统计过程控制案例分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计过程控制(SPC )案例分析
一、用途
1.分析判断生产过程的稳定性,生产过程处于统计控制状态。 2.及时发现生产过程中的异常现象和缓慢变异,预防不合格品产生。 3.查明生产设备和工艺装备的实际精度,以便作出正确的技术决定。 4.为评定产品质量提供依据。 二、控制图的基本格式 1.标题部分
X-R 控 制 图 数 据 表
2.控制图部分
质
量
特
性
实线CL :中心线 虚线UCL :上控制界限线 LCL :下控制界限线。 三、控制图的设计原理
1.正态性假设:绝大多数质量特性值服从或近似服从正态分布。 2.3σ准则:99.73%。
3.小概率事件原理:小概率事件一般是不会发生的。 4.反证法思想。 四、控制图的种类 1.按产品质量的特性分:
(1)计量值(S X R X R X R X S ----,,~
,) (2)计数值(p ,pn ,u ,c 图)。 2.按控制图的用途分: (1)分析用控制图; (2)控制用控制图。 五、控制图的判断规则 1.分析用控制图:
规则1 判稳准则——绝大多数点子在控制界限线内(3种情况); 规则2 判异准则——排列无下述现象(8种情况)。 2.控制用控制图:
规则1 每一个点子均落在控制界限内。 规则2 控制界限内点子的排列无异常现象。
【案例1】 R X -控制图示例
某手表厂为了提高手表的质量,应用排列图分析造成手表不合格品的各种原因,发现“停摆”占第一位。为了解决停摆问题,再次应用排列图分析造成停摆事实的原因,结果发现主要是由于螺栓松动引发的螺栓脱落成的。为此厂方决定应用控制图对装配作业中的螺栓扭矩进行过程控制。
分解:螺栓扭矩是一计量特性值,故可选用基于正态分布的计量控制图。又由于本例是大量生产,不难取得数据,故决定选用灵敏度高的R X -图。
解:我们按照下列步骤建立R X -图
步骤1:取预备数据,然后将数据合理分成25个子组,参见表1。 步骤2:计算各组样本的平均数i X 。例如,第一组样本的平均值为:
0.1645
162
1661641741541=++++=
X
其余参见表1中第(7)栏。
步骤3:计算各组样本的极差i R 。例如,第一组样本的极差为:
{}{}20154174min max 111=-=-=j j X X R
其余参见表1中第(8)栏。
表1: 【案例1】的数据与R X -图计算表
i
272.163=X ,280.14=R 。
步骤5:计算R 图的参数。
先计算R 图的参数。从D 3、D 4系数表可知,当子组大小n =5,D 4=2.114,D 3=0,代入R 图的公式,得到:
188.30280.14114.24=⨯==R D UCL R
280.14==R CL R ==R D LCL R 3—
极差控制图:
均值控制图:
图1 【案例1】 的第一次R X -图
1
3
5
7
9
11
13
15
17
19
21
23
25
30.188
14.280
0.000 1
3
5
7
9
11
13
15
17
19
21
23
25
171.512
163.272
155.032
参见图1。可见现在R 图判稳。故接着再建立X 图。由于n =5,从系数A 2表知A 2=0.577,再将272.163=X ,280.14=R 代入X 图的公式,得到X 图:
512.171280.14577.0272.1632≈⨯+=+=R A X UCL X 272.163==X CL X
032.155280.14577.0272.1632≈⨯-=-=R A X LCL X
因为第13组X 值为155.00小于X LCL ,故过程的均值失控。经调查其原因后,改进夹具,然后去掉第13组数据,再重新计算R 图与X 图的参数。此时,
125.1424
1835724
≈-==
'∑R R
617.16324
.1558.408124
≈-=
=
'∑X X
代入R 图与X 图的公式,得到R 图:
860.29125.14114.24≈⨯='=R D UCL R 125.14≈'=R CL R 03='=R D LCL R
从表1可见,R 图中第17组R=30出界。于是舍去该组数据,重新计算如下:
435.1323
3033923
≈-==''∑R R
670.16323
4
.1628.392623
≈-=
=
''∑X
X
R 图:
402.28435.13114.24≈⨯=''=R D UCL R 435.13=''=R CL R =''=R D LCL R 3—
从表1可见,R 图可判稳。于是计算X 图上,见图2此时过程的变异度与均值均处于稳态。
步骤6:与规范进行比较
对于给定的质量规范140=L T ,180=U T ,利用R 和X 计算P C 。