高一数学必修四各章知识点总结

合集下载

高一数学必修4知识点梳理:平面向量

高一数学必修4知识点梳理:平面向量

2、零向量:长度为0第二章平面向量1、向量定义:既有大小又有方向的量叫做向量,向量都可用同一平面内的有向线段表示.的向量叫零向量,记作0;零向量的方向是任意的.3、单位向量:长度等于1个单位长度的向量叫单位向量;与向量a 平行的单位向量:e =±a a ||4、平行向量(共线向量):方向相同或相反的非零向量叫平行向量也叫共线向量,记作//ab ;规定0与任何向量平行.5、相等向量:长度相同且方向相同的向量叫相等向量,零向量与零向量相等.注意:任意两个相等的非零向量,都可以用同一条有向线段来表示,并且与有向线段的起点无关。

6、向量加法运算:⑴三角形法则的特点:首尾相接⑵平行四边形法则的特点:起点相同baCBA -=A -AB =B a bC Cc高一数学必修4知识点梳理:平面向量⑶运算性质:①交换律:+=+a b b a ;②结合律:++=++a b c a b c ()();③+=+=a a a 00.⑷坐标运算:设=a x y ,11(),=b x y ,22(),则+=++a b x x y y ,1212)(. 7、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设=a x y ,11(),=b x y ,22(),则-=--a b x x y y ,1212)(.设A 、B 两点的坐标分别为x y ,11(),x y ,22(),则AB =--x x y y ,2121)(.8、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作λa . ①=λλa a ;②当>λ0时,λa 的方向与a 的方向相同;当<λ0时,λa 的方向与a 的方向相反; 当=λ0时,=λa 0.⑵运算律:①=λμλμa a ()();②+=+λμλμa a a ();③+=+λλλa b a b (). ⑶坐标运算:设=a x y ,(),则==λλλλa x y x y ,,()().9、向量共线定理:向量≠a a 0()与b 共线,当且仅当有唯一一个实数λ,使=λb a . 设=a x y ,11(),=b x y ,22(),其中≠b 0,则当且仅当-=x y x y 01221时,向量a 、≠b b 0()共线.10、平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使=+λλa e e 1122.(不共线的向量e 1、e 2作为这一平面内所有向量的一组基底)11、分点坐标公式:设点P 是线段P P 12上的一点,P 1、P 2的坐标分别是x y ,11(),x y ,22(),当P P =PP λ12时,点P 的坐标是⎝⎭++ ⎪⎛⎫++λλλλx x y y 11,1212. 12、平面向量的数量积:⑴定义:≠≠≤≤⋅=θθa b a b a b cos 0,0,0180)(.零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①⊥⇔⋅=a b a b 0.②当a 与b 同向时,⋅=a b a b ;当a 与b 反向时,⋅=-a b a b ;⋅==a a a a 22或=⋅a a a .③⋅≤a b a b .⑶运算律:①⋅=⋅a b b a ;②⋅=⋅=⋅λλλa b a b a b ()()();③+⋅=⋅+⋅a b c a c b c ().⑷坐标运算:设两个非零向量=a x y ,11(),=b x y ,22(),则⋅=+a b x x y y 1212. 若=a x y ,(),则=+a x y 222,或=+a x y 22.设=a x y ,11(),=b x y ,22(),则⊥⇔+=a b x x y y 01212.设a 、b 都是非零向量,=a x y ,11(),=b x y ,22(),θ是a 与b 的夹角,则++==⋅+θx yx ya ba b x x y y cos 112222221212.第三章 三角恒等变形1、同角三角函数基本关系式(1)平方关系:αα=+221cos sin (2)商数关系:=tan sin cos ααα(3)倒数关系:αα=1cot tan=+sin tan tan 1222ααα ; =+co s 1t an 122αα注意: tan ,cos ,sin ααα 按照以上公式可以“知一求二”2、两角和与差的正弦、余弦、正切S +βα)(:=++sin cos cos sin )sin(βαβαβα S -βα)(:=--sin cos cos sin )sin(βαβαβα C +βα)(:a =+-sin sin cos cos )cos(βαβαβ C -βα)(:a =-+sin sin cos cos )cos(βαβαβ T +βα)(: =++-)tan(tan tan tan tan 1βαβαβαT -βα)(: =--+)tan(tan tan tan tan 1βαβαβα正切和公式:-⋅+=+βαβαβα)tan tan 1()tan(tan tan3、辅助角公式:222222cos sin sin cos b a x b x a a b a x b b a x +=++++⎛⎝⎫⎭⎪⎪ x b a x x b a +⋅+=⋅+⋅+=ϕϕϕ2222)sin cos cos (sin )sin((其中ϕ称为辅助角,ϕ的终边过点b a ),(,tan ϕ=b a)4、二倍角的正弦、余弦和正切公式: S 2α: =cos sin 22sin αααC 2α: -=sin cos 2cos 22ααααα-=-=221cos 2sin 21 T 2α: =-2tan tan 2tan 12ααα*二倍角公式的常用变形:①、=-αα|sin |22cos 1,=+αα|cos |22cos 1;②、=-αα1212|sin |2cos , =+αα1212|cos |2cos③-=+-=ααααα442221cos sin 21cos sin 2sin 2;=-442cos sin cos ααα;*降次公式:=cos sin 122sin ααα ααα=-+-=2sin 2cos 12122cos 12 ααα=++=2cos 2cos 12122cos 125、*半角的正弦、余弦和正切公式:±=-ααsin2cos 12 ; ±=+ααcos 2cos 12, ±=-+tan2cos 1cos 1ααα=-=+cos 1sin sin cos 1αααα6、同角三角函数的常见变形:(活用“1”)① -=cos 1sin 22αα; -±=cos 1sin 2αα;-=sin 1cos 22αα; -±=sin 1cos 2αα; ②=++=22cot tan sin cos cos sin 22sin θθθθθθθ,αααααααθθ2cot 22sin 2cos 2cos sin sin cos tan cot 22==-=-③ααααα2sin 1cos sin 21)cos (sin 2±=±=±; |cos sin |2sin 1ααα±=± 7、补充公式:*①万能公式2tan12tan2sin 2ααα+=; 2t a n12t a n1c o s 22ααα+-=; 2t a n12t a n2t a n 2ααα-=*②积化和差公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=*③和差化积公式2cos 2sin 2sin sin βαβαβα-+=+; 2sin2cos 2sin sin βαβαβα-+=- 2co s 2co s 2co s co s βαβαβα-+=+;2sin2sin 2cos cos βαβαβα-+-=- 注:带*号的公式表示了解,没带*公式为必记公式。

高一必修数学第四章知识点

高一必修数学第四章知识点

高一必修数学第四章知识点第一节直线与坐标系一、点和坐标在平面直角坐标系中,一个点可以用有序数对 (x, y) 表示,其中 x 表示横坐标,y 表示纵坐标。

二、直线的斜率1. 斜率的定义设两点 A(x₁, y₁) 和 B(x₂, y₂),其斜率 k 定义为 k = (y₂ - y₁) / (x₂ - x₁)。

2. 与坐标轴平行的直线的斜率与 x 轴平行的直线的斜率为 0;与 y 轴平行的直线没有斜率,记为∞。

三、直线的方程及性质1. 一般形式的直线方程直线的一般形式方程为 Ax + By + C = 0,其中 A、B、C 为常数且 A、B 不同时为 0。

2. 点斜式的直线方程已知直线上一点 P(x₁, y₁) 和斜率 k,则直线的点斜式方程为 y - y₁ = k(x - x₁)。

3. 斜截式的直线方程已知直线与 y 轴的交点为 (0, b) 和斜率 k,则直线的斜截式方程为 y = kx + b。

第二节二次函数的图像与性质一、二次函数的定义与图像二次函数的一般形式为 f(x) = ax² + bx + c,其中 a、b、c 为常数且a ≠ 0。

二、抛物线的开口方向1. a > 0 时,抛物线向上开口;2. a < 0 时,抛物线向下开口。

三、顶点坐标和对称轴1. 顶点坐标抛物线的顶点坐标为 V(-b/2a, f(-b/2a))。

2. 对称轴抛物线的对称轴为直线 x = -b/2a。

四、二次函数的性质1. 单调性a > 0 时,二次函数单调递增;a < 0 时,二次函数单调递减。

2. 零点二次函数与 x 轴交点的横坐标为零点,可通过解方程 ax² + bx + c = 0 求得。

3. 最值a > 0 时,二次函数的最小值为 f(-b/2a);a < 0 时,二次函数的最大值为 f(-b/2a)。

第三节平面向量与数量积一、平面向量的定义平面向量是具有大小和方向的有向线段。

高一年级数学必修四知识点(最新)

高一年级数学必修四知识点(最新)

1.高一年级数学必修四知识点⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差)。

⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性。

⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a。

a。

a。

…=a。

a。

a。

…。

⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}。

⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列。

⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0。

⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积。

⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列。

2.高一年级数学必修四知识点初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算及有限次函数复合所产生,并且能用一个解析式表示的函数。

非初等函数是指凡不是初等函数的函数。

初等函数是最常用的一类函数,包括常函数、幂函数、指数函数、对数函数、三角函数、反三角函数(以上是基本初等函数),以及由这些函数经过有限次四则运算或函数的复合而得的所有函数。

即基本初等函数经过有限次的四则运算或有限次的函数复合所构成并可以用一个解析式表出的'函数,称为初等函数。

非初等函数的研究与发展是近现代数学的重大成就之一,极大拓展了数学在各个领域的应用,在概率论、物理学科各个分支中等有十分广泛的应用。

是函数的一个重要的分支。

高一数学人必修件第四章对数的运算

高一数学人必修件第四章对数的运算

04
指数函数与对数函数关系
指数函数图像和性质回顾
01
02
03
指数函数定义
形如$y=a^x$($a>0$, $aneq 1$)的函数称为指 数函数。
指数函数图像
当$a>1$时,图像在$y$ 轴右侧上升;当$0<a<1$ 时,图像在$y$轴右侧下 降。
指数函数性质
当$a>1$时,函数单调递 增;当$0<a<1$时,函数 单调递减。
对数式化为指数式
$log_a N = x Leftrightarrow a^x = N$。该法则表明,一 个对数式可以转化为一个指数式,其中对数成为指数,底数 保持不变,真数成为幂。
复合函数中的对数运算
复合函数的对数运算法则
$log_b(f(x)) = log_b(g(h(x)))$。该法则表明,在复合函数中,可以先求出内 层函数的值,再将其代入外层函数中进行对数运算。
THANKS
感谢观看
03
实例分析
例如,解方程 $log_2 (x + 2) - log_4 (x - 1) = 1$,可以通过换底公式
将其转化为 $log_2 (x + 2) - frac{1}{2} log_2 (x - 1) = 1$,进一步化
简得到 $x = 4$。
对数不等式解法及实例分析
对数不等式的基本形式
形如 $log_a x > log_a y$($a > 0$,$a neq 1$)的不等式,可以通过比较 $x$ 和 $y$ 的大小关系进行求解。
对数函数图像和性质探讨
对数函数定义
形如$y=log_a
x$(
$a>0$,$aneq 1$)的函

高一必修四一数学知识点

高一必修四一数学知识点

高一必修四一数学知识点高中数学作为学生继续深入学习数学的阶段,对于数学知识点的理解和掌握变得尤为重要。

在高一必修四中,包含了一些重要的数学知识点,本文将为大家总结和概括这些知识点,帮助大家更好地学习和掌握这些内容。

1. 二次函数二次函数是高中数学中重要的一部分内容。

二次函数的标准形式为f(x) = ax² + bx + c,其中 a、b、c 是常数且a ≠ 0。

学习二次函数时,需要掌握以下几个重点内容:(1)二次函数的图像特征:顶点坐标、开口方向、对称轴等。

(2)二次函数的最值问题:如何求解二次函数的最值问题,以及与实际问题的应用。

(3)二次函数的零点问题:如何求解二次函数的零点,利用因式分解、配方法、求根公式等方法。

2. 平面向量平面向量是平面上的一个有向线段,具有大小和方向。

学习平面向量时,需要掌握以下几个重点内容:(1)向量的表示和运算:如何表示向量,向量的加法与减法,向量与标量的乘法。

(2)向量的数量积和向量积:了解向量的数量积和向量积的概念,以及它们的性质和运算法则。

(3)平面向量的坐标表示:平面向量可以用坐标表示,需要学习如何进行坐标表示。

3. 椭圆椭圆是高中数学中的一种曲线,具有许多特殊的性质和应用。

学习椭圆时,需要掌握以下几个重点内容:(1)椭圆的定义与性质:了解椭圆的定义,掌握椭圆的离心率、焦点、半长轴、半短轴等重要概念。

(2)椭圆的方程:熟悉椭圆的标准方程、一般方程的表示方法,以及如何通过给定的条件确定椭圆的方程。

(3)椭圆的应用:椭圆在几何光学、机械工程、天体力学等领域具有广泛的应用,需要了解椭圆在实际问题中的应用方法。

4. 函数的导数函数的导数是高中数学中另一个重要的概念。

学习函数的导数时,需要掌握以下几个重点内容:(1)导数的定义与性质:理解导数的定义,熟悉导数的性质,如可导性、导数的四则运算法则等。

(2)导数的计算方法:学习如何计算常见函数的导数,使用导数的基本公式进行计算。

高一数学必修四知识点总结b版

高一数学必修四知识点总结b版

高一数学必修四知识点总结b版在高一数学必修四课程中,我们学习了许多重要的知识点,这些知识点对于我们建立数学基础和进一步提高数学能力非常关键。

本文将对这些知识点进行总结,帮助我们更好地复习和掌握。

一、函数与导数1.函数的概念函数是一种特殊的关系,它将自变量和因变量联系起来。

我们学习了函数的定义、函数的表示方法以及函数的性质等内容。

2.导数与函数的变化率导数是函数在某一点的变化率,它的定义是函数在该点处的斜率。

我们学习了导数的概念、导数的计算方法以及导数在几何中的应用。

3.导数的基本性质导数具有一系列的基本性质,如导数的四则运算、常用函数的导数公式以及导数与函数图像的关系等。

二、平面几何与立体几何1.向量向量是描述空间中有方向和大小的量,它具有平移、共线性和比例三个基本性质。

我们学习了向量的定义、向量的线性运算以及向量在几何中的应用等内容。

2.平面几何基本概念平面几何是研究平面上的点、线、面及其性质的数学学科。

我们学习了平面几何的基本概念,如直线、角、相似三角形等。

3.立体几何基本概念立体几何是研究三维空间中的点、线、面及其性质的数学学科。

我们学习了立体几何的基本概念,如空间几何体的分类、立体几何体的表面积和体积计算等。

三、数列与数学归纳法1.数列数列是按照一定规律排列的一串数,它是数学研究中非常重要的概念。

我们学习了数列的定义、常见数列的性质以及数列求和公式等内容。

2.数学归纳法数学归纳法是一种数学证明方法,它是通过证明某个命题对于自然数的一个特定范围成立从而证明它对于所有自然数成立。

我们学习了数学归纳法的基本思想和应用技巧。

四、概率与统计1.概率的基本概念概率是用来描述随机事件发生可能性的数值,它是数学中的一个重要分支。

我们学习了概率的定义、概率计算的方法以及概率在实际问题中的应用等。

2.统计的基本概念统计是对数据进行收集、整理、分析和解释的过程,它在现代社会的各个领域都有广泛应用。

我们学习了统计的基本概念,如数据的表示方式、统计量的计算以及统计图表的制作等。

人教高一必修四数学知识点

人教高一必修四数学知识点

人教高一必修四数学知识点在高中数学必修四课程中,学生将接触到许多重要的数学知识点。

这些知识点包括代数、函数、几何和概率等方面。

下面将对其中一些关键的知识点进行简要介绍。

一、代数1. 等式与方程:学生需要掌握等式的性质和解一元一次方程的方法。

这包括使用加减消元法、乘除消元法和配方法等来解方程。

2. 二次函数与一元二次方程:学生将学习二次函数的图像、顶点、轴对称以及一元二次方程的解法和判别式。

3. 不等式与不等式组:学生需要理解和应用不等式的性质,掌握不等式组的解法和图像表示。

二、函数1. 函数概念与性质:学生需要了解函数的定义、自变量、因变量以及函数图像的性质。

同时还需要学会根据已知条件来确定函数的值域、定义域和解函数方程。

2. 一次函数与一次函数方程:学生将学习掌握一次函数的图像、截距、斜率和一次函数方程的解法。

3. 幂函数、指数函数和对数函数:学生需要了解这些函数的定义、性质和图像特点,并学会求解相关的方程和不等式。

4. 复合函数与反函数:学生将学习复合函数和反函数的概念,以及如何求解复合函数和反函数的问题。

三、几何1. 向量与平面向量:学生将学习向量的概念、运算和向量的线性运算法则。

此外,还需要了解平面向量的共线、共面和向量的数量积。

2. 三角函数与三角方程:学生需要了解正弦、余弦和正切函数的定义、性质和图像特点。

同时,还需要学会求解三角方程。

3. 三角恒等式与三角变换:学生将学习三角恒等式的证明和应用,以及三角函数的和差化积、倍角公式和半角公式等。

四、概率1. 随机事件与概率:学生将学习随机事件的概念和性质,掌握概率的计算方法,并运用概率解决实际问题。

2. 排列与组合:学生需要了解排列和组合的概念、计算方法和应用。

以上仅仅是高中数学必修四课程中部分重要的数学知识点。

通过对这些知识点的学习和掌握,学生将能够在应用数学的各个领域中灵活运用数学方法和工具,提高解决问题的能力和思维能力。

因此,对于每一个高中生来说,深入理解和掌握这些数学知识点是非常重要的。

高一数学学科必修四的知识点

高一数学学科必修四的知识点

高一数学学科必修四的知识点高中阶段学科知识交叉多、综合性强,以理解和应用为主,要求学生要有更强的分析、概括、综合、实践的能力。

在高中阶段,不能只局限于知识的学习,而要重视观察、思维、分析、阅读、动手等能力的培养。

下面是小编给大家带来的高一数学学科必修四的知识点,希望大家能够喜欢!高一数学学科必修四的知识点1空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)练习题:1.正四棱锥P—ABCD的侧棱长和底面边长都等于,有两个正四面体的棱长也都等于.当这两个正四面体各有一个面与正四棱锥的侧面PAD,侧面PBC完全重合时,得到一个新的多面体,该多面体是()(A)五面体(B)七面体(C)九面体(D)十一面体2.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为()(A)9(B)18(C)36(D)643.下列说法正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等高一数学学科必修四的知识点2一)两角和差公式 (写的都要记)sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA ?cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)二)用以上公式可推出下列二倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2(上面这个余弦的很重要)sin2A=2sinA_cosA三)半角的只需记住这个:tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)四)用二倍角中的余弦可推出降幂公式(sinA)^2=(1-cos2A)/2(cosA)^2=(1+cos2A)/2五)用以上降幂公式可推出以下常用的化简公式1-cosA=sin^(A/2)_21-sinA=cos^(A/2)_2高一数学学科必修四的知识点3重点难点讲解:1.回归分析:就是对具有相关关系的两个变量之间的关系形式进行测定,确定一个相关的数学表达式,以便进行估计预测的统计分析方法。

数学高一必修四几何知识点总结

数学高一必修四几何知识点总结

数学高一必修四几何知识点总结一、知识概述《高一必修四几何知识点》①基本定义:高一必修四几何主要涉及平面向量等知识。

平面向量就是既有大小又有方向的量,可以把它想象成既有长度又有指向的箭头。

像在生活里,力和速度就是典型的向量,力有大小并且朝着一定方向推或者拉东西,速度也是有快慢并且朝着某个方向运动。

②重要程度:它是高中数学的重要内容,在数学的各个领域,像物理学研究物体运动中力和加速度等关系、解析几何里可以用来解题等都有重要意义。

算是桥梁类的知识,连接了代数和几何。

③前置知识:需要一些初中的平面几何基础知识,比如三角形、平行四边形等图形的性质等知识,还要有一定的运算能力。

④应用价值:在很多实际场景有用。

比如在建筑工程中计算物体受力情况,力就是向量,如果知道几个力向量就可以合成算出总的作用力方向和大小。

二、知识体系①知识图谱:在高中数学体系里,平面向量这部分知识是独立又与其他知识联系紧密的分支。

它上承初中几何知识,下启高中很多数学分支的解题思路。

②关联知识:与平面几何紧密联系,就像三角形的三条边如果看成向量的话,很多性质可以通过向量来体现。

还和三角函数也有关联,通过向量的坐标等可以和三角函数结合起来。

③重难点分析:重难点在于向量的概念和运算规则的理解和运用。

向量运算有加法、减法、数乘、点积等,这些运算既有坐标形式又有几何形式,得理解清楚。

理解向量的方向和它与其他向量的夹角等很关键。

④考点分析:考试里分量很重,会以选择题考查向量概念,填空题考查向量的简单运算,解答题经常会综合其他知识考查向量在几何或者物理中的应用。

三、详细讲解【理论概念类】①概念辨析:平面向量概念关键在于有方向和大小。

比如从家到学校的位移就是向量,位移的距离是大小,从家指向学校这个方向就是方向。

②特征分析:向量可以平移,只要方向和大小不变,那么就是同一个向量。

它可以用有向线段表示。

③分类说明:分零向量(大小为0,方向任意)、单位向量(大小为1的向量)、平行向量(方向相同或者相反的向量)、相等向量(大小和方向都相同的向量)等。

高一数学上下册知识点总结

高一数学上下册知识点总结

高中高一数学上下册知识点必修1 各章知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。

高中数学 必修四 1.1.1任意角和弧度制

高中数学  必修四 1.1.1任意角和弧度制
36
又k∈Z,故所求的最大负角为β=-50°. (2)由360°≤10 030°+k·360°<720°, 得-9670°≤k·360°<-9310°,又k∈Z,解得k=-26. 故所求的角为β=670°.
【方法技巧】 1.在0°到360°范围内找与给定角终边相同的角的方法 (1)一般地,可以将所给的角α 化成k·360°+β 的形式(其中 0°≤β <360°,k∈Z),其中的β 就是所求的角. (2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所 给角是负角时,采用连续加360°的方式;当所给角是正角时,采用 连续减360°的方式,直到所得结果达到要求为止.
4.将35°角的终边按顺时针方向旋转60°所得的角度数为_______, 将35°角的终边按逆时针方向旋转两周后的角度数________. 【解析】将35°角的终边按顺时针方向旋转60°所得的角为35°60°=-25°,将35°角的终边按逆时针方向旋转两周后的角为 35°+2×360°=755°. 答案:-25° 755°
【解析】(1)错误.终边与始边重合的角是k·360°(k∈Z),不一定 是零角. (2)错误.如-10°与350°终边相同,但是不相等. (3)错误.如-330°角是第一象限角,但它是负角. (4)错误.终边在x轴上的角不属于任何象限. 答案:(1)× (2)× (3)× (4)×
2.下列各组角中,终边不相同的是( )
2.判断角的概念问题的关键与技巧 (1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念. (2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举 出反例即可.
【变式训练】射线OA绕端点O顺时针旋转80°到OB位置,接着逆时针 旋转250°到OC位置,然后再顺时针旋转270°到OD位置,则 ∠AOD=________.

高一数学必修一,四知识点总结

高一数学必修一,四知识点总结

高中高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A记作a∉A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∉R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊄B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。

江苏高一数学知识点必修四

江苏高一数学知识点必修四

江苏高一数学知识点必修四数学是一门重要的学科,也是高中学生必修的科目之一。

在高一的学习中,江苏的学生需要学习必修四的数学知识点。

本文将详细介绍江苏高一数学知识点必修四的内容,帮助同学们更好地理解和掌握这些知识。

第一章函数与导数1.1 函数的概念与表示方法函数是一种特殊的关系,它将一个集合中的每个元素与另一个集合中的元素建立起对应关系。

函数可以用表示法、图像、表格、解析式等多种方式来表示。

1.2 函数的运算与初等函数函数的运算包括加法、减法、乘法、除法和复合等运算,初等函数包括幂函数、指数函数、对数函数、三角函数以及其它常见的函数。

1.3 导数与函数的增减性与极值导数是函数在某一点上的变化率。

通过导数,可以研究函数的增减性以及求得函数的极值。

第二章三角恒等变换与解三角形2.1 三角函数的基本关系与恒等式三角函数之间存在许多基本关系和恒等式,包括倒数关系、和差化积、积化和差、倍角公式等。

2.2 解三角形的基本步骤与方法解三角形是通过已知三角形的某些信息,如角度或边长,求解其余的未知信息。

解三角形的基本步骤包括列写平面几何条件、对应的三角恒等变换以及解方程。

2.3 三角函数的图像与性质三角函数的图像、最值、周期性等性质对于理解和应用三角函数非常重要。

第三章幂指对数函数与方程3.1 幂函数与反函数幂函数是具有形式f(x) = ax^k的函数,其中a和k是常数。

反函数是指函数f的输入与输出交换的函数。

3.2 指数函数与对数函数指数函数是具有形式f(x) = a^x的函数,对数函数是反函数,具有形式f(x) = loga(x)。

3.3 指数方程与对数方程的解法指数方程和对数方程是涉及指数函数和对数函数的方程,通过运用变底公式、对数换底公式等方法可以解决这些方程。

第四章几何向量4.1 向量的概念与表示方法向量是具有大小和方向的量,可以表示为有向线段。

向量的表示方法包括点表示法、坐标表示法、方位角表示法等。

4.2 向量的运算向量的运算包括加法、减法、数量乘法、点乘和叉乘等运算。

数学高一必修四知识点手写笔记

数学高一必修四知识点手写笔记

数学高一必修四知识点手写笔记一、集合的介绍和表示方法1. 集合的定义:集合是指将具有某种共同特征的对象组成的整体。

2. 集合的表示方法:a. 列举法:将集合中的元素逐个列举出来,用花括号{}括起来表示,元素之间用逗号隔开。

b. 描述法:利用描述性的句子或公式表示集合,用大括号{}括起来表示。

c. 性质法:根据集合的某些性质,直接写出集合的定义。

二、集合的关系与运算1. 集合的相等:两个集合具有相同的元素,则称为相等集合,用等号“=”表示。

2. 集合的包含与包含关系:a. 若集合A的所有元素都属于集合B,则称A是B的子集,用符号“⊆”表示。

b. 若集合A是集合B的子集,且集合B至少有一个元素不属于集合A,则称A是B的真子集,用符号“⊂”表示。

c. 空集:不含任何元素的集合,用符号“∅”表示。

3. 集合的运算:a. 并集:将两个集合的所有元素合并在一起,形成一个新的集合,用符号“∪”表示。

b. 交集:两个集合中同时含有的元素构成的集合,用符号“∩”表示。

c. 差集:从一个集合中去掉另一个集合中的元素,得到的新集合,用符号“-”表示。

d. 互斥集:两个集合没有共同元素时,称为互斥集。

三、函数的概念与性质1. 函数的定义:函数是一种特殊的关系,每一个自变量都对应唯一的因变量。

2. 函数的表示方法:a. 函数的映射图:用箭头表示自变量和因变量之间的对应关系。

b. 函数的表达式:用一般符号和字母表示函数的关系式。

3. 函数的性质:a. 定义域:自变量的取值范围,用符号“D”表示。

b. 值域:因变量的取值范围,用符号“R”表示。

c. 单调性:函数在定义域上是递增或递减的性质。

d. 奇偶性:函数关于y轴对称或关于原点对称的性质。

四、三角函数与三角恒等式1. 常见三角函数:a. 正弦函数:y = sinxb. 余弦函数:y = cosxc. 正切函数:y = tanxd. 余切函数:y = cotxe. 正割函数:y = secxf. 余割函数:y = cscx2. 三角恒等式:a. 基本恒等式:sin²x + cos²x = 1b. 和差化积公式:sin(x±y) = sinxcosy ± cosxsinyc. 二倍角公式:sin2x = 2sinxcosxd. 三倍角公式:sin3x = 3sinx - 4sin³xe. 万能化简公式:sin²x = (1 - cos2x) / 2通过以上手写笔记,我们可以系统地了解数学高一必修四的知识点,包括集合的介绍和表示方法,集合的关系与运算,函数的概念与性质,以及三角函数与三角恒等式。

高一数学人必修件第四章对数函数的概念

高一数学人必修件第四章对数函数的概念
化学领域的酸碱度测量
在化学领域,酸碱度的测量使用对数刻度,即pH值。这是因为酸 碱度的变化与氢离子浓度的对数呈线性关系。
跨学科综合应用案例
01
生物医学中的药物剂量计算
在生物医学领域,药物剂量的计算常常涉及对数函数。通过使用对数函
数,医生可以根据患者的体重、体表面积等因素精确地计算药物剂量。
02 03
对数定义及性质
对数的性质 $log_a 1 = 0$ $log_a a = 1$
对数定义及性质
$log_a (MN) = log_a M + log_a N$
$log_a frac{M}{N} = log_a M - log_a N$ $log_a M^n = nlog_a M$
对数运算规则
对数的换底公式
对于底数大于1的对数函数,其图像 位于第一象限;对于底数小于1的对 数函数,其图像位于第四象限。
恒过定点(1,0)
所有对数函数的图像都经过点(1,0 )。
x轴为渐近线
对数函数的图像无限接近x轴,但永 远不会与x轴相交。
单调性
底数大于1的对数函数在第一象限内 单调递增;底数小于1的对数函数在 第四象限内单调递减。
04
幂指对综合运算技巧
幂指对运算法则回顾
幂的运算法则
包括同底数幂的乘法、除 法、乘方和幂的乘方等运 算法则。
指数的运算法则
包括指数的加法、减法、 乘法和除法等运算法则。
对数的运算法则
包括对数的乘法、除法、 指数和换底等运算法则。
幂指对互换原理及应用
幂指对互换原理
在特定条件下,幂、指数和对数 之间可以相互转换,从而简化计 算或解决问题。
高一数学人必修件第四章对数 函数的概念

高一下册数学必修四第一章 三角函数.知识点及同步练习

高一下册数学必修四第一章 三角函数.知识点及同步练习

巩固练习
1、 在直角坐标系中,若角α与角β的终边关于x轴对称,则α与β的
关系一定是 ( )
A.α=-β B.α+β=k·360°(k∈Z) C.α-β=k·360°(k∈Z)
D.以上答案都不对
2、圆内一条弦的长等于半径,这条弦所对的圆心角是
()
A.等于1弧度 B.大于1弧度 C.小于1弧度
D.无法
判断
(2) 角α + k·720 °与角α终边相同,但不能表示与角
α终边相同的所有角. 例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 例5.写出终边在上的角的集合S,并把S中适合不等式- 360°≤β<720°的元素β写出来. 思考题:已知α角是第三象限角,则α/2,α/3,α/4各是第 几象限角?
D.{α∣-270°+k·360°<α<-180°+k·360°,k∈Z}
11、下列命题是真命题的是( )
Α.三角形的内角必是一、二象限内的角 B.第一象限的角必是
锐角
C.不相等的角终边一定不同
D.=
12、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、
C关系是( )
A.B=A∩C B.B∪C=C
度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角所对应的弧长与半径的比值是否是确
定的?与圆的半径大小有关吗?
弧度制的性质:
①半圆所对的圆心角为
②整圆所对的圆心角为
③正角的弧度数是一个正数.
④负角的弧度数是一
个负数.
⑤零角的弧度数是零.
⑥角α的弧度数的绝
对值|α|=
始边 终边 顶点 A O B

高一数学必修四集合知识点

高一数学必修四集合知识点

高一数学必修四集合知识点一、引言数学是一门抽象而又具有严密逻辑的学科,而在高中数学中,集合论则是数学的一个重要分支。

集合论作为一种基本的数学工具,不仅在高考中扮演重要角色,而且在后续的学习中也有着重要的作用。

本文将重点介绍高一数学必修四中的集合知识点,帮助同学们更好地理解和运用集合论。

二、集合的概念集合是指把具有为某种特定性质的对象组成的整体,这些对象称为集合的元素。

常用的集合表示法有列举法、描述法和解决法三种。

例如集合A = {1, 2, 3, 4}是用列举法表示的集合,集合B = {x | x 是偶数,x ≤ 10}是用描述法表示的集合。

三、集合间的关系在集合论中,我们经常需要研究集合之间的关系。

常见的集合间的关系有包含关系、相等关系、交集、并集、差集等。

包含关系表示一个集合是否包含于另一个集合,用符号“⊆”表示;相等关系表示两个集合的元素完全相同,用符号“=”表示;交集表示两个集合中共有的元素所组成的集合,用符号“∩”表示;并集表示两个集合中所有元素的集合,用符号“∪”表示;差集表示两个集合中不同元素的集合,用符号“-”表示。

熟练掌握这些关系是解决集合运算问题的基础。

四、集合运算与应用集合运算是指集合之间的运算关系,包括并、交、差以及补运算。

并运算表示将两个集合的元素合并起来,用符号“∪”表示;交运算表示两个集合共有的元素,用符号“∩”表示;差运算表示两个集合有差别的元素,用符号“-”表示;补运算表示一个集合中不包含在另一个集合中的元素,用符号“'”或“C”表示。

在日常生活中,集合运算有着广泛的应用。

例如,在人口统计中,我们可以利用集合运算求出不同人群之间的交集和并集,从而更好地研究社会现象和问题。

此外,在概率论和数理统计中,集合运算也有着广泛的应用,可以帮助我们计算复杂的概率和统计问题。

五、空集和全集在集合论中,空集和全集是两个特殊的集合。

空集是指没有任何元素的集合,用符号“Ø”表示;全集是指我们研究的对象的集合,用符号“U”表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修4知识点第一章 三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z#终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z 4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα= sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.(13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.14、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.—函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<. 15、正弦函数、余弦函数和正切函数的图象与性质: sin y x = cos y x = tan y x = 图象定义域 R~R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,"max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇奇函数 偶函数&函数 性 ,质偶性奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在 32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数. ;对称性对称中心()(),0k k π∈Z 对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴第二章 平面向量16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量. $有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.—⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.~baCBAa b C C -=A -AB =B⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+."⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.23、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③ab a b ⋅≤. ⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅.⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+./若(),a x y =,则222a x y =+,或2a x y =+设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=. 设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121cos a b a bx θ⋅==+.第三章 三角恒等变换24、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).25、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=. ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=). ⑶22tan tan 21tan ααα=-.26、()sin cos αααϕA +B =+,其中tan ϕB =A.。

相关文档
最新文档