初一奥林匹克数学竞赛训练试题集

合集下载

初中数学奥林匹克竞赛题包括答案.docx

初中数学奥林匹克竞赛题包括答案.docx

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题 1 分,共 10 分)1.如果 a,b 都代表有理数,并且a+b=0 ,那么 ( ) A.a,b 都是 0B.a,b 之一是 0C.a,b 互为相反数D. a,b 互为倒数答案: C解析:令 a=2 , b= - 2,满足 2+( - 2)=0 ,由此 a、b 互为相反数。

2.下面的说法中正确的是( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案: D3都是单项式.两个单项式33A。

两个单项式解析: x2, x x , x2之和为 x +x 2是多项式,排除x2, 2x2之和为3x2是单项式,排除 B。

两个多项式x3+x2 与 x3-x2之和为2x3 是个单项式,排除 C,因此选 D。

3.下面说法中不正确的是( )A.有最小的自然数B.没有最小的正有理数Word资料C.没有最大的负整数D.没有最大的非负数答案: C解析:最大的负整数是-1 ,故 C 错误。

4.如果 a,b 代表有理数,并且a+b 的值大于 a- b 的值,那么( ) A.a,b 同号B.a,b 异号C.a>0D. b> 0答案: D5.大于-π并且不是自然数的整数有( )A.2 个B.3 个C.4 个D.无数个答案: C解析:在数轴上容易看出:在-π右边0的左边(包括0 在)的整数只有-3,- 2,-1 ,0 共 4 个.选 C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

Word资料这四种说法中,不正确的说法的个数是( )A.0 个B.1 个C.2 个D. 3 个答案: B解析:负数的平方是正数,所以一定大于它本身,故 C 错误。

7.a 代表有理数,那么, a 和- a 的大小关系是( )A.a 大于- aB.a 小于- aC.a 大于- a 或 a 小于- aD. a 不一定大于- a答案: D解析:令 a=0 ,马上可以排除A、 B、 C,应选 D。

初一数学奥林匹克竞赛题(含标准答案)

初一数学奥林匹克竞赛题(含标准答案)

初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。

七年级数学奥林匹克试卷

七年级数学奥林匹克试卷

一、选择题(每题4分,共40分)1. 下列各数中,是整数的是()A. 2.5B. -3.14C. 0.001D. -22. 下列各组数中,成等差数列的是()A. 2, 4, 6, 8B. 1, 3, 5, 7C. 5, 10, 15, 20D. 3, 6, 9, 123. 若方程 2x - 5 = 3(x + 1),则 x 的值为()A. 2B. 3C. 4D. 54. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 矩形5. 在直角坐标系中,点 A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(-2,-3)6. 若等比数列的首项为 2,公比为 3,则该数列的前 5 项和为()A. 31B. 48C. 58D. 667. 在梯形 ABCD 中,AD 平行于 BC,若 AB = 5,CD = 3,AD = BC = 4,则梯形ABCD 的面积是()A. 10B. 12C. 14D. 168. 若函数 f(x) = 2x + 3,则 f(2) 的值为()A. 7B. 8C. 9D. 109. 下列命题中,正确的是()A. 平行四边形一定是矩形B. 等腰三角形一定是等边三角形C. 直线与圆相切,则切点只有一个D. 对角线互相垂直的四边形一定是矩形10. 若 a, b, c 是等差数列,且 a + b + c = 12,则 b 的值为()A. 4B. 6C. 8D. 10二、填空题(每题5分,共50分)11. 若 m + n = 5,mn = 6,则m² + n² 的值为 _______。

12. 在直角坐标系中,点 P(-3,2)到原点的距离是 _______。

13. 下列数中,是平方数的是 _______。

14. 若等比数列的首项为 1,公比为 -2,则该数列的第 6 项是 _______。

15. 在梯形 ABCD 中,AD 平行于 BC,若 AB = 6,CD = 4,AD = BC = 5,则梯形ABCD 的面积是 _______。

初一数学奥林匹克竞赛题(含标准答案)

初一数学奥林匹克竞赛题(含标准答案)

初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。

初一奥林匹克数学竞赛真题及答案

初一奥林匹克数学竞赛真题及答案

初一奥林匹克数学竞赛真题及答案一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是()A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是()A.有最小的自然数.B.没有最小的正有理数.C.没有的负整数.D.没有的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有()A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是()A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是()A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是()A.一样多.B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将()A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1.______.2.198919902-198919892=______.3.=________.4.关于x的方程的解是_________.5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-时,代数式(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)的值是____.7.当a=-0.2,b=0.04时,代数式的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的.如果工作4天后,工作效率提高了,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案及解析一、选择题1.C2.D3.C4.D5.C6.B7.D8.D9.C10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).。

数学奥林匹克初中训练题(6套)

数学奥林匹克初中训练题(6套)

数学奥林匹克初中训练题(1)第 一 试一. 选择题.(每小题7分,共42分)( )1.已知33333a b c abc a b c++-=++,则22()()()()a b b c a b b c -+-+--的值为: (A)1 (B)2 (C)3 (D)4( )2.规定”Δ”为有序实数对的运算,如果(,)a b Δ(,)(,).c d ac bd ad bc =++如果对任意实数,a b 都有(,)a b Δ(,)(,),x y a b =则(,)x y 为:(A)(0,1) (B)(1,0) (C)(1,0)- (D)(0,1)-( )3.在ΔABC 中,211a b c=+,则∠A: (A)一定是锐角 (B)一定是直角 (C)一定是钝角 (D)非上述答案( )4.下列五个命题:①若直角三角形的两条边长为3与4,则第三边长是5;②2;a =③若点(,)P a b 在第三象限,则点1(,1)P a b --+在第一象限;④连结对角线垂直且相等的四边形各边中点的四边形是正方形;⑤两边及其第三边上的中线对应相等的两个三角形全等.其中正确的命题的个数是:(A)2个 (B)3个 (C)4个 (D)5个( )5.设P 为等腰Rt ΔABC 斜边AB 上或其延长线上一点,22S AP BP =+,那么:(A)22S CP (B)22S CP = (C)22S CP (D)不确定 ( )6.满足方程222()x y x y xy +=++的所有正整数解有:(A)一组 (B)二组 (C)三组 (D)四组二. 填空题.(每小题7分,共28分)1.一辆客车,一辆货车和一辆小轿车在同一条直线上朝同一方向行驶,在某一时刻,货车在中,客车在前,小轿车在后,且它们的距离相等.走了10分钟,小轿车追上了货车;又走了5分钟,小轿车追上了客车.问再过分钟,货车追上了客车.2.若多项式2228171642070P a ab b a b =-+--+,那么P 的最小值是 .3.如图1, ∠AOB=30O , ∠AOB 内有一定点P,且OP=10.在OA 上有一点Q,OB 上有一点R.若ΔPQR 周长最小,则最小周长是 .4.已知二次函数2(1)y ax a =≥的图象上两点A,B 的横坐标分别为1,2-,O 是坐标原点,如果ΔAOB 是直角三角形,则ΔAOB 的周长为 .第 二 试一.(20分)已知实数,,a b c 满足不等式,a b c b c a ≥+≥+,c a b ≥+,求a b c ++的值.二.(25分)如图2,点D 在ΔABC 的边BC 上,且与B,C 不重合,过点D 作AC 的平行线DE 交AB 于E,作AB 的平行线DF 交AC 于点F.又知BC=5.(1) 设ΔABC 的面积为S.若四边形AEFD 的面积为25S .求BD 长.(2) 若,AC 且DF 经过ΔABC 的重心G,求E,F 两点的距离.三.(25分)已知定理:”若三个大于3的质数,,a b c 满足关系式25a b c +=,则a b c ++是整数n 的倍数.”试问:上述定理中整数n 的最大可能值是多少?并证明你的结论.数学奥林匹克初中训练题(2)第一试一. 选择题.(每小题7分,共42分)( )1.有铅笔,练习本,圆珠笔三种学习用品.若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本10本,圆珠笔1支共需4.2元.现购铅笔,练习本,圆珠笔各1件,共需:(A)1.2元 (B)1.05元 (C)0.95元 (D)0.9元( )2.三角形的三边,,a b c 都是整数,且满足7abc bc ca ab a b c ++++++=,则此三角形的面积等于:(A)2 (B)4 (C)4 (D)2( )3.如图1,ΔABC 为正三角形,PM ⊥AB,PN ⊥AC.设四边形AMPN, ΔABC 的周长分别是,m n ,则有: (A)1325m n (B)2334m n (C)80%83%m n (D)78%79%mn( )4.满足22(3)(3)6x y -+-=的所有实数对(,)x y ,使y x取最大值,此最大值为:(A)3+4+5+ (D)5( )5.设p .其中,,,a b c d 是正实数,且满足1a b c d +++=.则p 满足: (A)p >5(B)p <5 (C)p <2 (D)p <3( )6.如图2,点O 是正六边形ABCDEF 的中心,OM ⊥CD,N为OM 的中点.则:ABN BCN S S 等于:(A)9:5 (B)7:4 (C)5:3 (D)3:2二. 填空题.(每小题7分,共28分)1.若实数,x y 满足(1x y =,则x y += .2.如图3,CD 为直角ΔABC 斜边AB 上的高,DE ⊥AC.设ΔADE,ΔCDB,ΔABC 的周长分别是12,,p p p .当12p p p + 取最大值时,∠A= .3.若函数2543kx y kx kx +=++中自变量的取值范围是一切实数,则实数k 的取值范围是 .4.如图4所示,线段AB 与CD 都是⊙O 中的弦,其中108,,36,O O AB AB a CD CD b ====,则⊙O 的半径R= .第 二 试一.(共20分)n 是一个三位数,b 是一个一位数,且22,1a a b b ab ++都是整数,求a b +的最大值与最小值.二.(共25分)如图5,在ΔABC 中,∠A=60O ,O,I,H 分别是它的外心,内心,垂心.试比较ΔABC 的外接圆与ΔIOH 的外接圆的大小,证明你的论断.三.(共25分)求方程组33333x y z x y z ++=⎧⎨++=⎩的所有整数解.参考答案一.1.(B)数学奥林匹克初中训练题(四)第 一 试三. 选择题.(每小题7分,共42分)( )1.在11,,0.2002,7223πn 是大于3的整数)这5个数中,分数的个数为: (A)2 (B)3 (C)4 (D)5( )2.如图1,正方形ABCD 的面积为256,点F 在AD上,点E 在AB 的延长线上,Rt ΔCEF 的面积为200,则BE 的长为:(A)10 (B)11 (C)12 (D)15( )3.已知,,a b c 均为整数,且满足2223a b c +++<32ab b c ++.则以,a b c b +-为根的一元二次方程是:(A)2320x x -+= (B)2280x x +-=(C)2450x x --= (D)2230x x --=( )4.如图2,在Rt ΔABC 中,AF 是高,∠BAC=90O ,且BD=DC=FC=1,则AC 为:( )5.若222a b c a b c k c b a+++===,则k 的值为: (A)1 (B)2 (C)3 (D)非上述答案( )6.设0,0,26x y x y ≥≥+=,则224363u x xy y x y =++--的最大值是: (A)272(B)18 (C)20 (D)不存在四. 填空题.(每小题7分,共28分)1.方程222111013x x x x++=+的实数根是 . 2.如图3,矩形ABCD 中,E,F 分别是BC,CD 上的点,且2,3,4A B E C E F A D F S S S ===,则AEF S = .3.已知二次函数2(1)y x a x b =+++(,a b 为常数).当3x =时,3;y =当x 为任意实数时,都有y x ≥.则抛物线的顶点到原点的距离为 .4.如图4,半径为2cm ,圆心角为90O 的扇形OAB 的AB 上有一运动的点P.从点P 向半径OA 引垂线PH 交OA 于点H.设ΔOPH 的内心为I,当点P 在AB 上从点A 运动到点B 时,内心I 所经过的路径长为 .第 二 试一.(20分)在一个面积为1的正方形中构造一个如下的小正方形;将单位正方形的各边n 等分,然后将每个顶点和它相对应顶点最接近的分点连结起来,如图5所示.若小正方形的面积恰为13281,求n 的值. 二.(25分)一条笔直的公路l 穿过草原,公路边有一卫生站A,距公路30km 的地方有一居民点B,A,B 之间的距离为90km .一天某司机驾车从卫生站送一批急救药品到居民点.已知汽车在公路上行驶的最快速度是60/km h ,在草地上行驶的最快速度是30/km h .问司机应以怎样的路线行驶,所用的行车时间最短?最短时间是多少?三.(25分)从1,2,3,……,3919中任取2001个数。

初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题一、选择题(每题3分,共30分)1. 若实数a,b满足 a + 2 +(b - 4)² = 0,则a + b的值为()。

A. - 2B. 2C. 6D. - 6答案:B。

解析:因为绝对值是非负的,一个数的平方也是非负的,要使 a + 2 +(b - 4)² = 0,那么a+2 = 0且b - 4 = 0,解得a=-2,b = 4,所以a + b=2。

2. 把多项式x² - 4x+4分解因式,结果正确的是()。

A. (x - 2)²B. (x+2)²C. (x - 4)²D. (x+4)²答案:A。

解析:x²- 4x + 4符合完全平方公式a²- 2ab+b²=(a - b)²的形式,这里a=x,b = 2,所以分解因式结果为(x - 2)²。

3. 已知一元二次方程x² - 3x - 2 = 0的两个实数根为x1,x2,则(x1 - 1)(x2 - 1)的值是()。

A. - 4B. - 2C. 0D. 2答案:C。

解析:根据韦达定理,对于一元二次方程ax²+bx + c = 0(a≠0),x1+x2=-b/a,x1x2=c/a。

在方程x² - 3x - 2 = 0中,a = 1,b=-3,c = - 2,所以x1+x2 = 3,x1x2=-2。

(x1 - 1)(x2 - 1)=x1x2-(x1+x2)+1=-2 - 3+1 = 0。

4. 一个三角形的三个内角之比为1:2:3,则这个三角形是()。

A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B。

解析:设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以x+2x+3x = 180°,解得x = 30°,那么三个角分别为30°,60°,90°,所以是直角三角形。

世界奥林匹克数学竞赛(七年级总决赛)

世界奥林匹克数学竞赛(七年级总决赛)

AF EDCB世界奥林匹克数学竞赛(中国区)总决赛七年级数学试题一、选择题(10个小题,每小题5.2分,共52分) 1、已知c a 、、b 是互不相等的有理数,那么ba ac a c c b c b b a ------,,中,正数有( )A. 0个B. 1个C. 2个D.3个 2、方程0|3||1|)1(2=+--++x x x 解的个数有( )A. 1个 B. 2个 C.3个D.无穷多个3、已知200919200817)1()1(++-+-=n n a ,当n 依次取1,2,…,2009时,a 的值为负数的个数是( )。

A .0个 B. 1个 C. 1004个 D.1005个 4、已知c a 、、b ,m 是有理数,且1b +>--=++m c b a m c a ,,则有( )A. b < 0B. c < 0C.21-<+c b D. 1>bc 5、已知200920082010200720102008200920072010200920082007⨯⨯-=⨯⨯-=⨯⨯-=c b a ,,,则有( )A .c b a<< B.c b a >> C.b a c << D. a c b >>6、已知⎩⎨⎧=+=+3||||0||y x x y x 中,0≠xy ,则有=y x( )A .1 B. -1 C. 2 D. -27、小明在三张卡片上分别写上2,3,5,每张卡片作为数轴上的一个点,卡片上的数表示这个离原点的距离,把三张卡片摆放到数轴上,不同的摆放方法最多有( ) A .12种 B. 8种 C. 6种 D. 2种 8、设三角形三边的长为c a 、、b ,且c b a>>,下面三个式子:①bc a +2;②ca b +2;③ab c +2,其中值最大的是( ) A .① B. ②C. ③D. 不确定9、已知:如图,△ABC 中,D 是BC 上的点,BD= 2DC ,E 在AD上,AE = DE ,BE 交AC 于F ,若△ABC 的面积是302cm ,那么四边形CDEF 的面积是( ) A .92cm B. 8.52cm C. 82cm D. 7.52cm10、圆周上有9个点,以这些为顶点构成三角形,那么所构成的三角形的个数共有( ) A .24个 B. 27个 C. 72个 D. 84个 二、填空题(8个小题,每小题6分,共48分)1、已知a 是质数,则方程组⎩⎨⎧=-=+ay x ay x 4的正整数解是;2、正整数1400的正因数的个数有个;3、已知有理数c b a>>,且0=++c b a ,则ac 的值的范围是;4、已知b a ,是正整数,2734=+ba ,则代数式22b ab a +-的值是;5、已知:如图,长方形ABCD 中,P 是CD 边上任一点,过点P 作AC 、BD 的垂线分别交AC 、BD 于E 、F ,若长方形的一条对角线的长为lcm ,面积为l 42cm ,则PE+PF=cm6、已知z y x 、、都是有理数,且绝对值都不大于2,那么方程3=+-z y x 的整数解个数是个;7、对于数x ,[x ]表示不超过x 的最大整数,已知关于x 的方程24||3=⎥⎦⎤⎢⎣⎡+a x 有正整数解,则a 的值的范围是;8、平面上5个圆和一条直线,最多能把平面分成部分。

初一奥林匹克数学竞赛训练试题集

初一奥林匹克数学竞赛训练试题集
初一奥林匹克数学竞赛训练试题集(
、选择题(共8小题,每小题4分,满分32分) 1.(4分)若三个连续自然数的最小公倍数为 660,则这三个数分别是( )
A. 9,10,11B.10,11,12C.11,12,13D.12,13,14
2.(4 分)一个十位数字为零的三位数,它恰好等于其各位数字和的m倍,交换它的个位数
1.(4分)若三个连续自然数的最小公倍数为660,则这三个数分别是()
A. 9,10,11B.10,11,12C.11,12,13D.12,13,14
【分析】设这三个数为x,x+1,x+2,根据三个连续自然数的最小公倍数为660,可得x|660,
(x+1)|660,( x+2)|660,又由 660= 2× 2×3×5×11,即可得出答案.

两方程相加,得101x+101 y=( x+ y)( m+n),
解,得n= 101﹣m.
故选:B.
【点评】 本题考查了二元一次方程组的应用及解法,解题关键是弄清题意,合适的等量 关系,列出方程组.
本题涉及一个常识问题:三位数= 100×百位数字 +10×十位数字+个位数字,并且在求两 位数或三位数时,一般是不能直接设这个两位数或三位数的,而是设它各个数位上的数 字为未知数.注意当方程组中的未知数较多时要观察运用整体消元来解未知数.
这三个数中,至少有一个数能被10整除.
19.(16分)已知:如图,四边形ABCD的对角线AC、 BD交于O,如果三角形 ABD的面
积为 5,三角形ABC面积为 6,三角形BCD面积为 10,问三角形OBC的面积是多少?
初一奥林匹克数学竞赛训练试题集(16)
参考答案与试题解析

初一数学奥赛试题及答案

初一数学奥赛试题及答案

初一数学奥赛试题及答案一、选择题(每题3分,共30分)1. 若一个数的立方等于它本身,那么这个数可能是:A. 1B. -1C. 0D. 以上都是2. 下列哪个选项是完全平方数:A. 49B. 50C. 51D. 523. 一个长方形的长是宽的两倍,如果宽增加2厘米,长减少2厘米,面积不变,那么原来长方形的宽是:A. 2厘米B. 4厘米C. 6厘米D. 8厘米4. 一个数列的前四项是2, 4, 8, 16,那么第五项是:A. 32B. 64C. 128D. 2565. 一个圆的直径是10厘米,那么它的面积是:A. 78.5平方厘米B. 157平方厘米C. 314平方厘米D. 628平方厘米6. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 无法确定7. 一个等差数列的前三项分别是3, 6, 9,那么第10项是:A. 27B. 30C. 33D. 368. 一个三角形的三个内角分别是30°,60°和90°,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形9. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 0D. 正数或010. 如果一个数的平方根是它本身,那么这个数是:A. 1B. -1C. 0D. 1或0二、填空题(每题4分,共20分)1. 一个数的平方是36,那么这个数是______。

2. 一个数的立方是-27,那么这个数是______。

3. 一个数的倒数是它本身,这个数是______。

4. 如果一个数的绝对值是5,那么这个数可能是______。

5. 一个数的平方与它本身相等,这个数是______。

三、解答题(每题10分,共50分)1. 证明:对于任意自然数n,n²-n+1总是一个完全平方数。

2. 一个长方形的长是宽的两倍,如果宽增加2厘米,长减少2厘米,面积不变,求原来长方形的宽。

3. 一个等差数列的前三项分别是3, 6, 9,求这个数列的第10项。

初一奥林匹克数学竞赛训练试题集(03)

初一奥林匹克数学竞赛训练试题集(03)

A .2a﹣ c
B.1
C.﹣ 1
D. c﹣ 2a+1
8.( 4 分)有理数 x1, x2, x3, x4,其中任一个都恰等于其余三个的代数和,则(

A .x1+x2+x3+x4= 0,但至少 x4≠ 0 B . x1= x2= x3= x4=0
C. x1, x2, x3, x4,中两个为 0,另两个非 0
参考答案与试题解析
一、选择题(共 8 小题,每小题 4 分,满分 32 分) 1.( 4 分)如果四个数之和的 是 8,其中三个数分别是﹣ 6,11,12,则第四个数是 ( )
A .16
B .15
C. 14
D. 13
【分析】 可以设第四个数为 x,根据题意可列出一个关于 x 的方程,求方程的解即可.
10%,为了 克.
第 1 页(共 11 页)
11.(5 分)自然数
x, y,z 适合
22x +12=y2,x2+40
2=
z2,则
x2+y2﹣ z2=

12.( 5 分)若关于 x 的一元一次方程( k﹣ 1)x= 4,有一个比 2 小的根,则 k 的取值范围


13.( 5 分)因式分解(
x+1)
6.( 4 分)在自然数 1, 2, 3, 4,…中,前 15 个质数之和的负倒数等于(

A .﹣
B .﹣
1992
2 +3
1992
的个位数字.
【解答】 解:∵ 21992 与 24 末位数字相同,为 6,
1992
3
的末位数字与
34 的末位数字相同,为

初中奥林匹克数学竞赛训练题7套

初中奥林匹克数学竞赛训练题7套

初中奥林匹克数学竞赛训练题7套训练题第一套:代数基础1. 已知a, b为正数,且a+b=10,求ab的最大值。

2. 解方程:3(x2) 2(2x+1) = 7。

3. 已知等差数列的前三项分别是2,5,8,求第10项的值。

4. 如果一个数的平方根加上它的倒数等于3,求这个数。

训练题第二套:几何图形1. 在直角坐标系中,点A(2,3)到原点O的距离是多少?2. 一个等腰三角形的底边长为10cm,腰长为13cm,求这个三角形的面积。

3. 在圆中,一条弦长为8cm,且这条弦距离圆心的距离为6cm,求圆的半径。

4. 证明:对任意等腰三角形,其底边上的中线垂直平分底边。

训练题第三套:数论与组合1. 求证:任意两个正整数a和b,如果它们的最大公约数为1,那么a和a+b也是互质的。

2. 在1到100的自然数中,有多少个数既不是3的倍数也不是5的倍数?3. 有8个男生和7个女生站成一排,要求男生必须站在一起,有多少种不同的站法?4. 一个班级有5对双胞胎,如果从中选出4对学生,要求每对学生中至少有一个是双胞胎,有多少种选法?训练题第四套:概率与统计1. 从一副52张的扑克牌中随机抽取4张牌,计算抽到至少一张红桃的概率。

2. 一个袋子里有5个红球,3个蓝球,2个绿球,从中随机取出3个球,求取出的球颜色相同的概率。

3. 如果一组数据的平均数是50,标准差是5,那么这组数据中有多少个数据至少为60?训练题第五套:逻辑推理与问题解决1. 甲、乙、丙三人中,一人是教师,一人是医生,一人是工人。

甲说:“我不是医生。

”乙说:“我不是工人。

”丙说:“我不是教师。

”请问他们各自是什么职业?2. 有4个数字密码锁,每个锁有4个按钮,分别是1、2、3、4。

如果密码是一个四位数,且每个数字都不相同,那么一共有多少种可能的密码组合?3. 一个数字序列的规律是:每个数字都是前两个数字之和。

如果序列的前两个数字分别是1和2,那么第10个数字是多少?4. 一个房间里有4个开关,对应着另一个房间里的4盏灯。

奥林匹初中数学竞赛试卷

奥林匹初中数学竞赛试卷

一、选择题(每题5分,共50分)1. 下列各数中,不是有理数的是()A. -2.5B. 3/4C. √9D. √22. 下列运算正确的是()A. (a+b)^2 = a^2 + 2ab + b^2B. (a-b)^2 = a^2 - 2ab + b^2C. (a+b)(a-b) = a^2 - b^2D. (a+b)^3 = a^3 + b^33. 若a、b是方程x^2 - 4x + 3 = 0的两个根,则a+b的值是()A. 2B. 3C. 4D. 54. 下列函数中,是奇函数的是()A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) =1/x5. 已知等差数列{an}的前n项和为Sn,若S5 = 15,S9 = 27,则数列的公差d是()A. 1B. 2C. 3D. 46. 在平面直角坐标系中,点A(2,3),点B(-1,1),则线段AB的中点坐标是()A. (1,2)B. (3,2)C. (1,4)D. (2,1)7. 若sinα = 1/2,且α是第一象限的角,则cosα的值是()A. √3/2B. 1/2C. -√3/2D. -1/28. 下列命题中,正确的是()A. 若a>b,则a^2>b^2B. 若a>b,则a+c>b+cC. 若a^2>b^2,则a>bD. 若a^2>b^2,则|a|>|b|9. 已知函数f(x) = x^2 + 2x - 3,则f(-3)的值是()A. 0B. 3C. -3D. -610. 下列数列中,是等比数列的是()A. 1,2,4,8,16B. 1,3,9,27,81C. 2,4,8,16,32D. 1,-1,1,-1,1二、填空题(每题5分,共50分)11. 若x^2 - 5x + 6 = 0,则x^3 - 15x^2 + 54x的值为______。

12. 若sinα = 3/5,且α是第二象限的角,则cosα的值为______。

初一奥林匹克数学竞赛训练试题集(20)

初一奥林匹克数学竞赛训练试题集(20)

初一奥林匹克数学竞赛训练试题集( 20)
参考答案与试题解析
一、选择题(共 8 小题,每小题 4 分,满分 32 分)
1.( 4 分)若(
3x+1)
5=
ax5+bx4+cx3+dx
2
+
ex+f
,则
a﹣b+c﹣ d+e﹣f 的值是(

A .32
B .﹣ 32
C. 1024
D.﹣ 1024
【分析】 根据已知条件当 x=﹣ 1 时, a﹣ b+c﹣ d+e﹣ f 的值是 32.
初一奥林匹克数学竞赛训练试题集( 20)
一、选择题(共 8 小题,每小题 4 分,满分 32 分)
1.( 4 分)若(
3x+1)
5=
ax5+bx4+cx3+dx
2
+
ex+f
,则
a﹣b+c﹣ d+e﹣f 的值是(

A .32
B .﹣ 32
C. 1024
D.﹣ 1024
2.( 4 分)四个平面最多把空间分割成 n 部分,则 n 等于(
各车上.已知每辆汽车最多只能容纳 32 人,求起初有多少辆汽车?有多少名旅客?
18.( 16
分)试证:
2
8x +2
xy﹣
2
3y
可化为具有整系数的两个多项式的平方差.
19.( 16 分)已知多项式
3
ax +
bx2﹣
47x﹣
15
可被
3x+1

2x﹣3 整除.试求

初一奥数竞赛试题及答案

初一奥数竞赛试题及答案

初一奥数竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的平方是16,这个数可能是:A. 4B. -4C. 4或-4D. 以上都不是答案:C3. 一个数的立方是27,这个数是:A. 3B. -3C. 3或-3D. 以上都不是答案:A4. 以下哪个分数是最接近0.5的?A. 1/2B. 2/3C. 3/5D. 4/7答案:B二、填空题(每题5分,共20分)1. 一个数的相反数是-5,那么这个数是______。

答案:52. 如果一个数的绝对值是8,那么这个数可能是______或______。

答案:8,-83. 一个数的平方是25,那么这个数是______或______。

答案:5,-54. 一个数的立方是-8,那么这个数是______。

答案:-2三、解答题(每题10分,共60分)1. 计算下列表达式的值:\((3x - 2) + (2x + 5)\)。

答案:\(5x + 3\)2. 一个数加上它的相反数等于多少?答案:03. 一个数乘以它的倒数等于多少?答案:14. 一个数的立方等于它本身,这个数可能是多少?答案:1,-1,05. 一个数的平方加上它的两倍等于8,求这个数。

答案:2或-46. 一个数的立方加上它的平方加上它本身等于64,求这个数。

答案:4四、证明题(每题10分,共20分)1. 证明:如果一个数的平方等于它的相反数,那么这个数只能是1或-1。

答案:设这个数为x,则有\(x^2 = -x\)。

移项得\(x^2 + x = 0\),因式分解得\(x(x + 1) = 0\),所以\(x = 0\)或\(x = -1\)。

但题目要求是正数,所以只能是1或-1。

2. 证明:如果一个数的立方等于它本身,那么这个数只能是1,-1或0。

答案:设这个数为x,则有\(x^3 = x\)。

移项得\(x^3 - x = 0\),因式分解得\(x(x^2 - 1) = 0\),即\(x(x - 1)(x + 1) = 0\),所以\(x = 0\)或\(x = 1\)或\(x = -1\)。

初一奥林匹克数学竞赛训练试题集

初一奥林匹克数学竞赛训练试题集

初一奥林匹克数学竞赛训练试题集一、选择题(共8小题,每小题4分,满分32分)1.设a 、b 为正整数(a >b ),p 是a 、b 的最大公约数,q 是a 、b 的最小公倍数,则p ,q ,a ,b 的大小关系是()A .p ≥q ≥a >bB .q ≥a >b ≥pC .q ≥p ≥a >bD .p ≥a >b ≥q2.下列四个等式:=0,ab=0,a 2=0,a 2+b 2=0中,可以断定a 必等于0的式子共有()A .3个B .2个C .1个D .0个3.a 为有理数,下列说法中,正确的是()A .(a+)2是正数B .a 2+是正数C .﹣(a ﹣)2是负数D .﹣a 2+的值不小于4.a ,b ,c 均为有理数.在下列:甲:若a >b ,则ac 2>bc 2.乙:若ac 2>bc 2,则a >b .两个结论中()A .甲、乙都真B .甲真,乙不真C .甲不真,乙真D .甲、乙都不真5.若a+b=3,ab=﹣1,则a 3+b 3的值是()A .24B .36C .27D .306.a 、b 、c 、m 都是有理数,且a+2b+3c=m ,a+b+2c=m ,那么b 与c 的关系是()A .互为相反数B .互为倒数C .相等D .无法确定7.两个10次多项式的和是()A .20次多项式B .10次多项式C .100次多项式D .不高于10次的多项式8.在1992个自然数1,2,3,…,1991,1992的每一个数前面添加“+”或“﹣”号,则其代数和一定是()A .奇数B .偶数C .负整数D .非负整数二、填空题(共8小题,每小题5分,满分40分)9.现在弟弟的年龄恰好是哥哥年龄的,而九年前弟弟的年龄,只是哥哥年龄的,则哥哥现在的年龄是_________岁.10.1.23452+0.76552+2.469×0.7655=_________.11.已知方程组,哥哥正确地解得,弟弟粗心地把c 看错,解得,则abc=_________.12.若,则=_________.13.已知多项式2x 4﹣3x 3+ax 2+7x+b 能被x 2+x ﹣2整除,则的值是_________.14.满足的值中,绝对值不超过11的哪些整数之和等于_________.15.若三个连续偶数的和等于1992.则这三个偶数中最大的一个与最小的一个的平方差等于_________.16.三个互不相等的有理数,既可表示为1,a+b ,a 的形式,又可表示为0,,b ,的形式,则a 1992+b 1993=_________.三、解答题(共3小题,满分48分)17.将分别写有数码1,2,3,4,5,6,7,8,9的九张正方形卡片排成一排,发现恰是一个能被11整除的最大的九位数.请你写出这九张卡片的排列顺序,并简述推理过程.18.如果6x 2﹣5xy ﹣4y 2﹣11x+22y+m 可分解为两个一次因式的积,求m 的值,并分解因式.19.设a 、b 、c 、d 都是自然数,且a 2+b 2=c 2+d 2,证明:a+b+c+d 定是合数.初一奥林匹克数学竞赛训练试题集参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.设a 、b 为正整数(a >b ),p 是a 、b 的最大公约数,q 是a 、b 的最小公倍数,则p ,q ,a ,b 的大小关系是()A .p ≥q ≥a >bB .q ≥a >b ≥pC .q ≥p ≥a >bD .p ≥a >b ≥q考点:最大公约数与最小公倍数。

数学竞赛资料-数学奥林匹克初中训练题(含答案)

数学竞赛资料-数学奥林匹克初中训练题(含答案)

数学奥林匹克初中训练题第一试一、选择题(每小题7分,共42分) 1.设z y x ++=+++6323,且x 、y 、z 为有理数.则xyz =(). (A)3/4 (B)5/6 (C)7/12(D)13/18 2.设二次函数f (x )=ax 2+ax +1的图像开口向下,且满足f (f (1))=f (3).则2a 的值为( ). (A)-3 (B)-5 (C)-7 (D)-9 3.方程|xy |+|x +y |=1的整数解的组数为(). (A)2 (B)4 (C)6(D)8 **、b 是方程x2+(m -5)x+7=0的两个根.则(a2+ma+7)(b2+mb+7)=( ). (A)365 (B)245 (C)210(D)175 5.如图,Rt △ABC 的斜边BC =4,∠ABC =30°,以AB 、AC 为直径分别作圆.则这两圆的公共部分面积为( ) (A)2332+π (B) 33265-π (C) 365-π(D) 332-π 6.从1,2,…,13中取出k 个不同的数,使这k 个数中任两个数之差既不等于5,也不等于8.则k 的最大值为(). (A)5 (B)6 (C)7 (D)8 二、填空题(每小题7分,共28分)1.若整系数一元二次方程x 2+(a +3)x +2a +3=0有一正根x 1和一负根x 2,且|x 1|<|x 2|,则a = .2.当x =2329-时,代数式x 4+5x 3-3x 2-8x +9的值是的值是. 3.给定两组数,A 组为:1,2,…,100;B 组为:12,22,…,1002.对于A 组中的数x ,若有B组中的数y ,使x +y 也是B 组中的数,则称x 为“关联数”.那么,A 组中这样的关联数有组中这样的关联数有个.4.已知△ABC 的三边长分别为的三边长分别为AB =2576a 2+,BC =62514a a 2++,AC =62514a -a 2+,其中a >7.则△ABC 的面积为面积为 .第二试一、(20分)解方程:(12x +5)2(6x -1)(x +1)=255.二、(25分)如图,四边形ABCD 中,∠ACB =∠ADB =90°,自对角线AC 、BD 的交点N 作NM ⊥AB 于点M ,线段AC 、MD 交于点E ,BD 、MC 交于点F ,P 是线段EF 上的任意一点证明:点P 到线段CD 的距离等于点P 到线段MC 、MD 的距离之和.三、(25分)矩形玻璃台板碎裂成一些小玻璃片,矩形玻璃台板碎裂成一些小玻璃片,每块碎片都是凸多边形,每块碎片都是凸多边形,每块碎片都是凸多边形,将其重新粘合成原将其重新粘合成原矩形后,有交结点30个,其中20个点在原矩形的周界上(包括原矩形的四个顶点),其余10个点在矩形内部.在矩形的内部有45条粘缝(两个结点之间的线段算是一条粘缝,如图所示).试求该矩形台板所碎裂成的各种类型(指三角形、四边形、五边形等)的块数. 说明:若凸多边形的周界上有n 个点,就将其看成n 边形,例如,图中的多边形ABCDE 要看成五边形.数学奥林匹克初中训练题1参考答案参考答案第一试第一试1.A .两边平方得3+2 +3+6=x +y +z +2xy +2yz +2xz .根据有理数x 、y 、z 的对称性,可考虑方程组可考虑方程组 x +y +z =3,2xy =2,2yz =3,2xz = 6.解得x =1,y =1/2,z =3/2.此时,xyz =3/4.**.注意到f(1)=2a+1,f(3)=12a+1,f(f(1))=a(2a+1)2+a(2a+1)+1.由f(f(1))=f(3),得(2a +1)2+(2a +1)=12.所以,2a +1=3或-4.因a <0,故2a =-5. **.因x 、y 为整数,则|xy |、|x +y |为非负整数.于是,|xy |、|x +y |中一个为0,一个为1.分情形考虑得6组解. **.由ab =7,a 2+ma +7=5a ,b 2+mb +7=5b ,所以,(a 2+ma +7)(b 2+mb +7)=25ab =175. **.记两圆公共部分的面积为S .如图,易知S =S 扇形EAD +S 扇形F AD -S 四边形AEDF =5π/6-3 . **.将这13个数按照相邻两数的差为5或8排列于一个圆周上(如图5).若取出的数多于6个,则必有2个数在圆周上相邻.另一方面,可以取出适合条件的6个数(任取圆周上不相邻的6个数即可),因此,k 的最大值为6. 二、1.-2.因方程的两根不等,故Δ>0,即(a +3)2>4(2a +3).解得a >3或a <-1.又由题设条件知,方程的两根和与积皆负,即-(a +3)<0,2a +3<0.从而,a >-3,a <-3/2,即-3<a <-3/2.而a 为整数,则a =-2. 2. 32297-. x =2329-是方程x 2+3x -5=0的根, **.记x +y =a 2,y =b 2,则1≤b <a ≤100.而x =a 2-b 2=(a +b )(a -b )≤100,因a +b 、a -b 同奇偶,故a +b ≥(a -b )+2.(1)若a -b =1,则a +b 为奇数,且3≤a +b ≤99.于是,a +b 可取3,5,7,…,99,共49个值,这时,相应的x 也可取这49个值.(2)若a -b =2,则a +b 为偶数,且4≤a +b ≤50.于是,a +b 可取4,6,8,…,50,共24个值,这时,相应的x 可取8,12,16,…,100这24个值. 其他情况下所得的x 值均属于以上情形.若a -b =奇数,则a +b =奇数.而x =a 2-b 2≥a +b ≥3,归入(1).若a -b =偶数,则a +b =偶数.而x =(a -b )(a +b )为4的倍数,且a -b ≥2,a +b ≥4,故x ≥8,归入(2). 因此,这种x 共有49+24=73个. **.注意到AB 2=(2a )2+482,BC 2=(a +7)2+242,AC 2=(a -7)2+242.如图,以AB 为斜边,向△ABC 一侧作直角△ABD ,使BD =2a ,AD =48,∠ADB =90°=90°. . 在BD 上取点E ,使BE =a +7,ED =a -7,又取AD 的中点F ,作矩形EDFC 1.因BC 21=BE 2+EC 21=(a +7)2+242=BC 2,AC 21=C 1F 2+AF 2=(a -7)2+242=AC 2,故点C 与点C 1重合.而S △ABD =48a ,S △CBD =24a ,S △ACD =24(a -7),则S △ABC =S △ABD -S △CBD -S △ACD =168. 第二试第二试一、将原方程变形得(12x +5)2(12x -2)(12x +12)=660.令12x +5=t ,则t 2(t -7)(t +7)=660,即t 4-49t 2=660.解得t 2=60或t 2=-11(舍去). 由此得t =±=±2 15,2 15,即有12x +5=±+5=±2215.因此,原方程的根为x 1,2=1215 25- .二、如图,易知A 、B 、C 、D 四点共圆,B 、C 、N 、M 四点共圆,因此,∠ACD =∠ABD =∠MCN .故AC 平分∠DCM .同理,BD 平分∠CDM .如图,设PH ⊥MC 于点H ,PG ⊥MD 于点G ,PT ⊥CD 于点T ;过点P 作XY ∥MC ,交MD 于点X ,交AC 于点Y ;过点Y 作YZ ∥CD ,交MD 于点Z ,交PT 于点R ;再作YH 1⊥MC 于点H 1,YT 1⊥CD 于点T 1由平行线及角平分线的性质得PH =YH 1=YT 1=RT 为证PT =PG +PH ,只须证PR =PG 由平行线的比例性质得EP /EF =EY /EC =EZ /ED .因此,ZP ∥DF .由于△XYZ 与△MCD 的对应边分别平行,且DF 平分∠MDC ,故ZP 是∠XZY 的平分线.从而,PR =PG .因此,所证结论成立.三、设全部碎片中,共有三角形a 3个,四边形a 4个,……,k 边形a k 个(a 3,a 4,…,a k 为非负整数).记这些多边形的内角和为S 角,于是,S 角=a 3×π+a 4×2π+…+a k (k -2)π.另一方面,矩形内部有10个结点,对于每个点,围绕它的多边形顶角和为2π,10个内结点共获得10×10×22π弧度;矩形边界上(不含4个顶点)共有16个结点,在每个这种结点处,各多边形的顶角在此汇合成一个平角,16个这种结点共获得16π弧度;而原矩形的4个顶点处,共获得多边形碎片的2π弧度.因此,S 角=20π+16π+2π=38π. 于是,a 3+2a 4+…+(k -2)a k =38.①记这些多边形的边数和为S 边.由于每个n 边形有n 条边,则S 边=3a 3+4a 4+…+ka k .另一方面,在矩形内部的45条粘缝,每条都是两个多边形的公共边,故都计算了两次;矩形周界上的20条线段各被计算了一次,因此,S 边=2×=2×45+20=110. 45+20=110. 于是,3a 3+4a 4+…+ka k =110.② ②-①得2(a 3+a 4+…+a k )=72.故a 3+a 4+…+a k =36.③ ①-③得a 4+2a 5+3a 6+…+(k -3)a k =2.因所有a i ∈N ,故a 6=a 7=…=a k =0,a 4+2a 5=2.所以,或者a 4=2,a 5=0;或者a 4=0,a 5=1.综上,本题的解共有两种情况,即全部碎片共36块,其中,或含有34个三角形,2个四边形;或含有35个三角形,1个五边形.。

数学奥林匹克竞赛试卷初中

数学奥林匹克竞赛试卷初中

一、选择题(每题5分,共50分)1. 下列各数中,能被3整除的是()A. 2B. 7C. 12D. 252. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 20cmB. 22cmC. 24cmD. 26cm3. 已知函数y=2x+1,若x=3,则y的值为()A. 5B. 6C. 7D. 84. 在下列各组数中,有最大公约数4的是()A. 16,24B. 12,18C. 20,28D. 15,215. 一个长方体的长、宽、高分别为5cm、4cm、3cm,那么它的体积是()A. 60cm³B. 72cm³C. 80cm³D. 90cm³6. 已知x²-5x+6=0,则x的值为()A. 2B. 3C. 4D. 57. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)8. 下列各图中,是轴对称图形的是()A.B.C.D.9. 下列各数中,有最小公倍数120的是()A. 24,40B. 30,48C. 36,50D. 42,6010. 已知a²+b²=c²,则下列结论正确的是()A. a、b、c都是正数B. a、b、c都是负数C. a、b、c都是整数D. a、b、c都是正整数二、填空题(每题5分,共50分)11. 若a+b=5,ab=6,则a²+b²的值为______。

12. 0.5+0.2+0.1+…+0.05+0.01+0.005+…+0.0005+0.0001的和为______。

13. 一个数的平方根是±2,那么这个数是______。

14. 下列各数中,是质数的是______。

15. 一个圆的半径增加了50%,那么这个圆的面积增加了______。

16. 若一个等边三角形的边长为a,那么它的周长是______。

初一奥数比赛试题及答案

初一奥数比赛试题及答案

初一奥数比赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是质数?A. 15B. 16C. 17D. 18答案:C2. 一个数列的前三项为1、2、4,每一项都是前一项的两倍,那么这个数列的第五项是多少?A. 8B. 16C. 32D. 64答案:C3. 一个长方体的长、宽、高分别为2、3、4,那么它的体积是多少?A. 24B. 26C. 28D. 30答案:A4. 如果一个数的平方是36,那么这个数是多少?A. 6B. -6C. 6 或 -6D. 都不是答案:C5. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B二、填空题(每题4分,共20分)6. 一个数的立方是-64,那么这个数是_________。

答案:-47. 如果一个等差数列的首项是3,公差是2,那么它的第10项是_________。

答案:238. 一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是_________。

答案:59. 一个分数的分子是7,分母是14,化简后是_________。

答案:1/210. 如果一个数的绝对值是5,那么这个数可能是_________。

答案:5 或 -5三、解答题(每题10分,共50分)11. 一个数列的前三项为2、5、8,每一项都比前一项多3,求这个数列的第20项。

答案:2 + 3 * (20 - 1) = 5912. 一个长方体的长、宽、高分别是a、b、c,求它的体积。

答案:V = a * b * c13. 一个圆的半径是r,求它的周长和面积。

答案:周长 = 2πr,面积= πr²14. 一个等差数列的首项是a1,公差是d,求它的第n项。

答案:an = a1 + (n - 1) * d15. 一个分数的分子是a,分母是b,求它的倒数。

答案:1/(a/b) = b/a以上是初一奥数比赛的试题及答案,供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一奥林匹克数学竞赛训练试题集(15)收藏试卷下载试卷试卷分析显示答案一、选择题(共8小题,每小题4分,满分32分)1、用代数式表示“x与y的差的平方减去x与y的平方差”应是()A、(x2-y2)-(x-y)2B、(x-y)2-(x2-y2)C、(x-y)2-(x-y2)D、(x-y2)-(x-y)2考点:列代数式.专题:计算题.分析:先表示出x与y的差的平方,即(x-y)2,再表示出x与y的平方差,即x2-y2,再作差即可.解答:解:根据题意,代数式为(x-y)2-(x2-y2).故选B.点评:本题考查了根据实际问题列代数式,列代数式要分清语言叙述中关键词语的意义,理清它们之间的数量关系.本题解题的关键是准确区分“差的平方”与“平方差”.答题:mengcl老师显示解析体验训练收藏试题试题纠错2、除以m得商k余1的数是()A、mk+m B、C、mk+1 D、考点:列代数式.分析:让除数m乘以商k再加上余数1即可.解答:解:所求的数为mk+1,故选C.点评:用到的知识点为:被除数=商×除数+余数.答题:lanchong老师显示解析体验训练收藏试题试题纠错3、化简(4xn+1yn)2÷[(-xy)2]n得()A、16x2B、4x2C、4xnD、16xn考点:整式的混合运算.专题:计算题.分析:先算积的乘方,再算除法.解答:解:原式=16x2n+2y2n÷x2ny2n=16x2.故选A.点评:本题考查了整式的混合运算.在乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.答题:HJJ老师显示解析体验训练收藏试题试题纠错4、计算=()A、B、C、D、考点:因式分解的应用.专题:转化思想;因式分解.分析:观察式子发现,,,…,,=至此问题解决.解答:解:,= …,= ,= ,= ,= .故选D.点评:本题考察因式分解.巧妙利用如,来解题.答题:jingyouwang老师显示解析体验训练收藏试题试题纠错5、一个分数的分子与分母都是正整数,且分子比分母小1,若分子和分母都减去1,则所得分数为小于的正数,则满足上述条件的分数共有()A、5个B、6个C、7个D、8个考点:一元一次不等式的整数解;一元一次不等式组的应用.专题:计算题.分析:根据一个分数的分子与分母都是正整数,且分子比分母小1,即可设分子是a,则分母是a+1,即可表示出这个分数,根据若分子和分母都减去1,则所得分数为小于,即可列出不等式,即可求得a的值,进而求解.解答:解:设a是正整数,该分数表示为.依题意得:<,所以a可取1,2,3,4,5,6六个值.因此,满足上述条件的分数共有五个:,,,,.故选A.点评:本题主要考查了不等式的实际应用,正确列出不等式以及解不等式是解题关键.答题:zhjh老师显示解析体验训练收藏试题试题纠错6、已知:|x-1|+|x-5|=4,则x的取值范围是()A、1≤x≤5B、x≤1C、1<x<5D、x≥5考点:含绝对值符号的一元一次方程.专题:计算题.分析:分别讨论①x≥5,②1<x<5,③x≤1,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.解答:解:从三种情况考虑:第一种:当x≥5时,原方程就可化简为:x-1+x-5=4,解得:x=5;第二种:当1<x<5时,原方程就可化简为:x-1-x+5=4,恒成立;第三种:当x≤1时,原方程就可化简为:-x+1-x+5=4,解得:x=1;所以x的取值范围是:1≤x≤5.故选A.点评:本题考查了含绝对值符号的一元一次方程,难度适中,关键是分类讨论x 的取值范围.答题:xiaoliu007老师显示解析体验训练收藏试题试题纠错7、比较m= 和n= 的大小是()A、m=nB、m>nC、m<nD、不能确定考点:有理数大小比较.分析:运用作差法可判断出m和n的大小.解答:解:m-n= - >0,∴m>n.故选B.点评:本题考查有理数大小的比较,有一定难度,关键是掌握做差法的使用.答题:workholic老师显示解析体验训练收藏试题试题纠错8、某学生到工厂勤工俭学,按合同规定,干满30天,工厂将付给他一套工作服和70元钱,但他工作了20天,由于另有任务,他中止了合同,工厂只付给他一套工作服和20元钱,那么这套工作服值()A、50元B、60元C、70元D、80元考点:二元一次方程组的应用.分析:根据总报酬=工作服款+工资的等量关系,可得到两个方程,解方程组即可得到工作服的价值.解答:解:设一套工作用共需x元,且学生干一天活可得y元,则依题意得:,解得x=80,即一套工作服80元,故选D.点评:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.答题:workeroflaw老师显示解析体验训练收藏试题试题纠错二、填空题(共8小题,每小题5分,满分40分)9、已知|x-3|+ = .考点:代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.分析:由题意|x-3|+(2x-y)2=0,根据非负数的性质可以求出x和y的值,然后代入求解.解答:解:∵|x-3|≥0,(2x-y)2≥0,又|x-3|+(2x-y)2=0,∴x-3=0,2x-y=0,∴x=3,y=6,∴= =- ,故答案为:- .点评:此题主要考查绝对值的性质,当x>0时,|x|=x;当x≤0时,|x|=-x,解题的关键是如何根据已知条件,去掉绝对值.答题:yuanyuan老师显示解析体验训练收藏试题试题纠错10、化简:(x+|x|)+(x-|x|)+x •|x|+ = .考点:绝对值.专题:计算题;分类讨论.分析:本题考查了绝对值的定义,数轴上一个数所对应的点与原点的距离叫做该数绝对值,题中应考虑当x大于0和当x小于0两种情况,具体分析具体解答.解答:解:原式=x+|x|+x-|x|+x•|x|+ =2x+x•|x|+ ,当x>0时,|x|=x,原式=2x+x2+1,当x<0时,|x|=-x,原式=2x-x2-1,故答案为2x+x2+1或2x-x2-1.点评:本题主要考查了绝对值的性质,数轴上一个数所对应的点与原点的距离叫做该数绝对值,难度适中.答题:冯延鹏老师显示解析体验训练收藏试题试题纠错11、已知方程2(x+1)=3(x-1)的解为a+2,那么方程2[2(x+3)-3(x-a)]=3a的解为.考点:一元一次方程的解.分析:将方程2(x+1)=3(x-1)的解求出来使之等于a+2,可求出a的值,再将a的值代入可得出所求方程的解.解答:解:对于方程2(x+1)=3(x-1),其解x=5,即a+2=5,∴a=3将a=3代入2[2(x+3)-(3-a)]=3a,得:2[2(x+3)-3(x-3)]=3×3,4x+12-6x+18=9,∴x=10 .故填10 .点评:本题考查一元一次方程解的定义,要求熟练掌握方程的解即是能使方程两边相等的未知数的值.答题:caicl老师显示解析体验训练收藏试题试题纠错12、若n为自然数,使-1的值是质数的n为.考点:质数与合数.专题:计算题;分类讨论.分析:因为-1= ,且n为自然数,使-1的值是质数,将0代入不符合条件,舍去;将2,3代入,可得2与5,符合题意;当n≥4,如果n是偶数,则(n+2)可被2整除,则可得合数,如果n是奇数,则(n-1)可被2整除,也可得合数;所以n的值为2,3.解答:解:∵当n=2时,-1=2,是质数,当n=3时,-1=5,是质数,当n≥4时,-1= 是合数,∴若n为自然数,使-1的值是质数的n为2,3.点评:此题考查了学生对合数与质数意义的理解,还考查了因式分解的内容.解此题的关键是注意分类讨论思想的应用.答题:zcx老师显示解析体验训练收藏试题试题纠错13、若x2-x-1=0,则1995+2x-x3的值为.考点:因式分解的应用;代数式求值.专题:计算题.分析:由已知,得x2-x=1,再利用因式分解的知识对要求的代数式进行降次,进行整体代入求解.解答:解:∵x2-x-1=0,∴x2-x=1,∴1995+2x-x3=-x(x2-x)-x2+2x+1995=-x2+x+1995=-(x2-x)+1995=1994.故答案为1994.点评:注意此题的整体代入思想,能够运用因式分解的知识对代数式进行降次.答题:心若在老师显示解析体验训练收藏试题试题纠错14、关于y的不等式(2a-b)y+a-5b>0的解为y ,那么关于y的不等式ay>b的解为.考点:解一元一次不等式.专题:计算题.分析:首先根据不等式(2a-b)y+a-5b>0的解为y ,解得a、b的值,然后代入不等式ay>b解得解集.解答:解:∵(2a-b)y+a-5b>0的解集是y ,∴x<,解得a=- ,b=- ,∴- y>- ,∴y .故答案为:y .点评:本题主要考查了解不等式.当题中有多个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.本题需注意,在不等式两边都除以一个负数时,应改变不等号的方向.答题:HJJ老师显示解析体验训练收藏试题试题纠错15、设n= 是990的倍数,那么= .考点:整数的十进制表示法.分析:先根据n= 是990的倍数,可得c=0,再根据990是9或11的倍数,可得a+b=6或a+b=15,且a-b=11-13,从而求解.解答:解:∵990|n= ,即10|n,∴c=0.同时9|n,且11|n,∴a+b=6或a+b=15,且a-b=11-13,∴相应的有a=2,b=4,或a= ,b= (不含题意,舍去)∴=240.故答案为:240.点评:本题考查了整数的十进制表示法,解题的关键是熟悉9,10,11的倍数的特征,有一定的难度.答题:HJJ老师显示解析体验训练收藏试题试题纠错16、如果在7个连续偶数中,最大数恰好是最小数的3倍,那么最大的一个数等于.考点:一元一次方程的应用.专题:常规题型.分析:想要求最大的数,就要先设出未知数,再通过理解题意可知本题的等量关系,最大数为最小数的3倍,而且最大数比最小数大12,根据等量关系列方程求解.解答:解:设7个连续偶数依次为n-6,n-4,n-2,n,n+2,n+4,n+6,则由题意可知n+6=3(n-6),∴解得n=12.所以最大的偶数为n+6=18.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出本题中题目所给出等量关系,并且列出方程求解.答题:499807835老师显示解析体验训练收藏试题试题纠错三、解答题(共3小题,满分48分)17、证明:32不可能写成n个连续自然数的和.考点:整数的奇偶性问题.专题:数字问题.分析:假设32可以写成几个连续自然数的和,这n个连续自然数依次为k,k+1,,k+n-1,则k+k+1++k+n-1=32.=32即n(2k+n-1)=64=26∴n与(2k+n-1)都应为偶数.则n为偶数,且2k为偶数,∴n-1为奇数,∴n为奇数,矛盾.∴假设错误.解答:解:连续N个自然数的和为S=n+(n+1)+(n+2)…+(n+m)=(2n+m)(m+1)/2 若m为奇数,则2n+m为奇数若m为偶数,则m+1为奇数则N个自然数的和必为奇数*偶数或奇数*奇数32=25无论怎么分除了1和32之外分不出这样的奇数*偶数,1和32非连续偶数,所以32不可能写成n个连续自然数的和点评:此题是通过奇偶数知识点解决的问题.主要考查学生对奇偶数正确运用,关键是奇偶数推理论证.答题:马兴田老师显示解析体验训练收藏试题试题纠错18、一个楼梯共有10级台阶,规定每步可以迈一级台阶或二级台阶,最多可以迈三级台级,从地面上到最上面一级台阶,一共可以有多少种不同的迈法?考点:加法原理与乘法原理.分析:首先从简单情况入手,若有1级台阶,则只有惟一的迈法,若有2级台阶,则有两种迈法,若有3级台阶,则有4种迈法,若有4级台阶,则按照第一步迈的级数分三类讨论:①第一步迈一级台阶,那么还剩三级台阶,根据前面分析可知a3=4种万法,②第一步迈二级台阶,还剩二级台阶,根据前面的分析可知有a2=2种迈法,③第一步迈三级台阶,那么还剩一级台阶,还有a1=1种,然后依次求出a5、a6、…a10.解答:解:从简单情况入手:(1)若有1级台阶,则只有惟一的迈法:a1=1;(2)若有2级台阶,则有两种迈法:一步一级或一步二级,则a2=2;(3)若有3级台阶,则有4种迈法:①一步一级地走,②第一步迈一级而第二步迈二级,③第一步迈二级而第二步迈一级,④一级迈三级,a3=4;(4)若有4级台阶,则按照第一步迈的级数分三类讨论:①第一步迈一级台阶,那么还剩三级台阶,根据前面分析可知a3=4种万法,②第一步迈二级台阶,还剩二级台阶,根据前面的分析可知有a2=2种迈法,③第一步迈三级台阶,那么还剩一级台阶,还有a1=1种.∴a4=a1+a2+a3=7(种)相应有a5=a4+a2+a3=13(种)a6=a5+a4+a3=24(种)a7=a6+a5+a4=44(种)a8=a7+a6+a5=81(种)a9=a8+a7+a6=149(种)a10=a9+a8+a7=274(种)∴共有274种迈法.点评:本题主要考查加法原理和乘法原理的知识点,解答本题的关键是从简单情况入手,依次求出n级台阶的迈法,此题难度不大.答题:yangjigang老师显示解析体验训练收藏试题试题纠错19、把1到3这三个自然数填入10×10的方格内,每格内填一个数,求证:无论怎样填法都能使在各行、各列、两条对角线上的数字和中,必有两个是相同的.考点:抽屉原理.专题:证明题.分析:把1到3这三个自然数填入10×10的方格内,在各行、各列,两格对角线数字和中,最小的为10,最大的为30,共有21种取值.而10行,10列,加2条对角线共22个和.根据抽屉原理,即可证明结论.解答:证明:由于每个格内数字为1,2,3,则在各行、各列,两格对角线数字和中,最小的为10,最大的为30,共有21种取值,实际上,10行,10列,加2条对角线共22个和.所以由抽屉原理,必有两个和是相等的.点评:本题考查了抽屉原理,解题的关键是得出把1到3这三个自然数填入10×10的方格内,各行、各列,两格对角线数字和中,共有多少种取值.及10×10的方格内,10行,10列,加2条对角线共多少个和.答题:HJJ老师显示解析体验训练收藏试题试题纠错。

相关文档
最新文档