平面向量的内积
7.4平面向量的内积--中职数学第二册
a b a·b 0 x1x2 y1y2 0
典型题解
例3.求下列向量的内积:
(1) a (3,2),b (1,5)
(2) a (3,1),b (2,5)
(3) a (0,2),b (1,0)
例4.已知a (1,2) ,b (3,1)
ab
当a·b 0时 a 与b 的夹角 是锐角或 0 当a·b 0时 a 与b 的夹角90 即 a b 当 a·b 0时 a 与b 的夹角 是钝角.
3.向量内积的性质
(1)当 a 与 b 同向时,a·b a b
2
a a a a a 或 a a a
,求
a b
, a
,b
,
.
典型题解
例5.判断下列各组向量是否相互垂直:
(1) a (6,3),b (2,4)
(2) a (1,2),b (0,3)
课堂小结
一、平面向量的内积
1.两向量的夹角 a, b
00 1800
2. 两向量的内积 a·b a b cos
12
cos
=|
a b a || b
|
x1 x 2 y1 y 2 x12 y12 x 2 2 y 2 2
命题:a b a·b 0 x1x2 y1 y2 0
感谢指导!
一、平面向量的内积
1.两向量的夹角:
已知两个非零向量 a
和b
,作OA a ,OB b
则 AOB叫做向量 a 与 b 的夹角,记作 a, b 。
平面向量的内积
平面向量的内积平面向量的内积概念解释内积是向量的一种运算,也叫点积。
对于两个向量a和b,它们的内积可以表示为a·b,其中“·”表示内积符号。
在平面直角坐标系中,向量a和b的内积可以表示为a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ表示两个向量之间的夹角。
性质1. 内积具有交换律:a·b=b·a2. 内积具有分配律:(c+a)·b=c·b+a·b3. 内积具有结合律:k(a·b)=(ka)·b=a·(kb)4. 如果两个向量的夹角为90度,则它们的内积为0。
5. 如果两个向量不共线,则它们的内积不为0。
6. 如果一个向量与自身做内积,则结果为该向量模长的平方。
应用1. 向量投影通过计算一个向量在另一个向量上的投影长度,可以得到这两个向量之间夹角的余弦值。
这在计算机图形学中非常常见。
2. 判断两条直线是否垂直如果两条直线所对应的向量垂直,则它们的内积为0。
3. 计算向量的模长通过向量的内积公式,可以计算出一个向量的模长。
4. 计算两个向量之间的夹角通过向量的内积公式,可以计算出两个向量之间的夹角。
5. 判断两条直线是否平行如果两条直线所对应的向量平行,则它们的内积为两个向量模长之积乘以它们之间夹角的余弦值。
6. 判断三角形是否直角三角形如果一个三角形中有一条边与另一条边垂直,则这两条边所对应的向量垂直,它们的内积为0。
如果这个三角形中有两条边所对应的向量垂直,则这个三角形是直角三角形。
总结平面向量内积是一种非常重要且常用的运算,它不仅可以用于计算向量投影、判断两条直线是否垂直或平行、计算夹角等问题,还可以用于解决几何问题和物理问题。
因此,在学习数学和物理时,掌握平面向量内积是非常重要和必要的。
数学教师手册_平面向量的内积
平面向量的内积教学眉批向量内积可用来计算物理学的“功”与解决一般几何、解析几何问题,未来学习的两个矩阵的乘积也蕴含向量的内积。
两向量夹角:(1) 两个非零向量始点重合所夹的角。
(2) 夹角介于0°至180°。
(3) 同向时夹角为0°,反向时夹角为180°。
向量在几何图形上的夹角宜注意是否起点重合。
补充演练如下图,试求下列两向量的夹角:(1) AB与AC。
(2) BA与AF。
(3) AD与EB。
解(1) 如图(一),AB与AC夹角为30°。
(2) 如图(二),BA与AF夹角为60°。
(3) 如图(三),AD与EB夹角为120°。
图(一)图(二)图(三)教学眉批向量内积:(1) 内积与系数积是不同的。
内积是两个向量的运算;系数积是一个向量的实数倍。
(2) 利用两非零向量的长度及其夹角余弦值的乘积来定义,结果为一实数。
(3) 若两向量中有一为零向量时,因零向量之长度为0,故规定其内积为0。
(4) 内积具交换性,即a‧b=b‧a=∣a∣∣b∣cos θ。
一些常用性质后面会再介绍。
(1) 给定长度与夹角求内积,直接由定义可得。
(2) 给定几何图形求内积,务必提醒学生起点重合,角度介于0°~180°才是两个向量的夹角。
补充演练(1) 如图(一),已知直线L垂直AB,C,D,E,F在直线L上,则AB‧AC,AB‧AD,AB‧AE,AB‧AF之大小关系为何?(2) 如图(二),ABCDEF为一正六边形。
那么下列向量内积中,何者最大?(A) AB‧AB(B) AB‧AC(C) AB‧AD(D) AB‧AE(E) AB‧AF。
图(一)图(二)证(1)AB‧AC=∣AB∣∣AC∣cos∠CAB=∣AB∣∣AF∣;AB‧AD=∣AB∣∣AD∣cos∠DAB=∣AB∣∣AF∣;AB‧AE=∣AB∣∣AE∣cos∠EAB=∣AB∣∣AF∣;AB‧AF=∣AB∣∣AF∣cos 0°=∣AB∣∣AF∣,故均相等。
平面向量的内积
2 p.173
平面向量的内积 page 7/23
设 a ( 3 , 1),b (1 , 0),试求: (1) a b 之值。 (2) a,b 两向量的夹角。
(1) 由内积的定义可得 a b 3 (1) 1 0 3
(2) 设 a 与 b 两向量的夹角为 可得 cos a b
平面向量的内积
平面向量的内积 page 1/23
向量的夹角与内积
内积的性质 柯西不等式 正射影
内积在几何上的应用
向量的夹角与内积 p.169~p.174
平面向量的内积 page 2/23
向量的夹角:
对于非零向量 a 与 b,若此两向量始点不在同一点, 我们可以将其中一个向量平移,使两个向量的始点重
故得证
AB2 BC 2 CD2 DA2 AC 2 BD2
9 p.183
试证明三角不等式:a b a b 。
平面向量的内积 page 20/23
[证明一] 若 a 与 b 任一向量为零向量时,三角不等式的等号显然成立 以下讨论 a 与 b 为两个非零向量的情形: (1) 若 a 与 b 不平行:
合,此时的夹角 (0 180 ),称为向量 a 与 b 的 夹角。
向量的夹角与内积 p.169~p.174
向量的内积: a 和 b 的内积 a b 定义为
a b= a b cos 。
平面向量的内积 page 3/23
1 p.170
平面向量的内积 page 4/23
(1) 设 AB 与 AC 两向量的夹角为 45 ,且 AB 4, AC 2, 试求 AB AC 之值。
2
2
2
a 2a b b a 2 a b b
平面向量内积
平面向量内积
【考纲要求】 1.理解平面向量内积(数量积)及其运算法则;
2.能运用平面向量内积运算解决有关实际问题.
【学习重点】
平面向量内积计算公式的应用.
一、自主学习
(一)知识归纳
1.平面向量的夹角
→
→
设有非零向量 a 和 b,如图 7-10,作=a,=b,则由有向线段
→
→
,所夹的角叫做向量 a 和 b 的夹角,记作<a,b>,我们不妨简记为 θ,
(5)|a·b|≤|a||b|.
4.向量内积的运算法则
(1)a·b=b·a.(交换律);
(2)(λa)·b=a·(λb)=λ(a·b)(数乘结合律);
(3)(a+b)·c=a·c+b·c(分配律).
注意:(a·b)·c=a·(b·c)不成立,并且 a·b=a·c 也不能推出 b=c.
5.向量内积的坐标表示
→
→
∴·=6×6×cos120°=-18;
→
→
·
=6×3 cos150°=-27.
→
→
→
6.已知 n=(-1,1),=(3,-2),n ·=10,求 n ·.
→
解:∵n=(-1,1),=(3,-2),
→
∴n ·=-5;
→
→
→
→
又 n ·=10,∴n ·=n ·(-)
解:∵a·b=1×3-2×(-1)=5,
|a|= + (−) = ,
|b|= + (−) = ,
·
∴cosθ=| ·|= × = ,
∵0°≤θ≤180°,
∴θ=450.
二、探究提高
平面向量的内积
•
(2)
(a b) ( a) b a ( b)
•
(3)
(a b) c a c b c
例3、已知|
a |
5,|
b
|
4,
600
,求
(2 a b) b 。
课堂小结
• 1、两平面向量夹角; • 2、平面向量的内积及性质; • 3、运算方法和运算律。
平面向量的内积平面向量的内积ppt平面向量平面向量的内积教案向量的内积向量内积的几何意义复向量的内积复数向量的内积向量的内积公式向量的内积和外积
平面向量的内积
复习
• 1、向量的坐标表示:
平面直角坐标系中的任一向量都可以唯一
表示成
a
xi
yj
的形式。
我们把
a xiy j
叫做向量的
y
a
坐标形式,记作
a
=(x,y),
N
a
=(x,y)叫做向量
a
的坐标
j
o i
P(x,y)
M
x
表示。
•
对于直角坐标平面上任意向量
a
,
将它的起点移至原点O,则其终点的坐标为
P(x,y)就是向量
a
的坐标 . 即
a =(x,y)
y
a
N
j
o i
P(x,y)
M
x
•
2、向量
a
xi
y
j
平面向量的内积教案
平面向量的内积教案一、教学目标1.了解平面向量的定义;2.掌握平面向量的表示方法;3.理解平面向量的内积的概念;4.学会求解平面向量的内积;5.应用平面向量的内积解决实际问题。
二、教学重点1.平面向量的内积的概念;2.平面向量的内积的计算方法;3.平面向量内积在实际问题中的应用。
三、教学难点1.平面向量内积的计算方法;2.平面向量内积在实际问题中的应用。
四、教学准备1.教师准备:教案、黑板、彩色粉笔等;2.学生准备:课本、笔记本。
五、教学过程1.引入新课(5分钟)教师通过提问:平面上有哪些物理量是有方向的?学生回答:力、速度、位移等。
教师进一步引导学生思考:这些具有方向性的物理量是如何表示的?学生回答:用向量表示。
教师指出:在平面上,我们可以用平面向量来表示有方向的物理量。
2.讲解平面向量的定义和表示方法(10分钟)教师将平面向量的定义和表示方法写在黑板上,然后对其进行详细解释和讲解,并配以例题进行说明。
3.讲解平面向量的内积的概念(10分钟)教师通过出示两个平面向量的图形,引导学生思考:如何判断两个向量之间的夹角是否为直角?学生回答:可以通过两个向量的乘积来判断。
教师进一步解释:这个乘积就是平面向量的内积,记作A·B,其中A和B 表示两个平面向量。
4.讲解平面向量的内积的计算方法(15分钟)教师通过例题向学生展示平面向量内积的计算方法,并对其进行详细解答。
教师还可以通过练习题让学生进行练习,加强对内积的计算方法的理解。
5.通过实际问题应用平面向量内积(15分钟)教师出示一个实际问题,引导学生运用平面向量内积的概念和计算方法来解决问题。
教师可以给予学生一定的提示,帮助学生解决问题,并鼓励学生自己找到问题的解决方法。
6.总结与扩展(10分钟)教师对本节课的内容进行总结回顾,并强调平面向量内积的重要性和应用范围。
教师还可以通过给出一些拓展问题来进一步提高学生的思维能力和解决问题的能力。
七、教学反思本节课通过引入新课、讲解平面向量的定义和表示方法、讲解平面向量的内积的概念和计算方法以及通过实际问题应用平面向量内积等步骤,全面深入地讲解了平面向量的内积。
平面向量内积推导
平面向量内积推导
摘要:
一、平面向量内积的定义与意义
二、平面向量内积的性质与运算规律
三、平面向量内积的推导过程
四、平面向量内积在实际问题中的应用
正文:
一、平面向量内积的定义与意义
平面向量内积是一种度量向量之间相似度的方法,它反映了两个向量在方向和长度上的相似程度。
给定两个二维平面向量A=(a1, a2)和B=(b1, b2),它们的内积定义为:
A·B = a1*b1 + a2*b2
内积的值范围在-1到1之间,接近1表示两个向量高度相似,接近-1表示两个向量高度相反,等于0表示两个向量垂直。
二、平面向量内积的性质与运算规律
1.交换律:A·B = B·A
2.结合律:(A·B)·C = A·(B·C)
3.分配律:A·(B+C) = A·B + A·C
4.对称性:A·B = B·A
5.标量乘法的传递性:kA·kB = (k·k)·A·B
三、平面向量内积的推导过程
平面向量内积的推导过程主要包括以下几个步骤:
1.基于向量的点积定义,展开A·B的计算过程。
2.利用向量的坐标运算,将点积表达式转化为坐标形式。
3.化简坐标形式的点积表达式,得到内积的简化形式。
四、平面向量内积在实际问题中的应用
1.几何问题:求解向量的夹角、向量的模长、判断向量之间的共线关系等。
2.线性代数问题:求解矩阵的特征值、特征向量,以及矩阵的秩等。
3.机器学习问题:应用于文本相似度计算、图像特征提取、推荐系统等。
《平面向量的内积》课件
区别
内积结果是一个标量,而外积结果是一 个向量。
内积的结果与向量的顺序无关,而外积的结 果与向量的顺序有关。
内积满足交换律,即 $vec{u}cdotvec{v}=vec{v}cdotvec {u}$,而外积不满足交换律,即 $vec{u}timesvec{v}$与 $vec{v}timesvec{u}$是两个不同的 向量。
$vec{a} cdot vec{a} geq 0$ ,当且仅当$vec{a} = vec{0}$ 时取等号。
交换律
$vec{a} cdot vec{b} = vec{b} cdot vec{a}$。
分配律
$(lambdavec{a}) cdot vec{b} = lambda(vec{a} cdot vec{b}) = vec{a} cdot (lambdavec{b})$,其中 $lambda$为标量。
积的绝对值。
特殊情况处理
当两个向量垂直时,它们的夹角为 $90^circ$,此时余弦值为$0$,因此 内积为$0$。
当两个向量共线时,它们的夹角为 $0^circ$或$180^circ$,此时余弦值 为$1$或$-1$,因此内积为 $|mathbf{a}| times |mathbf{b}|$或 $-|mathbf{a}| times |mathbf{b}|$。
cdot mathbf{b} = |mathbf{a}| times |mathbf{b}| times cos theta$,其中$theta$ 是$mathbf{a}$和$mathbf{b}$之间的夹角。
几何意义
平面向量的内积可以理解为两个向量在垂直方向上的投影长度之积。具体来说,如果将 其中一个向量投影到另一个向量的垂直平面上,则投影长度等于该向量与另一个向量内
数学复习:平面向量数量积的计算
数学复习:平面向量数量积的计算一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .19352.基底法计算例2-1.已知平面向量,a b 满足a =,)(21R e e b ∈+=λλ ,其中21,e e 为不共线的单位向量,若对符合上述条件的任意向量,a b ,恒有4a b +≥ ,则21,e e 夹角的最小值是()A .6πB .π4C .π3D .π2例2-2.已知菱形ABCD 的边长为2,120BAD ︒∠=,点E 在边BC 上,3BC BE =,若G 为线段DC 上的动点,则AG AE ⋅的最大值为()A .2B .83C .103D .43.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P,则PA PB PA PC ⋅+⋅的最小值为()6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC =,则()AO AB AC ⋅+= ()A .10B .9C .8D .6平面向量数量积的计算答案一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .1935【解析】5a = ,6b = ,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-= .7a b+=,因此,()1919cos,5735a a ba a ba a b⋅+<+>===⨯⋅+.2.基底法计算例2-1.已知平面向量,a b满足4a=,)(21Reeb∈+=λλ,其中21,ee为不共线的单位向量,若对符合上述条件的任意向量,a b,恒有4a b+≥,则21,ee夹角的最小值是()A.6πB.π4C.π3D.π2【解析】因a=221()||cos,0||cos,8a b a b b b a b b a b+⇔+≥⇔〈〉≥⇔≥〈〉,依题意,||2b≥恒成立,而21eebλ+=,21,ee为不共线的单位向量,即有2221,cos21be=++λλ,于是得21,cos221,cos21221221++⇔≥++λλλλeee恒成立,则02,cos4212≤-=∆ee,即有22,cos2221≤≤-e,又π≤≤21,0ee,解得43,421ππ≤≤ee,所以21,ee夹角的最小值是π4.例2-2.已知菱形ABCD的边长为2,120BAD︒∠=,点E在边BC上,3BC BE=,若G为线段DC上的动点,则AG AE⋅的最大值为()A.2B.83C.103D.4【答案】B【解析】由题意可知,如图所示因为菱形ABCD 的边长为2,120BAD ︒∠=,所以2AB AD == ,1cos1202222AB AD AB AD ︒⎛⎫⋅==⨯⨯-=- ⎪⎝⎭,设[],0,1DG DC λλ=∈ ,则AG AD DG AD DC AD AB λλ=+=+=+ ,因为3BC BE =,所以1133BE BC AD ==,13AE AB BE AB AD =+=+ ,()2211(1333AG AE AD AB AB AD AD AB AD ABλλλ⎛⎫⋅=+⋅+=+++⋅ ⎪⎝⎭ ()22110222123333λλλ⎛⎫=⨯+⨯++⨯-=- ⎪⎝⎭,当1λ=时,AG AE ⋅ 的最大值为83.3.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]【答案】D【解析】在ABC ∆中,3AC =,4BC =,90C ∠=︒,以C 为坐标原点,CA ,CB 所在的直线为x 轴,y 轴建立平面直角坐标系,如图:则(3,0)A ,(0,4)B ,(0,0)C ,设(,)P x y ,因为1PC =,所以221x y +=,又(3,)PA x y =-- ,(,4)PB x y =--,所以22(3)(4)34341PA PB x x y y x y x y x y ⋅=----=+--=--+,设cos x θ=,sin y θ=,所以(3cos 4sin )15sin()1PA PB θθθϕ⋅=-++=-++ ,其中3tan 4ϕ=,当sin()1θϕ+=时,PA PB ⋅有最小值为4-,当sin()1θϕ+=-时,PA PB ⋅有最大值为6,所以[4PA PB ⋅∈- ,6].变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.【答案】98-【解析】建立平面直角坐标系如下,则(2,0)B ,(0,2)C ,(1,0)M ,直线BC 的方程为122x y+=,即2x y +=,点P 在直线上,设(,2)P x x -,∴(1,2)MP x x =-- ,(,)CP x x =-,∴22399(1)(2)232()488MP CP x x x x x x x ⋅=---=-=--- ,∴MP CP ⋅ 的最小值为98-.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]【解析】由cos ,AP AB AB AP AP AB ⋅=⋅ ,可得AP AB ⋅ 为AB 与AP 在AB方向上的投影之积.正六边形ABCDEF 中,以D 为圆心的圆Q 与DE 交于M ,过M 作MM AB '⊥于M ',设以C 为圆心的圆Q 与AB 垂直的,切线与圆Q 切于点N 与AB 延长线交点为N ',则AP 在AB方向上的投影最小值为AM ',最大值为AN ',又1AM '=,cos 6014AN AB BC '=++=,则248AP AB ⋅≤⨯= ,212AP AB ⋅≥⨯= ,则AP AB ⋅ 的取值范围是[2,8].5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-【解析】(方法1.几何法)设点M 为BC 中点,可得→→→=+PM PC PB 2,再设AM 中点为N ,这样用极化恒等式可知:22212→→→→-=⋅AM PN PM P A ,在等边三角形ABC ∆中,3=AM ,故→→⋅PM P A 取最小值当且仅当2322-=⋅→→→PN PM P A 取最小,即0||=→PN ,故23)(min -=⋅→→PM P A .(方法2.坐标法)以BC 中点为坐标原点,由于(0A ,()10B -,,()10C ,.设()P x y ,,()PA x y =- ,()1PB x y =--- ,,()1PC x y =--,,故()2222PA PB PC x y ⋅+=-+ 2233224x y ⎡⎤⎛⎫⎢⎥=+-- ⎪ ⎪⎢⎥⎝⎭⎣⎦,则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,32y =.例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P ,则PA PB PA PC ⋅+⋅ 的最小值为()A .14B .10C .8D .2【解析】(法1.极化恒等式)根据题干特征,共起点的数量积范围问题,我们尝试往恒等式方向走.记BC 中点为M ,AM 中点为N .由于→→→→→⋅=+⋅PM P A PC PB P A 2)(,而)41(2222→→→→-=⋅AM PN PM P A .由于ABC ∆为等边三角形,则M O A ,,三点共线,且由于O 是外心,也是重心,故32=⇒=AM OA .则→→→→⇔+⋅min min ||)]([PN PC PB P A ,显然,由P 在圆外,且N O ,共线(AM 中点为N ),则25||||||min =-=→→→ON OP PN .综上所述,8212)]([22min min =⋅-=+⋅→→→→→AM PN PC PB P A .(法2.基底法)()()()()PA PB PA PC PO OA PO OB PO OA PO OC ⋅+⋅=+++++ 22()()PO PO OA OB OA OB PO PO OA OC OA OC=+++⋅++++⋅ 22()PO PO OA OB OA OC OA OB OA OC =+++++⋅+⋅ ,因为等边ABC ∆的三个顶点均在圆224x y +=上,因此1cos 22()22OA OB OA OB AOB ⋅=⋅⋅∠=⨯⨯-=- ,3OP == ,因为等边ABC ∆的三个顶点均在圆224x y +=上,所以原点O 是等边ABC ∆的重心,因此0OA OB OC ++= ,所以有:18221414cos PA PB PA PC PO OA OP OA OP OA AOP⋅+⋅=+⋅--=-⋅=-⋅⋅∠ 146cos AOP =-∠,当0AOP ∠=时,即,OP OA 同向时,PA PB PA PC ⋅+⋅ 有最小值,最小值为1468-=.6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8【解析】如图,点O 在AB 、AC 上的射影是点D 、E ,它们分别为AB 、AC 的中点.由数量积的几何意义,可得21182BO BA BA BD AB ⋅=⋅== ,23212BC BO BC BE BC ⋅=⋅== .又2π3B =,所以1cos 68242BA BC BA BC B ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,又BO xBA yBC =+ ,所以()2362418BO BA xBA yBC BA BA C x y BA x B y =+⋅⋅=+⋅=-= ,即1286x y -=.同理()2246432BO BC xBA yBC BC C y x B BC y BA x ⋅⋅=++⋅=+==- ,即384x y -+=,解得1091112x y ⎧=⎪⎪⎨⎪=⎪⎩.所以710113434912x y +=⨯+=⨯.例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC = ,则()AO AB AC ⋅+= ()A .10B .9C .8D .6【解析】如图,O 为ABC ∆的外心,设,D E 为,AB AC 的中点,则,OD AB OE AC ⊥⊥,故()AO AB AC AO AB AO AC ⋅+=+⋅⋅ ||||cos |||co |s AO AB AO AC OAD OAE ⋅∠+=∠⋅⋅⋅ ||||||||AD AB AE AC +=⋅⋅ 2222111||41||2222210AB AC +=+⨯⋅== .。
7.4.1平面向量的内积
a 2a b b
2
2
求证: (a b) (a b) a
2
b
2
已知 a 6, b 4,a与b 的夹角为60 , 求 : ① a b ;② a b .
你会求吗?
2
解: a b (a b)2
a 2a b b
2
6 2 6 4 cos60 4
45
0
③在ABC中,若AB BC 0,判断ABC的形状.
钝角三角形
∥b, 求a b. 已知 a 1, b 2, 且a
解:由a ∥b,分两种情况:
当a, b 同向时, a b a b cos0 = 2;
当a, b反向时, a b a b cos = 2.
b2 b1
A
B x
a2
a 1 b1
O
a1 a2 A1 B1
b2
平行向量横坐标之比等于纵坐标之比
平面向量的直角坐标运算:
已知 a ( x1, y1), b ( x2 , y2 )
(1)a b ( x1 x2 , y1 y2 )
结论:两个向量和的横坐标等于这两个向量横坐标的和 两个向量和的纵坐标等于这两个向量纵坐标的和
W=FSCOS
s 的夹角为 .
一个物体在力 F的作用下发生的位移 s,力 F与物体位移
① 力 F在位移方向上的分量是多少?
F cos
W s F cos
② 力 F 所做的功W是多少?
③ 功W是一个数量还是一个向量?
F
数量
θ
s
两个非零向量夹角的概念
, 作 已知非零向量 a 与b , OA a OB b, b 则∠AOB 叫做 a 与b 的夹角. a B 记作: a , b b 规定: 0 1 8 0 A O a
§7.4.2运用平面向量的坐标求内积
a 32 (1)2 10,
b 12 (2)2 5.
cos〈a, b〉 a b 5 2 ,
〈a, b〉 2
4
①已知 a (2,0), b (0, 2), 求〈a,b〉.
②已知 a (2,1), a 2b (4,5), 求cosθ 的值.
判断下列各组向量是否垂直:
求证:AB AC 证明: AB (2,3) (1,2) (1,1),
AC (2,5) (1,2) (3,3), AB AC 1 (3) 1 3 0. 所以 AB AC.
已知:A(1, 2),B(2,3),C(-2,5), 求证:△ABC是直角三角形.
(1)已知a (3,4),b (2, 1),且(a mb) (a b),求m的值. (2)已知a (1,2), b (n,1),且(a 2b) (2a b),求n的值.
3a 2b (6)0 9(6) 54.
3已知a (2, 4),b (6,1),求a b. 4已知a (2,3),b (0, 3),求(a b)(a b).
已知
a
(3,1),
b (1, 2), 求 a b ,a ,b ,〈a,b〉.
解: a b 31 (1) (2) 3 2 5,
在Rt△ABC中,AB (2,3),AC (1, m), 求m的值.
向量的内积的坐标表示
定理: 两个向量的内积等于它们对应坐标的乘积的和. 若a (x1, y1),b (x2, y2), 则a b x1x2 +y1y2
推论:
a b x1x2 y1 y2 0
cos〈a, b〉
x1x2 y1 y2
向量的内积的常用结论
⑴当 a、b 同向时,a b a b , 特别地 a a a 2 , a a a
平面向量数量积公式推导过程
平面向量数量积公式推导过程平面向量的数量积(内积)是指两个向量之间的乘积形式,表示为向量之间的夹角的余弦值与两个向量模的乘积。
设有两个平面向量a和b,它们的数量积的表示为a·b,具体推导过程如下:首先,考虑向量a和b的夹角θ,夹角的范围为[0,π],夹角θ可由a和b之间的数量积得到。
设向量a的坐标为(x₁,y₁),向量b的坐标为(x₂,y₂)。
则a和b 的数量积为:a·b = ,a,b,cosθ其中,a,和,b,分别表示a和b的模,它们可以由向量的坐标通过勾股定理得到:a,=√(x₁²+y₁²)b,=√(x₂²+y₂²)接下来,考虑向量a和b之间的数量积的几何意义。
将向量a平移到原点,即将向量a的始点平移到原点(0,0),得到新的向量a'。
此时,向量a和向量a'的模相等,即,a,=,a'。
向量a'与向量a 方向相同,只是位置不同。
向量a'的坐标为(x₁',y₁'),与向量a的坐标(x₁,y₁)之间的关系为:x₁'=x₁-0=x₁y₁'=y₁-0=y₁同理,将向量b的始点平移到原点,得到新的向量b',并且有坐标关系:x₂'=x₂-0=x₂y₂'=y₂-0=y₂此时,计算向量a'和向量b'之间的数量积,得到:a'·b' = ,a',b',cosθ'其中,θ'为向量a'和向量b'之间的夹角。
但是,向量a'和向量a的模相等,同样地,向量b'和向量b的模相等,即,a',=,a,b',=,b。
而且,向量a'和向量a的夹角θ'与向量a和向量b之间的夹角θ相等,即θ'=θ。
所以,将上式改写为:a'·b' = ,a',b',cosθ'= ,a,·,b,cosθ此时,左边的a'·b'可以化简为向量a和向量b的数量积a·b。
数学课本_平面向量的内积
平面向量的内积本节将介绍向量的另一种运算—内积。
内积的应用非常广泛,它可以用来求两向量的夹角、求两直线的交角、求三角形的面积及求某些函数的极值等,是向量用来处理几何问题的主要工具。
1向量的夹角与内积向量的夹角对于非零向量a与b,若此两向量始点不在同一点,我们可以将其中一个向量平移,使两个向量的始点重合,如图30 所示,此时的夹角θ(0°≦θ≦180°),称为向量a与b的夹角。
当a与b方向相同时,夹角为0°;方向相反时,夹角为180°。
图30注意在求两向量夹角时,必须将两向量的始点重合后再行判断。
例如图31 所示,设△ABC为正三角形,则AB与AC的夹角为60°,但AB与BC的夹角为120°。
图31向量的内积图32向量的内积源于一力对物体所作的“功”。
如图32 所示,设对一物体施力f时,此物体的位移为s,其中f与s的夹角为θ。
那么,在物理学中,我们知道施力f对该物体所作的功为W=(沿位移方向的分力)‧(位移)=∣f∣cos θ‧∣s∣=∣f∣∣s∣cos θ。
在数学上,我们称功(W)为力(f)与位移(s)这两个向量的内积。
注意到功是一个纯量(只有大小,没有方向)。
底下我们以数学的方式介绍内积。
设a,b为平面上两个非零向量,其夹角为θ,如图33 所示,则a和b的内积a‧b定义为a‧b=∣a∣∣b∣cos θ,即两向量的长度与其夹角余弦值的乘积。
例题1-----------------------------------------------------------------------------------------------------------(1) 设AB与AC两向量的夹角为45°,且∣AB∣=4,∣AC∣试求AB‧AC之图33值。
(2) 如图34 所示,若∣a∣=2,∣b∣=3,试求a‧b之值。
图34------------------------------------------------------------------------------------------------------------------------ 解(1) 内积的定义可得AB AC⋅=cos45AB AC=4‧2‧1 2=4。
平面向量内积的坐标表示
a b (x1i y1 j) (x2i y2 j)
2
2
x1x2 i x1 y2 i j x2 y1i j y1y2 j
x1x2 y1 y2
二、新课学习
故两个向量的内积等于它们对应坐
标的乘积的和。即
y A(x1,y1)
B(x2,y2)
a
a b x1x2 y1y2. b j
位向量,由于 a b a b cos所以
i i 1 . j j 1 . i j 0 . j i 0 .
y A(x1,y1)
B(x2,y2)
a
bj
oi x
二、新课学习
下面研究怎样用
a和b的坐标表示a b.
设两个非零向量 a =(x1,y1), b=(x2,y2),则
a x1i y1 j b x2i y2 j,
谢谢
A(1,2)
x 0
四、练习
1、已知OA (3,1),OB (0,5),且AC // OB, BC AB,则点C的ห้องสมุดไป่ตู้标为
2、已知ABC三个顶点坐标A( -1,2), B(3,1),C(2,-3),
求证:ABC是等腰直角三角形.
小结
1、内积的运算转化为向量的坐标运 算;
2、掌握垂直、夹角及距离公式,并解 决实际问题。
二、新课学习
4、两向量夹角公式的坐标运算
设a与b的夹角为(0 180),
则cos a b
ab
二、新课学习
设a (x1, y1), b (x2, y2 ),且a与b夹角为, (0 180 )则cos x1x2 y1 y2 .
x12 y12 x22 y22 其中 x12 y12 0,x22 y22 0.
三、基本技能的形成与巩固
平面向量内积课件
当两个向量的夹角为直角时, $\cos\langle\overset{\longrightarrow}{a},\overset{\longrightarrow}{b}\rangle = 0$, $\overset{\longrightarrow}{a} \cdot \overset{\longrightarrow}{b} = 0$
内积的运算律
分配律 结合律 交换律
内积的化简
$\overset{\longrightarrow}{a} \cdot \overset{\longrightarrow}{b} = |\overset{\longrightarrow}{a}| \cdot |\overset{\longrightarrow}{b}| \cdot \cos\langle\overset{\longrightarrow}{a},\overset{\longrightarrow}{b}\rangle$
04
平面向量内积的代数应用
展开式定理的应用
展开式定理
应用
数量积的应用
数量积定义
应用
数量积在解析几何、物理学和工程学 中都有广泛的应用,例如计算向量的 长度、角度以及解决力学问题等。
向量的模长的计算
向量模长定义
计算方法
05
平面向量内积的物理应用
描述力矩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
y a
P(x,y)
N
j
o
M
x
i
• 3、平面向量的直角坐标运算 设 a ( x1 , y1 ) , b ( x 2 , y 2 ) ,则
a b ( x1 x 2 , y1 y 2 )
a b ( x1 x 2 , y1 y 2 )
设
c ( x, y ),
0
。
例2、已知 | a || b |
2
a , b
2
,求
。
练习:已知| a | 2, | b | 5 ,当
0 0 0 0
分别为
0 ,30 ,45 ,60 ,90 0 ,120 0 ,135 0 ,150 0 ,180 0
时,求 a b
。
思考交流:
a b = | a || b | cos
0 0 180 0 (
)
其中 可以表示为 a, b
• 注: (1)规定零向量与任何向量的内积为0。 (2)两个向量 a 与 b 的内积是一个数量,它 可以是正数、负数或零。
例1、已知 | a | 5, | b | 4, 60 ,求 a b
平面向量的内积
复习
• 1、向量的坐标表示: 平面直角坐标系中的任一向量都可以唯一 表示成 a x i y j 的形式。 a y 我们把 a x i y j 叫做向量的 坐标形式,记作 a =(x,y),
N P(x,y)
a =(x,y)叫做向量 a 的坐标
平面向量的内积运算律
• (1) a b b a
• (2) ( a b ) ( a ) b a ( b ) • (3) ( a b ) c a c b c
例3、已知| a | 5, | b | 4, 60 ,求
0
(2 a b ) b 。
2、平面向量的内积及性质; • 3、运算方法和运算律。
布置作业
• P57 练习1、2
• 已知两个非零向量 a 与 b ,当它们的夹角 0 0 0 分别为 0 ,90 ,180 时,向量 a 与 b 的位置关 如何?内积分别是多少?
向量内积的性质:
• (1)当 a 与 b 同向时,a b = | a || b | ; 2 当 a = b 时, a a | a | | a || a | 或 | a | a a ; • (2)当 a 与 b 反向时, b = | a || b | ; a • (3)当 a b 时, a b =0。
为一实数,则
c ( x, y )
探究:
• 一个物体在力 F 的作用下产生的位移 s , 力 F 与物体位移 s 的夹角为 。 (1)F 在位移方向上的分量是 多少?所做的功W是多少? (2)功W是一个数量还是 F s 一个向量?
两个平面向量的夹角
OB • 已知非零向量 a 与 b ,作 OA a , b , 则 AOB 叫做向量 a 与 b 的夹角, 记作 a, b
j
o
M
x
i
表示。
•
对于直角坐标平面上任意向量 a , 将它的起点移至原点O,则其终点的坐标为 P(x,y)就是向量 a 的坐标 . 即 a =(x,y)
y a
P(x,y)
N
j
o
M
x
i
• 2、向量 a x i y j (或 模公式:
a
=(x,y))的求
| a | x y
b
B
b
O
A
a
a
0 0
规定, 0 180
当 0 时,向量 与 a
0
b
同向
当 180时,向量 a与
0
b 反向
0 当 90时,称向量
a与
垂直,记作 b
ab
平面向量内积(或数量积)的定义
• 已知两个非零向量 a 与 b ,它们的夹角是 θ,则把 | a || b | cos 这个乘积叫向量 a 与 b 的内积(或数量积),记作 a b ,即