可能多的精加工,该公司应安排几天精加工,几天粗加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润是1500元,精加工后的利润为3000元,那么该公司出售这些加工后的蔬菜共可获利多少?【答案】该公司应安排15天精加工,7天粗加工,才能按期完成任务.该公司出售这些加工后的蔬菜共可获利570000元.【详解】解:公司应安排x天粗加工,y天精加工,才能按期完成任务,根据题意得{x+y=228x+20y=260,解得{x=15 y=7此时精加工:15×8=120(吨),粗加工:20×7=140(吨)公司可获利为1500×140+3000×120=210 000+360 000=570 000(元).答:该公司应安排15天精加工,7天粗加工,才能按期完成任务.如果每吨蔬菜粗加工后的利润是1500元,精加工后的利润为3000元,那么该公司出售这些加工后的蔬菜共可获利570 000元.考点:二元一次方程点评:本题考查二元一次方程,解答本题的关键是考生能列出二元一次方程来,然后就是要掌握解二元一次方程的方法,有两种代入消元法和加减消元法7.(2022春·浙江杭州·七年级校考期中)在疫情防控期间,某中学为保障广大师生生命健康安全,从商场购进一批免洗手消毒液和84消毒液.如果购买40瓶免洗手消毒液和90瓶84消毒液,共花费1320元,如果购买60瓶免洗手消毒液和120瓶84消毒液,共花费1860元.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)若商场有两种促销方案:方案一,所有购买商品均打九折;方案二,购买5瓶免洗手消毒液送2瓶84消毒液,学校打算购进免洗手消毒液100瓶,84消毒液60瓶,请问学校选用哪种方案更节约钱?节约多少钱?【答案】(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是15元、8元;(2)学校选用方案二更节约钱,节约122元.【分析】(1)根据购买40瓶免洗手消毒液和90瓶84消毒液,共需花费1320元,如果购买60瓶免洗手消毒液和120瓶84消毒液,共需花费1860元,可以列出相应的二元一次方程组,从而可以求出每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元;(2)根据题意,可以求出方案一和方案二的花费情况,然后比较大小并作差即可解答本题.【详解】(1)解:设每瓶免洗手消毒液和每瓶84消毒液的价格分别是a元、b元,40a+90b=132060a+120b=1860,解得:a=15b=8,答:每瓶免洗手消毒液和每瓶84消毒液的价格分别是15元、8元;(2)解:方案一的花费为:(15×100+8×60)×0.9=1782(元),方案二的花费为:15×100+8×(60-100÷5×2)=1660(元),1782-1660=122(元),1782>1660,答:学校选用方案二更节约钱,节约122元.【点睛】本题考查二元一次方程组的应用,解答本题的关键是明确题意,利用方程的知识解答.8.(2021春·浙江衢州·七年级校考期中)某校在2021年组织七年级学生参加研学活动,租用二种不同型号的客车,每辆座位如下表:客车型号A B人数/辆2849若租用A型客车5辆和B型客车2辆,则需要租金2500元;若租用A型客车1辆和B型客车5辆,则需要租金2800 元.(1)求租用A,B两种型号客车,每辆车租金分别是多少元?(2)现有七年级14个班级的学生588人,现计划同时租用两种型号客车,一次送完,且恰好每辆车都坐满,为节约成本,则租用A型客车和B型客车各多少辆,需要花费多少钱?【答案】(1)A型车每辆的租金为300元,B型车每辆的租金为500元(2)租用A型客车14辆,B型客车4辆,需要花费6200元;租用A型客车7辆,B型客车8辆,需要花费6100元【分析】(1)设A型车每辆的租金为x,B型车每辆的租金为y,根据已知租用方案,列出方程组,解之即可;(2)设租用A型车辆a辆,B型车辆b辆,得到关于a,b的二元一次方程,求出正整数解,可得方案.(1)解:设A型车每辆的租金为x,B型车每辆的租金为y,9.(2022春·浙江温州·七年级统考期中)自从上海发生新冠肺炎发生以来,社会各界携手抗疫,全国人民积极捐助,共克时艰.温州市无偿捐助新鲜蔬菜120 t运往疫区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(t/辆)5810汽车运费(元/辆)400500600(1)全部蔬菜可用甲型车8辆,乙型车5辆,丙型车____辆来运送;(2)若全部蔬菜都用甲、乙两种车型来运送,需运费8 200元,问分别需甲、乙两种车型各几辆?(3)该地打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为16辆,你能分别求出运费最省时三种车型的辆数吗?此时的运费又是多少元?【答案】(1)4(2)需要8辆甲型车,10辆乙型车10.(2022春·浙江杭州·七年级校考期中)“当好东道主,文明迎亚运”,本区对亚运场馆附近的主干道进行了改造,因道路建设需要开挖土石方,计划每小时挖掘土石方1760m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:租金(单位:元/台•时)挖掘土石方量(单位:m3/台•时)甲型190160乙型260240(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过2000元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?①当m=8,n=2时,每小时需支付的租金为190×8+260×2=2040(元),2040>2000,不符合题意,舍去;②当m=5,n=4时,每小时需支付的租金为190×5+260×4=1990(元),1990<2000,符合题意;③当m=2,n=6时,每小时需支付的租金为190×2+260×6=1940(元),1940<2000,符合题意.答:共有2种不同的租用方案.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.11.(2021春·浙江绍兴·七年级校考期中)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买 1 个文具袋和 2 个圆规需21 元,购买 2 个文具袋和 3 个圆规需39 元.(1)求文具袋和圆规的单价.(2)学校准备购买文具袋20 个,圆规若干,文具店给出两种优惠方案:方案一:一个文具袋还送1 个圆规.方案二:购买圆规10 个以上时,超出10 个的部分按原价的八折优惠,文具袋不打折.①设购买圆规m(m≥ 20)个,则选择方案一的总费用为________,选择方案二的总费用为________.②若学校购买圆规100 个,则选择哪种方案更合算?请说明理由.【答案】(1)文具袋的单价为15元,圆规的单价为3元;(2)①(3m+240)元;(2.4m+306)元;②选择方案一更合算,理由见解析.【分析】(1)设文具袋的单价为x元,圆规的单价为y元,根据“购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)①根据总价=单价×数量结合两种优惠方案,可得出当购买m个圆规时,选择方案一及选择方案二所需费用;②代入m=100,分别求出选择两个方案所需总费用,比较后即可得出结论.(1)设文具袋的单价为x元,圆规的单价为y元,依题意,得:x+2y=212x+3y=39,解得:x=15y=3.答:文具袋的单价为15元,圆规的单价为3元.(2)①设购买圆规m个,选择方案一的总费用为:20×15+3(m-20)=3m+240(元);选择方案二的总费用为:20×15+10×3+3×80%(m-10)=2.4m+306(元)故答案为:(3m+240)元;(2.4m+306)元.②当m=100时,3m+240=540,2.4m+306=546,∵540<546,∴选择方案一更合算.【点睛】本题考查了二元一次方程组的应用、列代数式以及代数式求值,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)①根据各数量之间的关系,用含m的代数式表示出选择方案一及方案二所需总费用;②代入m=100,分别求出选择两个方案所需总费用.12.(2021春·浙江·七年级校考期中)如表为某票务网站公布的几种类型门票的价格,小李用4200元作为预订门票的资金.门票种类指定日普通票三日票七日票票价(元/张)200400900(1)若全部资金用来预订三日票和七日票共8张,问三日票和七日票各订多少张?(2)小李想用全部资金预订指定日普通票、三日票和七日票共10张,他的想法能实现吗?若不能,请说明理由;若可以,请求出各种类型门票的张数.【答案】(1)三日票6张;七日票2张(2)能,预订指定日普通票4张;三日票4张;七日票2张【分析】(1)通过理解题意可知本题存在两个等量关系,即“用4200元作为预订门票的资金、三日票和七日票共8张”,根据这两个等量关系可列出方程组.(2)虽然多出了一个选项,但是可以用已知的两个来表示.不过如何购票还必须有一个讨论过程.(1)解:设预订三日票x张和七日票y张.由题意得400x+900y=4200x+y=8,解得x=6y=2,答:三日票和七日票分别定6张、2张;13.(2022春·浙江嘉兴·七年级校考期中)某市甲、乙两个有名的学校乐团,决定向某服装厂购买同样的演出服.如表是服装厂给出的演出服装的价格表:购买服装的套数1~39套(含39套)40~79套(含79套)80套及以上每套服装的价格100元80元60元经调查:两个乐团共75人(甲乐团人数不少于40人),如果分别各自购买演出服,两个乐团共需花费6600元.请回答以下问题:(1)甲、乙两个乐团各有多少名学生?(2)现从甲乐团抽调a人,从乙乐团抽调b人(要求从每个乐团抽调的人数不少于5人),去儿童福利院献爱心演出,并在演出后每位乐团成员向儿童们进行“心连心活动”;甲乐团每位成员负责3位小朋友,乙乐团每位成员负责5位小朋友.这样恰好使得福利院65位小朋友全部得到“心连心活动”的温暖.请写出所有的抽调方案,并说明理由.【答案】(1)甲乐团有30人;乙乐团有45人(2)共有两种方案:从甲乐团抽调5人,从乙乐团抽调10人;或者从甲乐团抽调10人,从乙乐团抽调7人.14.(2021春·浙江绍兴·七年级校考阶段练习)温州市甲、乙两个有名的学校乐团,决定向某服装厂购买同样的演出服.如表是服装厂给出的演出服装的价格表:购买服装的套数1~39套(含39套)40~79套(含79套)80套及以上每套服装的价格80元70元60元经调查:两个乐团共75人(甲乐团人数不少于40人),如果分别各自购买演出服,两个乐团共需花费5600元.请回答以下问题:(1)如果甲、乙两个乐团联合起来购买服装,那么比各自购买服装最多可以节省多少元?(2)甲、乙两个乐团各有多少名学生?(3)现从甲乐团抽调a人,从乙乐团抽调b人(要求从每个乐团抽调的人数不少于5人),去儿童福利院献爱心演出,并在演出后每位乐团成员向儿童们进行“心连心活动”;甲乐团每位成员负责3位小朋友,乙乐团每位成员负责5位小朋友.这样恰好使得福利院65位小朋友全部得到“心连心活动”的温暖.请写出所有的抽调方案,并说明理由.【点睛】本题主要考查了列式计算、二元一次方程组的应用、二元一次方程的应用,审清题意、明确各量之间的关系是解答本题的关键.15.(2022春·浙江舟山·七年级统考期末)舟山市疫情防控工作领导小组在5月30日发布了常态化核酸检测工作的通知,6月3日起我市居民进入公共场所须凭7天内核酸采样或检测阴性证明.根据文件要求,学生在校期间每周要组织核酸检测一次,某校积极响应,安排校医甲和教师乙进行核酸采集培训.经过培训后,甲采集的速度是乙的两倍,且甲采集52人用时比乙采集30人用时少2分钟.(1)求甲、乙平均每分钟分别采集多少人?(2)该校七年级学生人数比八年级少18人,其中七年级有7个班,每班m人,8八年级有6个班,每班n人,两名采集员各自用了87分钟完成了七、八年级学生核酸采集工作,求m和n的值;(3)该校教职工70人完成核酸采集后要放入10人试管或20人试管中,在保证每个试管不浪费情况下,有哪几种分装方案?答:甲平均每分钟采集4人,乙平均每分钟采集2人;(2)解:依题意得:7m=6n−187m+6n=87×(2+4),解得m=36n=45;(3)解:设10人试管有x个,20人试管有y个,依题意得:10x+20y=70,即x=7-2y,则有:x=5y=1或x=3y=2或x=1y=3或x=7y=0,有4种方案:①5个10人试管,1个20人试管;②3个10人试管,2个20人试管;③1个10人试管,3个20人试管;④7个10人试管,0个20人试管.【点睛】本题主要考查分式方程的应用,二元一次方程组的应用,解答的关键是理解清楚题意找到等量关系.16.(2021春·浙江杭州·七年级杭州绿城育华学校校考期中)芒果大王小明春节前欲将一批芒果运往外地销售,若用2辆A型车和1辆B型车载满芒果一次可运走10吨,用1辆A型车和2辆B型车载满芒果一次可运走11吨.现有芒果31吨,计划同时租用A型车x辆,B型车y第,一次运完,且恰好每辆车都载满芒果,根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满芒果一次可分别运送多少吨?(2)请你据该物流公司设计租车方案:(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费用是多少.【答案】(1)1辆A型车载满蔬菜一次可运送3吨,1辆B型车载满蔬菜一次可运送4吨(2)该物流公司共有3种租车方案,方案1:租用9辆A型车,1辆B型车;方案2:租用5辆A型车,4辆B型车;方案3:租用1辆A型车,7辆B型车(3)费用最少的租车方案为:租用1辆A型车,7辆B型车,最少租车费为940元【分析】(1)设1辆A型车载满蔬菜一次可运送x吨,1辆B型车载满蔬菜一次可运送y吨,根据题意列出17.(2022春·浙江绍兴·七年级校联考期中)雅安地震发生后,全国人民抗震救灾,众志成城,值地震发生一周年之际,某地政府又筹集了重建家园的必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)全部物资可用甲型车6辆,乙型车5辆,丙型车 辆来运送.(2)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(3)已知三种车的总辆数为14辆,你有哪几种安排方案刚好运完?哪种运费最省?【答案】(1)5(2)需要甲型车8辆、乙型车10辆(3)方案1:安排10辆乙型车,4辆丙型车;方案2:安排2辆甲型车,5辆乙型车,7辆丙型车;方案3:安排4辆甲型车,10辆丙型车;安排10辆乙型车,4辆丙型车所需运费最省【分析】(1)根据需要丙型车的辆数=(需要运送物质的总重量-甲型汽车运送货物的总重量-丙型汽车运送货物的总重量)÷每辆丙型车的运载量,即可求出结论;(2)设需甲型车x辆,乙型车y辆,根据“用甲、乙两种车型运送120吨物质,共需运费8200元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(3)设安排甲型车m辆、乙型车n辆、则安排丙型车(14-m-n)辆,根据一次正好运送货物120吨,即可得出关于m,n的二元一次方程,结合m,n,(14-m-n)均为非负整数,即可得出各运送方案,再分别求出各运送方案所需费用,比较后即可得出结论.(1)解:(120﹣5×6﹣8×5)÷10=5(辆).故答案为:5.(2)解:设需甲型车x辆,乙型车y辆,依题意,得:5x+8y=120400x+500y=8200,解得:x=8y=10,答:需要甲型车8辆、乙型车10辆.18.(2022春·浙江宁波·七年级校联考期中)某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场计划同时只购进其中两种不同型号的电视机,并且正好用完拨款.请你给出所有可行的采购方案.(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元.在以上的方案中,为使获利最多,你选择哪种进货方案?【答案】(1)可选择方案:1、采购甲乙两种电视机各25台2、采购甲丙两种电视机分别35台和15台(2)选择方案2:采购甲丙两种电视机分别35台和15台,获利最大【分析】(1)利用平均价格=总价÷单价,可求出购进50台电视的平均价格为1800元,结合题意,三种情况考虑,甲、乙、丙三类电视机选择2类共3种可能:甲乙、甲丙、乙丙,再由9万元从厂家购进50台电视机,列二元一次方程组,解方程组即可;(2)利用总利润=每台利润×购进数量,可分别求出各方案可获得的总利润,比较后即可得出结论.(1)解:甲、乙、丙三类电视机选择2类共3种可能:甲乙、甲丙、乙丙.甲乙:设购进甲电视机x台、乙电视机y台.可得到方程:x+y=501500x+2100y=90000解得:x=25 y=25甲丙:设购进甲电视机x台、丙电视机z台.可得到方程:x+z=501500x+2500z=90000解得:x=35 z=15乙丙:设购进乙电视机y台、丙电视机z台.可得到方程:y+z=502100y+2500z=90000解得:y=87.5z=−37.5(不合题意,舍去)答:可选择方案:1、采购甲乙两种电视机各25台2、采购甲丙两种电视机分别35台和15台.(2)方案1:150×25+200×25=8750(元)方案2:150×35+250×15=9000(元)9000>8750答:选择方案2:采购甲丙两种电视机分别35台和15台,获利最大.【点睛】本题考查二元一次方程组的应用,找准等量关系,正确列出方程组是解题关键.19.(2022春·浙江宁波·七年级期中)某物流公司现有114吨货物,计划同时租用A,B两种车,经理发现一个运货货单上的一个信息是:A型车(满载)B型车(满载)运货总量3辆2辆38吨1辆3辆36吨根据以上信息,解答下列问题:。
二元一次方程组应用题训练题(含答案)
二元一次方程组应用题一、解答题(共19题;共95分)1.加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一第二道工序所完成的件数相等.2.垃圾对环境的影响日益严重,垃圾危机的警钟被再次拉响.我市某中学积极响应国家号召,落实垃圾“分类回收,科学处理”的政策,准备购买、两种型号的垃圾分类回收箱共20只,放在校园各个合适位置,以方便师生进行垃圾分类投放.若购买型14只、型6只,共需4240元;若购买型8只、型12只,共需4480元.求型、型垃圾分类回收箱的单价.3.某农场去年生产大豆和小麦共300吨。
采用新技术后,今年总产量为350吨,与去年相比较,大豆超产10%,小麦超产20%。
求该农场今年实际生产大豆和小麦各多少吨?4.有两块试验田,原来可产花生470千克,改用良种后共产花生532千克,已知第一块田的产量比原来增加16%,第二块田的产量比原来增加10%,问这两块试验田改用良种后,各增产花生多少千克?5.某书店的两个下属书店共有某种图书5000册,若将甲书店的该种图书调出400册给乙书店,这样乙书店的该种图书的数量仍比甲书店该种图书的数量的一半还少400册。
求这两个书店原有这种图书的数量差。
6.甲种电影票每张20元,乙种电影票每张15元,若购买甲乙两种电影票共40张,恰好用去720元,求甲、乙两种电影票各买了多少张?7.小欢和小乐一起去超市购买同一种矿泉水和同一种面包,小欢买了3瓶矿泉水和3个面包共花21元钱;小乐买了4瓶矿泉水和5个面包共花32.5元钱.求此种矿泉水和面包的单价.8.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.设该旅游团租住三人间客房间,两人间客房间,请列出满足题意的方程组.9.甲、乙两人做同样的零件,如果甲先做天,乙再开始做天后两人做的一样多,如果甲先做个,乙再开始做,天后乙反而比甲多做个.甲、乙两人每天分别做多少个零件?(用方程组解答)10.七年级一班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有元,请帮我安排买支钢笔和本笔记本.售货员:好,每支钢笔比每本笔记本贵元,退你元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?11.根据下图提供的信息,求每件恤衫和每瓶矿泉水的价格.12.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.求购进甲、乙两种花卉,每盆各需多少元?13.某饮料加工厂生产的A、B两种饮料均需加入同种派加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产多少瓶?14.某班师生共44人去公园划船,公园有大、小两种型号的船只,每艘船可容纳的人数和费用如下表:若每艘船刚好坐满(即没有空位),一共花费1200元请问公园提供了大、小船各多少艘?15.有黑白两种小球各若干个,且同色小球质量均相等,在如图所示的两次称量的天平恰好平衡,如果每只砝码质量均为5克,每只黑球和白球的质量各是多少克?16.有大小两种货车,2辆大货车与3辆小货车一次可以运货17吨,5辆大货车与6辆小货车一次可以运货38吨.求一辆大货车和一辆小货车每次分别可以运货多少吨?17.某汽车制造厂接受了在预定期限内生产一批汽车的任务,如果每天生产35辆,则差10辆才能完成任务;如果每天生产40辆,则可超额生产20辆.试求预定期限是多少天?计划生产多少辆汽车?18.列方程或方程组解应用题:“地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分﹣21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.19.一种口服液有大盒、小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶.求大盒、小盒每盒各装多少瓶?答案解析部分一、解答题1.【答案】解:设第一道工序需要x人,第二道工序需要y人,根据题意得:,解得:,答:第一道工序需要4人,第二道工序需要3人.【考点】二元一次方程组的其他应用【解析】【分析】由题意可得等量关系:每天第一、第二道工序所完成的件数相等和现有7位工人参加这两道工序,据此列出方程组,求解即可.2.【答案】解:设型垃圾分类回收箱的单价为元/只, 型垃圾分类回收箱的单价为元/只依题意得:解之得:答:型垃圾分类回收箱的单价为200元/只, 型垃圾分类回收箱的单价为240元/只.【考点】二元一次方程组的其他应用【解析】【分析】根据题意,设型垃圾分类回收箱的单价为元/只,型垃圾分类回收箱的单价为元/只,结合题目等量关系列出二元一次方程组,进而求解即可.3.【答案】解:设去年大豆、小麦产量分别为ⅹ吨、y吨,由题意得解得(1+10%)x=11×100=110吨,(1+20%)y=1.2×200=240答:大豆,小麦今年的产量分别为110吨和240吨。
二元一次方程组应用题经典题及答案
二元一次方程组应用题经典题及答案一、行程问题题目:A、B 两地相距 120 千米,甲、乙两人分别从 A、B 两地同时出发,相向而行。
甲的速度是每小时 10 千米,乙的速度是每小时 20 千米。
经过多少小时两人相遇?答案:设经过 x 小时两人相遇。
甲行驶的路程为 10x 千米,乙行驶的路程为 20x 千米。
由于两人是相向而行,所以他们行驶的路程之和等于两地的距离,可列出方程:10x + 20x = 12030x = 120x = 4答:经过 4 小时两人相遇。
二、工程问题题目:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成。
若两人合作,需要多少天完成?答案:设两人合作需要 x 天完成。
把这项工程的工作量看作单位“1”,甲每天的工作效率是 1/10,乙每天的工作效率是 1/15。
两人合作每天的工作效率是(1/10 + 1/15),可列出方程:(1/10 + 1/15)x = 1(3/30 + 2/30)x = 15/30 x = 1x = 6答:两人合作需要 6 天完成。
三、商品销售问题题目:某商店将进价为 8 元的商品按每件 10 元售出,每天可售出200 件。
现在采用提高售价,减少销售量的办法增加利润,如果这种商品每件的销售价每提高 05 元,其销售量就减少 10 件,问应将每件售价定为多少元时,才能使每天利润为 640 元?答案:设将每件售价定为 x 元。
每件的利润为(x 8)元,售价提高了(x 10)元。
因为售价每提高 05 元,销售量减少 10 件,所以销售量减少了 10×(x 10)÷05 = 20(x 10)件。
实际销售量为200 20(x 10)件。
根据利润=每件利润×销售量,可列出方程:(x 8)200 20(x 10)= 640(x 8)(200 20x + 200)= 640(x 8)(400 20x)= 640400x 20x² 3200 + 160x = 640-20x²+ 560x 3840 = 0x² 28x + 192 = 0(x 12)(x 16)= 0解得 x₁= 12,x₂= 16答:应将每件售价定为 12 元或 16 元时,才能使每天利润为 640 元。
初中数学二元一次方程组经典练习题(含答案)
初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。
第八章 二元一次方程组 (单元测试)【解析版】
第八章二元一次方程组章节测试一、单选题:1.下列方程组中是二元一次方程组的是()A .141y xx v ⎧+=⎪⎨⎪-=⎩B .43624x y y z +=⎧⎨+=⎩C .41x y x y +=⎧⎨-=⎩D .22513x y x y +=⎧⎨+=⎩2.已知方程237x y =+,用含y 的代数式表示x 的是()A .237x y =+B .237x y =-+C .372x y =+D .3722=+x y 3.将13x y -=-代入21x y -=的可得()A .1213x x --⨯=B .()2113x x --=C .2213x x ++=D .2213x x -+=4.将三元一次方程组5x 4y z 03x y 4z 11x y z 2++=⎧⎪+-=⎨⎪++=-⎩①②③,经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是()A .4x 3y 27x 5y 3+=⎧⎨+=⎩B .4x 3y 223x 17y 11+=⎧⎨+=⎩C .3x 4y 223x 17y 11+=⎧⎨+=⎩D .3x 4y 27x 5y 3+=⎧⎨+=⎩【答案】A【分析】根据题意先得出①-③后的方程,再得到③×4+②的方程,从而得出二元一次方程组.【详解】解:根据题意得:①-③得:4x+3y=2,③×4+②得:7x+5y=3,则三元一次方程组54034112x y z x y z x y z ++=⎧⎪+-=⎨⎪++=-⎩①②③,经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是432753x y x y +=⎧⎨+=⎩;故选:A .【点睛】本题主要考查了三元一次方程组的解,解题的关键是掌握加减消元法消去未知数项,从而得到二元一次方程组.5.若324432a b a b x y ++--=是关于x ,y 的二元一次方程,则23a b +的值为()A .0B .3-C .3D .6【答案】A【分析】根据二元一次方程的定义,得=1a b +,324=1+-a b ,即可得到关于a 、b 的方程组,从而解出a ,b .【详解】解:∵324432a b a b x y ++--=是一个关于x ,y 的二元一次方程,∴=1324=1a b a b +⎧⎨+-⎩,解得:=3=2a b ⎧⎨-⎩,∴23=660+-=a b ,故选:A .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.6.已知x ,y 满足方程组45x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式().A .1x y +=B .1x y +=-C .9x y +=D .9x y -=【答案】C【分析】方程组中的两个方程相加得出x +y +m -5=4+m ,整理后即可得出答案.【详解】解:45x m y m +⎧⎨-⎩=①=②,①+②得:x +y +m -5=4+m ,即x +y =9,故选:C .【点睛】本题考查了二元一次方程组的解和解二元一次方程组,能理解二元一次方程组的解的定义是解此题的关键.7.对于非零的两个实数a ,b ,规定a b am bn ⊗=-,若3⊗(-5)=-15,4⊗(-7)=-28,则(-1)⊗2的值为()A .-13B .13C .2D .-2【答案】B【分析】根据已知规定及两式,确定出m 、n 的值,再利用新规定化简原式即可得到结果.【详解】根据题意得:3⊗(-5)3515m n =+=-,4⊗(-7)4728m n =+=-,∴35154728m n m n +=-⎧⎨+=-⎩,解得:3524m n =⎧⎨=-⎩,∴(-1)⊗22354813m n =--=-+=,故选:B .【点睛】本题考查了新定义运算,涉及了解二元一次方程组等知识,要求学生能理解题目规则,正确列出等式.解决本题时,求出m 、n 是关键.8.如图,宽为50cm 的长方形图案由10个形状大小完全相同的小长方形拼成,其中一个小长方形的面积为()A .2400cmB .2500cmC .2600cmD .24000cm 【答案】A【分析】设小长方形的宽为x cm ,长为y cm ,根据题意列方程组求解即可.【详解】设小长方形的宽为x cm ,长为y cm ,根据题意得504x y y x +=⎧⎨=⎩,解得1040x y =⎧⎨=⎩,∴一个小长方形的面积为21040400cm ⨯=,故选:A .【点睛】本题考查了二元一次方程组的实际应用,能够根据题意列出方程组并准确求解是解题的关键.9.已知关于,x y 的方程组212ax y x by +=⎧⎨-=⎩,甲看错a 得到的解为12x y =⎧⎨=-⎩,乙看错了b 得到的解为11x y =⎧⎨=⎩,他们分别把a b 、错看成的值为()A .5,1a b ==-B .15,2a b ==C .11,2a b =-=D .1,1a b =-=【答案】A【分析】把甲的结果代入第一个方程求出a 的值,把乙的结果代入第二个方程求出b 的值,求解即可.【详解】解:把12x y =⎧⎨=-⎩代入21ax y +=得:41a -=,把11x y =⎧⎨=⎩代入2x by -=得:12b -=,解得:a=5,b=-1,故选A .【点睛】此题主要考查了二元一次方程组的解和解二元一次方程的知识点,解题关键点是看清题意再得出a 、b 的值.10.关于x ,y 的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x +3y =﹣6的解,则k 的值是()A .﹣34B .34C .43D .﹣43二、填空题:11.请写出一个以21x y =⎧⎨=-⎩为解的二元一次方程:______.【答案】1x y +=(答案不唯一)【分析】根据二元一次方程定义:ax by c +=,令,,a b c 为常数,把21x y =⎧⎨=-⎩代入,解出c 即可.【详解】∵本题答案不唯一,只要写出的二元一次方程的解为21x y =⎧⎨=-⎩即可∴令1a =,1b =,得x y c +=∴把21x y =⎧⎨=-⎩代入方程x y c+=解出1c =∴1x y +=故答案是:1x y +=.【点睛】本题考查解二元一次方程的逆过程、不定方程的定义,灵活掌握二元一次方程定义是解题的关键.12.若11x y =⎧⎨=-⎩是方程组2421ax y bx by a +=⎧⎨-=-⎩的解,则a =_______,b =_______.【答案】3, 1.【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.把x 、y 的值代入原方程组可转化成关于a 、b 的二元一次方程组,解方程组即可求出a 、b 的值.【详解】把x ,y 的值代入方程组,得2421a b b a -=⎧⎨+=-⎩解得a=3,b=1,故答案为3, 1.【点睛】一要注意方程组的解的定义;二要熟练解方程组的基本方法:代入消元法和加减消元法.13.若()235230x y x y ,-++-+=则x y +的值为______.【答案】-3【分析】根据已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出x+y 的值.【详解】∵(3x-y+5)2+|2x-y+3|=0,∴3x-y+5=0,2x-y+3=0,∴x=-2,y=-1.∴x+y=-3.【点睛】本题考查的知识点是:某个数的平方与另一数的绝对值的和等于0,那么平方数的底数为0,绝对值里面的代数式的值为0.14.在y=ax 2+bx+c 中,当x=1时,y=0;当x=2时,y=4;当x=3时,y=10,则当x=4时,y=___.【答案】18【分析】先把x=1时,y=0;x=2时,y=4;x=3时,y=10分别代入y=ax 2+bx+c ,求出a ,b ,c 的值,从而得出等式y=x 2+x-2,再把x=4代入,即可求出y 的值.【详解】把x=1时,y=0;x=2时,y=4;x=3时,y=10分别代入y=ax 2+bx+c 得:04249310a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得:112a b c =⎧⎪=⎨⎪=-⎩,则等式y=x 2+x-2,把x=4代入上式得:y=18.【点睛】本题考查了三元一次方程组的解法,掌握解三元一次方程组的步骤是本题的关键15.已知点()36,415A x y -+,点()5,B y x 关于x 轴对称,则x y +的值是____.【答案】-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.【详解】解:∵点()36,415A x y -+,点()5,B y x 关于x 轴对称,∴3654150x y y x -=⎧⎨++=⎩;解得:33x y =-⎧⎨=-⎩,∴=-6+x y ,故答案为-6.【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.16.若二元一次方程组23151x y ax by -=⎧⎨+=⎩和51cx dy x y -=⎧⎨+=⎩同解,则可通过解方程组_____求得这个解.【答案】23151x y x y -=⎧⎨+=⎩【分析】联立两方程组中不含a 与b 的方程重新组成新的方程组即可.【详解】解:∵二元一次方程组23151x y ax by -=⎧⎨+=⎩和51cx dy x y -=⎧⎨+=⎩同解,∴可通过解方程组23151x y x y -=⎧⎨+=⎩求得这个解,故答案为:23151x y x y -=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组同解的问题,解题的关键在于能够熟练掌握相关知识进行求解.17.已知关于x ,y 的二元一次方程组224x y mx y +=⎧⎨+=⎩的解满足x ﹣y =3,则m 的值为_____【答案】1【分析】②−①得到x−y =4−m ,代入x−y =3中计算即可求出m 的值.【详解】解:224x y m x y +=⎧⎨+=⎩①②,②−①得:x−y =4−m ,∵x−y =3,∴4−m =3,解得:m =1,故答案为1【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.19.《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为_________.【答案】5210258x y x y +=⎧⎨+=⎩【分析】设1头牛值金x 两,1只羊值金y 两,根据等量关系“①5头牛,2只羊共值10两金;②2头牛,5只羊共价值8两金”,分别列出方程即可求解.【详解】设1头牛值金x 两,1只羊值金y 两,由题意可得,5210258x y x y +=⎧⎨+=⎩.故答案为:5210258x y x y +=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组的应用,根据题意得出正确的等量关系是解题关键.20.为鼓励居民节约用气,某省决定对天然气收费实行阶梯气价,阶梯气价划分为两个档级:(1)第一档气量为每户每月30立方米(含30立方米)以内,执行基准价格;(2)第二档气量为每户每月超出30立方米以上部分,执行市场调节价格.小明家5月份用气35立方米,交费112.5元;6月份用气41立方米,交费139.5元,若小明7月份用气29立方米,则他家应交费________元.【答案】87【分析】根据5月份用气35立方米,交费112.5元;6月份用气41立方米,交费139.5元,列出方程组求得气价,再进一步根据7月份用气29立方米选择气价计算即可.【详解】设基准价格为x 元,市场调节价格为y 元,由题意得305112.5,3011139.5,x y x y +=⎧⎨+=⎩解得3,4.5.x y =⎧⎨=⎩7月份用气29立方米,则他家应交费29×3=87元.故答案为87.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程组.三、解答题:21.解方程:(1)32339x y x y +=⎧⎨-=⎩(用代入消元法)(2)734831x y x y -=⎧⎨-=-⎩(用加减消元法)(3)12343314312x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩(4)281223x y z x y x z y ++=⎧⎪-=-⎨⎪+=+⎩【答案】(1)56x y =⎧⎨=⎩;(2)513x y =-⎧⎨=-⎩;(3)22x y =⎧⎨=⎩;(4)123x y z =⎧⎪=⎨⎪=⎩【分析】(1)由方程②变形得39y x =-,并代入方程①,解方程即可求得x 的值,再将求得的x 值代入39y x =-中,可求得y 的值,从而得方程组的解;(2)考虑两方程中y 的系数相同,两式相减即可消去未知数y ,求得x ,再将x 的值代入第一个方程即可求得y 的值,从而得方程组的解;(3)先化简方程组中的每一个方程,再用加减法解方程组即可;(4)先消去未知数z ,转化为二元一次方程组,解二元一次方程组求得x 与y 的值,最后求得z 的值即可.【详解】(1)32339x y x y +=⎧⎨-=⎩①②,方程②变形得:39y x =-③,把③代入①,得:()33923x x +-=,解得:5x =,把5x =代入③得:6y =,所以方程组的解为:56x y =⎧⎨=⎩;(2)734831x y x y -=⎧⎨-=-⎩①②,②-①得:5x =-,把5x =-代入①得:3534y --=解得:13y =-所以方程组的解为:513x y =-⎧⎨=-⎩;(3)方程组化简得:432342x y x y -=⎧⎨-=-⎩①②①+②得:770x y -=,即y x =,把y x =代入①得:2x =,∴2y x ==,所以原方程组的解为:22x y ==⎧⎨⎩;(4)原方程组化为:281223x y z x y x y z ++=⎧⎪-=-⎨⎪-+=⎩①②③①×2-③得:613x y +=④,④-②得:714y =,解得:2y =,把2y =代入②得:1x =,把2y =,1x =代入①得:3z =,所以原方程组的解为:123x y z =⎧⎪=⎨⎪=⎩.【点睛】题目主要考查解二元一次方程组和三元一次方程组,解法有代入消元法和加减消元法两种,能够根据方程组的特点,灵活选取适当的方法,熟练而准确地掌握解方程组方法是本题的关键.22.一个两位数,个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18,则原两位数是多少?【答案】原两位数是53.【分析】设原两位数的个位数字为x ,十位数字为y ,根据“个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入10y +x 即可得出结论.【详解】解:设原两位数的个位数字为x ,十位数字为y ,根据题意得:()8101018x y y x x y +=⎧⎨+-+=⎩解得:35x y =⎧⎨=⎩∴10y+x =53.答:原两位数是53.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车.问一共多少名学生、多少辆汽车.【答案】240名学生,5辆车.【分析】设车数是x ,学生是y 人,依据题意列方程组:()4515601x y x y ⎧⎨-⎩+==即可解.【详解】设车数是x ,学生是y 人,依据题意列方程组:()4515601x y x y ⎧⎨-⎩+==,解方程组可得:5240x y ⎧⎨⎩==.所以一共有学生240人,车5辆.故答案为一共有学生240人,车5辆.【点睛】本题考查的知识点是二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.24.已知方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,求m ,n 的值.【答案】41m n =⎧⎨=-⎩【分析】先解不含m 、n 的方程组,解得x 、y 的值,再代入含有m 、n 的方程组求解即可.【详解】解:∵3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,∴32453x y y x -=⎧⎨-=⎩和23197-=⎧⎨+=⎩mx ny mx ny 也有相同的解,∴解方程组324{53x y y x -=-=,得21x y =⎧⎨=⎩,代入23197-=⎧⎨+=⎩mx ny mx ny 中得431927m n m n -=⎧⎨+=⎩,∴解方程组得41m n =⎧⎨=-⎩.故答案为41m n =⎧⎨=-⎩.【点睛】本题主要考查了与二元一次方程组的解有关的知识点,解题的关键是准确理解方程组有相同解的情况,组成新的二元一次方程组求解.25.材料:解方程组()1045x y x y y --=⎧⎨--=⎩时,可由①得1x y -=③,然后再将③代入②得415y ⨯-=,求得1y =-,从而进一步求得01x y =⎧⎨=-⎩这种方法被称为“整体代入法”请用这样的方法解方程组()()423324x y x y x y -=⎧⎨--=⎩26.抗洪指挥部的一位驾驶员接到一个防洪的紧急任务,要在限定的时间内把一批抗洪物质从物资局运到水库,这辆车如果按每小时30千米的速度行驶在限定的时间内赶到水库,还差3千米,他决定以每小时40千米的速度前进,结果比限定时间早到18分钟,问限定时间是几小时?物资局仓库离水库有多远?27.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?当m=5,n=3时,支付租金:100×5+120×3=860元当m=1,n=6时,支付租金:100×1+120×6=820元.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量.点睛:本题考查了二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.。
二元一次方程组应用题(50题)
二元一次方程组应用题(50题)1. 婆婆家的流水问题婆婆家有一个流水池,从自来水管道接入流水池中,再从流水池中通过自来水管道供应给家中的各个水龙头。
假设自来水管道的水流速度为x,流水池的容积为y,通过自来水管道流出的水量为z。
已知当自来水管道的水流速度为8升/分钟时,流水池会在20分钟内完全注满。
求出流水池的容积和通过自来水管道流出的水量之间的关系。
解题思路:设流水池的容积为y升,通过自来水管道流出的水量为z升。
根据题意得到以下方程组: 1. 自来水管道的水流速度与流水池的注水时间关系:8升/分钟 = y/20分钟 2. 流水池的容积与自来水管道流出的水量关系:z = y根据方程组可以求得:y = 160升,z = 160升。
2. 兰兰购买书籍兰兰去书店购买了几本书,每本书的价格不等。
已知兰兰购买的这几本书的总价格为x元,当其中两本书的价格分别减少5元和增加7元后,他们的价格相等。
求出每本书的原始价格。
解题思路:设第一本书的价格为y元,第二本书的价格为z元。
根据题意得到以下方程组: 1. 兰兰购买的这几本书的总价格:x = y + z 2. 当其中两本书的价格分别减少5元和增加7元后,他们的价格相等:y - 5 = z + 7将第二个方程式代入第一个方程式中,求解可以得到:y = (x + 12) / 2,z = (x - 12) / 2。
3. 成绩排名班级里有30个学生,数学和英语两门课的成绩分别用x和y表示。
已知数学成绩平均分为80分,英语成绩平均分为85分。
学生成绩排名中,有10个学生的数学成绩高于平均分,有15个学生的英语成绩高于平均分。
求出数学和英语成绩中,既高于平均分,又相等的学生人数。
解题思路:设数学成绩高于平均分且相等的学生人数为y,英语成绩高于平均分且相等的学生人数为z。
根据题意得到以下方程组: 1. 数学成绩平均分为80分:(80 * 30 + y) / 30 =80 2. 英语成绩平均分为85分:(85 * 30 + z) / 30 = 85 3. 学生成绩排名中,有10个学生的数学成绩高于平均分:y = 10 4.学生成绩排名中,有15个学生的英语成绩高于平均分:z =15求解方程组可以得到:y = 10,z = 15,既高于平均分,又相等的学生人数为10。
(完整版)二元一次方程组测试题及答案
二元一次方程组(时间:45分钟 满分:100分) 姓名一、选择题(每小题5分,共20分)1. 下列不是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩ B .43624x y x y +=⎧⎨+=⎩C .44x y x y +=⎧⎨-=⎩ D .35251025x y x y +=⎧⎨+=⎩2.由132x y-=,可以得到用x 表示y 的式子是( )A .223x y -=B .2133x y =-C .223x y =-D .223xy =-3.方程组327413x y x y +=⎧⎨-=⎩的解是( )A .13x y =-⎧⎨=⎩ B .31x y =⎧⎨=-⎩C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩4.方程组125x y x y -=⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=-⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩二、填空题(每小题6分,共24分)5.在349x y +=中,如果2y = 6,那么x = 。
6.已知18x y =⎧⎨=-⎩是方程31mx y -=-的解,则m = 。
7.若方程m x + n y = 6的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则m = ,n = 。
8.如果2150x y x y -+=+-=,那么x = ,y = 。
三、解下列方程组(每小题8分,共16分)9.1323334m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩10.()()344126x y x y x y x y⎧+--=⎪⎨+-+=⎪⎩四、综合运用(每小题10分,共40分)11.用16元买了60分、80分两种邮票共22枚。
60分与80分的邮票各买了多少枚?12.已知梯形的面积是42cm2,高是6cm,它的下底比上底的2倍少1cm,求梯形的上下底。
13.〈〈一千零一夜〉〉中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的13,若从树上飞下去一只,则树上、树下的鸽子就一样多了。
二元一次方程组测试卷
二元一次方程组测试卷一、选择题(每题3分,共30分)1. 下列方程中,是二元一次方程的是()A. x + (1)/(y)=2B. xy = 9C. 3x - 2y = 4D. x^2+y = 62. 方程2x + y = 9在正整数范围内的解有()A. 1组。
B. 2组。
C. 3组。
D. 4组。
3. 若x = 2 y = 1是关于x、y的二元一次方程ax - 3y = 1的解,则a的值为()A. 2.B. -2.C. 5.D. -5.4. 二元一次方程组x + y = 5 x - y = 3的解是()A. x = 4 y = 1B. x = 1 y = 4C. x = 2 y = 3D. x = 3 y = 25. 用代入法解方程组y = 1 - x x - 2y = 4时,代入正确的是()A. x - 2 - x = 4B. x - 2 - 2x = 4C. x - 2 + 2x = 4D. x - 2 + x = 46. 已知x = m y = n和x = n y = m是方程2x - 3y = 1的解,则m - n的值为()A. 1.B. -1.C. 0.D. 2.7. 若方程组ax + by = 2 ax - by = 2与2x + 3y = 4 4x - 5y = -6的解相同,则a,b的值为()A. a = (23)/(11) b = (4)/(11)B. a = (23)/(11) b = -(4)/(11)C. a = -(23)/(11) b = (4)/(11)D. a = -(23)/(11) b = -(4)/(11)8. 某班有x名学生,其中女生人数占45%,则男生人数为()A. 0.45xB. 0.55xC. (x)/(0.45)D. (x)/(0.55)9. 甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,设甲的速度为x米/秒,乙的速度为y米/秒,下列方程组正确的是()A. 5x = 5y + 10 4x = 4y + 2yB. 5x - 5y = 10 4x - 2x = 4yC. 5x + 10 = 5y 4x - 4y = 2D. 5x - 5y = 10 4x - 4y = 2y10. 关于x,y的方程组3x - y = m x + my = n的解是x = 1 y = 1,则| m - n|的值是()A. 5.B. 3.C. 2.D. 1.二、填空题(每题3分,共15分)1. 若x^2m - 1+5y^3n - 2m=7是二元一次方程,则m=_ ,n=_ 。
二元一次方程组应用题200道
二元一次方程组应用题(200道)知能点1 销售和利润问题1.某商场为迎接店庆进行促销,羊绒衫每件按标价的八折出售,每件将赚80元,后因库存太多,每件羊绒衫按标价的六折出售,每件将亏损60元,则该商场每件羊绒衫的进价为_____,标价为_______.2.某种彩电原价是2018元,若价格上涨x%,那么彩电的新价格是______元;若价格下降y%,那么彩电的新价格是_______元.3.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由m%提高到(m+6)%,则m的值为().A.10 B.12 C.14 D.174.在我国股市交易中,每买一次要交千分之七点五的各种费用,某投资者以每股100元的价格买入上海股票1 000股,当该股票涨到120元时全部卖出,该投资者的实际赢利为().A.2 0000元 B.1 9250元 C.18350元 D.19100元5.某商场欲购进甲、乙两种商品共50件,甲种商品每件进价为35元,利润率是20%,乙种商品每件进价为20元,利润率是15%,共获利278元,则甲、乙两种商品各购进多少件?◆知能点2 利率、利税问题6.某公司存入银行甲、乙两种不同性质的存款共80万元,甲、乙两种存款的年利率分别为1.4%和3.7%,该公司一年共得利息(不计利息税)26000元,则甲种存款______,乙种存款______.7.某人以两种形式一共存入银行8 0000元人民币,其中甲种储蓄的年利率为10%,乙种储蓄的年利率为8%,一年共得利息8600元,若设甲种存入x元,乙种存入y元,根据题意列方程组,得_________.8.某工厂现向银行申请了两种货款,共计35万元,每年需付利息2.25万元,甲种贷款每年的利率是7%,乙种贷款每年的利率是6%,求这两种贷款的数额各是多少.若设甲、乙两种贷款的数额分别为x万元和y万元,则().A.x=15,y=20 B.x=12,y=23 C.x=20,y=15 D.x=23,y=12◆开放探索创新9.某商场计划拨款180万元从厂家购进1000台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元,若商场同时购进其中两种不同型号电视机共1000台,用去180万元,请你研究一下商场的进货方案.◆中考真题实战10.(重庆)为了解决农民工子女入学难的问题,我市建立了一套进城农民工子女就学的保障机制,其中一项是免交“借读费”.据统计,2004年秋季有15000名农民工子女进入主城区中小学学习,预测2005年秋季进入主城区中小学学习的农民工子女将比2004年有所增加,其中小学增加20%,中学增加30%,这样2005年秋季将新增3480名农民工子女在主城区中小学学习.如果按小学生每年的“借读费”500元,中学生每年的“借读费”1000元计算,求2005年新增的1 160名中小学生共免收多少“借读费”.11.(南通)张栋同学到百货大楼买了两种型号的信封共28个,其中买A型号的信封用了1元5角,买B型号的信封用了1元8角,B型号的信封每个比A型号的信封便宜5分,则两种型号信封的单价各是多少元?知能点3 行程问题12.甲、乙两人相距60km,甲的速度是30km/h,乙的速度为20km/h,两人同时出发,(1)若同向而行,甲追上乙需_______h;(2)若相向而行,甲、乙需______h相遇;(3)若同向而行,乙先走1h,甲再追乙,经过______h甲可追上乙.14.两人在900m的圆形跑道上练习赛跑,方向相反时每60s相遇一次,方向相同时每3min相遇一次,若设两人速度分别为x(m/s)和y(m/s)(x>y),则由题意列出方程组为_________.15.A,B两地相距80km,甲从A地,乙从B地同时出发相向而行,经过8h相遇,相遇后,甲立即返回A地,乙仍向A地前进,甲回到A地时,乙离A地还有2km,则两人的速度分别为________.16.一只船在一条河上的顺流速度是逆流速度的5倍,则这只船在静水中的速度与水流速度之比为:_________.17.已知某铁路桥长1600m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用90s,整列火车完全在桥上的时间是70s,求火车的速度和长度.知能点4 配套问题18.张阿姨要把若干个苹果分给小朋友们吃,若每人8个,则多1个;若每人9个,则缺2个,苹果有_______个,小朋友有_______个.19.两台拖拉机共运水泥58t,其中一台比另一台多运8t,则这两台拖拉机分别运送了水泥_______t和_________t.20.如图所示,周长为34的长方形ABCD被分成7个大小完全一样的小长方形,则每个小长方形的面积为().A.30 B.20 C.10 D.1421.一个长方形周长为30,若它的长减少2,宽增加3,就变成了一个正方形,设该长方形长为x,宽为y,则可列方程组为().22.现用380张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?◆规律方法应用23.用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身1个桶底正好配套做1个水桶,现在有126张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?24.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.已知过去两次租用这两种货车的情况如下表:第一次第二次甲货车辆数(单位:辆)25乙货车辆数(单位:辆)36累计运货吨数(单位:吨)15.535现租用该公司6辆甲种货车及8辆乙种货车一次刚好运完这批货,如果按每吨付运费100元计算,则货主应付运费多少元?◆开放探索创新25.小颖在拼图时发现8个一样大小的矩形,恰好可以拼成一个大的矩形,如图(1)所示.小彬看见了,说:“我来试一试”.结果小彬七拼八凑,拼成如图(2)那样的正方形.中间还留下一个洞,恰好是边长为6mm的小正方形.你能帮他们解开其中的奥秘吗?◆中考真题实战26.(长沙)某工厂第一季度生产甲、乙两种机器共500台,改进生产技术后,计划第二季度生产这两种机器共580台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?27、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已37岁了。
列二元一次方程组解应用题专项练习50题(有答案)ok
列二元一次方程组专项练习50题(有答案)1、已知某铁路桥长800m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s,求火车的速度和长度.2、现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,•一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?3、用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身1•个桶底正好配套做1个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?4、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.•已知过去两次租用这两种货车的情况如下表:现租用该公司3辆甲种货车及30元计算,则货主应付运费多少元?5、(长沙)某工厂第一季度生产甲、乙两种机器共480台,改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?6、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?7、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。
在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?8、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?9、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车。
二元一次方程组及其应用单元测试题4套(含答案)
⼆元⼀次⽅程组及其应⽤单元测试题4套(含答案)⼆元⼀次⽅程组单元检测1姓名:时间:成绩:⼀、选择题(共12题每题3分共36分)⼀、根据图1所⽰的计算程序计算y 的值,若输⼊2=x ,则输出的y 值是() A .0 B .2- C .2 D .4 ⼆、将⽅程121=+-y x 中含的系数化为整数,下列结果正确的是() A .442-=-y x B .442=-y x C .442-=+y x D .442=+y x 三、如果==21y x 是⼆元⼀次⽅程组?=+=+21ay bx by ax 的解,那么a ,b 的值是() A .??=-=01b a B .==01b a C .==10b a D .?-==10b a 四、如果⼆元⼀次⽅程组?=+=-a y x ay x 3的解是⼆元⼀次⽅程0753=--y x 的⼀个解,那么a 的值是( )A .3B .5C .7D .9五、如果3251b a 与y x x b a ++-141是同类项,则x ,y 的值是( )A .??==31y x B .==22y x C .==21y x D .==32y x六、若2a 2s b 3s -2t 与-3a 3t b 5是同类项,则( ) A .s =3,t =-2 B .s =-3,t =2 C .s =-3,t =-2 D .s =3,t =2 七、⽅程3y +5x =27与下列的⽅程________所组成的⽅程组的解是??==43y x ( )A .4x +6y =-6B .4x +7y -40=0C .2x -3y =13D .以上答案都不对⼋、⼆元⼀次⽅程组??=-=+ky x k y x 7252的解满⾜⽅程31x -2y =5,那么k 的值为( )A .53B .35C .-5D .1九、甲、⼄两地相距360千⽶,⼀轮船往返于甲、⼄两地之间,顺流⽤18⼩时,逆流⽤24⼩时,若设船在静⽔中的速度为x 千⽶/时,⽔流速度为y 千⽶/时,在下列⽅程组中正确的是 ( )A .=-=+360)(24360)(18y x y xB .??=+=+360)(24360)(18y x y xC .=-=-360)(24360)(18y x y xD .=+=-360)(24360)(18y x y x⼗、在等式b kx y +=中,当x=0时,y=1-;当x=1-时,y=0,则这个等式是( )A .1--=x yB .x y -=C .1+-=x yD .1+=x y ⼗⼀、如果??=+-=-+0532082z y x z y x ,其中xyz≠0,那么x :y :z=( )A .1:2:3B .2:3:4C .2:3:1D .3:2:1 ⼗⼆、如果⽅程组??=-+=+5)1(21073y a ax y x 的解中的x 与y 的值相等,那么a 的值是( )A .1B .2C .3D .4 ⼆、填空题(共4题每题3分共12分)⼗三、已知42+=a x ,32+=a y ,如果⽤x 表⽰y ,则y = .⼗四、在等式5×⼝+3×Δ=4的⼝和Δ处分别填⼊⼀个数,使这两个数互为相反数.⼗五、如果2006200520044321=+-+-+n m n m y x 是⼆元⼀次⽅程,那么32n m +的值是.⼗六、如图,点A 的坐标可以看成是⽅程组的解.三、解答题(共7题 6+6+7+7+8+8+10 共52分)⼗七、(1)??-==+73825x y y x (2)?=-=+423732y x y x⼗⼋、若⽅程组??=+=-31y x y x 的解满⾜⽅程组?=+=-84by ax by ax ,求a ,b 的值.⼗九、定义“*”:(1)(1)x yA B x A BA B *=++++,已知321=*,432=*,求43*的值.⼆⼗、某⽔果批发市场⾹蕉的价格如下表购买⾹蕉数(千克) 不超过20千克 20千克以上但不超过40千克 40千克以上每千克的价格6元5元4元张强两次共购买⾹蕉50千克,已知第⼆次购买的数量多于第⼀次购买的数量,共付出264元,请问张强第⼀次,第⼆次分别购买⾹蕉多少千克?⼆⼗⼀、为保护学⽣视⼒,课桌椅的⾼度都是按⼀定的关系配套设计的,研究表明:假设课桌的⾼度y (cm)是椅⼦的⾼度x (cm )的⼀次函数,下表列出两套符合条件的课桌椅的⾼度:第⼀套第⼆套椅⼦的⾼度X(cm) 40.0 37.0 桌⼦⾼度y(cm)75.070.2(1)请确定x y 与的函数关系式;(2)现有⼀把⾼39cm 的椅⼦和⼀张⾼为78.2cm 的课桌,它们是否配套?为什么?⼆⼗⼆、(1)求⼀次函数的坐标的交点的图象与的图象P l x y l x y 2112122-=-=. (2)求直线1l 与y 轴交点A 的坐标; 求直线2l 与X 轴的交点B 的坐标; (3)求由三点P 、A 、B 围成的三⾓形的⾯积.⼆⼗三、阅读下列解题过程,借鉴其中⼀种⽅法解答后⾯给出的试题:问题:某⼈买13个鸡蛋,5个鸭蛋、9个鹅蛋共⽤去了9.25元;买2个鸡蛋,4个鸭蛋、3个鹅蛋共⽤去了3.20元.试问只买鸡蛋、鸭蛋、鹅蛋各⼀个共需多少元.分析:设买鸡蛋,鸭蛋、鹅蛋各⼀个分别需x 、y 、z 元,则需要求x+y+z 的值.由题意,知----=++---=++)2(20.3342)1(25.99513z y x z y x ;视x 为常数,将上述⽅程组看成是关于y 、z 的⼆元⼀次⽅程组,化“三元”为“⼆元”、化“⼆元”为“⼀元”从⽽获解.解法1:视x 为常数,依题意得?-----=+----=+)4(220.334)3(1325.995x z y x z y解这个关于y 、z 的⼆元⼀次⽅程组得??-=+=xz xy 2105.0于是05.12105.0=-+++=++x x x z y x .评注:也可以视z 为常数,将上述⽅程组看成是关于x 、y 的⼆元⼀次⽅程组,解答⽅法同上,你不妨试试.分析:视z y x ++为整体,由(1)、(2)恒等变形得 25.9)2(4)(5=++++z x z y x , 20.3)2()(4=+-++z x z y x .解法2:设a z y x =++,b z x =+2,代⼊(1)、(2)可以得到如下关于a 、b 的⼆元⼀次⽅程组??----=----=+)6(20.34)5(25.945b a b a由⑤+4×⑥,得05.2221+a ,05.1=a .评注:运⽤整体的思想⽅法指导解题.视z y x ++,z x +2为整体,令z y x a ++=,z x b +=2,代⼈①、②将原⽅程组转化为关于a 、b 的⼆元⼀次⽅程组从⽽获解.请你运⽤以上介绍的任意⼀种⽅法解答如下数学竞赛试题:购买五种教学⽤具A 1、A 2、A 3、A 4、A 5的件数和⽤钱总数列成下表:那么,购买每种教学⽤具各⼀件共需多少元?品名次数 A 1 A 2 A 3 A 4 A 5 总钱数第⼀次购买件数 l 3 4 5 6 1992 第⼆次购买件数l 5 7 9 11 2984参考答案⼀、选择题1.D2.A3.B4.C5.C6.D7.B8.B9.A10.A11.C12.B ⼆、填空题 13.x -1 14.2,-2 15.9 16.??+--=512x y x y 三、解答题17、(1){21=-=x y (2){21==x y 18、解:解⽅程组??=+=-31y x y x 得:{21==x y将{21==x y 分别代⼊⽅程组=+=-84by ax by ax 得{8242=+=-b a b a 解这个⽅程组得{32==a b所以3=a 、2=b 19.?-==13275Y X ,351442013277543=-=*.20.解:设张强第⼀次购买了⾹蕉x 千克, 第⼆次购买了⾹蕉y 千克,由题意可知025x <<, ①当02040x y <≤,≤时,由题意可得,=+=+5026456y x y x 解得{1436==x y②当02040x y <≤,>时,由题意可得?=+=+5026446y x y x 解得{3218==x y (不合题意,舍去)③当025x <<时,则2530y <<,则张强花的钱数为5X+5Y=5×50=250<264(不合题意,舍去) 所以张强第⼀次买14千克⾹蕉,第⼆次买36千克⾹蕉. 21.解:(1)设y kx b =+,根据题意得{750.402.700.37=+=+b k b k 解得{6.111==k b 所以116.1+=k y(2)不配套,因为:当X=39时,由116.1+=k y 得y=1.6×39+11=73.4≠78 所以不配套.22、解:(1)由-=-=22121x y x y 解得:??=-=3232x y 所以点P 的坐标为-32,32,(2)当X=0时,由Y=2×0-2=-2,所以点A 坐标是(0,-2). 当Y=0时,由0=-21X-1,得X=2,所以点B 坐标是(2,0). (3)如图112222222233PAB S =??-=△23、1000元⼆元⼀次⽅程单元检测2姓名:时间:成绩:⼆⼗四、选择题(共12题每题3分共36分) 1. 已知下列⽅程组:(1)-==23y y x ,(2)=-=+423z y y x ,(3)=-=+0131y x y x ,(4)=-=+0131y x y x ,其中属于⼆元⼀次⽅程组的个数为() A.1 B.2 C.3 D.42. 已知532b a x y +与2244a b x y --是同类项,则a b 的值为()A.2B.-2C.1D.-13. 已知⽅程组-=-=+1242m ny x ny mx 的解是-==11y x ,那么m 、n 的值为()A.?-==11n m B.==12n m C.==23n m D.==13n m4. 三元⼀次⽅程组??=+=+=+651x z z y y x 的解是()A.??===501z y x B. 015x y z ?=?=??=?C.===401z y xD.===014z y x5. 若⽅程组=+=-+14346)1(y x y a ax 的解x 、y 的值相等,则a 的值为()A.-4B.4C.2D.16. 若关于x 、y 的⽅程组?=-=+k y x ky x 73的解满⾜⽅程2x +3y =6,那么k 的值为()A.-23B.23C.-32D.-237. 若⽅程y =kx +b 当x 与y 互为相反数时,b ⽐k 少1,且x =21,则k 、b 的值分别是() A.2,1 B.32,35 C.-2,1 D.31,-328. 某班学⽣分组搞活动,若每组7⼈,则余下4⼈;若每组8⼈,则有⼀组少3⼈.设全班有学⽣x ⼈,分成y 个⼩组,则可得⽅程组()A.=-=+y x y x 3847B.=++=x y x y 3847C.+=-=3847x y x yD.+=+=3847x y x y9. 某车间56名⼯⼈,每⼈每天能⽣产螺栓16个或螺母24个,设有名⼯⼈⽣产螺栓,其它⼯⼈⽣产螺母,每天⽣产的螺栓和螺母按1:2配套,所列⽅程正确的是()A.=?=+y x y x 2416256B.=?=+y x y x 1624256C.==+y x y x 241628D.?==+y x y x 16245610. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、⼄两种奖品共 30件,其中甲种奖品每件16元,⼄种奖品每件12元,求甲⼄两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,⼄种奖品y 件,则⽅程组正确的是()A.301216400x y x y +=??+=?B.301612400x y x y +=??+=?C. 121630400x y x y +=??+=?D. 161230400x y x y +=??+=?11. 灾后重建,四川从悲壮⾛向豪迈.灾民发扬伟⼤的抗震救灾精神,桂花村派男⼥村民共15 ⼈到⼭外采购建房所需的⽔泥,已知男村民⼀⼈挑两包,⼥村民两⼈抬⼀包,共购回15 包.请问这次采购派男⼥村民各多少⼈?A .男村民3⼈,⼥村民12⼈B .男村民5⼈,⼥村民10⼈C .男村民6⼈,⼥村民9⼈D .男村民7⼈,⼥村民8⼈12. 在早餐店⾥,王伯伯买5颗馒头,3颗包⼦,⽼板少拿2元,只要50元.李太太买了 11颗馒头,5颗包⼦,⽼板以售价的九折优待,只要90元.若馒头每颗x 元,包⼦每颗y 元,则下列哪⼀个⼆元⼀次联⽴⽅程式可表⽰题⽬中的数量关系?A .=++=+9.09051125035y x y xB .÷=++=+9.09051125035y x y xC .=+-=+9.09051125035y x y xD .÷=+-=+9.09051125035y x y x⼆⼗五、填空题(共4题每题3分共12分)13. 已知⼆元⼀次⽅程1213-+y x =0,⽤含y 的代数式表⽰x ,则x =_________;当y =-2时,x =.14. 在(1)-==23y x ,(2)-==354y x ,(3)1472x y ?==??这三组数值中,_____是⽅程组 x -3y =9的解,______是⽅程2 x +y =4的解,______是⽅程组?=+=-4293y x y x 的解.15. 已知=-=54y x ,是⽅程41x +2 my +7=0的解,则m =_______.16. 若⽅程组=-=+137by ax by ax 的解是-=-=12y x ,则a =_________,b =_______.⼆⼗六、解答题(共7题 6+6+7+7+8+8+10 共52分(此处分值可以根据具体情况来定))17. -=-=-.557832y x y x18. =+=+.15765545.04332y x y x19. 已知⽅程组?+=+=+25332n y x ny x 的解x 、y 的和为12,求n 的值.20. 已知⽅程组-=+=-1332by ax y x 与=+=+3321123by ax y x 的解相同,求a 2+2ab +b 2 的值.21. 已知代数式x 2+ax +b 当x =1和x =-3时的值分别为0和14,求当x =3时代数式的值.22.某校去年⼀年级男⽣⽐⼥⽣多80⼈,今年⼥⽣增加20%,男⽣减少25%,结果⼥⽣⼜⽐男⽣多30⼈,求去年⼀年级男⽣、⼥⽣各多少⼈.23.B两地相距20千⽶,甲、⼄两⼈分别从A、B 两地同时相向⽽⾏,两⼩时后在途中相遇,然后甲返回A地,⼄继续前进,当甲回到A地时,⼄离A地还有2千⽶,求甲、⼄两⼈的速度.参考答案⼀、选择题1.B2.C3.D4.A5.C6.B7.D8.C9.A 10.B 11.B 12. B ⼆、填空题13.x =62y -;x =32.14.(1),(2);(1),(3);(1).15.-53.16.a =-5,b =3.三、解答题17.【答案】-=-=.65y x 【答案】=-=.223y x19.【提⽰】解已知⽅程组,⽤n 的代数式表⽰x 、y ,再代⼊ x +y =12.【答案】n =14.20.【提⽰】先解⽅程组=+=-1123332y x y x 求得x 、y ,再代⼊⽅程组?=+-=+3321by ax by ax 求a 、b .【答案】=-=52b a .21.【提⽰】由题意得关于a 、b 的⽅程组.求出a 、b 写出这个代数式,再求当x =3时它的值.【答案】5. 22.【提⽰】设去年⼀年级男⽣、⼥⽣分别有x ⼈、y ⼈,可得⽅程组=--+=-.30)100251()100201(80x y y x 【答案】x =280,y =200. 23.【提⽰】由题意,相遇前甲⾛了2⼩时,及“当甲回到A 地时,⼄离A 地还有2千⽶”,可得列⽅程组的另⼀个相等关系:甲、⼄同向⾏2⼩时,相差2千⽶.设甲、⼄两⼈的速度分别为x 千⽶/时,y 千⽶/时,则=-=+.2)(220)(2y x y x 【答案】甲的速度为5.5千⽶/时,⼄的速度为4.5千⽶/时.⼆元⼀次⽅程组单元检测3姓名:时间:成绩:⼀、选择题(共12题每题3分共36分)1. 下列是⼆元⼀次⽅程的是()A .x x =-63B .y x 23=C .132=+y x D .xy y x =-32 2. 在⽅程组=+=-1253by x y ax 中,如果-==121y x 是它的⼀个解,那么a 、b 的值为( )A .a =1,b =2B .不能惟⼀确定C .a =4,b =0D .a =21,b =-1 3. ⽅程41ax y x -=-是⼆元⼀次⽅程,则a 的取值为()A 、a ≠0B 、a ≠-1C 、a ≠1D 、a ≠24. 已知57x y =??=?满⾜⽅程kx ﹣2y =1,则k 等于()A .3B .4C .5D .65. ⼆元⼀次⽅程32325x y x y -=??+=?的解是()A 、10x y =??=?B 、322x y ?==?C 、232x y =??= D 、71x y =??=-? 6. ⽼师问⼀⼥⽣有⼏个兄弟姐妹,她答:“有⼏个兄弟就有⼏个姐妹”,⽼师⼜问她的哥哥有⼏个兄弟姐妹,他答:“我的姐妹是兄弟的2倍”,则他们的兄弟姐妹中,男孩、⼥孩的⼈数各是()A 、4、3B 、2、5C 、3、4D 、5、27. 在等式b kx y +=中,当1=x 时,5=y ;当2-=x 时,11=y ,则k 、b 的值为A.??-==27b kB.??=-=27b k C.-==72b k D.=-=72b k8. 若352220x y x y +++--=,则223x xy -的值是()A 、14B 、-4C 、-12D 、129. ⼆元⼀次⽅程组327,25x y x y -=??+=?的解是()A .32x y =??=?B .12x y =??=?C .42x y =??=?D .31x y =??=?10. ⼩明在解关于x 、y 的⼆元⼀次⽅程组331x y x y +?=??-?=?时得到了正确结果1x y =⊕=?后来发现“?”、“⊕”处被墨⽔污损了,请你帮他找出“?”、“⊕”处的值分别是()A . ?=1,⊕=1B . ?=2,⊕=1C . ?=1,⊕=2D . ?=2,⊕=211. 为迎接2013年“亚青会”,学校组织了⼀次游戏:每位选⼿朝特制的靶⼦上各投三以飞镖,在同⼀圆环内得分相同.如图所⽰,⼩明、⼩君、⼩红的成绩分别是29分、43分和33分,则⼩华的成绩是()⼩明⼩君⼩红⼩华A .31分B .33分C .36分D .38分12. 下列⽅程中,是⼆元⼀次⽅程的是() A .3x -2y =4z B .6xy +9=0 C .1x +4y =6 D .4x =24y - ⼆、填空题(共4题每题3分共12分)13. 若?==53y x 是⽅程22=-y mx 的⼀个解,则=m 。
二元一次方程组应用题测试题
二元一次方程组应用题测试题1 •某公司存入银行甲、乙两种不同性质地存款共20万元,甲、?乙两种存款地年利率分别为1.4%和3.7% ,该公司一年共得利息(不计利息税)6 250?元,?则甲种存款 ___________ ,乙种存款 _______ •2 .某人以两种形式一共存入银行 8 000元人民币,其中甲种储蓄地年利率为 10%,乙种储蓄地年利率为8%,—年共得利息860元,若设甲种存入 x 元,乙种存入y 元,根据题 意列方程组,得 __________________ .文档收集自网络,仅用于个人学习3•某工厂现向银行申请了两种货款,共计35万元,每年需付利息 2. 25万元,?甲种贷款每年地利率是 7%,乙种贷款每年地利率是 6%,求这两种贷款地数额各是多少.?若设甲、乙两种贷款地数额分别为x 万元和y 万元,则().文档收集自网络,仅用于个人学习A . x=15,y=20B . x=12,y=23C . x=20,y=15D . x=23,y=12 文档收集 自网络,仅用于个人学习4 .甲、乙两人相距 45km ,甲地速度是7km/h ,乙地速度为3km/h ,两人同时出发,(1)若 同向而行,甲追上乙需 ______________ h ; (2)若相向而行,甲、乙需 __________h 相遇;(3)若同 向而行,乙先走 1h ,甲再追乙,经过 ________ h 甲可追上乙.文档收集自网络,仅用于个人学习5.两人在400m 地圆形跑道上练习赛跑, 方向相反时每32s 相遇一次,?方向相同时每3min相遇一次,若设两人速度分别为x (m/s )和y (m/s ) (x>y ), ?则由题意列出方程组为____________ .文档收集自网络,仅用于个人学习6.A ,B 两地相距20km ,甲从A 地,乙从B 地同时出发相向而行,经过2h 相遇,相遇后,甲立即返回A 地,乙仍向A 地前进,甲回到 A 地时,乙离 A 地还有2km ,则两人地速 度分别为__________________ .文档收集自网络,仅用于个人学习7 .一只船在一条河上地顺流速度是逆流速度地3倍,则这只船在静水中地速度与水流速度之比为: _________ .文档收集自网络,仅用于个人学习二、列二元一次方程组解应用题1、篮球联赛中,每场比赛都要分出胜负, 每队胜一场得2分•负一场得1分,某队为了 争取较好地名次,想在全部 22场比赛中得到40分,那么这个队胜负场数分别是多少?文档收集自网络,仅用于个人学习种产品各多少瓶?文档收集自网络,仅用于个人学习3、2台大收割机和5台小收割机工作2小时收割小麦3. 6公顷,3台大收割机和2台 小收割机2、根据市场调查,某种消毒液地大瓶装(按瓶计算)为2: 5•某厂每天生产这种消毒液(500g)和小瓶装(250 g)两种产品地销售数量比 22.5吨,这些消毒液应该分装大、小瓶装两工作5小时收割小麦8公顷,问:1台大收割机和1台小收割机1小时各收割小麦多少公顷?文档收集自网络,仅用于个人学习4、养牛场原有30只大牛和15只小牛,一天约需用饲料675 kg; —周后又购进12只大牛和5只小牛,这时一天约需用饲料940 kg.饲养员李大叔估计平均每只大牛1天约需用饲料18〜20 kg,每只小牛1天约需用饲料7〜8 kg.你能否通过计算检验他地估计?文档收集自网络,仅用于个人学习问1)题中有哪些已知量?哪些未知量?5、《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食•树上地一只鸽子对地上觅食地鸽子说:若从你们中飞上来一只,则树下地鸽子就是整个鸽群地1/3;若从树上飞下去一只,则树上、树下地鸽子就一样多了. ”你知道树上、树下各有多少只鸽子吗?文档收集自网络,仅用于个人学习6、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?文档收集自网络,仅用于个人学习2、木工厂有28人,2个工人一天可以加工3张桌子,3个工人一天可加工10只椅子,现在如何安排劳动力,使生产地一张桌子与4只椅子配套?文档收集自网络,仅用于个人学习7、一外圆凳由一个凳面和三条腿组成,如果1立方米木材可制作300条腿或制作凳面50个,现有9立方米地木材,为充分利用材料,请你设计一下,用多少木材做凳面,用多少木材做凳腿,最多能生产多少张圆凳?文档收集自网络,仅用于个人学习&某中学组织七年级同学到长城春游,原计划租用45座客车若干辆,但有15?人没有座位;如果租用60座客车,则多出1辆,且其余客车恰好坐满,已知45?座客车日租金为每辆220元,60 座客车日租金为每辆300元,试问:(1)七年级人数是多少??原计划租用45座客车多少辆?(2) 要使每个同学都有座位,怎样租车更合算?文档收集自网络,仅用于个人学习9、某学校现有学生数1290人,与去年相比,男生增加20%,女生减少10%,学生总数增加7. 5%,问现在学校中男、女生各是多少?文档收集自网络,仅用于个人学习10、一批蔬菜要运往某批发市场,菜农准备租用汽车公司地甲、乙两种货车.已知过去两次租用这两种这批蔬菜需租用5辆甲种货车、辆乙种货车刚好一次运完,如果每吨付20元运费, 问:菜农应付运费多少元?11、某公园地门票价格如下表所示:某校八年级甲、乙两个班共多人去该公园举行游园联欢活动,其中甲班有多人,乙班不足50人•如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共只要付515元.问:甲、乙两个班分别有多少人?文档收集自网络,仅用于个人学习12、甲运输公司决定分别运给A市苹果10吨、B市苹果8吨,但现在仅有12吨苹果,还需从乙运输公司调运6吨,经协商,从甲运输公司运1吨苹果到A、B两市地运费分别为50元和30元,从乙运输公司运1吨苹果到A、B两市地运费分别为80元和40元,要求总运费为840元,问如何进行调运?文档收集自网络,仅用于个人学习13.(重庆)为了解决农民工子女入学难地问题,?我市建立了一套进城农民工子女就学地保障机制,其中一项是免交借读费”据统计,2004年秋季有5 000?名农民工子女进入主城区中小学学习,预测2005?年秋季进入主城区中小学学习地农民工子女将比2004年有所增加,其中小学增加20%,中学增加30%,这样2005?年秋季将新增1 160名农民工子女在主城区中小学学习.如果按小学生每年地借读费” 500元,中学生每年地借读3/ 5费”100阮计算,求2005年新增地1 160名中小学生共免收多少借读费”.文档收集自网络, 仅用于个人学习14.(南通)张栋同学到百货大楼买了两种型号地信封共30个,其中买A?型号地信封用了1元5角,买B型号地信封用了1元2角,B型号地信封每个比A型号地信封便宜2分, 则两种型号信封地单价各是多少元?文档收集自网络,仅用于个人学习15.(长沙)某工厂第一季度生产甲、乙两种机器共480台,改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?文档收集自网络,仅用于个人学习开放探索创新16 •小颖在拼图时发现8个一样大小地矩形,恰好可以拼成一个大地矩形,示•小彬看见了,说:小彬七拼八凑,拼成如图形.中间还留下一个洞,地小正方形. 文档收集自网络,仅用于个人学习你能帮他们解开其中地奥秘吗?17 •某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号地电视札出厂价分别为:甲种每台 1 500元,乙种每台2 100元,丙种每台2 500元,若商场同时购进其中两种不同型号电视机共50台,用去9万元,?请你研究一下商场地进货方案.文档收集自网络,仅用于个人学习。
二元一次方程组应用题33道及答案
第五章列二元一次方程组解应用题专项训练1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。
”请问老师、学生今年多大年龄了呢?2、某长方形的周长是44cm,若宽的3倍比长多6cm,则该长方形的长和宽各是多少?3、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?4、某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5、某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。
已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。
(1)初一年级人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?6、某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?7、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。
二元一次方程组应用题训练题(含答案)
1 / 8二元一次方程组应用题一、解答题(共19题;共95分)1.加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一第二道工序所完成的件数相等.2.垃圾对环境的影响日益严重,垃圾危机的警钟被再次拉响.我市某中学积极响应国家号召,落实垃圾“分类回收,科学处理”的政策,准备购买的政策,准备购买 、 两种型号的垃圾分类回收箱共20只,放在校园各个合适位置,以方便师生进行垃圾分类投放.若购买若购买 型14只、只、 型6只,只,共需共需4240元;若购买元;若购买 型8只、只、 型12只,共需4480元.求 型、型、 型垃圾分类回收箱的单价.3.某农场去年生产大豆和小麦共300吨。
采用新技术后,今年总产量为350吨,与去年相比较,大豆超产10%,小麦超产20%。
求该农场今年实际生产大豆和小麦各多少吨?4.有两块试验田,原来可产花生470千克,改用良种后共产花生532千克,已知第一块田的产量比原来增加16%,第二块田的产量比原来增加10%,问这两块试验田改用良种后,各增产花生多少千克?,问这两块试验田改用良种后,各增产花生多少千克?5.某书店的两个下属书店共有某种图书5000册,若将甲书店的该种图书调出400册给乙书店,这样乙书店的该种图书的数量仍比甲书店该种图书的数量的一半还少400册。
求这两个书店原有这种图书的数量差。
册。
求这两个书店原有这种图书的数量差。
6.甲种电影票每张20元,乙种电影票每张15元,若购买甲乙两种电影票共40张,恰好用去720元,求甲、乙两种电影票各买了多少张?乙两种电影票各买了多少张?7.小欢和小乐一起去超市购买同一种矿泉水和同一种面包,小欢买了3瓶矿泉水和3个面包共花21元钱;小乐买了4瓶矿泉水和5个面包共花32.5元钱.求此种矿泉水和面包的单价.8.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.设该旅游团租住三人间客房人间客房 间,两人间客房间,两人间客房 间,请列出满足题意的方程组.9.甲、乙两人做同样的零件,如果甲先做甲、乙两人做同样的零件,如果甲先做 天,乙再开始做天,乙再开始做 天后两人做的一样多,如果甲先做天后两人做的一样多,如果甲先做 个,乙再开始做,乙再开始做, 天后乙反而比甲多做天后乙反而比甲多做 个.甲、乙两人每天分别做多少个零件?(用方程组解答)个.甲、乙两人每天分别做多少个零件?(用方程组解答)10.七年级一班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的下面是李小波与售货员的对话:对话:李小波:阿姨,您好!李小波:阿姨,您好!售货员:同学,你好,想买点什么?售货员:同学,你好,想买点什么?李小波:我只有李小波:我只有 元,请帮我安排买元,请帮我安排买 支钢笔和支钢笔和 本笔记本.售货员:好,每支钢笔比每本笔记本贵售货员:好,每支钢笔比每本笔记本贵 元,退你元,退你 元,请清点好,再见. 根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?11.根据下图提供的信息,求每件根据下图提供的信息,求每件 恤衫和每瓶矿泉水的价格.12.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.求购进甲、乙两种花卉,每盆各需多少元?求购进甲、乙两种花卉,每盆各需多少元?13.某饮料加工厂生产的A 、B 两种饮料均需加入同种派加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A 、B 两种饮料共100瓶,问A 、B 两种饮料各生产多少瓶?少瓶?14.某班师生共44人去公园划船,公园有大、小两种型号的船只,每艘船可容纳的人数和费用如下表:大船大船 小船小船每艘船可容纳人数 8 5每艘船的费用每艘船的费用200 150若每艘船刚好坐满(即没有空位)若每艘船刚好坐满(即没有空位) ,一共花费1200元 请问公园提供了大、小船各多少艘?请问公园提供了大、小船各多少艘?15.有黑白两种小球各若干个,有黑白两种小球各若干个,且同色小球质量均相等,且同色小球质量均相等,且同色小球质量均相等,在如图所示的两次称量的天平恰好平衡,在如图所示的两次称量的天平恰好平衡,在如图所示的两次称量的天平恰好平衡,如果每只如果每只砝码质量均为5克,每只黑球和白球的质量各是多少克?克,每只黑球和白球的质量各是多少克?16.有大小两种货车,2辆大货车与3辆小货车一次可以运货17吨,5辆大货车与6辆小货车一次可以运货38吨.求一辆大货车和一辆小货车每次分别可以运货多少吨?求一辆大货车和一辆小货车每次分别可以运货多少吨?17.某汽车制造厂接受了在预定期限内生产一批汽车的任务,如果每天生产35辆,则差10辆才能完成任务;如果每天生产40辆,则可超额生产20辆.试求预定期限是多少天?计划生产多少辆汽车?试求预定期限是多少天?计划生产多少辆汽车?18.列方程或方程组解应用题:列方程或方程组解应用题:“地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分﹣21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.个,问中国内地去年、今年分别有多少个城市参加了此项活动.19.一种口服液有大盒、小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶.求大盒、小盒每盒各装多少瓶?各装多少瓶?答案解析部分一、解答题一、解答题1.【答案】 解:设第一道工序需要x 人,第二道工序需要y 人,人, 根据题意得:根据题意得: ,解得:解得:,答:第一道工序需要4人,第二道工序需要3人.【考点】二元一次方程组的其他应用二元一次方程组的其他应用【解析】【分析】由题意可得等量关系:每天第一、第二道工序所完成的件数相等和现有7位工人参加这两道工序,据此列出方程组,求解即可.2.【答案】 解:设解:设 型垃圾分类回收箱的单价为型垃圾分类回收箱的单价为 元/只, 型垃圾分类回收箱的单价为型垃圾分类回收箱的单价为 元/只依题意得:依题意得:解之得:解之得:答:答: 型垃圾分类回收箱的单价为200元/只, 型垃圾分类回收箱的单价为240元/只.【考点】二元一次方程组的其他应用二元一次方程组的其他应用【解析】【分析】根据题意,设【分析】根据题意,设 型垃圾分类回收箱的单价为型垃圾分类回收箱的单价为 元/只,只, 型垃圾分类回收箱的单价为型垃圾分类回收箱的单价为 元/只,结合题目等量关系列出二元一次方程组,进而求解即可.3.【答案】 解:设去年大豆、小麦产量分别为ⅹ吨、y 吨,由题意得吨,由题意得解得解得(1+10%)x=11×100=110吨,(1+20%)y=1.2×200=240 答:大豆,小麦今年的产量分别为110吨和240吨。
二元一次方程组的应用同步练习(原卷解析卷)
2.4二元一次方程组的应用同步练习一.选择题1.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20B.x+y=20C.5x﹣2y=60D.5x+2y=602.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()进球数012345人数15x y32A.B.C.D.3.甲、乙两人骑自行车比赛,若甲先骑30分钟,则乙出发后50分钟可追上甲,设甲、乙每小时分别骑x千米、y千米,则可列方程()A.30x=50y B.C.(30+50)x=50y D.4.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x间、房客y人,下列方程组中正确的是()A.B.C.D.5.如图为某商店的宣传单,小胜到此店同时购买了一件标价为x元的衣服和一条标价为y元的裤子,共节省500元,则根据题意所列方程正确的是()A.0.6x+0.4y+100=500B.0.6x+0.4y﹣100=500C.0.4x+0.6y+100=500D.0.4x+0.6y﹣100=5006.一个两位数的十位数字与个位数字的和是7.如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后组成的二位数,则这个二位数是()A.36B.25C.61D.167.如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A.3元,3.5元B.3.5元,3元C.4元,4.5元D.4.5元,4元8.小刚去距县城28千米的旅游点游玩,先乘车,后步行.全程共用了1小时,已知汽车速度为每小时36千米,步行的速度每小时4千米,则小刚乘车路程和步行路程分别是()A.26千米,2千米B.27千米,1千米C.25千米,3千米D.24千米,4千米二.填空题9.某商品成本价为t元,商品上架前定价为s元,按定价的8折销售后获利45元.根据题意,可列方程:.10.如图所示的各图表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s,按此规律推断,以s,n为未知数的二元一次方程为s=.11.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货吨.12.结合下面图形列出关于未知数x,y的方程组为.13.惠来县某单位组织34人分别到广州和深圳进行继续教育学习,到广州的人数是到深圳的人数的2倍多1人,求到两地的人数各是多少?设到广州的人数为x人,到深圳的人数为y人,请列出满足题意的方程组.14.如图,长方形ABCD中放置9个形状、大小都相同的小长方形,相关数据图中所示,则图中阴影部分的面积为(平方单位).三.解答题15.某文具店,甲种笔记本标价每本8元,乙种笔记本标价每本5元(1)两种笔记本各销售了多少?(2)所得销售款可能是660元吗?为什么?16.大型客车每辆能坐54人,中型客车每辆能坐36人,现有378人,问需要大、中型客车各几辆才能使每个人上车都有座位,且每辆车正好坐满?设需要大型客车x辆,中型客车y辆.17.北京2008年奥运会跳水决赛的门票价格如下表:等级A B C票价(元/张)未知未知150小聪带了2700元购票款前往购票,若购买2张A等票和5张B等票,则购票款多出了200元;若购买5张A等票和1张B等票,则购票款还缺100元.(1)若小聪购买1张A等票和7张B等票共需花费多少元?(2)若小聪要将2700元的购票款全部用于购买这三种门票,并且每种门票至少一张,则他购买的门票总数为张.(该小题直接写出答案,不必写出过程.)18.爸爸想送小明一个书包和一辆自行车作为新年礼物,在甲、乙两商场都发现同款的自行车单价相同,书包单价也相同,自行车和书包单价之和为452元,且自行车的单价比书包的单价4倍少8元.(1)求自行车和书包单价各为多少元;(2)新年来临赶上商家促销,乙商场所有商品打八五折(即8.5折)销售,甲全场购物毎满100元返购物券30元(即不足100元不返券,满100元送30元购物券,满200元送60元购物券),并可当场用于购物,购物券全场通用.但爸爸只带了400元钱,如果他只在同一家商场购买看中的两样物品,在哪一家买更省钱?。
二元一次方程组应用题训练题(含答案)
二元一次方程组应用题训练题(含答案)1.一家工厂需要进行两道工序来生产产品。
第一道工序每人每天可以完成900件,第二道工序每人每天可以完成1200件。
现在有7位工人参与这两道工序,应该如何分配人力,才能使每天第一道工序和第二道工序所完成的件数相等?2.垃圾对环境的影响越来越严重,因此垃圾分类回收成为了一个重要的话题。
一所中学准备购买两种型号的垃圾分类回收箱,共20个,放置在校园中各个合适的位置。
其中型号一有14个,型号二有6个,总共需要4240元。
如果购买型号一8个,型号二12个,需要4480元。
请问型号一和型号二的单价分别是多少?3.某农场去年生产了大豆和小麦共计300吨。
今年采用新技术后,总产量为350吨,其中大豆超产10%,小麦超产20%。
请问今年该农场实际生产了多少吨大豆和多少吨小麦?4.有两块试验田,原本每块田都可以产生470千克的花生。
改用良种后,两块试验田共产生了532千克的花生。
已知第一块田的产量比原来增加了16%,第二块田的产量比原来增加了10%。
请问这两块试验田改用良种后,各增产了多少千克的花生?5.一家书店有两个下属书店,共有某种图书5000册。
如果将甲书店的400册该种图书调出给乙书店,那么乙书店的该种图书数量仍然比甲书店的数量少400册的一半。
请问这两个书店原来各有多少册这种图书?6.甲种电影票每张20元,乙种电影票每张15元。
如果购买甲、乙两种电影票共40张,恰好用去720元,请问甲、乙两种电影票各买了多少张?7.XXX和XXX一起去超市购买矿泉水和面包。
XXX买了3瓶矿泉水和3个面包,共花费21元;XXX买了4瓶矿泉水和5个面包,共花费32.5元。
请问这种矿泉水和面包的单价分别是多少?8.一家旅馆有三人间和两人间两种客房,其中三人间每人每天需要支付25元,两人间每人每天需要支付35元。
一个50人的旅游团到该旅馆住宿,租住了若干个客房,每个客房都被住满,一天总共花费1510元。
二元一次方程组应用题试卷
二元一次方程组应用题试卷1、小明的妈妈在菜市场买回2斤萝卜和1斤排骨,准备做萝卜排骨汤,下面是他的爸爸和妈妈的一段对话:小明根据爸爸、妈妈的对话,很快就知道了今天买的萝卜和排骨的单价,请你通过计算分别求出今天萝卜和排骨的单价.2、根据图中的信息,求梅花鹿和长颈鹿现在的高度.3、*电脑公司有A型、B型、C型三种型号的电脑,其中A型每台5000元、B型每台4000元、C型每台3000元,*中学现有资金100000元,计划全部用从这家电脑公司购进30台两种型号的电脑,请你设计几种不同的购买方案供这个学校选择,并说明理由.4、*公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品*件.(1)完成下表(2)安排生产A、B两种产品的件数有几种方案?试说明理由;5、*铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度.(1)写出题目中的两个等量关系;(2)给出上述问题的完整解答过程.6、列方程或方程组解应用题:为开阔学生的视野在社会大课堂活动中,*校组织初三年级学生参观科技馆,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.求该校初三年级有学生多少人?原计划租用多少辆45座客车?7、文具店*种笔记本的优惠销售方式为:(1)求该笔记本的标价是多少元/个?(2)今有两个班的学习委员要为本班的部分同学购买这种笔记本,若分别购买,两个班共付笔记本费246元,若合在一起作为一个人购买,两个班共付笔记本费212元.求这两个班的学习委员要购买这种笔记本各多少个?8、我市交通有关部门规定:出租车起步价允许行驶的最远路程为2千米,超过2千米的部分按每千米另收费.甲说:"我乘这种出租车走了11千米,表上显示要付费19.2元”;乙说:"我乘这种出租车走了20千米,表上显示要付费35.4元”.请你算一算这种出租车的起步价是多少元?以及超过2千米后每千米的车费是多少元?9、同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数10、*品牌电脑由一个主机和一个显示器配套构成,每个工人每天可以加工100个主机或者加工60个显示器,现有24名工人,应怎么安排人力,才能使每天生产的主机和显示器配套?11、小开到一早点摊买东西,下面是他和卖早点阿姨的对话.小开说:"我买这种包子8个,这种油条5根.”阿姨说:"一共13元6角.”付款后,小开说:"阿姨,这两根油条不要了,换3个一样的包子吧.”阿姨说:"可以,但还需补交2元钱.”从他们的对话中你能知道这种包子、油条的单价吗?12、如图,一个正方体的各组相对的面所标记的数值相等,其表面展开图为如图所示,求代数式2*﹣y的值.捐款(元)5 10 15 2013、*校九(2)班40名同学为"希望工程”捐款,共捐款400元,捐款情况如下表:表格中捐款10元和15元的人数不小心被墨水污染已看不清楚.捐款10元和15元的人数各是多少名?14、*一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示: 品名 黄瓜 茄子批发价(元/千克) 3 4零售价(元/千克) 47 当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?15、观察图,解答后面的问题.梯形个数12 3 4 5 6…周长5 8 11 14…(1)把表中的空格填上适当的数据:(2)写出周长L 和梯形个数n 之间的二元一次方程;(3)求n=2015时L 的值;(4)求L=6053时n 的值.16、*旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批人数 12 3梯形个数 1 2 3 4 5 6 …周长5 8 11 14 17 20 …游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?17、一张圆凳由一个凳面和三条腿组成,如果1m3的木材可以制作300条腿或制作凳面50个.现有9m3的木材,为充分利用材料,请你设计一下,用多少木材做凳面,用多少木材做凳腿,最多能生产多少张圆凳?18、抗洪指挥部的一位驾驶员接到一个防洪的紧急任务,要在限定的时间内把一批抗洪物质从物资局仓库运到水库.这辆车如果按每小时30千米的速度行驶,在限定的时间内赶到水库,还差3千米,他决定以每小时40千米的速度前进,结果比限定时间早到18分钟.限定时间是几小时物资局仓库离水库有多远?19、*商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价﹣进价)若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?20、有黑白两种小球各若干个,且同色小球质量均相等,在如图所示的两次称量的天平恰好平衡,如果每只砝码质量均为5克,每只黑球和白球的质量各是多少克?21、育才中学新建塑胶操场跑道一圈长400米,甲、乙两名运动员从同一点同时出发,相背而跑,40秒后首次相遇;若从同一起点同时同向而跑,200秒后甲首次追上乙,求这两名运动员的速度.甲 乙进价(元/件) 15 35 售价(元/件)20 4522、用如图(1)中的长方形和正方形纸板作侧面和底面,做成如图(2)所示的竖式和横式两种无盖纸盒。
专题01运算能力之解二元一次方程组专练(原卷版)
学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知关于x ,y 的方程组25241x y a x y a +=-⎧⎨-=-⎩给出下列结论:①当1a =时,方程组的解也是21x y a +=+的解;②无论a 取何值,x ,y 的值不可能是互为相反数;③x ,y 都为自然数的解有4对.正确的有几个()A .1B .2C .3D .42.已知关于x ,y 的方程组25241x y a x y a +=-⎧⎨-=-⎩给出下列结论:①当a =1时,方程组的解也是x +y =2a +1的解;②无论a 取何值,x ,y 的值不可能是互为相反数;③x ,y 的自然数解有3对;④若2x +y =8,则a =2.正确的结论有()个.A .1B .2C .3D .43.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返同,且往返速度的大小不变,两车离甲地的距离y (单位:km )与慢车行驶时间t (单位:h )的函数关系如图,则两车先后两次相遇的间隔时间是()A .5h 3B .3h 2C .7h 5D .4h 34.一次函数y =kx +b 的部分自变量与相应的函数值如表:xm 2﹣m y n p若满足m <1,n +p =b 2+4b +3,则n 与p 的大小关系为()二、解答题5.在课辅活动中,老师布置了一道这样的题:探究方程组:323538303336x y x y +=⎧⎨+=⎩①②的不同解法.同学们发现:虽然这个方程组中x ,y 的系数及常数项的数值较大,但我们也是可以用教材上学过的常规的代入消元法、加减消元法来解出来的,但老师应该出题还有深意:此类题是不是还有更好的消元方法呢?小明带着这个问题和同学们进行了激烈的讨论,并查找了一些课外辅导资料,他们发现采用下面的解法来消元更简单:①﹣②得2x +2y =2,所以x +y =1③.③×35﹣①得3x =﹣3.解得x =﹣1,从而y =2.所以原方程组的解是12x y =-⎧⎨=⎩.请你认真观察方程组的特点,也尝试运用小明他们发现的上述方法解这个方程组:201620182020201920212023x y x y +=⎧⎨+=⎩①②.6.阅读下列材料:小明同学遇到下列问题:解方程组23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩小明发现如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的(2x +3y )看成一个整体,把(2x ﹣3y )看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令m =2x +3y ,n =2x ﹣3y .原方程组化为743832m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩,解的6024m n =⎧⎨=-⎩,把6024m n =⎧⎨=-⎩代入m =2x +3y ,n =2x ﹣3y ,得23602324x y x y +=⎧⎨-=-⎩解得914x y =⎧⎨=⎩所以,原方程组的解为914x y =⎧⎨=⎩.请你参考小明同学的做法解方程组:(1)36101610x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩;(2)3213x y⎪⎨⎪-=⎪⎩.7.已知12xy=⎧⎨=⎩是关于,x y的方程组14ax bybx ay-=-⎧⎨-=-⎩的一个解,求代数式()23a b a--的值.8.基本运算:计算:(1)2|1(2)+--(2;解方程组或不等式(组):(3)233511x yx y-=⎧⎨+=⎩;(4)325153x x+-<-.(5)82213(1)x xx x-⎧<-⎪⎨⎪+≥-⎩,并把解集表示再数轴上.(6)已知二元一次方程x+3y=10.①直接写出它所有的正整数解;②请你写出一个二元一次方程,使它与已知方程组成的方程组的解为24xy=-⎧⎨=⎩.9.阅读下列材料,完成相应任务.下表是2019-2020赛季CBA职业联赛积分榜(部分球队)球队比赛场数胜场负场积分广东东莞银行3028258新疆伊力特2922751辽宁本钢30201050山东西王30191149山西汾酒30181248福建豹发力30131743小明的思路是:设胜一场积x 分,则根据“广东东莞银行”胜负场数与积分的关系可以用含x 的式子表示负一场的积分为_______________________,再根据“新疆伊力特”胜负场与积分的关系可列一元一次方程_______________________.小亮的解法是:设胜一场积x 分,负一场积y 分,………………………第一步可得二元一次方程组201050191149x y x y +=⎧⎨+=⎩①②………………………第二步由①,得52y x =-③………………………第三步将③代入②,得()19115249x x +-=………………………第四步解这个方程,得2x =………………………第五步将2x =代入③中,得1y =………………………第六步解得21x y =⎧⎨=⎩………………………第七步答:胜一场积2分,负一积1分.………………………第八步任务1:将小明的思路中的空格处填起来;任务2:(1)小亮的解法中,列方程①②根据的等量关系分别是:方程①___________________________;方程②:__________________________________;(2)小亮解二元一次方程组的方法叫_______________________________;(3)小亮的解法中,第四步主要体现的数学思想是__________(选正确选项的代码)A .转化思想B .一般到特殊思想C .分类思想D .数形结合思想任务3:设胜一场积x 分,负一场积y 分,请你选择与小明和小亮不同的等量关系,列二元一次方程组______________________.(只列不解)10.计算:(1)22(1)-+-(2)计算1-(3)解方程组234x y x y +=⎧⎨+=⎩①②.(4)解方程组31328x y x y +=-⎧⎨-=⎩①,②.(5)解不等式组()1318x x ⎨⎪--<-⎩②11.规定一种运算*x y ax by =+(a ,b 为常数)(1)若**123,112==,求a ,b ;(2)在(1)的条件下,试比较()**1x y y x -+与*2 y y y -的大小;(3)无论y 取何值,都有*12y y =,若m 为正整数,且关于x 的不等式*mx z x b m ->-的解集为1x <-,求m 的值.12.(数学问题)解方程组3531x y x x y +=⎧⎨-+=⎩,①().②(思路分析)榕观察后发现方程①的左边是x +y ,而方程②的括号里也是x +y ,她想到可以把x +y 视为一个整体,把方程①直接代入到方程②中,这样,就可以将方程②直接转化为一元一次方程,从而达到“消元”的目的.(1)(完成解答)请你按照榕榕的思路,完成解方程组的过程.解:把①代入②,得(2)(迁移运用)请你按照上述方法,解方程组523161a b a c a b c +=⎧⎪+=⎨⎪+-=⎩,①,②.③13.周日,小明一家从家里出发去40公里的郊外野炊,小明和妹妹小红早上8:00骑自行车先走.爸爸和妈妈开车10:00出发,半小时追上小明和小红,随即小明和小红乘坐爸妈的车一起前往目的地.设小明和小红所用的时间为x (小时),小明和小红所走的路程为1y (公里),爸妈所走的路程为2y (公里),图中OCB 表示1y 与x 之间的函数关系,线段AB 表示2y 与x 之间的函数关系.(1)爸妈开车的速度是每小时多少公里?(2)求1y 、2y 与x 的函数表达式.(3)如果小明和小红中途不乘坐爸妈的车,继续骑车前往,12:00能到达目的地吗?说明理由.14.在平面直角坐标系xOy中,二元一次方程的一个解可以用一个点表示,以二元一次方程的解为坐标的点的全体叫做这个方程的图象.例如32xy=⎧⎨=⎩是方程x﹣y=1的一个解,用一个点(3,2)来表示,以方程x﹣y=1的解为坐标的点的全体叫做方程x﹣y=1的图象,方程x﹣y=1的图象是图中的直线l1(1)二元一次方程x+y=3的图象是直线l2,在同一坐标系中画出这个方程的图象;(2)写出直线l1与直线l2的交点M的坐标;(3)过点P(﹣1,0)且垂直于x轴的直线与l1,l2的交点分别为A,B,直接写出三角形MAB的面积.15.学习了一次方程后,甲乙两位同学为了提高解方程能力,勤加练习,但甲同学在解一元一次方程3126x x a++-=,去分母时-1项忘记乘以6,得该方程的解为3x=-,乙同学在解方程组235323x byx by-=⎧⎨+=⎩时,看错了第一个方程,得该方程组的解为23xy=⎧⎨=⎩,试求a b+的值.16.小聪和小慧去某风景区游览,约好在飞瀑见面.上午9:00,小聪从塔林出发,沿景区公路(如图1)步行15分钟至草甸,休息若干分钟后搭乘景区班车赶往飞瀑,车速为36km/h.小慧也于上午9:00从古刹出发,骑自行车前往飞瀑.两人离古刹的路程y(米)与时间(分)的函数关系如图2所示.已知古刹与塔林的路程为1500m.(2)求小聪乘坐景区班车的时间.(3)若小慧比小聪早到2分钟,求两人几时几分相遇.17.先阅读,再解方程组.解方程组723134x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩解:设m =x +y ,n =x ﹣y ,则原方程组化为723134m n m n ⎧+=⎪⎪⎨⎪-=-⎪⎩.解得612m n =⎧⎨=⎩,∴原方程组的解为93x y =⎧⎨=-⎩.这种解方程组的方法叫做“换元法”.(1)已知方程组7325ax by x by +=⎧⎨-=⎩的解是63x y =⎧⎨=-⎩,求方程组2()()76()2()5a x y b x y x y b x y ++-=⎧⎨+--=⎩的解.(2)用换元法解方程组2133410x y x y x y x y ⎧-=⎪+-⎪⎨⎪+=⎪+-⎩(其中|x |≠|y |).18.如图,平面直角坐标系中,已知点A (a ,0),B (0,b ),其中a ,b满足23390a b --=.将点B 向右平移24个单位长度得到点C .点D ,E 分别为线段BC ,OA 上一动点,点D 从点C 以2个单位长度/秒的速度向点B 运动,同时点E 从点O 以3个单位长度/秒的速度向点A 运动,在D ,E 运动的过程中,DE 交四边形BOAC 的对角线OC 于点F .设运动的时间为t 秒(0<t <10),四边形BOED 的面积记为S 四边形BOED (以下面积的表示方式相同).(1)求点A 和点C的坐标;(3)求证:在D ,E 运动的过程中,S △OEF >S △DCF 总成立.19.换元法是数学中一个非常重要而且应用十分广泛的解题方法,我们通常把未知数或变数称为元.所谓换元法,就是解题时,把某个式子看成一个整体,用一个变量去代替它,从而使得复杂问题简单化.换元的实质是转化,关键是构造元和设元.例如解方程组11122120x y x y⎧+=⎪⎪⎨⎪+=⎪⎩,设m =1x ,n =1y ,则原方程组可化为12220m n m n +=⎧⎨+=⎩,解之得84m n =⎧⎨=⎩,即18,1 4.x y⎧=⎪⎪⎨⎪=⎪⎩所以原方程组的解为1814x y ⎧=⎪⎪⎨⎪=⎪⎩.运用以上知识解决下列问题:(1)求值:11111111111111(1)()(1)()1113171113171911131719111317+++⨯+++-++++⨯++=.(2)方程组635921x y x y x y x y ⎧+=⎪+-⎪⎨⎪-=⎪+-⎩的解为.(3)分解因式:(x 2+4x +3)(x 2+4x +5)+1=.(4)解方程组21132311122386x y x y +++⎧⨯-=⎨+⨯=⎩(5)已知关于x 、y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是95x y =⎧⎨=⎩,求关于x 、y 的方程组21111122222222a x a x b y c a a x a x b y c a ⎧-+=-⎨-+=-⎩的解.20.已知点1A ,2A ,…,n A 在射线OA 上,11OA =,122A A =,…,1n n A A n -=,且12.n OA OA OA <<⋅⋅⋅<.若2021i j A A =,其中i j <,求i 与j 的值.。
二元一次方程组应用题测试卷
二元一次方程组应用题测试卷一、选择题(每题3分,共30分)1. 夏季来临,某超市试销A ,B 两种型号的风扇,两周内共销售30台,销售收入5 300元,A 型风扇每台200元,B 型风扇每台150元,问A ,B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A.⎩⎪⎨⎪⎧x +y =5 300,200x +150y =30B.⎩⎪⎨⎪⎧x +y =5 300,150x +200y =30C.⎩⎪⎨⎪⎧x +y =30,200x +150y =5 300D.⎩⎪⎨⎪⎧x +y =30,150x +200y =5 300 2. 林林的妈妈给他买了一件上衣和一条裤子,共用去180元,其中上衣按标价打九折,裤子按标价打八五折,若上衣和裤子按标价算共计250元,求上衣和裤子的标价分别为多少元.设上衣标价为x 元,裤子标价为y 元,则可列出方程组为( )A.⎩⎪⎨⎪⎧ x +y =1800.9x +0.85y =250B .⎩⎪⎨⎪⎧ x +y =1800.85x +0.9y =250 C.⎩⎪⎨⎪⎧ x +y =2500.9x +0.85y =180D .⎩⎪⎨⎪⎧ x +y =2500.85x +0.9y =180 3. 一条船顺流航行,每小时行驶18 km ;逆流航行,每小时行驶16 km ,若设船在静水中的速度为x km/h ,水流速度为y km/h ,则列出方程组为( )A.⎩⎪⎨⎪⎧x +y =18,y -x =16B.⎩⎪⎨⎪⎧x +y =18,x -y =16C.⎩⎪⎨⎪⎧x +2y =18,x -2y =16 D.⎩⎪⎨⎪⎧x +y =18,2x -y =16 4. 甲、乙两个工程队各有员工80人、100人,现在从外部调90人充实两队,调配后甲队人数是乙队的23,则甲、乙两队各分到多少人?( ) A.50,40 B.36,54 C.28,62 D.20,705. 一个两位数,十位上的数字与个位上的数字的和是7,若十位上的数字与个位上的数字对换,现在的两位数与原来的两位数的差是9,则现在的两位数是( )A .43B .34C .25D .526. 买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%.设买甲种水x 桶,乙种水y 桶,则所列方程组正确的是( ) A.{8x +6y =250y =75%x B.{8x +6y =250x =75%y C.{6x +8y =250y =75%x D.{6x +8y =250x =75%y7. 有大、小两种船,l 艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人,云南泸沽湖某船家有3艘大船与6艘小船,一次最多可以载游客的人数为( )A .129 B. 120 C.108 D .968. 学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( )A.3种B.4种C.5种D.6种9.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元10.某车间有49名工人,每人每天能生产螺栓12个或螺母18个,设有x名工人生产螺栓,y名工人生产螺母,且每天生产的螺栓和螺母恰好按1∶2配套,则下列方程组正确的是( )A.{x+y=492×12x=18yB.{x+y=492×18y=12xC.{x+y=4912x=18yD.{x+y=4918x=12y二、填空题(每题4分,共20分)11.学生问老师:“您今年多少岁?”老师说:“我像你这么大时,你才1岁;你到我这么大时,我已经37岁了.”则老师的年龄为岁,学生的年龄为岁.12.如图,用12块相同的小长方形瓷砖拼成一个大的长方形,则大长方形的面积为 .13.一个两位数,它的个位数字与十位数字的和为6,且这个两位数是个位数字的6倍,则这个两位数是 .14.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,则甲数为 . 乙数为 .15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2hkm/,则A港和B港相距km.三、解答题(共50分)16.(8分)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?17.(8分)在长为10 m,宽为8 m的长方形空地中,沿平行于长方形各边的方向分割出三个相同的小长方形花圃,其示意图如图所示,则小长方形花圃的长和宽分别是多少?18.(10分)某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买3件甲商品和1件乙商品需用190元;购买2件甲商品和3件乙商品需用220元,而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比打折前少花多少钱?19.(11分)体育器材室有A,B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?20.(14分)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12t(含12t)时,每吨按政府补贴优惠价收费;每月超过12t时,超过部分每吨按市场调节价收费.小英家1月份用水20t,缴水费28元;2月份用水18t,缴水费24元.(1)每吨水的政府补贴优惠价和市场调节价分别是多少?(2)小英家3月份用水17t,她家应缴水费多少元?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
种物品y个,共76千克。
(1)列出关于x、y的二元一次方程:
_____________;
(2)若x=12,则y=__________; (3)若有乙种物品8个,则甲种物品有
__个;
6、甲乙两人年龄之和为90岁,已知甲的年龄是乙的2倍少15,设甲和乙
的年龄分别为x、y,那么求这两个人的年龄的方程组是
;
购买苹果 不超过30千克 30千克以上但不超过 50千克以上
数
50千克
每千克价
3元
格
2.5元
2元
甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元; 而乙班则一次购买苹果70千克, (1)乙班比甲班少付出多少元? (2)甲班第一次、第二次分别购买多少千克?
四、附加题(第1题8分,第2题12分) 1、阅读小故事,列出满足题意的二元一次方程组 (杨损问题)唐朝时,有一位懂数学的尚书叫杨损,他曾主持一场考试,其 中有一道题是:"有一天,几个盗贼正在商议怎样分配偷来的布匹,贼首 说,每人分六匹布,还剩下五匹布;每人分七匹布还少了八匹布.这些话被
躲在暗处的衙役听到了,他飞快地跑回官府,报告了知府,但知府不知道 有多少盗贼,不知派多少人去抓捕他们.请问:有盗贼几人,布匹多少?
2、进入讯期,七年级1班的同学们到水库去调查了解汛情,水库一共 10个泻洪闸,现在水库水位超过安全线,上游的河水仍以一个不变的速 度流入水库。同学们经过一天的观察和测量,做如下的记录:上午打开 1个泻洪闸,在2小时内,水位继续上涨了0.66m。下午再打开2个泻洪闸 后,4小时水位下降了0.1m,目前水位仍超过安全线1.2m。
个,则列出方程组为(
)
A、
B、
C、
D、
9、从1999年11月1日起,全国储蓄存款征收利息税,税率为利息的
20%,即储蓄利息的20%由各银行储蓄点代扣代收。某人在1999年12月存
入人民币若干元,年利率为2.25%,一年到期后将缴纳利息税72元,则
他存入的人民币为(
)
A 1600元 B 16000元
7、王师傅每天生产的零件是其徒弟的2倍多3个,做了7天后,王师傅共
生产零件数比徒弟多280个,那么王师傅每天生产零件数为
个;
8、某种植大户计划安排10个劳动力来耕作30亩土地,这些土地可以种蔬
菜也可以种水稻,种这些作物所需劳动力及预计产值如下表:
每亩所需劳动力 (个)
每亩预计产值 (元)
蔬菜
3000
二元一次方程组的应用测试卷
姓名
一、填空题(30分)
1、两数的和是6,差4,则这两个数为
。
2、已知二元一次方程3x+4y+6=0,当x、y互为相反数时,x=
, y=
;
3、方程组的解是
;
4、有y吨货物用x辆卡车去装,每辆装7吨,还有3吨没装上,依题意列方程
为__________.
5、甲种物品每个4千克,乙种物品每个7千克,现在有甲种物品x个,乙
(B)
(C)
(D)
、一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排
座位坐14人,则余1人独坐一排,则这间会议室共有座位排数是(
)
A 14 B 13 C 12
D
155
7、为保护环境,某样环保小组成员小明收集废电池,第1天收集1号电
池4节,5号电池5节,总重量460克;第二天收集1号电池2节,5号电池3
时,B离甲地还有2千米.A、B两人的速度分别是多少?
2、某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下 跌10%时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少 元?
3、商店出售的某种茶壶每只定价20元,茶杯每只定价3元,该店在营销 淡季特规定一项优惠办法,即买一只茶壶赠送一只茶杯,某顾客花了 170元钱,买回茶壶和茶杯一共38只,该顾客买回茶壶和茶杯各多少 只?
张,列方程组得_________________
二、选择题(共30分)
1、若方程mx-2y=x+5是二元一次方程时,则m的数值为( )
(A)m≠0
(B)m≠-1 (C)m≠1
(D)m≠2
2、若则x的值为(
)
A、-1
B、1
C、2
D、-2
3、已知a是一个一位数,b是一个两位数,若将a置于b的左边,那么所
C
360元
D
3600元
10、把一个两位数的十位数字和个位数字交换后得到一个新的两位数,
新数比原来的两位数多了18,则符合条件的原数有( )个
A、5; B、6; C、7; D、8;
三、列方程组解下列应用题(40分)
1、甲、乙两地间的路程为20千米,A、B两人分别从甲、乙两地同时同向
而行,2小时相遇,相遇后A立即返回甲地,B仍向甲地前进,当A回到甲地
节,总重量240克,那么1号电池和5号电池每节分别重(
)
A、90和20; B、45和50; C、40和60; D、30和60;
8、甲、乙两人做同样的机器零件,若甲先做1天,乙再开始做,5天后
两人的零件一样多,若甲先做30个,乙再开始做,4天后乙反而比甲多
做10个,两人每天各做多少个零件?若设甲、乙每天分别做零件x、y
4、某乐园的门票价格规定如下表所列.某校初一(1)、(2)两个班共
104人去游长风乐园其中(1)班人数较少,不到50人,(2)班人数较 多,有50多人.经估算,如果两班都以班为单位分别购票,则一共应付 1240元;如果两班联合起来,作为一个团体购票,则可以节省不少钱. 问两班各有多少名学生?
5、甲、乙两班学生到集市上购买苹果,苹果的价格如下:
水稻
700
为了使所有土地种上作物,全部劳动力都有工作,应安排种蔬菜的劳动
力为
人,这时预计产值为
元。
9、一个两位数,十位上的数字与个位上的数字的和为6,则符合这个条
件的所有的两位数为_________________;
10、班上组织看电影,买了35张票共花去250元,其中甲种位置的票每张
8元,乙种票每张6元,问甲、乙两种票各多少张?设甲票张,乙票
(1) 如果打开了5个泻洪闸,还需几小时水位可以降到安全线? (2) 如果防讯指挥部要求在6小时内水位降到安全线,应该打开
几个泻洪闸?
ห้องสมุดไป่ตู้
成的三位数可以表示为( )
(A)ab
(B)10(a+b) (C)100a+10b (D)100a+b
4、根据图给出的信息,则每件恤衫和每瓶矿泉水的价格分别为(
)
A、17和3;B、20和2;C、19和3;D、18和4;
5、浓度为25%的盐水x克,浓度为13%的盐水y克,混合后溶液中含水的克
数为( )
(A)