一元函数微积分学在物理学上的应用(1)

合集下载

一元函数积分学总结

一元函数积分学总结

一元函数积分学总结引言积分是微积分学中的重要概念之一,它与微分一样具有重要的应用价值。

一元函数积分学是微积分学的核心内容之一,其研究对象是一元函数的积分与求解。

本文将总结一元函数积分学的基本概念、性质、计算方法以及应用,旨在帮助读者更好地理解和应用一元函数的积分学知识。

一元函数积分的基本概念一元函数积分的基本概念包括不定积分和定积分。

不定积分是指对一元函数进行积分,得到的结果是一个与变量x相关的函数表达式。

定积分是指对一元函数在一个区间内进行积分,得到的结果是一个数值。

不定积分的性质不定积分具有线性性、和式性、常数倍性等性质。

这些性质使得我们可以利用不定积分的基本公式进行积分运算。

此外,不定积分还具有相应的积分表,包括多种函数的不定积分表和常见函数的不定积分表。

定积分的性质定积分具有线性性、和式性、常数倍性等性质。

这些性质使得我们可以通过分割区间,将定积分转化为多个小区间上的定积分,从而进行计算。

定积分还具有保号性、中值定理等重要性质,这些性质在实际应用中起到了重要的作用。

一元函数积分的计算方法一元函数积分的计算方法主要包括换元积分法、分部积分法、有理函数积分法等。

这些方法可以根据具体的积分问题选择合适的方法进行计算,从而简化计算过程。

换元积分法换元积分法是一种通过引入新的变量来进行积分的方法。

通过选择合适的换元公式,可以将原积分化简为简单的标准积分形式,从而进行计算。

分部积分法分部积分法是一种通过对被积函数进行分部积分来进行积分的方法。

通过选择合适的分配律,可以将原积分转化为两个函数的乘积的积分形式,从而进行计算。

有理函数积分法有理函数积分法是一种通过将有理函数进行部分分式分解来进行积分的方法。

通过分解成简单的分式形式,可以利用不定积分的基本公式进行计算。

有理函数积分法适用于有理函数的积分,可以将复杂的积分问题化简为简单的有理函数积分。

一元函数积分的应用一元函数积分在物理学、工程学、经济学等领域具有广泛的应用。

高等数学 第三章 一元函数微积分学及其应用

高等数学 第三章 一元函数微积分学及其应用

x x0
x0
x
xx0
x x0
存在,则称该极限为 y f x 在点 x0 处的导数,记为
dy
df (x)
f x0 , y xx0 , dx xx0 或
dx xx0
10
二、导数的定义
第三章 一元函数微分学及其应用
这时也称函数 y f x 在点 x0 处可导.
如果该极限不存在,称函数 y f x 在点 x0处不可导 .
例1 求函数 y ln x 在点 x e 处的切线斜率.

k lim f (x) f (x0 ) = lim ln x ln e
x x0
x x0
xe x e
ln x = lim e
xe x e
lim
ln 1
xe e
xe
xe
所以
xe lim e 1
xe x e e
第三章 一元函数微分学及其应用
y
此刻切线的斜率即为 k lim y y0 lim f (x) f (x0 )
x x xx0
0
x x0
x x0
y f x
N Δy T
从上面的例子可以看出, 在求切线斜率的过
程中, 需要用到极限
lim f (x) f (x0 )
x x0
x x0
M C
α
Δx
O
x0
xx
7
二、导数的定义
故 y x2
在 x=0处导数为零,即
dy dx
x x0
0.
O
x
图 3-7
12
二、导数的定义
第三章 一元函数微分学及其应用
例3 求函数 y | x |,在点 x 0 处(见图2-8)的导数.

浅谈一元隐函数求导方法

浅谈一元隐函数求导方法

浅谈一元隐函数求导方法摘要:一元隐函数求导方法是微积分中的一项重点内容,它具有重要的应用价值。

在本文中,我们将详细介绍一元隐函数的概念、基本性质、求导方法以及实例应用。

本文不仅适合于初学者,同时也对于拓展和深入研究微积分理论的读者具有参考价值。

关键词:一元隐函数;求导方法;微积分;应用正文:一、概念所谓一元隐函数,是指由一个自变量和一个或多个函数构成的方程,其中一个函数表示成其他所有函数关于自变量的隐函数形式。

其形式可以表示为:F(x,y)=0其中,x 为自变量,y 为一元函数,F(x,y) 为二元函数。

这个等式中的 y 就是一元隐函数,它只取决于 x 的值。

二、基本性质对于一元隐函数,存在三个重要的性质,分别是:1.存在性对于形如 F(x,y)=0 的一元隐函数,如果存在一个点 (x0,y0) 使得 F(x0,y0)=0,且在该点处 y 作为 x 的函数存在,那么该一元隐函数存在。

2.唯一性如果一元隐函数存在,那么它是唯一的。

也就是说,在同一区间内,同一自变量所对应的函数值只有一个。

3.连续性如果 F(x,y) 在点 (x0,y0) 处连续且Fy(x0,y0)≠0,那么 y 作为 x 的函数也在点 x0 处连续。

三、求导方法对于一元隐函数的求导,有两种不同的方法可以使用。

1.牛顿-莱布尼茨公式法该方法是利用牛顿-莱布尼茨公式进行求导。

根据该公式,如果 y 是由一个方程 F(x,y)=0 决定的一元隐函数,那么该函数的导数可以表示为:dy/dx=-Fx/Fy其中,Fx 和 Fy 分别代表 F(x,y) 对 x 和 y 的偏导数。

2.隐函数定理法该方法是利用隐函数定理进行求导。

隐函数定理是指,在一个充分满足条件的函数系统中,方程可以用一个函数表示成另一个函数关于自变量的隐函数形式。

根据该定理,对于方程F(x,y)=0,它的一阶偏导数可以表示为:dy/dx=-Fx/Fy其中,Fx 和 Fy 分别代表 F(x,y) 对 x 和 y 的偏导数。

微积分在物理学中的应用

微积分在物理学中的应用

微积分在物理学中的应用The application of calculus in physics摘要: 关于“微积分”是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支,它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。

微分学包括求导数的运算,是一套关于变化率的理论,它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论,使运算也更加简便 。

“应用数学处理物理问题的能力”是我们必须掌握的一种解决物理问题的方法,“能够根据具体问题找出物理量之间的数学关系,根据数学的特点、规律,进行推导、求解,并根据结果做出物理判断、进行物理解释,得出物理结论”是物理解题中运用的数学方法,微积分就是其中一种。

关键词: 微积分Key words: calculus基金项目:本文为大学生科研项目批准文号xs11035资助项目作者简介:姓名:李东康(出生年月198211),女,吉林省;单位全称:通化师范学院物理学院,职称:助教;研究方向:光学;刘明娟,通化师范学院物理学院本科学生;1、微积分1.1定义:设函数()x F 在[]b a ,上有界,在[]b a ,中任意插入若干个分点a=0X <1X <...<1-Xn <Xn =b 把区间[]b a ,分成n 个小区间[][]n n x x x x ,,110- 。

在每个小区间[]i i x x ,1-上任取一点()i i i x x ≤≤-ζ1,作函数值()i f ζ与小区间长度的乘积()xi i f ∆ζ,并做出如果不论对[]b a ,怎样分法,也不论在小区间上的点i ζ怎样取法,只要当区间的长度趋于零时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()x f 在区间[]b a ,上的定积分。

设函数()x f y =在某区间内有定义,0x 及x x ∆+0在此区间内。

如果函数的增量()()00x f x f x y -∆+=∆可表示为 ()x x y A ∆O +∆=∆(其中A 是不依赖于x∆的常数),而()x ∆O 是比x ∆高阶的无穷小,那么称函数()x f 在点0x 是可微的,x A ∆称作函数在点0x 相应于自变量增量x ∆的微分,记作y d ,即x y A d ∆=。

数学分析(一):一元微积分 南京大学 5 第五章微分学的应用 (5.3.1) 凸函数

数学分析(一):一元微积分 南京大学 5  第五章微分学的应用 (5.3.1)  凸函数

一元微积分与数学分析—凸函数梅加强南京大学数学系导数是函数的变化率.对于质点的位移函数来说,一阶导数表示质点的速度,二阶导数表示加速度.在物理中,二阶导数反映的是作用力或作用强度;导数是函数的变化率.对于质点的位移函数来说,一阶导数表示质点的速度,二阶导数表示加速度.在物理中,二阶导数反映的是作用力或作用强度;在几何中,二阶导数反映的是曲率或几何对象的弯曲程度.以函数图像为例,反映其弯曲性质的有所谓的凸凹性.导数是函数的变化率.对于质点的位移函数来说,一阶导数表示质点的速度,二阶导数表示加速度.在物理中,二阶导数反映的是作用力或作用强度;在几何中,二阶导数反映的是曲率或几何对象的弯曲程度.以函数图像为例,反映其弯曲性质的有所谓的凸凹性.定义1(凸函数)设f为区间I中定义的函数.如果任给a=b∈I以及t∈(0,1),均有fta+(1−t)b≤tf(a)+(1−t)f(b),(1)则称f为I中的凸函数,不等号反向时称为凹函数.不等号为严格小于号时称为严格凸函数,不等号为严格大于号时称为严格凹函数.凸性的几何含义yf(x)ℓ(x)a bO x图1:凸函数注1凸函数的几何形象是很直观的:它的图像总是位于满足同样边界条件的线性函数图像的下方.事实上,满足条件 (a)=f(a), (b)=f(b)的线性函数可以表示为(x)=b−xb−af(a)+x−ab−af(b),于是(1)可以表示为f(x)≤ (x),∀x∈(a,b).(2)事实上,满足条件 (a)=f(a), (b)=f(b)的线性函数可以表示为(x)=b−xb−af(a)+x−ab−af(b),于是(1)可以表示为f(x)≤ (x),∀x∈(a,b).(2)命题1设f为区间I中定义的函数,我们有(1)如果f二阶可导且二阶导数处处非负,则f为凸函数.(2)反之,如果f为凸函数且在I的内点x0处二阶可导,则f (x0)≥0.证明.(1)任取a,b∈I,不妨设a<b.对函数f− 在[a,b]中应用“极值和最值”那一单元例3即可.(2)由x0为内点可知,存在δ>0,使得(x0−δ,x0+δ)⊂I.当h∈(−δ,δ)时,记g(h)=[f(x0+h)+f(x0−h)]/2.如果f为凸函数,则由x0=(x0−h)/2+(x0+h)/2以及(1)可知h=0是g的最小值点.由“极值和最值”那一单元推论1可知g (x0)≥0.另一方面,g (x0)=f (x0),因此f (x0)≥0.证明.(1)任取a,b∈I,不妨设a<b.对函数f− 在[a,b]中应用“极值和最值”那一单元例3即可.(2)由x0为内点可知,存在δ>0,使得(x0−δ,x0+δ)⊂I.当h∈(−δ,δ)时,记g(h)=[f(x0+h)+f(x0−h)]/2.如果f为凸函数,则由x0=(x0−h)/2+(x0+h)/2以及(1)可知h=0是g的最小值点.由“极值和最值”那一单元推论1可知g (x0)≥0.另一方面,g (x0)=f (x0),因此f (x0)≥0.Y oung不等式回顾.指数函数e x的二阶导数恒正,因此为(严格)凸函数.当a,b>0,p,q>1且1/p+1/q=1时,有ab=e1p ln a p+1q ln b q≤1pe ln a p+1qe ln b q=a pp+b qq.Jensen不等式定理1(Jensen不等式)设f是区间I中的凸函数.任给{x i}ni=1⊂I,当λi≥0且ni=1λi=1时,均有fni=1λi x i≤ni=1λi f(x i).(3)定理1(Jensen不等式)设f是区间I中的凸函数.任给{x i}ni=1⊂I,当λi≥0且ni=1λi=1时,均有fni=1λi x i≤ni=1λi f(x i).(3)证明.对n用数学归纳法.n=1是显然的,n=2由凸函数定义直接得到.假设不等式(3)对n=k成立.当n=k+1时,不妨设0<λk+1<1,此时k i=1λi1−λk+1=1.证明(续).由归纳假设,有fk+1i=1λi x i=f(1−λk+1)ki=1λi1−λk+1x i+λk+1x k+1≤(1−λk+1)fki=1λi1−λk+1x i+λk+1f(x k+1)≤(1−λk+1)ki=1λi1−λk+1f(x i)+λk+1f(x k+1) =k+1i=1λi f(x i).这说明不等式对n=k+1也成立,从而定理得证.例1设a1,···,a n>0,p i≥0且ni=1p i=1,证明加权算术–几何平均值不等式:p1a1+···+p n a n≥a p11a p22···a p n n.例1设a1,···,a n>0,p i≥0且ni=1p i=1,证明加权算术–几何平均值不等式:p1a1+···+p n a n≥a p11a p22···a p n n.证明.考虑函数f(x)=−ln x(x>0).由f (x)=x−2>0可知f为(严格)凸函数.根据Jensen不等式,当a1,···,a n>0时−ln(p1a1+···+p n a n)≤−(p1ln a1+p2ln a2+···+p n ln a n),即p1a1+···+p n a n≥a p11a p22···a p n n.当p i都等于1/n时就重新得到了算术–几何平均值不等式.设P=(c,d)为平面上的一个固定点.考虑X轴上的点到P的距离函数,它可以表示为ρ(x)=(x−c)2+d2,x∈R.设P=(c,d)为平面上的一个固定点.考虑X轴上的点到P的距离函数,它可以表示为ρ(x)=(x−c)2+d2,x∈R.我们来说明ρ(x)为凸函数.当P落在X轴上时,d=0,ρ(x)=|x−c|,此时显然ρ(x)是凸函数.设P=(c,d)为平面上的一个固定点.考虑X轴上的点到P的距离函数,它可以表示为ρ(x)=(x−c)2+d2,x∈R.我们来说明ρ(x)为凸函数.当P落在X轴上时,d=0,ρ(x)=|x−c|,此时显然ρ(x)是凸函数.O c|x−c|图2:绝对值函数的凸性下设d =0.对ρ(x )求导可得ρ (x )=d 2 (x−c )2+d 2 −3/2,这说明ρ(x )为严格凸函数.特别地,ρ (a +b )/2 ≤[ρ(a )+ρ(b )]/2.下设d =0.对ρ(x )求导可得ρ (x )=d 2 (x−c )2+d 2 −3/2,这说明ρ(x )为严格凸函数.特别地,ρ (a +b )/2 ≤[ρ(a )+ρ(b )]/2. 考虑平面上以P ,(a ,0),(b ,0)为顶点的三角形.上式可以解释为从P 出发的中线的长度不超过从P 出发的两条边的长度之和的一半.下设d =0.对ρ(x )求导可得ρ (x )=d 2 (x−c )2+d 2 −3/2,这说明ρ(x )为严格凸函数.特别地,ρ (a +b )/2 ≤[ρ(a )+ρ(b )]/2. 考虑平面上以P ,(a ,0),(b ,0)为顶点的三角形.上式可以解释为从P 出发的中线的长度不超过从P 出发的两条边的长度之和的一半.P =(c,d )a b O xy 图3:中线长度与距离函数的凸性。

一元函数微积分学在物理学上的应用(1)

一元函数微积分学在物理学上的应用(1)

一元函数微积分学在物理学上的应用 速度、加速度、功、引力、压力、形心、质心[][]1.(),()().3.00(),t t t t T t x m m x θθωθ='='=用导数描述某些物理量速度是路程对时间的导数.加速度是速度对时间的导数。

2.设物体绕定轴旋转,在时间间隔0,t 内转过的角度则物体在时刻的角速度当物体的温度高于周围介质的温度时,物体就不断冷却,若物体的温度与时间的函数关系为T=T(t),则物体在时刻t 的冷却速度为T (t).3.一根杆从一端点算起,,段干的质量为则杆在点x 处的线密[][](),().5.T C (T )=q (T ).6. (),().Q Q t Q t T w w t t w t ρ'='''=度是(x)=m (x).4.一根导线在0,t 这段时间内通过导线横截面的电量为则导线在时刻t 的电流强度I(t)=某单位质量的物体从某确定的温度升高到温度时所需的热量为q(T),则物体在温度时的比热某力在0,t 时间内作的功则时刻的功率为例1 .2212,5360,(),2M 55,12,360,(),()522cm AB AM M A x g m x xx m k m x x m x xρρ='=====2设有长为的非均匀杆部分的质量与动点到端点的距离的平方成正比,杆的全部质量为则杆的质量的表达式杆在任一点处的线密度(x)=5x解:m(x)=kx 令得所以(x)=变力作功:变力()F x 沿直线运动从a 到b 所作的功()ba w F x dx =⎰51.53[05][05][,]29.83,8828828m m x x x x dx dx x m dx kN dw dx xw x dx πππ+⋅⋅=⋅⋅∴=⋅=⎰例2(1)(功)一圆柱形的注水桶高为,底圆半径为,桶内盛满了水,试问要把桶内的水全部吸出需作多少功?解:作轴如图所示取深度为积分变量,它的变化区间为,相应于,上任一小区间的一薄层水的高度为,因此如的单位为,这薄层水的重力为把这层水吸出桶外需作的功近似为所求的功为25823462()2kJ π⋅⋅≈2.21,2[,1][2,2]R l Rx R x x Rx R x dx x xdx ρρ>=+++++例2(2)(功)设有一半径为,长度为的圆柱体平放在深度为的水池中,(圆柱体的侧面与水面相切,设圆柱体的比重为())现将圆柱体从水中移出水面,问需作多少功?解:分析:依题意就是把圆柱体的中心轴移至处,计算位于上的体积微元移至时所作的微元功。

微积分在物理学中的应用

微积分在物理学中的应用

大学物理课题名称:微积分在物理学中的应用专业:数学与应用数学班级:学号:姓名:指导老师:摘要在大学物理学当中,许多问题都会用到微积分来解决。

微积分是研究函数的的微分、积分以及有关概念和应用的数学分支。

微积分是建立在实数、函数和极限的基础上的。

微积分最重要的思想就是用“微元”与“无限逼近”,好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行,这就是微积分在各个领域中应用的优点。

微积分作为一种分析连续过程累积的方法已经成为解决问题的基本方法。

物理学更是接近于生活,因此微积分也经常应用于物理学当中。

关键词:微积分物理学微元以前听过这样一句话“学好数理化,走遍天下都不怕”,可以知道,数理是不分家的。

我们知道从物理到数学其实就是一个建模抽象的过程,同时也是一个化归的过程,也就是说,物理中的任何一个领域都必然地涉及数学,不存在与数学毫无关联的物理分支。

所以,在物理学当中是处处用到数学知识的,在这里要说的就是微积分在物理学当中的应用。

微积分的方法是一种辨证的思想方法,它包含了有限与无限的对立统一,近似与精确的对立统一。

它把复杂的物理问题进行时间、空间上的有限次分割,在有限小的范围内进行近似处理,然后让分割无限的进行下去,局部范围无限变小,那么近似处理也就越来越精确,这样在理论上得到精确的结果。

微分就是在理论分析时,把分割过程无限进行下去,局部范围便无限小下去。

积分就是把无限小个微分元求和。

这就是微积分的方法。

物理学就是要抓住主要方面而忽略次要方面,从而使得复杂问题简单化,因此在大学物理中应用微积分的方法,能够把看似复杂的问题近似成简单基本可研究的问题。

物理现象及其规律的研究都是以最简单的现象和规律为基础的,例如质点运动学是从匀速、匀变速直线运动开始,带电体产生的电场是以点电荷为基础。

实际中的复杂问题,则可以化整为零,把它分割成在小时间、小空间范围内的局部问题,只要局部范围被分割到无限小,小到这些局部问题可近似处理为简单的可研究的问题,把局部范围内的结果累加起来,就是问题的结果。

一元函数的连续性及其在实际问题中的应用

一元函数的连续性及其在实际问题中的应用

一元函数的连续性及其在实际问题中的应用连续性是微积分中一个非常重要的概念,它描述了函数在某一点附近的行为。

在本文中,我们将探讨一元函数的连续性以及它在实际问题中的应用。

一元函数的连续性是指函数在其定义域内的任意一点上都满足极限的性质。

换句话说,当自变量趋近于某一特定值时,函数值也趋近于相应的值。

数学上,函数f在点x=a处连续,当且仅当以下三个条件同时满足:1. 函数在x=a处有定义:即f(a)存在。

2. 函数在x=a处有极限:即lim(x→a)f(x)存在。

3. 函数的极限与函数值相等:即lim(x→a)f(x) = f(a)。

一元函数的连续性在实际问题中有广泛的应用。

下面我们将介绍两个具体的应用案例。

首先,连续性在物理学中的应用非常明显。

物理学中许多问题都可以使用数学函数来描述。

例如,当我们研究一段时间内物体的运动状态时,我们可以使用位置-时间函数来描述物体的位置随时间的变化。

连续性的概念可以确保我们在分析这种运动过程时的可靠性。

假设我们希望计算物体在某个特定时间点上的位置,如果该函数是连续的,我们可以很容易地通过直接代入该时间点来计算出位置。

这种应用案例可以在物理学的各个领域中找到,包括力学、电磁学和热力学等。

其次,连续性在经济学中也有重要应用。

经济学家常常使用数学模型来描述经济现象,而这些模型往往涉及到一元函数的连续性。

例如,在需求和供给的理论中,我们常常使用价格-数量函数来描述市场上商品的价格和数量之间的关系。

连续性的概念可以确保我们在分析这种关系时的准确性。

考虑到经济现象往往由多个变量相互作用而产生,连续性的应用也可以扩展到多元函数的情况。

除了在物理学和经济学中的应用,连续性在许多其他实际问题中也发挥着重要的作用。

例如,在工程学中,连续性可以用于设计和分析工程结构的稳定性。

在生物学中,连续性可以帮助我们理解生物体在不同环境下的适应性。

在计算机科学中,连续性可以用于优化算法的设计和分析。

《数学分析》第五章 一元函数积分学

《数学分析》第五章 一元函数积分学

“求出”来的.例如
∫e
± x2
dx, ∫
dx sin x ,∫ dx,∫ 1 − k 2 sin 2 x dx(0 < k 2 < 1) ln x x
等等,虽然它们都存在,但却无法用初等函数来表示,因此可以说,初等函数的原函数 不一定是初等函数.即在初等函数的范围内,某些初等函数的原函数是不存在的,即使该函 数可积。这类非初等函数可采用定积分形式来表示。
它在[0,1]上必定不可积,这是因为对任何分割 T,在 T 所属的每个小区间都有有理数与无 理数(据实数的稠密性) ,当取 {ξ i }1 全为有理数时,得
n
∑ D(ξ )∆x = ∑ ∆x
I i i =1 i =1
n
n
i
= 1,
当取 {ξ i }1 全为无理数时,得
n
∑ D(ξ )∆x = ∑ 0 ⋅ ∆x
b
x
7. 无穷限反常积分: 设函数/定义在无穷区间[ a,+∞ )上,且在任何有限区间[ a, u ]上可 积.如果存在极限
f ( x)dx = J , u → +∞ ∫a
lim
u
(1)
则称此极限 J 为函数 f 在[ a,+∞ )上的无穷限反常积分(简称无穷积分),记作
J = ∫a f ( x)dx ,
3. 定积分: 设
f
是定义在
[a, b] 上的一个函数, J 是一个确定的实数.若对任给的正数 [a, b] 的任何分割 T ,以及在其上任意选取的点集 {ξ i } ,
≺ ε ,则称函数 f 在区间 [a , b ] 上可积或黎曼可
ε
,总存在某一正数 δ ,使得对
只要
T ≺δ

在一元函数微积分中

在一元函数微积分中

在一元函数微积分中在一元函数微积分中,常见的是以下几类问题:1.第一类是已知物体移动的距离表示为时间的函数方式,求物体在任意时刻的速度和加速度。

也就是数学中的导数问题。

2.第二类问题是求曲线的切线。

3.第三类问题是求函数的最值,如大炮的最大射程等。

4.第四类问题是求曲线的长度,曲线围成的面积,曲线围成的体积。

在上面四个问题的驱使下,我们的先辈们为了解决这些问题,经过几百年的努力成功地创造了微积分学。

整个微积分的内容基本上是围绕这几个问题在展开的,当然在具体的学习过程中还有很多一些问题和内容,但在学习的主线上可以按照这个线条来把握,在学习一元微积分的过程中,应当掌握以下几个重要的概念1(函数函数是我们微积分的研究对象,也是我们利用数学这个工具去解决实际问题的基础根本,它揭示了我们要解决的问题的几个方面的数量关系,通过数学符号和式子体现出来。

2.极限极限是学习微积分碰到的第一个重要的概念,也是以后学习微积分的重要基础,因此深入理解领会极限的概念是很重要的。

判断数列{}是否有极限有很多方法,但从数列{}本身的特征直接判断是XXnn 否收敛是很有意义的,即Cauchy收敛准则。

Cauchy收敛准则:数列{}收敛的充要条件是:对任意ε>0, 存在n,m.>N Xn 有|Xn-Xm|<ε总成立.这个准则说明了收敛数列的基本特点和本质特征.对于帮助我们更好的理解极限的本质有很好的意义。

3( 导数导数概念的本质特征是函数的变化量和自变量的变化量的比的极限,也就是理解为两个微分的商,所以也称为“微商”。

深刻理解这个概念对于解决对于相关变化率的问题是十分重要的。

4(黎曼和式黎蔓和的概念是定积分概念的本质内容,也就是定积分就是黎曼和式的极限,是前面我们提到的函数的概念和极限思想的综合,深刻理解定积分的定义即黎曼和式的极限的深刻意义,是我们用数学解决很多实际问题的一个强有力的武器,具体就体现在会用元素法解决一些简单的实际问题。

一元函数微积分学

一元函数微积分学

一元函数微积分学一元函数微积分学是现代数学中非常重要的一个分支领域。

它主要研究函数的变化规律,探究函数图像的几何特征,以及函数在一定区间内的积分和微分运算。

本文将分步骤阐述一元函数微积分学的重要内容。

第一步,了解导数的定义和性质。

在微积分学中,导数是非常重要的概念。

一个函数在某一点的导数,表示该点处函数变化的速率。

导数的定义为:$$f^\prime(x)=\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$导数的几何意义是函数在该点处的切线斜率。

导数的性质包括可导函数必然连续,函数求导的和差积商法则,以及反函数求导法则等。

第二步,学习积分的定义和性质。

积分是导数的逆运算,它表示函数在一定区间内的累积变化量。

积分的定义为:$$\int_a^bf(x)\mathrm dx=\lim_{n\to\infty}\sum_{i=1}^nf(x_i^*)\Delta x_i$$积分的几何意义是函数和坐标轴所围成的面积。

同时,积分运算具有可线性性、积分中值定理、牛顿—莱布尼茨公式等性质。

第三步,掌握微积分的应用。

微积分学在物理学、工程学、经济学等领域有着广泛的应用。

例如,通过微积分可以求出曲线下的面积、物体的体积、速度与加速度等变化规律,还可以求解各种极值问题。

第四步,学习一些典型函数的导数和积分。

如幂函数、指数函数、对数函数、三角函数等。

这些函数不仅在微积分学中经常出现,而且在物理学、化学等学科中也非常常见。

第五步,掌握微积分的推广。

微积分学不仅涉及到一元函数,同时还有二元函数、多元函数、偏导数、重积分等更深入的内容。

学习和掌握这些推广内容,可以更深层次地理解微积分学的本质。

总之,一元函数微积分学是一门重要的数学基础课程,它为我们了解函数变化规律、探究现实问题提供了强有力的工具。

要学好本课程,需要打好基础、掌握重点、多动手实践,以及培养对数学的兴趣和热情。

一元函数微积分的应用及算法

一元函数微积分的应用及算法

f ( x)

0

0

f ( x)
单调增加区间为(, 1)和(3, ), 单调减少区间为(1,3).
二、函数的极值
概念引入
y f ( x)在点c1 , c4处的函数值f (c1 ), f (c4 )比它们 左右邻近各点的函数值大, 而在C2 , C5处的函数 值f (c2 ), f (c5 )比它们邻近各点的函数值都小.
2
1 x 1 (15) (arct anx) dx. 2 1 x
dx.
(14) (arccosx)
1
dx.
一、导数的应用
定理 设函数f(x)在区间(a,b)内可导.
f ( x) 0 ,则函数f(x)在(a,b)内单调增加; (1)如果在(a,b)内, f ( x) 0 ,则函数f(x)在(a,b)内单调减少. (2)如果在(a,b)内,
练习:求下列函数的导数
例1 求 y x3 2 的导数.
解 y ( x3 2) ( x3 ) (2) 3x2 .
例2 求 y x 2 sin x 的导数. 解 y ( x2 sin x) ( x2 ) sin x x2 (sin x) 2x sin x x2 cos x.
解 设截去的小正方形边长为xcm,铁盒容积为Vcm 得
3
函数最大值和最小值
V x(24 2 x) 2 (0 x 12) V (24 2 x) 2 x 2(24 2 x)(2)
(24 2 x)(24 6 x) 12(12 x)(4 x). 令V ' 0 ,得 x1 12, x2 4.
如果当x x0 (或x )时,函数f ( x)的绝对值无限增大,

一元函数积分学

一元函数积分学

第三章 一元函数积分学(28学时)微积分是微分学与积分学的总称。

一元函数积分学将研究两个基本问题――不定积分与定积分。

由于许多实际问题需要解决和求导问题相反的问题,即某个函数的导数已知,要求这个函数,由此引出了原函数和不定积分的概念;同时,在许多实际问题中,一些量的计算,往往可以归结为其微小量的无穷累加问题,由此引出定积分的概念。

本章先介绍不定积分的概念及计算方法,然后介绍定积分的概念、计算方法及其在几何学和物理学中的一些应用。

具体的要求如下: 1.理解不定积分和定积分的概念及性质。

2.掌握不定积分的基本公式,不定积分、定积分的换元法与分部积分法。

3.会求简单的有理函数的积分。

4.理解变上限的积分作为其上限的函数及其求导定理,掌握牛顿(Newton )-莱布尼兹(Leibniz )公式。

5.了解广义积分的概念。

6.了解定积分的近似计算法(梯形法和抛物线法)。

7.掌握用定积分表达一些几何量与物理量(如面积、体积、弧长、功、引力等)的方法。

§3-1 不定积分的概念及其计算法概述定义1:若在区间I 内,F ’(x)=f (x),或()()dF x f x dx =,则称F(x)为f (x)的原函数。

如:x x cos )'(sin =,则sin x 是cos x 的原函数34)'41(x x =,则441x 是3x 的原函数关于原函数的三个问题:1. 原函数的存在定理;2. 原函数有无限多个(某些函数原函数存在的话) 3.任意两个原函数只差一个常数定义2:函数f (x)的全体原函数,称为f (x)的不定积分,记为⎰dx x f )(。

其中,“⎰”称为积分号,f (x)称为被积函数,f (x)dx 称为被积表达式,C 称为积分常数——它是任意常数。

性质1:常量因子可以提到积分号的外面;性质2:求导运算与求不定积分运算是互逆运算。

证:设)()('x f x F =。

一元函数弧长公式

一元函数弧长公式

一元函数弧长公式全文共四篇示例,供读者参考第一篇示例:一元函数是数学中的一个重要概念,其在数学中有着举足轻重的地位。

在高等数学中,一元函数的概念贯穿于整个课程的教学中,占据着重要的地位。

在一元函数的研究中,弧长是一个重要的性质,它描述了曲线在平面中的长度,而一元函数弧长公式则是描述一元函数曲线的长度的公式。

一元函数是指自变量只有一个的函数,通常表示为y=f(x),其中x 称为自变量,y称为因变量,f(x)是自变量x的函数。

在数学中,一元函数的研究涉及到函数的性质、图像、导数、积分等方面的内容,是数学中的一个重要分支。

在一元函数中,函数的图像通常是曲线,而曲线的长度可以通过弧长来描述。

对于一元函数的曲线,其弧长可以通过积分来求解。

具体地说,以y=f(x)为例,其曲线在区间[a,b]上的弧长可以表示为:\[L=\int_{a}^{b}\sqrt{1+[f'(x)]^2}dx\]f'(x)表示函数f(x)的导数。

这个公式就是一元函数弧长公式,描述了一元函数曲线在区间[a,b]上的弧长。

这个公式的推导比较复杂,需要借助微积分的知识来进行推导。

一元函数弧长公式的推导可以通过以下步骤来完成。

将曲线分成无穷小的小段,对每一段求出其弧长,然后将所有小段的弧长求和即可得到整个曲线的弧长。

具体来说,假设曲线上的一小段为ds,曲线上的点为P(x,y),其切线与x轴的夹角为θ,则有:\[ds=\sqrt{(dx)^2+(dy)^2}=\sqrt{1+\left(\frac{dy}{dx}\right)^2}d x\]这里dx和dy表示曲线上相邻两点的坐标之差。

将dy/dx代换成f'(x),即可得到一小段的弧长ds,再对所有小段的弧长进行累加积分,即可得到整个曲线的弧长。

一元函数弧长公式的推导过程虽然复杂,但是其应用却十分广泛。

在实际应用中,一元函数弧长公式常常用于计算曲线的长度,例如计算曲线弧长、曲线周长等问题。

一元函数微分学复习ppt

一元函数微分学复习ppt
如果y=f(u),u=g(x),则y'=f'(u)g'(x),例如y=sin(x),则y'=cos(x)*1
乘法法则与商的导数
乘法法则
如果y=f(u),u=g(x),则 y'=f'(u)g'(x)+f'(u)g'(x)
VS
商的导数
如果y=f(u),u=g(x),则y'=f'(u)g'(x)f'(u)g'(x)/g(x)^2
减法法则
f'(x) = df(x)/dx = d(-f(x)) / dx = -f'(x)
除法法则
$f'(x) = df(cx) / dx = c \times d(f(x)) / dx = c \times f'(x)$
链式法则
概念
如果y=f(u),u=g(x),则y'=f'(u)g'(x)
应用
定理的现代形式
如果f(x)和g(x)在[a,b]上可导,且对于任意的x∈[a,b], f'(x)g(x)-f(x)g'(x)≠0,则存在至少一个ξ使得 f''(ξ)g'(ξ)-f'(ξ)g''(ξ)=0。
05
不定积分与定积分
不定积分的概念与性质
总结词
原函数、反导数、可导函数、可积函数、微分学基本定理
导数的定义与性质
导数的定义
函数在某一点的导数表示函数在该点的变化率,即函数 因变量相对于自变量变化的快慢程度。
导数的性质
包括运算法则、导数与函数单调性的关系、导数在曲线 中的应用等。
微分的定义与性质

微积分——极限理论与一元函数

微积分——极限理论与一元函数

微积分——极限理论与一元函数微积分是数学的一个分支,主要研究函数的变化与其相应的导数和积分。

在微积分中,极限理论是非常重要的一部分,因为它为研究一元函数的性质提供了基础。

一、极限的定义与性质1. 定义:若对于任意给定的正数ε,都存在正数δ,使得当自变量x满足0<|x-x0|<δ时,函数f(x)与常数L的距离小于ε,则称L为函数f(x)当x趋于x0时的极限(或称f(x)以L为极限,或称x趋近于x0时f(x)以L为极限),记为:lim f(x)=L,或lim(x→x0) f(x)=Lx→x02. 物理意义:极限是一种数学概念,用来表示当自变量无限趋近于某个值时,因变量的趋势。

在实践中,极限常常用于解决复杂问题,如测量物体体积、定位精度等问题。

3. 性质:①极限是唯一的,即若存在f(x)有两个极限A≠B,则 f(x)没有极限。

②若lim f(x)=L,则f(x)在x趋近于x0时有界。

③若f(x)在x趋近于x0时有界,且当x趋近于x0时无限接近某个常数L,即lim f(x)=L,则f(x)有极限。

4. 一些重要的极限:① lim(x→0)sinx/x=1;②lim(x→0)(cosx-1)/x=0;③ lim(x→∞)(1+1/x)^x=e。

二、一元函数的极限1. 一元函数的极限类型:①有限极限:当x趋近于x0时,f(x)有且仅有一个有限极限。

②无限极限:当x趋近于x0时,f(x)的极限为无穷。

③确定极限不存在:当x趋近于x0时,f(x)的极限不存在。

2. 极限计算:①分段函数极限的计算:将函数分段,分别计算各个分段函数的极限;②分式函数极限的计算:将分式函数转化为两个分式相乘的形式,分别计算两个分式的极限;③指数函数、对数函数、三角函数等特殊函数的极限计算:利用特殊函数的性质和极限的定义,进行逐步推导。

3. 函数的连续与间断:①连续函数:若函数f(x)在点x0有定义,且lim f(x)= f(x0),则称函数f(x)在点x0连续。

微积分在物理学上的应用

微积分在物理学上的应用

微积分在物理学上的应用1 引言微积分是数学的一个基本学科,内容包括微分学,积分学,极限及其应用,其中微分学包括导数的运算,因此使速度,加速度等物理元素可以使用一套通用的符号来进行讨论。

而在大学物理中,使用微积分去解决问题是及其普遍的。

对于大学物理问题,可是使其化整为零,将其分成许多在较小的时间或空间里的局部问题来进行分析。

只要这些局部问题分的足够小,足以使用简单,可研究的方法来解决,再把这些局部问题的结果整合起来啊,就可以得到问题的结果。

而这种将问题无限的分割下去,局部问题无限的小下去的方法,即称为微分,而把这些无限个微分元中的结果进行求和的方法,即是积分。

这种解决物理问题的思想和方法即是微积分的思想和方法。

2 微积分的基本概念及微分的物理含义微积分是一种数学思想,其建立在函数,实数和极限的基础上,其主要探讨的就是连续变量。

在运用微积分去解决物理问题时,可以将我们所需要得出的结果看成是一个整体,再将这个整体先微分,即将其分成足够小的个体,我们可以将这个个体的变量看成衡量,得出个体结果后,再将其积分,即把个体的结果累积起来进行求和.例如,在我们研究匀变速直线运动时,我们就可以在其运动过程中选取一个微小的时间dt,而这一时间内的位移为dt,在每一段时间内速度的变化量非常小,可以近似忽略,那么我们就可以将这段时间内的运动近似看成匀速直线运动,再把每段时间内的位移相加,无限求和,就可以得出总的位移。

在物理学中,每个物理公式都是某些物理现象和规律的数学表示,因此,我们在使用这些公式时,面对物理量和公式的微分形式我们不能仅仅从数学方面去考虑,更要从物理含义上去考虑。

在我们使用微分符号时,不能只从数学角度去理解其为无限小,更要结合具体的物理量和角度去判断他的正确含义。

例:如图所示,一通有交流电流i=的长直导线旁有一共面的单匝矩形线圈ABCD,试求线圈中的感应电动势大小。

解:设在某个时刻,长直导线电流产生的磁场为B=在图中做一个微元面dS,dS=ldx,则该面元上的磁场可以近似于均匀磁场,微元面dS上的磁通量为d线圈围成的面上通过的磁通量为线圈中的感应电动势为在这个例题中,微元面dS的磁通量与线圈的感应电动势都有,但他们的物理含义却是不一样的,前者的表示微元面dS上的磁通量,是一个微小量,而后者的表示的是微笑时间内的磁通量变化量,是一个微小变化量。

偏微分与全微分

偏微分与全微分

偏微分与全微分偏微分与全微分是微积分学中的重要概念,它们在各个领域中都有广泛的应用。

在这篇文章中,我们将详细介绍偏微分与全微分的概念、定义、性质、应用和关系。

一、偏微分的概念与定义偏微分是指在多元函数中,对于其中的某一个自变量进行求导的过程。

偏微分通常用∂ 表示。

例如:对于一个两元函数 f(x,y),偏微分就是对其中一个自变量进行求导,如求 f 对 x 的偏导数,则可以表示为:∂f/∂x其中∂ 表示偏微分符号,表示只对 x 变量求导。

二、全微分的概念与定义全微分是指在多元函数中,对于所有自变量同时求导的过程。

全微分通常用 d 表示。

例如:对于一个两元函数 f(x,y),全微分就是对其中所有自变量同时求导,如求 f 的全微分,则可以表示为:df = ∂f/∂x dx + ∂f/∂y dy其中 dx 和 dy 分别表示自变量 x 和 y 的微小变化量,∂f/∂x 和∂f/∂y 分别表示 f 对应 x 和 y 变量的偏导数。

三、偏微分的性质1. 偏微分是一个线性运算。

2. 偏微分有交换律和结合律。

3. 对于一个连续可微函数,偏导数与求导顺序无关。

四、全微分的性质1. 全微分是一个线性运算。

2. 全微分满足微分乘法公式,即 d(uv) = u dv + v du。

3. 对于一个连续可微函数,全微分是一个恰当微分形式,即存在一个原函数 F,使得 df = dF。

五、偏微分与全微分的关系在一元函数中,全微分等于函数的导数乘以自变量的微小变化量,即:df = f'(x)dx在多元函数中,偏微分和全微分之间没有直接的关系。

但是,在某些情况下,可以将多元函数分解为一元函数的形式,从而将全微分表示为偏微分的和,即全微分定理:df = ∂f/∂x dx + ∂f/∂y dy + ∂f/∂z dz六、应用1. 偏微分和全微分在物理学中有广泛的应用,如牛顿第二定律中的力、加速度、质量等都可以视为函数的偏导数。

2. 在经济学中,偏微分和全微分被广泛运用于边际分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元函数微积分学在物理学上的应用(1)
一元函数微积分学是数学中重要的一类方法,在自然科学研究中也发挥着重要作用。

在物理学中,一元函数微积分学可以用于研究运动物体的位置、速度、加速度等以及物体
的力、能量等问题。

首先,在运动的物体的位置、速度、加速度等问题中,一元函数微积分学可以提供对
该问题方面更多的解释。

比如,在利用微积分学研究动力学时,是把动力学研究成微分方
程的形式。

在考虑了力学运动模型中的惯性、阻力、重力等因素的影响后,可以从一元微
分方程的解获得动力学运动的位置、速度和加速度的时变关系,从而对物体的不同状态有
更深入的分析。

其次,一元函数微积分学也可以用于研究物体的力以及物体的能量的变化情况。

比如,在电磁学中,一元微积分可以用来描述电磁场中物体的受力情况。

有了物体受力的情况,
就可以运用动量定理、动能定理以及动量守恒定律来分析物体在受到力的作用下物体的动
能是如何变化的,从而深入研究物体的运动特征。

相关文档
最新文档