统计过程控制案例分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计过程控制(SPC )案例分析

一、用途

1.分析判断生产过程的稳定性,生产过程处于统计控制状态。 2.及时发现生产过程中的异常现象和缓慢变异,预防不合格品产生。 3.查明生产设备和工艺装备的实际精度,以便作出正确的技术决定。 4.为评定产品质量提供依据。 二、控制图的基本格式 1.标题部分

X-R 控 制 图 数 据 表

2.控制图部分

实线CL :中心线 虚线UCL :上控制界限线 LCL :下控制界限线。 三、控制图的设计原理

1.正态性假设:绝大多数质量特性值服从或近似服从正态分布。 2.3σ准则:99.73%。

3.小概率事件原理:小概率事件一般是不会发生的。 4.反证法思想。 四、控制图的种类 1.按产品质量的特性分:

(1)计量值(S X R X R X R X S ----,,~

,) (2)计数值(p ,pn ,u ,c 图)。 2.按控制图的用途分: (1)分析用控制图; (2)控制用控制图。 五、控制图的判断规则 1.分析用控制图:

规则1 判稳准则——绝大多数点子在控制界限线内(3种情况); 规则2 判异准则——排列无下述现象(8种情况)。 2.控制用控制图:

规则1 每一个点子均落在控制界限内。 规则2 控制界限内点子的排列无异常现象。

【案例1】 R X -控制图示例

某手表厂为了提高手表的质量,应用排列图分析造成手表不合格品的各种原因,发现“停摆”占第一位。为了解决停摆问题,再次应用排列图分析造成停摆事实的原因,结果发现主要是由于螺栓松动引发的螺栓脱落成的。为此厂方决定应用控制图对装配作业中的螺栓扭矩进行过程控制。

分解:螺栓扭矩是一计量特性值,故可选用基于正态分布的计量控制图。又由于本例是大量生产,不难取得数据,故决定选用灵敏度高的R X -图。

解:我们按照下列步骤建立R X -图

步骤1:取预备数据,然后将数据合理分成25个子组,参见表1。 步骤2:计算各组样本的平均数i X 。例如,第一组样本的平均值为:

0.1645

162

1661641741541=++++=

X

其余参见表1中第(7)栏。

步骤3:计算各组样本的极差i R 。例如,第一组样本的极差为:

{}{}20154174min max 111=-=-=j j X X R

其余参见表1中第(8)栏。

表1: 【案例1】的数据与R X -图计算表

i

272.163=X ,280.14=R 。

步骤5:计算R 图的参数。

先计算R 图的参数。从D 3、D 4系数表可知,当子组大小n =5,D 4=2.114,D 3=0,代入R 图的公式,得到:

188.30280.14114.24=⨯==R D UCL R

280.14==R CL R ==R D LCL R 3—

极差控制图:

均值控制图:

图1 【案例1】 的第一次R X -图

1

3

5

7

9

11

13

15

17

19

21

23

25

30.188

14.280

0.000 1

3

5

7

9

11

13

15

17

19

21

23

25

171.512

163.272

155.032

参见图1。可见现在R 图判稳。故接着再建立X 图。由于n =5,从系数A 2表知A 2=0.577,再将272.163=X ,280.14=R 代入X 图的公式,得到X 图:

512.171280.14577.0272.1632≈⨯+=+=R A X UCL X 272.163==X CL X

032.155280.14577.0272.1632≈⨯-=-=R A X LCL X

因为第13组X 值为155.00小于X LCL ,故过程的均值失控。经调查其原因后,改进夹具,然后去掉第13组数据,再重新计算R 图与X 图的参数。此时,

125.1424

1835724

≈-==

'∑R R

617.16324

.1558.408124

≈-=

=

'∑X X

代入R 图与X 图的公式,得到R 图:

860.29125.14114.24≈⨯='=R D UCL R 125.14≈'=R CL R 03='=R D LCL R

从表1可见,R 图中第17组R=30出界。于是舍去该组数据,重新计算如下:

435.1323

3033923

≈-==''∑R R

670.16323

4

.1628.392623

≈-=

=

''∑X

X

R 图:

402.28435.13114.24≈⨯=''=R D UCL R 435.13=''=R CL R =''=R D LCL R 3—

从表1可见,R 图可判稳。于是计算X 图上,见图2此时过程的变异度与均值均处于稳态。

步骤6:与规范进行比较

对于给定的质量规范140=L T ,180=U T ,利用R 和X 计算P C 。

相关文档
最新文档