数学建模蒙特卡罗模拟方法课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N
1
A aP bL2 cQ2 d
根据历史数据,预测未来。
1
A aP bL2 cQ2 d
收集P,L,Q数据,确定分布函 数 f (P), f (L), f (Q)
模拟次数N;根据分
N
布函数,产生随机数
产生 N个A值
N
抽取 P,L,Q一 组随机 数,带 入模型
统计分析,估计 均值,标准差
g N
1 N
N i 1
g(源自文库i )
作为积分的估计值(近似值)。
计算机模拟试验过程
计算机模拟试验过程,就是将试验过 程(如投针问题)化为数学问题,在计算 机上实现。
模拟程序
l=1; d=2; m=0; n=10000 for k=1:n; x=unifrnd(0,d/2); y=unifrnd(0,pi); if x<0.5*1*sin(y) m=m+1 else end end p=m/n pi_m=1/p
其中作为当时的代表性工作便是在第二次世界大战期间,为解 决原子弹研制工作中,裂变物质的中子随机扩散问题,美国数学 家冯.诺伊曼(Von Neumann)和乌拉姆(Ulam)等提出蒙特卡 罗模拟方法。 由于当时工作是保密的,就给这种方法起了一个代 号叫蒙特卡罗,即摩纳哥的一个赌城的名字。用赌城的名字作为 随机模拟的名称,既反映了该方法的部分内涵,又易记忆,因而 很快就得到人们的普遍接受。
x)
x
1
1t2
e 2 dt
x x n
2
从而
X p(
x
n
)
1
式中α位小概率,1- α称为置信度: 是 标准正态分布中与α对应的临界值, 可有统计分布表查得。
Crystal ball软件对各种概率分布进行拟合以选取最合适的 分布。
抽样次数与结果精度
解的均值与方差的计算公式:
E(
X
)
,Var(
X
)
1 n
2 x
中x2的是样随本机量变n很量大X的,方由差统,计而学称的V中a心r极( X限)定为理估知计量方X差。通常渐蒙进特正卡态罗分模布拟,
即:
x n
lim p( X
X
模型建立的两点说明
Monte Carlo方法在求解一个问题是,总
是需要根据问题的要求构造一个用于求
解的概率统计模型,常见的模型把问题
的解化为一个随机变量 X 的某个参数
的估计问题。
要估计的参数 通常设定为 X 的数学
期望(亦平均值,即 E(X ) )。按
统计学惯例, 可用 X 的样本 (X1, X2,...Xn )
因此,可以通俗地说,蒙特卡罗方法是用随机试 验的方法计算积分,即将所要计算的积分看作服从某
种分布密度函数f(r)的随机变量g(r)的数学期望
g 0 g(r) f (r)dr
概rg2(,r率2通)…,语过,…言某,r来N种,g说试(r)N,验),的从,算将分得术相布到平应密N均的度个值N函观个数察随值f(r)机r中1,变抽r2量取,的N…值,个gr子N(r(样1)用,r1,
例.蒲丰氏问题
设针投到地面上的位置
可以用一组参数(x,θ)来描 述,x为针中心的坐标,θ为针 与平行线的夹角,如图所示。
任意投针,就是意味着x
与θ都是任意取的,但x的范围
限于[0,a],夹角θ的范围
限于[0,π]。在此情况下,
针与平行线相交的数学条件是
x l sin
针在平行线间的位置
s(x,
)
1, 0,
当x l sin
其他
sN
1 N
N
s(xi ,i )
i 1
P s(x, ) f1(x) f2 ( )dxd d lsin dx 2l
0 0 a a
2l 2l
aP asN
一些人进行了实验,其结果列于下表 :
实验者
年份 投计次数 π的实验值
沃尔弗(Wolf) 1850 5000
蒙特卡罗模拟方法
蒙特卡罗模拟方法
一、蒙特卡罗方法概述 二、蒙特卡罗方法模型 三、蒙特卡罗方法的优缺点及其适用范围 四、相关案例分析及软件操作 五、问题及相关答案
Monte Carlo方法的发展历史
早在17世纪,人们就知道用事件发生的 “频率”来决定事件的“概率”。从方法 特征的角度来说可以一直追溯到18世纪后 半叶的蒲丰(Buffon)随机投针试验,即 著名的蒲丰问题。
蒙特卡罗方法的基本思想
蒙特卡罗方法又称计算机随机模拟方法。 它是以概率统计理论为基础的一种方法。
由蒲丰试验可以看出,当所求问题的解是 某个事件的概率,或者是某个随机变量的 数学期望,或者是与概率、数学期望有关 的量时,通过某种试验的方法,得出该事 件发生的频率,或者该随机变量若干个具 体观察值的算术平均值,通过它得到问题 的解。这就是蒙特卡罗方法的基本思想。
1707-1788
1777年,古稀之年的蒲丰在家中请来 好些客人玩投针游戏(针长是线距之半), 他事先没有给客人讲与π 有关的事。客人 们虽然不知道主人的用意,但是都参加了 游戏。他们共投针2212次,其中704次相交。 蒲丰说,2212/704=3.142,这就是π 值。 这着实让人们惊喜不已。
①建立概率统计模型
N
②收集模型中风险变量的数据 , 确定风 险因数的分布函数
⑤根据随机数在各风 险变量的概率分布中 随机抽样,代入第一 步中建立的数学模型
③根据风险分析的精度要求,确
N
定模拟次数 N
N
④建立对随机变量的抽样 方法,产生随机数。
⑥ N个样本值
⑦统计分析,估计均 值,标准差
例子
某投资项目每年所得盈 利额A由投资额P、劳动 生产率L、和原料及能 源价格Q三个因素。
的平均值来估计,即
X
1 n
n k 1
Xk
收集模型中风险变量的数据 , 确定 风险因数的分布函数
这时就必须采用主观概率,即由专家做出主观估计得到的概 率。
另一方面,在对估测目标的资料与数据不足的情况下,不可 能得知风险变量的真实分布时,根据当时或以前所收集到的 类似信息和历史资料,通过专家分析或利用德尔菲法还是能 够比较准确地估计上述各风险因素并用各种概率分布进行 描述的。
3.1596
斯密思(Smith) 1855 3204
3.1553
福克斯(Fox)
1894 1120
3.1419
拉查里尼 (Lazzarini)
1901 3408
3.1415929
20世纪四十年代,由于电子计算机的出现,利用电子计算机可以 实现大量的随机抽样的试验,使得用随机试验方法解决实际问题 才有了可能。
相关文档
最新文档