图形的相似检测题
九年级数学上学期第三章《图形的相似》综合测试题(含答案)
九年级数学上学期第三章《图形的相似》综合测试题(含答案)一、选择题(本大题共8小题,每小题4分,共32分) 1.已知5a=6b (a ≠0),则下列变形正确的是 ( )A .b 6=5aB .b 5=6a C .ab =56D .a -b b=152.如图1,已知AB ∥CD ∥EF ,BD ∶DF=1∶2,那么下列结论中正确的是 ( )图1A .AC ∶AE=1∶3B .CE ∶EA=1∶3C .CD ∶EF=1∶2 D .AB ∶EF=1∶2 3.C 是线段AB 的黄金分割点,且AB=6cm,则BC 的长为 ( ) A .(3√5-3)cm B .(9-3√5)cmC .(3√5-3)cm 或(9-3√5)cmD .(9-3√5)cm 或(6√5-6)cm4.如图2,在四边形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,AD=1,BC=4,则△AOD 与△BOC 的面积之比为( )A.12 B.14 C.18D.116图2 图35.如图3,已知△ABC 与△BDE 都是等边三角形,点D 在边AC 上(不与点A ,C 重合),DE 与AB 相交于点F ,那么与△BFD 相似的三角形是 ( )A .△BFEB .△BDCC .△BDAD .△AFD6.已知△ABC 与△A 1B 1C 1是关于原点为中心的位似图形,且点A 的坐标为(2,1),△ABC 与△A 1B 1C 1的位似比为12,则点A 的对应点A 1的坐标是 ( )A .(4,2)B .(-4,-2)C .(4,2)或(-4,-2)D .(6,3)7.如图4,在△ABC 中,点D 在BC 边上,连接AD ,点G 在线段AD 上,GE ∥BD ,且交AB 于点E ,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.ABAE =AGADB.DFCF=DGADC.FGAC=EGBDD.AEBE=CFDF图4 图58.如图5,在△ABC中,中线BE,CD相交于点O,连接DE,有下列结论:①DEBC =12;②S△DOES△COB=12;③AD AB =OEOB;④S△DOES△ADE=13.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分)9.若△ABC∽△DEF,相似比为3∶2,则对应周长的比值是.10.在比例尺为1∶40000的地图上,某条道路的长为7cm,则该道路的实际长度是_______km.11.若a,b,c,d是成比例线段,其中a=2cm,b=6cm,c=5cm,则线段d= cm.12.如图6,在△ABC中,MN∥BC分别交AB,AC于点M,N.若AM=1,MB=2,BC=3,则MN的长为.图613.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= 时,以A,D,E为顶点的三角形与△ABC相似.14.如图7,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高m.(杆的宽度忽略不计)图7三、解答题(本大题共5小题,共44分)15.(6分)如图8所示,AD,BE分别是钝角三角形ABC的边BC,AC上的高.求证:ADBE =AC BC.图816.(6分)如图9,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=12CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求平行四边形ABCD的面积.图917.(6分)如图10,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB'C'D',使它与四边形ABCD位似,且位似比为2.(1)在图中画出四边形AB'C'D';(2)试说明△AC'D'是等腰直角三角形.图1018.(12分)为测量操场上旗杆的高度,设计的测量方案如图11所示,标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛距地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,E,C,A三点共线,求旗杆AB的高度.图1119.(14分)如图12,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于点M,连接CM 交DB于点N.(1)求证:BD2=AD·CD;(2)若CD=6,AD=8,求MN的长.图12参考答案1.D [解析] 选项A,b 6=5a ⇒ab=30,故此选项错误;选项B,b 5=6a ⇒ab=30,故此选项错误;选项C,ab =56⇒6a=5b ,故此选项错误;选项D,a -b b=15⇒5(a-b )=b ,即5a=6b ,故此选项正确.故选D .2.A [解析]∵AB ∥CD ∥EF ,BD ∶DF=1∶2,∴AC ∶AE=1∶3,故A 选项正确;CE ∶EA=2∶3,故B 选项错误;CD ∶EF 的值无法确定,故C 选项错误;AB ∶EF 的值无法确定,故D 选项错误.故选A .3.C [解析]∵C 是线段AB 的黄金分割点,且AB=6cm,∴BC=√5-12AB=(3√5-3)cm 或BC=3−√52AB=(9-3√5)cm .故选C .4.D [解析] 在四边形ABCD 中,AD ∥BC ,所以△AOD ∽△COB.又由AD=1,BC=4,根据相似三角形的面积比等于相似比的平方,即可求得△AOD 与△BOC 的面积之比.5.C [解析]∵△ABC 与△BDE 都是等边三角形,∴∠A=∠BDF=60°.又∵∠ABD=∠DBF ,∴△BFD ∽△BDA ,∴与△BFD 相似的三角形是△BDA.6.A [解析]∵△ABC 与△A 1B 1C 1是关于原点为中心的位似图形,A (2,1),△ABC 与△A 1B 1C 1的位似比为12,∴点A 的对应点A 1的坐标是(2×2,1×2),即(4,2). 7.D8.C [解析] 由BE ,CD 均为△ABC 的中线可知,DE 为△ABC 的中位线,所以DE=12BC ,DE ∥BC ,所以DE BC =12,故①正确;由DE ∥BC 可得△DOE ∽△COB ,所以S △DOE S △COB=DE BC2=14,故②错误;由DE ∥BC 可得△ADE ∽△ABC ,△DOE ∽△COB ,所以AD AB =DE BC ,DE BC =OEOB ,所以AD AB =OEOB ,故③正确; 因为DE ∥BC ,所以△ADE ∽△ABC ,所以S △ADE S △ABC=DE BC2=14,设△DOE 的高为h ,DE=a ,则BC=2a ,△BOC 的高为2h ,所以△ABC 的高为6h ,所以△ADE 的高为3h ,所以S △DOES△ADE =12a ℎ12·a ·3ℎ=13,故④正确.故选C .9.3∶2 [解析] 根据相似三角形的周长比等于相似比求解.10.2.8 [解析] 设这条道路的实际长度为x cm,则140000=7x ,解得x=280000,280000cm =2.8km .11.15 [解析]∵a ,b ,c ,d 是成比例线段,∴a b=c d.∵a=2cm,b=6cm,c=5cm,∴26=5d,解得d=15(cm).12.1 [解析]∵MN ∥BC ,∴△AMN ∽△ABC ,∴AM AB =MNBC ,即11+2=MN 3,∴MN=1.13.125或53 [解析] 当AE AD =ABAC 时,∵∠A=∠A ,∴△AED ∽△ABC ,此时AE=AB ·AD AC=6×25=125;当AD AE =ABAC 时,∵∠A=∠A ,∴△ADE ∽△ABC ,此时AE=AC ·AD AB =5×26=53.故答案为125或53. 14.815.证明:∵AD ,BE 是钝角三角形ABC 的高,∴∠ADC=∠BEC=90°.又∵∠DCA=∠BCE ,∴△DAC ∽△EBC , ∴AD BE =ACBC .16.解:(1)证明:∵四边形ABCD 是平行四边形,∴∠A=∠C ,AB ∥CD ,∴∠ABF=∠CEB ,∴△ABF ∽△CEB.(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB=CD , ∴△DEF ∽△CEB ,△DEF ∽△ABF. ∵DE=12CD ,∴EC=3DE ,AB=2DE ,∴S △DEFS△CEB=DE EC2=19,S △DEF S △ABF=DE AB2=14.∵S △DEF =2,∴S △CEB =18,S △ABF =8, ∴S 四边形BCDF =S △CEB -S △DEF =16,∴S 平行四边形ABCD =S 四边形BCDF +S △ABF =16+8=24.17.解:(1)如图,四边形AB'C'D'即为所求作图形.(2)根据网格的特点,利用勾股定理可以求出AD'=C'D'=2√10,AC'=4√5.利用勾股定理的逆定理可以得出∠AD'C'=90°, 故△AC'D'是等腰直角三角形.18.解:如图,过点E 作EH ⊥AB 于点H ,交CD 于点G ,则EF=DG=BH=1.6m,GH=BD=15m,EG=DF=2m,∴CG=CD-DG=3-1.6=1.4(m). ∵CG ∥AH , ∴△ECG ∽△EAH , ∴CG AH =EGEH ,即1.4AH =22+15,解得AH=11.9(m),∴AB=AH+BH=11.9+1.6=13.5(m).答:旗杆AB 的高度为13.5m . 19.解:(1)证明:∵DB 平分∠ADC ,∴∠ADB=∠BDC.又∵∠ABD=∠BCD=90°, ∴△ABD∽△BCD,∴ADBD =BD CD,∴BD2=AD·CD.(2)∵BM∥CD,∴∠MBD=∠BDC, ∴∠ADB=∠MBD,∴BM=MD.∵∠ABD=90°,∴∠MAB+∠ADB=90°,∠MBA+∠MBD=90°,∴∠MAB=∠MBA,∴BM=AM,∴AM=BM=MD=4.∵BD2=AD·CD,且CD=6,AD=8, ∴BD2=48,∴BC2=BD2-CD2=12,∴MC2=BM2+BC2=28,∴MC=2√7.∵BM∥CD,∴△MNB∽△CND,∴BMCD =MNCN=23,∴MN=4√75.。
初三相似试题及答案
初三相似试题及答案
一、选择题
1. 在下列选项中,哪两个图形是相似的?
A. 一个正方形和一个矩形
B. 一个正三角形和一个等腰三角形
C. 一个圆形和一个椭圆形
D. 一个菱形和一个正方形
答案:A
2. 如果两个图形相似,那么它们的对应角:
A. 相等
B. 互补
C. 互为余角
D. 互为补角
答案:A
3. 相似图形的对应边成比例,那么下列说法正确的是:
A. 相似比是边长的比值
B. 相似比是面积的比值
C. 相似比是周长的比值
D. 相似比是体积的比值
答案:A
二、填空题
1. 两个相似图形的相似比是2:3,那么它们的面积比是________。
答案:4:9
2. 如果一个图形的长和宽分别是8cm和6cm,那么与它相似的图形的长和宽分别是12cm和________cm。
答案:9
3. 相似三角形的周长比是3:5,那么它们的面积比是________。
答案:9:25
三、解答题
1. 已知三角形ABC与三角形DEF相似,且三角形ABC的边长分别是
3cm、4cm和5cm,三角形DEF的边长分别是6cm、8cm和10cm。
求三角形ABC与三角形DEF的相似比。
答案:三角形ABC与三角形DEF的相似比是3:6,即1:2。
2. 一个矩形的长是10cm,宽是4cm,与它相似的另一个矩形的长是20cm,求这个矩形的宽。
答案:矩形的宽是8cm。
3. 一个正三角形的边长是6cm,与它相似的另一个正三角形的边长是9cm,求这两个三角形的面积比。
答案:这两个三角形的面积比是36:81。
浙江省2023年中考数学真题(图形的相似)附答案
浙江省2023年中考数学真题(图形的相似)一、选择题1.如图.在直角坐标系中.△ABC的三个顶点分别为A(1.2) B(2.1) C(3.2).现以原点O为位似中心.在第一象限内作与△ABC的位似比为2的位似图形△A′B′C′.则顶点C′的坐标是()A.(2,4)B.(4,2)C.(6,4)D.(5,4)2.如图.点P是△ABC的重心.点D是边AC的中点.PE∥AC交BC于点E.DF∥BC交EP于点F.若四边形CDFE的面积为6.则△ABC的面积为()A.12B.14C.18D.243.如图.在四边形ABCD中.AD∥BC.∥C=45°.以AB为腰作等腰直角三角形BAE.顶点E恰好落在CD边上.若AD=1.则CE的长是()A.√2B.√2C.2D.124.如图.在△ABC中.D是边BC上的点(不与点B.C重合).过点D作DE//AB交AC于点E;过点D作DF//AC交AB于点F.N是线段BF上的点.BN=2NF;M是线段DE上的点.DM=2ME.若已知△CMN的面积.则一定能求出()A.△AFE的面积B.△BDF的面积C.△BCN的面积D.△DCE的面积5.图1是第七届国际数学教育大会(ICME)的会徽.图2由其主体图案中相邻两个直角三角形组合而成.作菱形CDEF.使点D.E.F分别在边OC.OB.BC上.过点E作EH⊥AB于点H.当AB=BC,∠BOC= 30°,DE=2时.EH的长为()A.√3B.32C.√2D.43二、填空题6.小慧同学在学习了九年级上册“4.1比例线段”3节课后.发现学习内容是一个逐步特殊化的过程.请在横线上填写适当的数值+感受这种特殊化的学习过程.7.如图.在△ABC中.AB=AC ∠A<90°.点D.E.F分别在边AB.BC.CA上.连接DE.EF.FD.已知点B和点F关于直线DE对称.设BCAB=k .若AD=DF.则CFFA=(结果用含k的代数式表示).8.如图.在Rt△ABC中.∠C=90°,E为AB边上一点.以AE为直径的半圆O与BC相切于点D.连接AD.BE=3 BD=3√5.P是AB边上的动点.当△ADP为等腰三角形时.AP的长为.三、解答题9.如图.在⊙O中.直径AB垂直弦CD于点E.连接AC AD BC作CF⊥AD于点F.交线段OB于点G(不与点O.B重合).连接OF.(1)若BE=1.求GE的长.(2)求证:BC2=BG⋅BO(3)若FO=FG.猜想∠CAD的度数.并证明你的结论.10.在边长为1的正方形ABCD中.点E在边AD上(不与点A.D重合).射线BE与射线CD交于点F.(1)若ED=13.求DF的长.(2)求证:AE⋅CF=1.(3)以点B为圆心.BC长为半径画弧.交线段BE于点G.若EG=ED.求ED的长.11.如图.已知矩形ABCD.点E在CB延长线上.点F在BC延长线上.过点F作FH⊥EF交ED的延长线于点H.连结AF交EH于点G,GE=GH.(1)求证:BE=CF.(2)当ABFH=56,AD=4时.求EF的长.12.如图1.AB为半圆O的直径.C为BA延长线上一点.CD切半圆于点D,BE⊥CD.交CD延长线于点E.交半圆于点F.已知OA=32,AC=1.如图2.连结AF.P为线段AF上一点.过点P作BC的平行线分别交CE.BE于点M.N.过点P作PH⊥AB于点H.设PH=x,MN=y.(1)求CE的长和y关于x的函数表达式.(2)当PH<PN.且长度分别等于PH,PN.a的三条线段组成的三角形与△BCE相似时.求a的值.(3)延长PN交半圆O于点Q.当NQ=154x−3时.求MN的长.13.在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列)AB=12,AD=10.∥B为锐角.且sinB=45.(1)如图1.求AB边上的高CH的长.(2)P是边AB上的一动点.点C,D同时绕点P按逆时针方向旋转90°得点C′,D′.①如图2.当点C′落在射线CA上时.求BP的长.②当ΔAC′D′当是直角三角形时.求BP的长.14.我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系.用直线上点的位置刻画圆上点的位置.如图.AB是⊙O的直径.直线l是⊙O的切线.B为切点.P.Q是圆上两点(不与点A重合.且在直径AB的同侧).分别作射线AP.AQ交直线l于点C.点D.(1)如图1.当AB =6.BP ⌢长为π时.求BC 的长.(2)如图2.当AQ AB =34.BP ⌢=PQ ⌢时.求BC CD的值. (3)如图3.当sin∠BAQ =√64.BC =CD 时.连接BP.PQ.直接写出PQ BP 的值. 15.如图1.锐角△ABC 内接于⊙O .D 为BC 的中点.连接AD 并延长交⊙O 于点E.连接BE ,CE .过C 作AC 的垂线交AE 于点F.点G 在AD 上.连接BG ,CG .若BC 平分∠EBG 且∠BCG =∠AFC .(1)求∠BGC 的度数.(2)①求证:AF =BC .②若AG =DF .求tan∠GBC 的值.(3)如图2.当点O 恰好在BG 上且OG =1时.求AC 的长.16.已知.AB 是半径为1的⊙O 的弦.⊙O 的另一条弦CD 满足CD =AB .且CD ⊥AB 于点H (其中点H 在圆内.且AH >BH ,CH >DH ).(1)在图1中用尺规作出弦CD 与点H (不写作法.保留作图痕迹).(2)连结AD.猜想.当弦AB 的长度发生变化时.线段AD 的长度是否变化?若发生变化.说明理由:若不变.求出AD 的长度.(3)如图2.延长AH 至点F.使得HF =AH .连结CF.∠HCF 的平分线CP 交AD 的延长线于点P.点M 为AP 的中点.连结HM.若PD =12AD .求证:MH ⊥CP . 17.如图.在∥O 中.AB 是一条不过圆心O 的弦.点C.D 是AB⌢的三等分点.直径CE 交AB 于点F.连结AD 交CF 于点G.连结AC.过点C 的切线交BA 的延长线于点H .(1)求证:AD∥HC ;(2)若OG GC=2.求tan∥FAG 的值; (3)连结BC 交AD 于点N .若∥O 的半径为5.下面三个问题.依次按照易、中、难排列.对应的分值为2分、3分、4分.请根据自己的认知水平.选择其中一道问题进行解答。
相似图形测试题及答案
相似图形测试题及答案
一、选择题
1. 两个图形相似,那么它们的对应角()
A. 相等
B. 不相等
C. 不一定相等
D. 无法确定
答案:A
2. 如果两个图形相似,那么它们的对应边()
A. 相等
B. 不相等
C. 不一定相等
D. 无法确定
答案:C
3. 相似图形的面积比等于()
A. 边长比的平方
B. 边长比的立方
C. 边长比的四次方
D. 边长比的五次方
答案:A
二、填空题
4. 相似图形的周长比等于它们的________比。
答案:边长
5. 如果两个图形的边长比是2:3,那么它们的面积比是________。
答案:4:9
三、判断题
6. 两个图形的对应角相等,那么这两个图形一定相似。
()
答案:错误
7. 两个图形的对应边成比例,那么这两个图形一定相似。
()
答案:正确
四、解答题
8. 已知两个相似多边形的边长比为3:4,求它们的面积比。
答案:它们的面积比为9:16。
9. 一个三角形的底边长为6cm,高为8cm,另一个相似三角形的底边长为9cm,求另一个三角形的高。
答案:另一个三角形的高为12cm。
10. 一个矩形的长宽比为2:1,如果它的长为8cm,求它的宽。
答案:它的宽为4cm。
图形的相似经典测试题
图形的相似经典测试题一、选择题1.如图,点A,B是双曲线18yx=图象上的两点,连接AB,线段AB经过点O,点C 为双曲线kyx=在第二象限的分支上一点,当ABCV满足AC BC=且:13:24AC AB=时,k的值为().A.2516-B.258-C.254-D.25-【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出2()COFAOES OCS OA∆∆=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2()COFAOES OCS OA∆∆==25144,因为S△AOE=9,可得S△COF=2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF =∠OAE ,∴△CFO ∽△OEA , ∴2()COF AOE S OCS OA∆∆=, ∵CA :AB =13:24,AO =OB ,∴CA :OA =13:12,∴CO :OA =5:12,∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0,∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.2.如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上一点,且∠CDE =30°.设AD =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】C【解析】【分析】 根据题意可得出4,23,AB BC ==4,23,BD x CE y =-=-然后判断△CDE ∽△CBD ,继而利用相似三角形的性质可得出y 与x 的关系式,结合选项即可得出答案.【详解】解:∵∠A =60°,AC =2, ∴4,23,AB BC ==4,23,BD x CE y =-=-在△ACD 中,利用余弦定理可得CD 2=AC 2+AD 2﹣2AC •AD cos ∠A =4+x 2﹣2x ,故可得242CD x x =-+,又∵∠CDE =∠CBD =30°,∠ECD =∠DCB (同一个角),∴△CDE ∽△CBD ,即可得,CE CD CD CB= 即222342,2342yx x x x --+=-+ 故可得: 23343.633y x x =-++ 即呈二次函数关系,且开口朝下. 故选C .【点睛】考查解直角三角形,相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.3.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,则下列结论正确的是( )A .AD DE DB BC= B .BF EF BC AB = C .AE EC FC DE = D .EF BF AB BC= 【答案】C【解析】【分析】 根据相似三角形的判定与性质逐项分析即可.由△ADE ∽△ABC ,可判断A 的正误;由△CEF∽△CAB ,可判定B 错误;由△ADE ~△EFC ,可判定C 正确;由△CEF ∽△CAB ,可判定D 错误.【详解】解:如图所示:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∴△ADE ∽△ABC , ∴DE AD AD BC AB DB=≠, ∴答案A 错舍去;∵EF ∥AB ,∴△CEF ∽△CAB , CF EF BC A B B BF C=≠ ∴答案B 舍去∵∠ADE =∠B ,∠CFE =∠B ,∴∠ADE =∠CFE ,又∵∠AED =∠C ,∴△ADE ~△EFC , ∴AE DE EC FC=,C 正确; 又∵EF ∥AB , ∴∠CEF =∠A ,∠CFE =∠B ,∴△CEF ∽△CAB , ∴EF CE FC BF AB AC BC BC==≠, ∴答案D 错舍去;故选C .【点睛】 本题主要考查相似三角形的判定与性质,熟练掌握两平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似是解题的关键.4.如图,矩形ABCD 中,AB =8,AD =4,E 为边AD 上一个动点,连接BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连接CF ,则△CEF 面积的最小值是( )A .16B .15C .12D .11【答案】B【解析】【分析】 过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE== G Q 为BE 的中点,1,2FE GE BE ∴== ∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+=故选:B .【点睛】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.5.如图,已知在平面直角坐标系中,点O 是坐标原点,AOB V 是直角三角形,90AOB ∠=︒,2OB OA =,点B 在反比例函数2y x =上,若点A 在反比例函数k y x=上,则k 的值为( )A .12B .12-C .14D .14- 【答案】B【解析】【分析】通过添加辅助线构造出相似三角形,再根据相似三角形的性质可求得1,2x A x ⎛⎫-⎪⎝⎭,然后由点的坐标即可求得答案.【详解】解:过点B 作BE x ⊥于点E ,过点A 作AF x ⊥于点F ,如图:∵点B 在反比例函数2y x =上 ∴设2,B x x ⎛⎫ ⎪⎝⎭∴OE x =,2BE x=∵90AOB ∠=︒ ∴90AOD BOD ∠+∠=︒∴90BOE AOF ∠+∠=︒∵BE x ⊥,AF x ⊥∴90BEO OFA ∠=∠=︒∴90OAF AOF ∠+∠=︒∴BOE OAF ∠=∠∴BOE OAF V V ∽∵2OB OA = ∴12OF AF OA BE OE BO === ∴121122OF BE x x =⋅=⋅=,11222x AF OE x =⋅=⋅= ∴1,2x A x ⎛⎫- ⎪⎝⎭ ∵点A 在反比例函数k y x=上 ∴12x k x=- ∴12k =-. 故选:B【点睛】本题考查了反比例函数与相似三角形的综合应用,点在函数图象上则点的坐标就满足函数解析式,结合已知条件能根据相似三角形的性质求得点A 的坐标是解决问题的关键.6.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ∆与ADM ∆关于AM 所在直线对称,将ADM ∆按顺时针方向绕点A 旋转90°得到ABF ∆,连接EF ,则cos EFC ∠的值是 ( )A 171365B 61365C 71525D .617【答案】A【解析】【分析】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明AEH EMG V :V ,则有13EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH V 中利用勾股定理求出x 的值,进而可求,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用cos FN EFC EF∠=即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则90AHG MGE ∠=∠=︒,∵四边形ABCD 是正方形,∴3,90AD AB ABC C D ==∠=∠=∠=︒ ,∴四边形AHGD,BHEN,ENCG 都是矩形.由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=︒====,90AEH MEG EMG MEG ∴∠+∠=∠+∠=︒ ,AEH EMG ∴∠=∠,AEH EMG ∴V :V ,13EH AE MG EM ∴== . 设MG x =,则3EH x =,1DG AH x ==+在Rt AEH V 中,222AH EH AE +=Q ,222(1)(3)3x x ∴++= , 解得45x =或1x =-(舍去), 125EH BN ∴==,65CG CD DG EN =-== . 1BF DM ==Q 175FN BF BN ∴=+=. 在Rt EFN △ 中, 由勾股定理得,2213EF EN FN =+=,17cos 1365FN EFC EF ∴∠==. 故选:A .【点睛】本题主要考查正方形,矩形的性质,相似三角形的判定及性质,勾股定理,锐角三角函数,能够作出辅助线是解题的关键.7.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)【答案】D【解析】【分析】【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=13.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.8.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6x(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x【答案】C 【解析】【分析】直接利用相似三角形的判定与性质得出13BCOAODSSVV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°3∴13 BCOAODSSVV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S△AOD=2是解题关键.9.如果两个相似正五边形的边长比为1:10,则它们的面积比为()A.1:2 B.1:5 C.1:100 D.1:10【答案】C【解析】根据相似多边形的面积比等于相似比的平方,由两个相似正五边形的相似比是1:10,可知它们的面积为1:100.故选:C.点睛:此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.10.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)【答案】D【解析】试题分析:根据位似的性质,缩小后的点在原点的同侧,为(-2,1),然后求在另一侧为(2,-1).故选D考点:位似变换11.把Rt ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A.扩大为原来的3倍B.缩小为原来的13C.扩大为原来的9倍D.不变【答案】D【解析】【分析】根据相似三角形的性质解答.【详解】三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A的大小不变,∴锐角A的余弦值不变,故选:D.【点睛】此题考查相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.12.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm,则较大多边形的周长为 )A.48 cm B.54 cm C.56 cm D.64 cm【答案】A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:3.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=48.大多边形的周长为48cm.故选A.考点:相似多边形的性质.13.要做甲、乙两个形状相同(相似)的三角形框架,已知甲三角形框架三边的长分别为50 cm、60 cm、80 cm,乙三角形框架的一边长为20 cm,则符合条件的乙三角形框架共有().A.1种B.2种C.3种D.4种【答案】C【解析】试题分析:根据相似图形的定义,可由三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm的边可以当最短边,最长边和中间大小的边.故选:C.点睛:本题考查的是相似形的定义,相似图形的形状相同,但大小不一定相同.14.如图,四边形ABCD和四边形AEFG均为正方形,连接CF,DG,则DGCF=()A.23B.2C.33D.32【答案】B 【解析】【分析】连接AC和AF,证明△DAG∽△CAF可得DGCF的值.【详解】连接AC和AF,则2 AD AGAC AF==∵∠DAG=45°-∠GAC,∠CAF=45°-GAC,∴∠DAG=∠CAF.∴△DAG∽△CAF.∴2 DG ADCF AC==.故答案为:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.15.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故④正确.故选:B.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.16.已知线段MN=4cm,P是线段MN的黄金分割点,MP>NP,那么线段MP的长度等于()A.(25+2)cm B.(25﹣2)cm C.(5+1)cm D.(5﹣1)cm 【答案】B【解析】【分析】根据黄金分割的定义进行作答.【详解】由黄金分割的定义知,51MPMN-=,又MN=4,所以,MP=25- 2. 所以答案选B.【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义是本题解题关键.17.如图,某河的同侧有A,B两个工厂,它们垂直于河边的小路的长度分别为2AC km=,3BD km=,这两条小路相距5km.现要在河边建立一个抽水站,把水送到A,B两个工厂去,若使供水管最短,抽水站应建立的位置为()A.距C点1km处B.距C点2km处C.距C点3km处D.CD的中点处【答案】B【解析】【分析】作出点A关于江边的对称点E,连接EB交CD于P,则PA PB PE PB EB+=+=,根据两点之间线段最短,可知当供水站在点P处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆:,设PC x =,则5PD x =-,根据相似三角形的性质,得 PC CE PD BD =,即253x x =-, 解得2x =.故供水站应建在距C 点2千米处.故选:B .【点睛】本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.18.如图,已知△ABC ,D 、E 分别在边AB 、AC 上,下列条件中,不能确定△ADE ∽△ACB 的是( )A .∠AED =∠BB .∠BDE +∠C =180° C .AD •BC =AC •DED .AD •AB =AE •AC【答案】C【解析】【分析】 A 、根据有两组角对应相等的两个三角形相似,进行判断即可;B :根据题意可得到∠ADE=∠C ,根据有两组角对应相等的两个三角形相似,进行判断即可;C 、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可;D 、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可.【详解】解:A 、由∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ;B 、由∠BDE+∠C=180°,∠ADE+∠BDE=180°,得∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ;C 、由AD•BC=AC•DE ,得不能判断△ADE ∽△ACB,必须两组对应边的比相等且夹角对应相等的两个三角形相似.D 、由AD•AB=AE•AC 得,∠A=∠A ,故能确定△ADE ∽△ACB ,故选:C .【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似(注意,一定是夹角); 有两组角对应相等的两个三角形相似.19.如图,已知AOB ∆和11A OB ∆是以点O 为位似中心的位似图形,且AOB ∆和11A OB ∆的周长之比为1:2,点B 的坐标为()1,2-,则点1B 的坐标为( ).A .()2,4-B .()1,4-C .()1,4-D .()4,2-【答案】A【解析】【分析】 设位似比例为k ,先根据周长之比求出k 的值,再根据点B 的坐标即可得出答案.【详解】设位似图形的位似比例为k则1111,,OA kOA OB kOB A B kAB ===△AOB Q 和11A OB △的周长之比为1:2111112OA OB AB OA OB A B ++∴=++,即12OA OB AB kOA kOB kAB ++=++ 解得2k =又Q 点B 的坐标为(1,2)-∴点1B 的横坐标的绝对值为122-⨯=,纵坐标的绝对值为224⨯=Q 点1B 位于第四象限∴点1B 的坐标为(2,4)-故选:A .【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.20.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼晴与地面的距离为1.5米,则旗杆的高度为()A.9 B.12 C.14 D.18【答案】A【解析】【分析】如图,BC=2m,CE=12m,AB=1.5m,利用题意得∠ACB=∠DCE,则可判断△ACB∽△DCE,然后利用相似比计算出DE的长.【详解】解:如图,BC=2m,CE=12m,AB=1.5m,由题意得∠ACB=∠DCE,∵∠ABC=∠DEC,∴△ACB∽△DCE,∴AB BCDE CE=,即1.5212DE=,∴DE=9.即旗杆的高度为9m.故选A.【点睛】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.。
相似测试题及答案
相似测试题及答案一、选择题1. 下列哪项不是相似图形的特征?A. 形状相同B. 面积相等C. 边长成比例D. 角度相同答案:B2. 如果两个图形相似,那么它们的对应角:A. 相等B. 不相等C. 可能相等也可能不相等D. 无法确定答案:A二、填空题1. 相似图形的对应边的比值叫做________。
答案:相似比2. 两个相似多边形的面积比等于它们的相似比的________。
答案:平方三、判断题1. 两个图形相似,它们的周长比等于它们的相似比。
()答案:√2. 如果两个图形的对应边长比为2:3,那么它们的面积比为4:9。
()答案:√四、简答题1. 请简述相似图形的定义。
答案:相似图形是指两个图形的对应角相等,对应边的比值相等的图形。
2. 相似图形的性质有哪些?答案:相似图形的性质包括:对应角相等,对应边的比值相等,面积比等于相似比的平方,周长比等于相似比。
五、计算题1. 若两个相似三角形的相似比为3:4,求它们的面积比。
答案:面积比为9:16。
2. 已知一个三角形的边长为3, 4, 5,另一个相似三角形的边长为6, 8, 10,求这两个三角形的面积比。
答案:面积比为1:4。
六、论述题1. 论述相似图形在实际生活中的应用。
答案:相似图形在实际生活中有广泛的应用,例如在建筑设计中,设计师会使用相似图形来保持建筑的比例和风格;在地图制作中,相似图形用于表示不同比例尺的地图;在服装设计中,相似图形用于保持服装的款式和比例等。
2. 论述如何判断两个图形是否相似。
答案:判断两个图形是否相似,首先要检查它们的对应角是否相等,然后检查它们的对应边的比值是否相等。
如果这两个条件都满足,那么这两个图形就是相似的。
此外,还可以通过面积比来判断,如果两个图形的面积比等于它们边长比的平方,那么它们也是相似的。
中考数学《图形的相似》专项练习题及答案
中考数学《图形的相似》专项练习题及答案一、单选题1.一块含30°角的直角三角板(如图),它的斜边AB=8cm,里面空心△DEF的各边与△ABC的对应边平行,且各对应边的距离都是1cm,那么△DEF的周长是()A.5cm B.6cm C.(6-√3)cm D.(3+√3)cm2.如图,DE△BC,EF△AB,现得到下列结论:AEEC=BFFC,ADBF=ABBC,EFAB=DEBC,CECF=EABF其中正确的比例式的个数有()A.4个B.3个C.2个D.1个3.如图,△ABC与△ADE成位似图形,位似中心为点A,若AD:AB=1:3,则△ADE与△ABC面积之比为()A.1:2B.1:3C.1:9D.1:164.如图,△ABC中,三边互不相等,点P是AB上一点,有过点P的直线将△ABC切出一个小三角形与△ABC相似,这样的直线一共有()A.5条B.4条C.3条D.2条5.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的位似比为1:2,△ABC面积为2,则△EDC的面积是()A.2B.8C.16D.326.如图,△ADE△△ABC,若AD=2,BD=4,则△ADE与△ABC的相似比是()A.1:2B.1:3C.2:3D.3:27.如图,以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若s1表示△ADE的面积,s2表示四边形DBCE的面积,则s1:s2=()A.1︰2B.1︰3C.1︰4D.2︰38.如图,按如下方法,将△ABC的三边缩小到原来的12,任取一点O,连AO、BO、CO,并取它们的中点D、E、F得△DEF,则下列说法正确的是()①△ABC与△DEF是相似图形;②△ABC与△DEF的周长比为2:1;③△ABC与△DEF的面积比为4:1.A.①、②B.②、③C.①、③D.①、②、③9.如图,已知AB是半圆O的直径,弦AD,CB相交于点P,若∠DPB=45°,则S△CDP:S△ABP 的值()A.25B.23C.13D.1210.如图,AD△BE△CF,直线l1、l2这与三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.811.一个三角形的三边长分别为3,4,5,另一个与它相似的三角形中有一条边长为6.则这个三角形的周长不可能是()A.725B.18C.48D.2412.如图,小正方形的边长为均为1,下列各图(图中小正方形的边长均为1)阴影部分所示的三角形中,与△ABC相似的三角形是()A.B.C.D.二、填空题13.勾股定理是一个基本的几何定理,有数百种证明方法.“青朱出入图”是我国古代数学家证明勾股定理的几何证明法.刘徽描述此图“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,加就其余不动也,合成弦方之幂,开方除之,即弦也”.若图中BF=4,DF=2,则AE=.14.如图,矩形ABCD中,AB=3,BC=4,E是BC上一点,BE=1,AE与BD交于点F.则DF的长为.15.如图,点D在△ABC的边BC的延长线上,AD为△ABC的外角的平分线,AB=2BC,AC=3,CD=4,则AB的长为.16.如图,在△ABC中,△BAC=90°,AD△BC于D,BD=3,CD=12,则AD的长为17.在某一时刻,测得一根高为1m的竹竿的影长为2m,同时测得一栋高楼的影长为40m,这栋高楼的高度是m.18.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.三、综合题19.如图,已知△BAC=90°,AD△BC于D,E是AC的中点,ED的延长线交AB的延长线于点F.求证:(1)△DFB△△AFD;(2)AB:AC=DF:AF.20.一次小组合作探究课上,小明将两个正方形按如图1所示的位置摆放(点E、A、D在同一条直线上).(1)发现BE与DG数量关系是,BE与DG的位置关系是.(2)将正方形AEFG绕点A按逆时针方向旋转(如图2),(1)中的结论还成立吗?若能,请给出证明;若不能,请说明理由.(3)把图1中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG=ABAD=23,AE=2,AB=4,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请直接写出这个定值.21.如图,已知点D在△ABC的外部,AD△BC,点E在边AB上,AB•AD=BC•AE.(1)求证:△BAC=△AED;(2)在边AC取一点F,如果△AFE=△D,求证:ADBC=AFAC.22.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O作BD的垂线与边AD,BC分别交于点E,F,连接BE交AC于点K,连接DF。
图形相似单元测试题及答案
图形相似单元测试题及答案# 图形相似单元测试题及答案一、选择题1. 两个图形相似的条件是什么?A. 面积相等B. 周长相等C. 对应角相等,对应边成比例D. 形状相同答案:C2. 如果两个三角形的对应边长比为2:3,那么它们的面积比是多少?A. 2:3B. 4:9C. 3:2D. 9:4答案:B3. 在相似图形中,对应角的大小关系是什么?A. 相等B. 互为补角C. 互为余角D. 不确定答案:A二、填空题4. 如果一个图形放大到原来的两倍,则其面积变为原来的________倍。
答案:45. 相似三角形的判定定理包括SSS(边边边)、SAS(边角边)、_______。
答案:AAA(角角角)三、简答题6. 请解释什么是相似比,并给出一个例子。
答案:相似比是指两个相似图形对应边长的比值。
例如,如果三角形ABC与三角形DEF相似,且AB:DE=2:3,那么2:3就是它们的相似比。
7. 描述如何判断两个多边形是否相似。
答案:要判断两个多边形是否相似,需要满足以下条件:对应角相等,且对应边成比例。
如果一个多边形的每个角和每条边都与另一个多边形的相应角和边成相同的比例,那么这两个多边形就是相似的。
四、计算题8. 已知三角形ABC与三角形DEF相似,AB=6cm,DE=9cm,BC=8cm,求EF的长度。
答案:由于三角形ABC与三角形DEF相似,根据相似比,我们有AB:DE = BC:EF。
将已知数值代入,得到6:9 = 8:EF。
解这个比例,我们得到EF = (8 * 9) / 6 = 12cm。
结束语本单元测试题涵盖了图形相似的基本概念、判定方法和实际应用。
通过这些题目的练习,可以帮助学生加深对图形相似概念的理解和应用能力。
希望同学们能够认真完成这些题目,并在解答过程中发现问题、解决问题,从而提高自己的数学素养。
图形的相似经典测试题附答案解析
图形的相似经典测试题附答案解析一、选择题1.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.5B.453C.3 D.4【答案】A【解析】【分析】【详解】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=12OA=2.由勾股定理得:5设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE.∴BF OF CM AMDE OE DE AE==,x2x2255-,,解得:()52x 5BF ?x CM 2-==,. ∴BF+CM=5.故选A .2.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( )A .2∶3B .4∶9C .2∶3D .3∶2【答案】B【解析】【分析】 根据两相似三角形的面积比等于相似比的平方,所以224()39ABC DEF S S ==V V . 【详解】因为△ABC ∽△DEF ,所以△ABC 与△DEF 的面积比等于相似比的平方,所以S △ABC :S △DEF =(23)2=49,故选B . 【点睛】本题考查了相似三角形的性质,解题的关键是掌握:两个相似三角形面积比等于相似比的平方.3.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:1【答案】B【解析】【分析】 可证明△DFE ∽△BFA ,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD 为平行四边形,∴DC ∥AB ,∴△DFE ∽△BFA ,∵DE :EC=3:1,∴DE :DC=3:4,∴DE :AB=3:4,∴S △DFE :S △BFA =9:16.故选B .4.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x=-、2y x =的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变【答案】D【解析】【分析】 如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a-),A 为(b ,2b ),得到OE=-a ,EB=1a-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠OAB=22为定值,即可解决问题. 【详解】解:分别过B 和A 作BE ⊥x 轴于点E ,AF ⊥x 轴于点F ,则△BEO ∽△OFA ,∴BE OE OF AF=, 设点B 为(a ,1a -),A 为(b ,2b ), 则OE=-a ,EB=1a-,OF=b ,AF=2b , 可代入比例式求得222a b =,即222a b =, 根据勾股定理可得:22221OE EB a a +=+22224OF AF b b +=+∴tan∠OAB=2 222222212244baOB a bOAb bb b++==++=222214()24bbbb++=22∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.5.如图,已知////AB CD EF,:3:5AD AF=,6BC=,CE的长为()A.2B.4C.3D.5【答案】B【解析】【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】∵AD:AF=3:5,∴AD:DF=3:2,∵AB∥CD∥EF,∴AD BCDF CE=,即362CE=,解得,CE=4,【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.6.如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,则的值为( )A .1B .C .D .【答案】C【解析】【分析】 由平行于BC 的直线DE 把△ABC 分成面积相等的两部分,可知△ADE 与△ABC 相似,且面积比为,则相似比为,的值为.【详解】∵DE ∥BC ,∴△ADE ∽△ABC ,∵DE 把△ABC 分成面积相等的两部分,∴S △ADE =S 四边形DBCE , ∴=, ∴= =, 故选:C .【点睛】本题考查了相似三角形的判定,相似三角形的性质,面积比等于相似比的平方的逆用等.7.如图,点E 是ABCD Y 的边AD 上一点,2DE AE =,连接BE ,交AC 边于点F ,下列结论中错误的是( )A .3BC AE =B .4AC AF = C .3BF EF =D .2BC DE =【答案】D【分析】由平行四边形的性质和相似三角形的性质分别判断即可.【详解】解:∵在ABCD Y 中,//AD BC ,AD BC =,∴AEF CBF V :V , ∴AE AF EF CB CF BF ==, ∵2DE AE = ∴332BC DE AE ==,选项A 正确,选项D 错误, ∴133AF AE AE CF CB AE ===,即:3CF AF =, ∴4AC AF =,∴选项B 正确,∴133EF AE AE BF CB AE ===,即:3BF EF =, ∴选项C 正确,故选:D .【点睛】此题主要考查了平行四边形的性质以及相似三角形的判定与性质,能熟练利用相似三角形对应边成比例是解题关键.8.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )A .2B .4C .6D .8【答案】B【解析】【分析】 证明△ADC ∽△ACB ,根据相似三角形的性质可推导得出AC 2=AD•AB ,由此即可解决问题.【详解】∵∠A=∠A ,∠ADC=∠ACB ,∴△ADC ∽△ACB ,∴AC AD AB AC=, ∴AC 2=AD•AB=2×8=16,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.9.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.32B.92C.33D.33【答案】A【解析】【分析】【详解】解:∵Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∴△ACD∽△ABC,∴AC:AB=AD:AC,∵AC=3,AB=6,∴AD=32.故选A.考点:相似三角形的判定与性质.10.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC 的值为()A.1:3 B.1:8 C.1:9 D.1:4【解析】【分析】根据题意,易证△DEF ∽△CBF ,同理可证△ADE ∽△ABC ,根据相似三角形面积比是对应边比例的平方即可解答.【详解】∵S △EFC =3S △DEF ,∴DF :FC =1:3 (两个三角形等高,面积之比就是底边之比),∵DE ∥BC ,∴△DEF ∽△CBF ,∴DE :BC =DF :FC =1:3同理△ADE ∽△ABC ,∴S △ADE :S △ABC =1:9,故选:C .【点睛】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.11.如图,点D 是ABC V 的边BC 上一点,,2BAD C AC AD ∠=∠= ,如果ACD V 的面积为15,那么ABC V 的面积为( )A .20B .22.5C .25D .30 【答案】A【解析】【分析】先证明C ABD BA ∽△△,再根据相似比求出ABC V 的面积即可.【详解】∵,BAD C B B ∠=∠=∠∠∴C ABD BA ∽△△∵2AC AD =∴4S ABD S CBA =V V ∴43S ACD S CBA =V V ∵ACD V 的面积为15 ∴44152033S CBA S ACD ==⨯=VV 故答案为:A .本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.12.如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,△PEF 、△PDC 、△PAB 的面积分别为S 、1S 、2S ,若S=2,则1S +2S =( ).A .4B .6C .8D .不能确定 【答案】C【解析】 试题分析:过P 作PQ ∥DC 交BC 于点Q ,由DC ∥AB ,得到PQ ∥AB ,可得出四边形PQCD 与ABQP 都为平行四边形,所以△PDC ≌△CQP ,△ABP ≌△QPB ,进而确定出△PDC 与△PCQ 面积相等,△PQB 与△ABP 面积相等,再由EF 为△BPC 的中位线,利用中位线定理得到EF ∥BC ,EF=12BC ,得出△PEF 与△PBC 相似,相似比为1:2,面积之比为1:4,所以PBC CQP QPB PDC ABP S S S S S =+=+V V V V V =1S +2S =8.故选C .考点:平行四边形的性质;三角形中位线定理.13.如图,已知在平面直角坐标系中,点O 是坐标原点,AOB V 是直角三角形,90AOB ∠=︒,2OB OA =,点B 在反比例函数2y x =上,若点A 在反比例函数k y x=上,则k 的值为( )A .12B .12-C .14D .14- 【答案】B【分析】 通过添加辅助线构造出相似三角形,再根据相似三角形的性质可求得1,2x A x ⎛⎫- ⎪⎝⎭,然后由点的坐标即可求得答案.【详解】解:过点B 作BE x ⊥于点E ,过点A 作AF x ⊥于点F ,如图:∵点B 在反比例函数2y x=上 ∴设2,B x x ⎛⎫ ⎪⎝⎭∴OE x =,2BE x =∵90AOB ∠=︒∴90AOD BOD ∠+∠=︒∴90BOE AOF ∠+∠=︒∵BE x ⊥,AF x ⊥∴90BEO OFA ∠=∠=︒∴90OAF AOF ∠+∠=︒∴BOE OAF ∠=∠∴BOE OAF V V ∽∵2OB OA = ∴12OF AF OA BE OE BO === ∴121122OF BE x x =⋅=⋅=,11222x AF OE x =⋅=⋅= ∴1,2x A x ⎛⎫- ⎪⎝⎭ ∵点A 在反比例函数k y x =上∴12x k x=- ∴12k =-. 故选:B【点睛】本题考查了反比例函数与相似三角形的综合应用,点在函数图象上则点的坐标就满足函数解析式,结合已知条件能根据相似三角形的性质求得点A 的坐标是解决问题的关键.14.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH .∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0).设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+,解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .15.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ∆与ADM ∆关于AM 所在直线对称,将ADM ∆按顺时针方向绕点A 旋转90°得到ABF ∆,连接EF ,则cos EFC ∠的值是 ( )A 171365B 61365C 71525D .617【答案】A【解析】【分析】过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明AEH EMG V :V ,则有13EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH V 中利用勾股定理求出x 的值,进而可求,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用cos FN EFC EF∠=即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则90AHG MGE ∠=∠=︒,∵四边形ABCD 是正方形,∴3,90AD AB ABC C D ==∠=∠=∠=︒ ,∴四边形AHGD,BHEN,ENCG 都是矩形.由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=︒====,90AEH MEG EMG MEG ∴∠+∠=∠+∠=︒ ,AEH EMG ∴∠=∠,AEH EMG ∴V :V ,13EH AE MG EM ∴== . 设MG x =,则3EH x =,1DG AH x ==+在Rt AEH V 中,222AH EH AE +=Q ,222(1)(3)3x x ∴++= ,解得45x=或1x=-(舍去),125EH BN∴==,65CG CD DG EN=-==.1BF DM==Q175FN BF BN∴=+=.在Rt EFN△中,由勾股定理得,2213EF EN FN=+=,17cos1365FNEFCEF∴∠==.故选:A.【点睛】本题主要考查正方形,矩形的性质,相似三角形的判定及性质,勾股定理,锐角三角函数,能够作出辅助线是解题的关键.16.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6x(x >0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x【答案】C【解析】【分析】直接利用相似三角形的判定与性质得出13BCOAODSS=VV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°=3,∴13BCOAODSSVV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S△AOD=2是解题关键.17.如图,三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2∶3,若三角尺的一边长为8 cm,则这条边在投影中的对应边长为()A.8 cmB.12 cmC.16 cmD.24 cm【答案】B【解析】试题分析:利用相似比为2:3,可得出其对应边的比值为2:3,进而求出即可.解:∵三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2:3,三角尺的一边长为8cm,∴设这条边在投影中的对应边长为:x,则=,解得:x=12.考点:位似变换.18.如图,已知AB ∥CD ∥EF ,它们依次交直线l 1、l 2于点A 、D 、F 和点B 、C 、E ,如果AD :DF =3:1,BE =10,那么CE 等于( )A .103B .203C .52D .152【答案】C【解析】【分析】根据平行线分线段成比例定理得到3AD BC DF CE ==,得到BC=3CE ,然后利用BC+CE=BE=10可计算出CE 的长,即可.【详解】解:∵AB ∥CD ∥EF ,∴3AD BC DF CE==, ∴BC=3CE ,∵BC+CE=BE ,∴3CE+CE=10,∴CE=52. 故选C .【点睛】 本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.19.如图,AB ∥GH ∥CD ,点H 在BC 上,AC 与BD 交于点G ,AB=2,CD=3,则GH 长为( )A .1B .1.2C .2D .2.5【答案】B【分析】由AB ∥GH ∥CD 可得:△CGH ∽△CAB 、△BGH ∽△BDC ,进而得:GH CH AB BC =、GH BH CD BC =,然后两式相加即可. 【详解】 解:∵AB ∥GH ,∴△CGH ∽△CAB ,∴GH CH AB BC =,即2GH CH BC =①, ∵CD ∥GH ,∴△BGH ∽△BDC ,∴GH BH CD BC =,即3GH BH BC =②, ①+②,得:123GH GH CH BH BC BC +=+=,解得:6 1.25GH ==. 故选:B .【点睛】本题考查了相似三角形的判定和性质,属于基本题型,熟练掌握相似三角形的判定和性质是解题的关键.20.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,则下列结论正确的是( )A .AD DE DB BC= B .BF EF BC AB = C .AE EC FC DE = D .EF BF AB BC= 【答案】C【解析】【分析】 根据相似三角形的判定与性质逐项分析即可.由△ADE ∽△ABC ,可判断A 的正误;由△CEF ∽△CAB ,可判定B 错误;由△ADE ~△EFC ,可判定C 正确;由△CEF ∽△CAB ,可判定D 错误.【详解】解:如图所示:∵DE ∥BC ,∴∠ADE =∠B ,∠AED =∠C ,∴△ADE ∽△ABC , ∴DE AD AD BC AB DB=≠, ∴答案A 错舍去;∵EF ∥AB ,∴△CEF ∽△CAB , CF EF BC A B B BF C=≠ ∴答案B 舍去∵∠ADE =∠B ,∠CFE =∠B ,∴∠ADE =∠CFE ,又∵∠AED =∠C ,∴△ADE ~△EFC , ∴AE DE EC FC=,C 正确; 又∵EF ∥AB , ∴∠CEF =∠A ,∠CFE =∠B ,∴△CEF ∽△CAB , ∴EF CE FC BF AB AC BC BC==≠, ∴答案D 错舍去;故选C .【点睛】 本题主要考查相似三角形的判定与性质,熟练掌握两平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似是解题的关键.。
相似图形测试题及答案
相似图形测试题及答案相似图形是几何学中一个重要的概念,它关注的是形状和大小之间的关系。
相似图形题目常出现在数学考试中,考察学生对比较形状以及计算比例的能力。
下面是一些常见的相似图形测试题及其答案,帮助大家更好地理解和应用相似图形的概念。
题目1:已知三角形ABC与三角形DEF相似,且AB:DE = 2:3,BC:EF = 4:5,AC:DF = 6:7。
如果三角形ABC的周长为30cm,求三角形DEF的周长。
解析:根据相似图形的定义,我们知道相似的两个三角形各边的对应边长之比相等。
假设三角形DEF的周长为x cm,则有:DE/AB = EF/BC = DF/AC根据已知比例关系,代入数值得:DE/2 = EF/4 = DF/6解方程得:DE = 2/3 * AB = 2/3 * 10cm = 6.67cmEF = 4/5 * BC = 4/5 * 20cm = 16cmDF = 6/7 * AC = 6/7 * 24cm = 20.57cm所以,三角形DEF的周长为6.67cm + 16cm + 20.57cm = 43.24cm。
答案:三角形DEF的周长为43.24cm。
题目2:已知矩形ABCD与矩形EFGH相似,且AB = 6cm,BC =8cm,EF = 9cm。
求矩形EFGH的周长和面积。
解析:根据相似图形的定义,我们知道相似的两个矩形各边的对应边长之比相等。
假设矩形EFGH的周长为x cm,则有:EF/AB = FG/BC = EH/CD代入已知数值得:9/6 = FG/8解方程得:FG = (9/6) * 8 = 12cm同理可得:EH = (9/6) * 6cm = 9cm根据矩形周长的计算公式,矩形EFGH的周长为两条边之和的两倍,即:周长 = 2 * (FG + EH) = 2 * (12cm + 9cm) = 2 * 21cm = 42cm另外,矩形的面积等于两条相邻边长的乘积,即:面积 = FG * EH = 12cm * 9cm = 108cm^2答案:矩形EFGH的周长为42cm,面积为108cm^2。
中考数学《图形的相似》真题汇编含解析
图形的相似(29题)一、单选题1(2023·重庆·统考中考真题)如图,已知△ABC ∽△EDC ,AC :EC =2:3,若AB 的长度为6,则DE 的长度为()A.4B.9C.12D.13.5【答案】B【分析】根据相似三角形的性质即可求出.【详解】解:∵△ABC ∽△EDC ,∴AC :EC =AB :DE ,∵AC :EC =2:3,AB =6,∴2:3=6:DE ,∴DE =9,故选:B .【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.2(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC 、△DEF 成位似关系,则位似中心的坐标为()A.-1,0B.0,0C.0,1D.1,0【答案】A【分析】根据题意确定直线AD 的解析式为:y =x +1,由位似图形的性质得出AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,即可求解.【详解】解:由图得:A 1,2 ,D 3,4 ,设直线AD 的解析式为:y =kx +b ,将点代入得:2=k +b 4=3k +b ,解得:k =1b =1 ,∴直线AD 的解析式为:y =x +1,AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,∴当y =0时,x =-1,∴位似中心的坐标为-1,0 ,故选:A .【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.3(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,△ABC 的三个顶点分别为A 1,2 ,B 2,1 ,C 3,2 ,现以原点O 为位似中心,在第一象限内作与△ABC 的位似比为2的位似图形△A B C ,则顶点C 的坐标是()A.2,4B.4,2C.6,4D.5,4【答案】C【分析】直接根据位似图形的性质即可得.【详解】解:∵△ABC 的位似比为2的位似图形是△A B C ,且C 3,2 ,∴C 2×3,2×2 ,即C 6,4 ,故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.4(2023·四川南充·统考中考真题)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A.6.4mB.8mC.9.6mD.12.5m【答案】B【分析】根据镜面反射性质,可求出∠ACB =∠ECD ,再利用垂直求△ABC ∽△EDC ,最后根据三角形相似的性质,即可求出答案.【详解】解:如图所示,由图可知,AB ⊥BD ,CD ⊥DE ,CF ⊥BD∴∠ABC =∠CDE =90°.∵根据镜面的反射性质,∴∠ACF =∠ECF ,∴90°-∠ACF =90°-∠ECF ,∴∠ACB =∠ECD ,∴△ABC ∽△EDC ,∴AB DE =BC CD.∵小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,∴AB =1.6m ,BC =2m ,CD =10m .∴1.6DE =210.∴DE =8m .故选:B .【点睛】本题考查了相似三角形的应用,解题的关键在于熟练掌握镜面反射的基本性质和相似三角形的性质.5(2023·安徽·统考中考真题)如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.10【答案】B 【分析】根据平行线分线段成比例得出DE EM =AF FB =2,根据△ADE ∽△CME ,得出AD CM =DE EM =2,则CM =12AD =32,进而可得MB =32,根据BC ∥AD ,得出△GMB ∽△GDA ,根据相似三角形的性质得出BG =3,进而在Rt △BGM 中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,AF =2,FB =1,∴AD =BC =AB =AF +FG =2+1=3,AD ∥CB ,AD ⊥AB ,CB ⊥AB ,∵EF ⊥AB ,∴AD ∥EF ∥BC∴DE EM =AFFB=2,△ADE∽△CME,∴AD CM =DEEM=2,则CM=12AD=32,∴MB=3-CM=32,∵BC∥AD,∴△GMB∽△GDA,∴BG AG =MBDA=323=12∴BG=AB=3,在Rt△BGM中,MG=MB2+BG2=322+32=352,故选:B.【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.6(2023·湖北黄冈·统考中考真题)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为()A.10B.11C.23D.4【答案】A【分析】由作图可知BP平分∠CBD,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,根据角平分线的性质可知RQ=RC,进而证明Rt△BCR≌Rt△BQR,推出BC=BQ=4,设RQ=RC=x,则DR=CD-CR=3-x,解Rt△DQR求出QR=CR=43.利用三角形面积法求出OC,再证△OCR∽△DCN,根据相似三角形对应边成比例即可求出CN.【详解】解:如图,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,∵矩形ABCD中,AB=3,BC=4,∴CD =AB =3,∴BD =BC 2+CD 2=5.由作图过程可知,BP 平分∠CBD ,∵四边形ABCD 是矩形,∴CD ⊥BC ,又∵RQ ⊥BD ,∴RQ =RC ,在Rt △BCR 和Rt △BQR 中,RQ =RC BR =BR ,∴Rt △BCR ≌Rt △BQR HL ,∴BC =BQ =4,∴QD =BD -BQ =5-4=1,设RQ =RC =x ,则DR =CD -CR =3-x ,在Rt △DQR 中,由勾股定理得DR 2=DQ 2+RQ 2,即3-x 2=12+x 2,解得x =43,∴CR =43.∴BR =BC 2+CR 2=4310.∵S △BCR =12CR ⋅BC =12BR ⋅OC ,∴OC =CR ⋅BC BR =43×44310=2510.∵∠COR =∠CDN =90°,∠OCR =∠DCN ,∴△OCR ∽△DCN ,∴OC DC =CR CN ,即25103=43CN,解得CN =10.故选:A .【点睛】本题考查角平分线的作图方法,矩形的性质,角平分线的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出BP 平分∠CBD ,通过勾股定理解直角三角形求出CR .7(2023·四川内江·统考中考真题)如图,在△ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC ∥DG ∥EF ,点H 为AF 与DG 的交点.若AC =12,则DH 的长为()A.1B.32C.2D.3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB,解得EF =4,则DH =12EF =2.【详解】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴∠BEF =∠BAC ,∠BFE =∠BCA ,∴△BEF ∽△BAC ,∴EF AC =BE AB,即EF 12=BE 3BE ,解得:EF =4,∴DH =12EF =12×4=2,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.8(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,O 为原点,OA =OB =35,点C 为平面内一动点,BC =32,连接AC ,点M 是线段AC 上的一点,且满足CM :MA =1:2.当线段OM 取最大值时,点M 的坐标是()A.35,65B.355,655C.65,125D.655,1255 【答案】D【分析】由题意可得点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,先证△OAM ∽△DAC ,得OM CD =OA AD =23,从而当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,然后分别证△BDO ∽△CDF ,△AEM ∽△AFC ,利用相似三角形的性质即可求解.【详解】解:∵点C 为平面内一动点,BC =32,∴点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,∵OA =OB =35,∴AD =OD +OA =952,∴OA AD=23,∵CM :MA =1:2,∴OA AD =23=CM AC,∵∠OAM =∠DAC ,∴△OAM ∽△DAC ,∴OM CD =OA AD=23,∴当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,∵OA =OB =35,OD =352,∴BD =OB 2+OD 2=35 2+352 2=152,∴CD =BC +BD =9,∵OM CD=23,∴OM =6,∵y 轴⊥x 轴,CF ⊥OA ,∴∠DOB =∠DFC =90°,∵∠BDO =∠CDF ,∴△BDO ∽△CDF ,∴OB CF =BD CD 即35CF=1529,解得CF =1855,同理可得,△AEM ∽△AFC ,∴ME CF =AM AC =23即ME 1855=23,解得ME =1255,∴OE =OM 2-ME 2=62-1255 2=655,∴当线段OM 取最大值时,点M 的坐标是655,1255,故选:D .【点睛】本题主要考查了勾股定理、相似三角形的判定及性质、圆的一般概念以及坐标与图形,熟练掌握相似三角形的判定及性质是解题的关键.9(2023·山东东营·统考中考真题)如图,正方形ABCD 的边长为4,点E ,F 分别在边DC ,BC 上,且BF =CE ,AE 平分∠CAD ,连接DF ,分别交AE ,AC 于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN ⊥AC 垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM +PN 的最小值为32;③CF 2=GE ⋅AE ;④S ΔADM =62.其中正确的是()A.①②B.②③④C.①③④D.①③【答案】D【分析】根据正方形的性质和三角形全等即可证明∠DAE =∠FDC ,通过等量转化即可求证AG ⊥DM ,利用角平分线的性质和公共边即可证明△ADG ≌△AMG ASA ,从而推出①的结论;利用①中的部分结果可证明△ADE ∽△DGE 推出DE 2=GE ⋅AE ,通过等量代换可推出③的结论;利用①中的部分结果和勾股定理推出AM 和CM 长度,最后通过面积法即可求证④的结论不对;结合①中的结论和③的结论可求出PM +PN 的最小值,从而证明②不对.【详解】解:∵ABCD 为正方形,∴BC =CD =AD ,∠ADE =∠DCF =90°,∵BF =CE ,∴DE =FC ,∴△ADE ≌△DCF SAS .∴∠DAE =∠FDC ,∵∠ADE =90°,∴∠ADG +∠FDC =90°,∴∠ADG +∠DAE =90°,∴∠AGD =∠AGM =90°.∵AE 平分∠CAD ,∴∠DAG =∠MAG .∵AG =AG ,∴△ADG ≌△AMG ASA .∴DG =GM ,∵∠AGD =∠AGM =90°,∴AE 垂直平分DM ,故①正确.由①可知,∠ADE =∠DGE =90°,∠DAE =∠GDE ,∴△ADE ∽△DGE ,∴DE GE=AE DE ,∴DE 2=GE ⋅AE ,由①可知DE =CF ,∴CF 2=GE ⋅AE .故③正确.∵ABCD 为正方形,且边长为4,∴AB =BC =AD =4,∴在Rt △ABC 中,AC =2AB =4 2.由①可知,△ADG ≌△AMG ASA ,∴AM =AD =4,∴CM =AC -AM =42-4.由图可知,△DMC 和△ADM 等高,设高为h ,∴S △ADM =S △ADC -S △DMC ,∴4×h 2=4×42-42-4 ⋅h 2,∴h =22,∴S △ADM =12⋅AM ⋅h =12×4×22=4 2.故④不正确.由①可知,△ADG ≌△AMG ASA ,∴DG =GM ,∴M 关于线段AG 的对称点为D ,过点D 作DN ⊥AC ,交AC 于N ,交AE 于P ,∴PM +PN 最小即为DN ,如图所示,由④可知△ADM 的高h =22即为图中的DN ,∴DN =2 2.故②不正确.综上所述,正确的是①③.故选:D .【点睛】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点.10(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是()A.①②③B.②④C.①③④D.①②③④【答案】A【分析】由折叠性质和平行线的性质可得∠QDF =∠CDF =∠QEF ,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出MQ =AM =4,再求出BQ 即可判断②正确;由△CDP ∽△BQP 得CP BP =CD BQ=53,求出BP 即可判断③正确;根据EF DE ≠QE BE 即可判断④错误.【详解】由折叠性质可知:∠CDF =∠QDF ,CD =DQ =5,∵CD ∥AB ,∴∠CDF =∠QEF .∴∠QDF =∠QEF .∴DQ =EQ =5.故①正确;∵DQ =CD =AD =5,DM ⊥AB ,∴MQ =AM =4.∵MB =AB -AM =5-4=1,∴BQ =MQ -MB =4-1=3.故②正确;∵CD ∥AB ,∴△CDP ∽△BQP .∴CP BP =CD BQ=53.∵CP +BP =BC =5,∴BP =38BC =158.故③正确;∵CD ∥AB ,∴△CDF ∽△BEF .∴DF EF =CD BE =CD BQ +QE=53+5=58.∴EF DE =813.∵QE BE =58,∴EF DE ≠QE BE.∴△EFQ 与△EDB 不相似.∴∠EQF ≠∠EBD .∴BD 与FQ 不平行.故④错误;故选:A .【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.11(2023·黑龙江·统考中考真题)如图,在正方形ABCD中,点E,F分别是AB,BC上的动点,且AF ⊥DE,垂足为G,将△ABF沿AF翻折,得到△AMF,AM交DE于点P,对角线BD交AF于点H,连接HM,CM,DM,BM,下列结论正确的是:①AF=DE;②BM∥DE;③若CM⊥FM,则四边形BHMF是菱形;④当点E运动到AB的中点,tan∠BHF=22;⑤EP⋅DH=2AG⋅BH.()A.①②③④⑤B.①②③⑤C.①②③D.①②⑤【答案】B【分析】利用正方形的性质和翻折的性质,逐一判断,即可解答.【详解】解:∵四边形ABCD是正方形,∴∠DAE=∠ABF=90°,DA=AB,∵AF⊥DE,∴∠BAF+∠AED=90°,∵∠BAF+∠AFB=90°,∴∠AED=∠BFA,∴△ABF≌△AED AAS,∴AF=DE,故①正确,∵将△ABF沿AF翻折,得到△AMF,∴BM⊥AF,∵AF⊥DE,∴BM∥DE,故②正确,当CM⊥FM时,∠CMF=90°,∵∠AMF=∠ABF=90°,∴∠AMF+∠CMF=180°,即A,M,C在同一直线上,∴∠MCF=45°,∴∠MFC=90°-∠MCF=45°,通过翻折的性质可得∠HBF=∠HMF=45°,BF=MF,∴∠HMF=∠MFC,∠HBC=∠MFC,∴BC∥MH,HB∥MF,∴四边形BHMF是平行四边形,∵BF=MF,∴平行四边形BHMF是菱形,故③正确,当点E运动到AB的中点,如图,设正方形ABCD的边长为2a,则AE=BF=a,在Rt △AED 中,DE =AD 2+AE 2=5a =AF ,∵∠AHD =∠FHB ,∠ADH =∠FBH =45°,∴△AHD ∽△FHB ,∴FH AH =BF AD=a 2a =12,∴AH =23AF =253a ,∵∠AGE =∠ABF =90°,∴△AGF ∽△ABF ,∴AE AF =EG BF =AG AB =a 5a=55,∴EG =55BF =55a ,AG =55AB =255a ,∴DG =ED -EG =455a ,GH =AH -AG =4515a ,∵∠BHF =∠DHA ,在Rt △DGH 中,tan ∠BHF =tan ∠DHA =DG GH=3,故④错误,∵△AHD ∽△FHB ,∴BH DH=12,∴BH =13BD =13×22a =223a ,DH =23BD =23×22a =423a ,∵AF ⊥EP ,根据翻折的性质可得EP =2EG =255a ,∴EP ⋅DH =255a ⋅423a =81015a 2,2AG ⋅BH =2⋅255a ⋅223a =81015a 2,∴EP ⋅DH =2AG ⋅BH =81015a 2,故⑤正确;综上分析可知,正确的是①②③⑤.故选:B .【点睛】本题考查了正方形的性质,翻折的性质,相似三角形的判定和性质,正切的概念,熟练按照要求做出图形,利用寻找相似三角形是解题的关键.二、填空题12(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1位似,原点O 是位似中心,且AB A 1B 1=3.若A 9,3 ,则A 1点的坐标是.【答案】3,1【分析】直接利用位似图形的性质得出相似比进而得出对应线段的长.【详解】解∶设A1m,n∵△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A9,3,∴位似比为31,∴9 m =31,3n=31,解得m=3,n=1,∴A13,1故答案为:3,1.【点睛】此题主要考查了位似变换,正确得出相似比是解题关键.13(2023·吉林长春·统考中考真题)如图,△ABC和△A B C 是以点O为位似中心的位似图形,点A 在线段OA 上.若OA:AA =1:2,则△ABC和△A B C 的周长之比为.【答案】1:3【分析】根据位似图形的性质即可求出答案.【详解】解:∵OA:AA =1:2,∴OA:OA =1:3,设△ABC周长为l1,设△A B C 周长为l2,∵△ABC和△A B C 是以点O为位似中心的位似图形,∴l1l2=OAOA=13.∴l1:l2=1:3.∴△ABC和△A B C 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.14(2023·四川乐山·统考中考真题)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE 交于点F .若AE EB =23,则S △ADF S △AEF =.【答案】52【分析】四边形ABCD 是平行四边形,则AB =CD ,AB ∥CD ,可证明△EAF ∽△DCF ,得到DF EF =CD AE =AB AE,由AE EB =23进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠AEF =∠CDF ,∠EAF =∠DCF ,∴△EAF ∽△DCF ,∴DF EF =CD AE =AB AE ,∵AE EB =23,∴AB AE =52,∴S △ADF S △AEF =DF EF =AB AE=52.故答案为:52【点睛】此题考查了平行四边形的性质、相似三角形的判定和性质等知识,证明△EAF ∽△DCF 是解题的关键.15(2023·江西·统考中考真题)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,∠ABC 和∠AQP 均为直角,AP 与BC 相交于点D .测得AB =40cm ,BD =20cm ,AQ =12m ,则树高PQ =m .【答案】6【分析】根据题意可得△ABD ∽△AQP ,然后相似三角形的性质,即可求解.【详解】解:∵∠ABC 和∠AQP 均为直角∴BD ∥PQ ,∴△ABD ∽△AQP ,∴BD PQ =AB AQ∵AB =40cm ,BD =20cm ,AQ =12m ,∴PQ =AQ ×BD AB=12×2040=6m ,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.16(2023·四川成都·统考中考真题)如图,在△ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ;③以点M 为圆心,以MN 长为半径作弧,在∠BAC 内部交前面的弧于点N :④过点N 作射线DN 交BC 于点E .若△BDE 与四边形ACED 的面积比为4:21,则BE CE的值为.【答案】23【分析】根据作图可得∠BDE =∠A ,然后得出DE ∥AC ,可证明△BDE ∽△BAC ,进而根据相似三角形的性质即可求解.【详解】解:根据作图可得∠BDE =∠A ,∴DE ∥AC ,∴△BDE ∽△BAC ,∵△BDE 与四边形ACED 的面积比为4:21,∴S △BDC S △BAC =421+4=BE BC2∴BE BC =25∴BE CE =23,故答案为:23.【点睛】本题考查了作一个角等于已知角,相似三角形的性质与判定,熟练掌握基本作图与相似三角形的性质与判定是解题的关键.17(2023·内蒙古·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =1,将△ABC 绕点A 逆时针方向旋转90°,得到△AB C .连接BB ,交AC 于点D ,则AD DC的值为.【答案】5【分析】过点D 作DF ⊥AB 于点F ,利用勾股定理求得AB =10,根据旋转的性质可证△ABB 、△DFB是等腰直角三角形,可得DF =BF ,再由S △ADB =12×BC ×AD =12×DF ×AB ,得AD =10DF ,证明△AFD ∼△ACB ,可得DF BC =AF AC ,即AF =3DF ,再由AF =10-DF ,求得DF =104,从而求得AD =52,CD =12,即可求解.【详解】解:过点D 作DF ⊥AB 于点F ,∵∠ACB =90°,AC =3,BC =1,∴AB =32+12=10,∵将△ABC 绕点A 逆时针方向旋转90°得到△AB C ,∴AB =AB =10,∠BAB =90°,∴△ABB 是等腰直角三角形,∴∠ABB =45°,又∵DF ⊥AB ,∴∠FDB =45°,∴△DFB 是等腰直角三角形,∴DF =BF ,∵S △ADB =12×BC ×AD =12×DF ×AB ,即AD =10DF ,∵∠C =∠AFD =90°,∠CAB =∠FAD ,∴△AFD ∼△ACB ,∴DF BC =AF AC,即AF =3DF ,又∵AF =10-DF ,∴DF =104,∴AD =10×104=52,CD =3-52=12,∴AD CD =5212=5,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.18(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A =90°,则BN =AB 2+AN 2=2,∴BN =ND =2∴AD =AN +ND =2+1,综上,AD 的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.19(2023·辽宁大连·统考中考真题)如图,在正方形ABCD 中,AB =3,延长BC 至E ,使CE =2,连接AE ,CF 平分∠DCE 交AE 于F ,连接DF ,则DF 的长为.【答案】3104【分析】如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,由CF 平分∠DCE ,可知∠FCM =∠FCN =45°,可得四边形CMFN 是正方形,FM ∥AB ,设FM =CM =NF =CN =a ,则ME =2-a ,证明△EFM ∽△EAB ,则FM AB=ME BE ,即a 3=2-a 3+2,解得a =34,DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2,计算求解即可.【详解】解:如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,则四边形CMFN 是矩形,FM ∥AB ,∵CF 平分∠DCE ,∴∠FCM =∠FCN =45°,∴CM =FM ,∴四边形CMFN 是正方形,设FM =CM =NF =CN =a ,则ME =2-a ,∵FM ∥AB ,∴△EFM ∽△EAB ,∴FM AB =ME BE ,即a 3=2-a 3+2,解得a =34,∴DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2=3104,故答案为:3104.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20(2023·广东·统考中考真题)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.【答案】15【分析】根据正方形的性质及相似三角形的性质可进行求解.【详解】解:如图,由题意可知AD =DC =10,CG =CE =GF =6,∠CEF =∠EFG =90°,GH =4,∴CH =10=AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ AAS ,∴CJ =DJ =5,∴EJ =1,∵GI ∥CJ ,∴△HGI ∽△HCJ ,∴GI CJ =GH CH=25,∴GI =2,∴FI =4,∴S 梯形EJIF =12EJ +FI ⋅EF =15;故答案为:15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.21(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.【答案】3;13【分析】(1)过点E 作EH ⊥AD ,根据正方形和等腰三角形的性质,得到AH 的长,再利用勾股定理,求出EH 的长,即可得到△ADE 的面积;(2)延长EH 交AG 于点K ,利用正方形和平行线的性质,证明△ABF ≌△KEF ASA ,得到EK 的长,进而得到KH 的长,再证明△AHK ∽△ADG ,得到KH GD =AH AD ,进而求出GD 的长,最后利用勾股定理,即可求出AG的长.【详解】解:(1)过点E作EH⊥AD,∵正方形ABCD的边长为3,∴AD=3,∵△ADE是等腰三角形,EA=ED=52,EH⊥AD,∴AH=DH=12AD=32,在Rt△AHE中,EH=AE2-AH2=522-32 2=2,∴S△ADE=12AD⋅EH=12×3×2=3,故答案为:3;(2)延长EH交AG于点K,∵正方形ABCD的边长为3,∴∠BAD=∠ADC=90°,AB=3,∴AB⊥AD,CD⊥AD,∵EK⊥AD,∴AB∥EK∥CD,∴∠ABF=∠KEF,∵F为BE的中点,∴BF=EF,在△ABF和△KEF中,∠ABF=∠KEF BF=EF∠AFB=∠KFE,∴△ABF≌△KEF ASA,∴EK=AB=3,由(1)可知,AH=12AD,EH=2,∴KH=1,∵KH∥CD,∴△AHK∽△ADG,∴KH GD =AH AD,∴GD=2,在Rt△ADG中,AG=AD2+GD2=32+22=13,故答案为:13.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.22(2023·四川泸州·统考中考真题)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,APPC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP ∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP=27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.23(2023·山西·统考中考真题)如图,在四边形ABCD 中,∠BCD =90°,对角线AC ,BD 相交于点O .若AB =AC =5,BC =6,∠ADB =2∠CBD ,则AD 的长为.【答案】973【分析】过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,根据等腰三角形性质得出BH =HC =12BC =3,根据勾股定理求出AH =AC 2-CH 2=4,证明∠CBD =∠CED ,得出DB =DE ,根据等腰三角形性质得出CE =BC =6,证明CD ∥AH ,得出CD AH=CE HE ,求出CD =83,根据勾股定理求出DE =CE 2+CD 2=62+83 2=2973,根据CD ∥AH ,得出DE AD =CE CH ,即2973AD=63,求出结果即可.【详解】解:过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,如图所示:则∠AHC =∠AHB =90°,∵AB =AC =5,BC =6,∴BH =HC =12BC =3,∴AH =AC 2-CH 2=4,∵∠ADB =∠CBD +∠CED ,∠ADB =2∠CBD ,∴∠CBD =∠CED ,∴DB =DE ,∵∠BCD =90°,∴DC ⊥BE ,∴CE =BC =6,∴EH =CE +CH =9,∵DC ⊥BE ,AH ⊥BC ,∴CD ∥AH ,∴△ECD ~△EHA ,∴CD AH =CE HE ,即CD 4=69,解得:CD =83,∴DE =CE 2+CD 2=62+83 2=2973,∵CD ∥AH ,∴DE AD=CE CH ,即2973AD =63,解得:AD =973.故答案为:973.【点睛】本题主要考查了三角形外角的性质,等腰三角形的判定和性质,勾股定理,平行线分线段成比例,相似三角形的判定与性质,平行线的判定,解题的关键是作出辅助线,熟练掌握平行线分线段成比例定理及相似三角形的判定与性质.三、解答题24(2023·湖南·统考中考真题)在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高.(1)证明:△ABD ∽△CBA ;(2)若AB =6,BC =10,求BD 的长.【答案】(1)见解析(2)BD =185【分析】(1)根据三角形高的定义得出∠ADB =90°,根据等角的余角相等,得出∠BAD =∠C ,结合公共角∠B =∠B ,即可得证;(2)根据(1)的结论,利用相似三角形的性质即可求解.【详解】(1)证明:∵∠BAC =90°,AD 是斜边BC 上的高.∴∠ADB =90°,∠B +∠C =90°∴∠B +∠BAD =90°,∴∠BAD =∠C又∵∠B =∠B∴△ABD ∽△CBA ,(2)∵△ABD ∽△CBA∴AB CB =BD AB,又AB =6,BC =10∴BD =AB 2CB=3610=185.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.25(2023·湖南·统考中考真题)如图,CA ⊥AD ,ED ⊥AD ,点B 是线段AD 上的一点,且CB ⊥BE .已知AB =8,AC =6,DE =4.(1)证明:△ABC∽△DEB.(2)求线段BD的长.【答案】(1)见解析(2)BD=3【分析】(1)根据题意得出∠A=∠D=90°,∠C+∠ABC=90°,∠ABC+∠EBD=90°,则∠C=∠EBD,即可得证;(2)根据(1)的结论,利用相似三角形的性质列出比例式,代入数据即可求解.【详解】(1)证明:∵AC⊥AD,ED⊥AD,∴∠A=∠D=90°,∠C+∠ABC=90°,∵CE⊥BE,∴∠ABC+∠EBD=90°,∴∠C=∠EBD,∴△ABC∽△DEB;(2)∵△ABC∽△DEB,∴AB DE =AC BD,∵AB=8,AC=6,DE=4,∴8 4=6 BD,解得:BD=3.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26(2023·四川眉山·统考中考真题)如图,▱ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H,若AG=2,FG=6,求GH的长.【答案】(1)见解析(2)65【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,证明△AEF≅△DEC ASA,推出AF= CD,即可解答;(2)通过平行四边形的性质证明GC=GF=6,再通过(1)中的结论得到DC=AB=AF=8,最后证明△AGH∽△DCH,利用对应线段比相等,列方程即可解答.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠EAF=∠D,∵E是AD的中点,∴AE=DE,∵∠AEF =∠CED ,∴△AEF ≅△DEC ASA ,∴AF =CD ,∴AF =AB ;(2)解:∵四边形ABCD 是平行四边形,∴DC =AB =AF =FG +GA =8,DC ∥FA ,∴∠DCF =∠F ,∠DCG =∠CGB ,∵∠FCG =∠FCD ,∴∠F =∠FCG ,∴GC =GF =6,∵∠DHC =∠AHG ,∴△AGH ∽△DCH ,∴GH CH =AG DC,设HG =x ,则CH =CG -GH =6-x ,可得方程x 6-x =28,解得x =65,即GH 的长为65.【点睛】本题考查了平行四边形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,熟练运用上述性质证明三角形相似是解题的关键.27(2023·四川凉山·统考中考真题)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 于点E .(1)求证:AC ⊥BD ;(2)若AB =10,AC =16,求OE 的长.【答案】(1)见详解(2)92【分析】(1)可证AB =CB ,从而可证四边形ABCD 是菱形,即可得证;(2)可求OB =6,再证△EBO ∽△BAO ,可得EO BO =BO AO,即可求解.【详解】(1)证明:∵∠CAB =∠ACB ,∴AB =CB ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,∴AC ⊥BD .(2)解:∵四边形ABCD 是平行四边形,∴OA =12AC =8,∵AC ⊥BD ,BE ⊥AB ,∴∠AOB =∠BOE =∠ABE =90°,∴OB =AB 2-OB 2=102-82=6,∵∠EBO +∠BEO =90°,∠ABO +∠EBO =90°,∴∠BEO =∠ABO ,∴△EBO ∽△BAO ,∴EO BO =BO AO ,∴EO 6=68解得:OE =92.【点睛】本题考查了平行四边形的性质,菱形的判定及性质,勾股定理,三角形相似的判定及性质,掌握相关的判定方法及性质是解题的关键.28(2023·江苏扬州·统考中考真题)如图,点E 、F 、G 、H 分别是▱ABCD 各边的中点,连接AF 、CE 相交于点M ,连接AG 、CH 相交于点N .(1)求证:四边形AMCN 是平行四边形;(2)若▱AMCN 的面积为4,求▱ABCD 的面积.【答案】(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:AM ∥CN ,AN ∥CM ,即可得证;(2)连接HG ,AC ,EF ,推出S △ANH S △ANC =HN CN=12,S △FMC S △AMC =12,进而得到S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,求出S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,再根据S ▱ABCD =2S ▱AFCH ,即可得解.【详解】(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,AB =CD ,AD =BC ,∵点E 、F 、G 、H 分别是▱ABCD 各边的中点,∴AE =12AB =12CD =CG ,AE ∥CG ,∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴AM ∥CN ,AN ∥CM ,∴四边形AMCN 是平行四边形;(2)解:连接HG ,AC ,EF ,∵H ,G 为AD ,CD 的中点,∴HG ∥AC ,HG =12AC ,∴△HNG ∽△CNA ,∴HN CN =HG AC =12,∴S △ANH S △ANC =HN CN=12,同理可得:S △FMC S △AMC =12∴S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,∴S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,∵AH =12AD ,∴S ▱ABCD =2S ▱AFCH =12.【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.29(2023·上海·统考中考真题)如图,在梯形ABCD 中AD ∥BC ,点F ,E 分别在线段BC ,AC 上,且∠FAC =∠ADE ,AC =AD(1)求证:DE =AF(2)若∠ABC =∠CDE ,求证:AF 2=BF ⋅CE【答案】见解析【分析】(1)先根据平行线的性质可得∠DAE =∠ACF ,再根据三角形的全等的判定可得△DAE ≅△ACF ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得∠AFC =∠DEA ,从而可得∠AFB =∠CED ,再根据相似三角形的判定可得△ABF ∼△CDE ,然后根据相似三角形的性质即可得证.【详解】(1)证明:∵AD ∥BC ,∴∠DAE =∠ACF ,在△DAE和△ACF中,∠DAE=∠ACF AD=CA∠ADE=∠CAF,∴△DAE≅△ACF ASA,∴DE=AF.(2)证明:∵△DAE≅△ACF,∴∠AFC=∠DEA,∴180°-∠AFC=180°-∠DEA,即∠AFB=∠CED,在△ABF和△CDE中,∠AFB=∠CED ∠ABF=∠CDE,∴△ABF∼△CDE,∴AF CE =BF DE,由(1)已证:DE=AF,∴AF CE =BF AF,∴AF2=BF⋅CE.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.。
人教版数学九年级下27.1《图形的相似》测试(含答案及解析)
人教版数学九年级下27.1《图形的相似》测试(含答案及解析)1 / 11图形的相似测试时间:60 总分:100一、选择题(本大题共9小题,共36.0分)1. 下列四组图形中,一定相似的图形是A. 各有一个角是 的两个等腰三角形B. 有两边之比都等于2:3的两个三角形C. 各有一个角是 的两个等腰三角形D. 各有一个角是直角的两个三角形2. 下列说法正确的是A. 矩形都是相似图形B. 各角对应相等的两个五边形相似C. 等边三角形都是相似三角形D. 各边对应成比例的两个六边形相似3. 下列结论中,错误的有:所有的菱形都相似;放大镜下的图形与原图形不一定相似;等边三角形都相似;有一个角为110度的两个等腰三角形;所有的矩形不一定相似.A. 1个B. 2个C. 3个D. 4个4. 下列图形一定是相似图形的是A. 任意两个菱形B. 任意两个正三角形C. 两个等腰三角形D. 两个矩形5. 在下面的图形中,相似的一组是A.B.C.D.6. 如图,在矩形、锐角三角形、正五边形、直角三角形的外边加一个宽度一样的外框,保证外框的边与原图形的对应边平行,则外框与原图一定相似的有A. 1个B. 2个C. 3个D. 4个 7. 下列图形一定相似的是A. 两个矩形B. 两个等腰梯形C. 对应边成比例的两个四边形D. 有一个内角相等的菱形8.在下列命题中,正确的是A. 邻边之比相等的两个平行四边形一定相似B. 有一个角是两个等腰三角形一定相似C. 两个直角三角形一定相似D. 有一个角是的两个菱形一定相似9.用放大镜将图形放大,应该属于A. 平移变换B. 相似变换C. 对称变换D. 旋转变换二、填空题(本大题共8小题,共24.0分)10.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的______倍11.如图,的边长分别为1,,2,正六边形网格是由24个边长为2的正三角形组成,选择格点为顶点画,使得 ∽ 如果相似比,那么k的值可以是______ .12.如图,13个边长为1的小正方形,排列形式如图,把它们分割,使分割后能拼成一个大正方形请在如图所示的网格中网格的边长为中,用直尺作出这个大正方形.13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是______ .14.如图,______ 与______ 相似.15.如图,请在方格图中画出一个与相似且相似比不为1的、E、F必须在方格图的交叉点.人教版数学九年级下27.1《图形的相似》测试(含答案及解析)3 / 1116. 已知 在坐标平面内三顶点的坐标分别为 、、 以B 为位似中心,画出与 相似 与图形同向 ,且相似比是3的三角形,它的三个对应顶点的坐标分别是______ .17. 如图中的等腰梯形 是公园中儿童游乐场的示意图 为满足市民的需求,计划扩建该游乐场 要求新游乐场以MN 为对称轴,且新游乐场与原游乐场相似,相似比为2: 又新游乐场的一条边在直线BC 上,请你在图中画出新游乐场的示意图.三、解答题(本大题共5小题,共40.0分)18. 如图,在坐标系的第一象限建立网格,网格中的每个小正方形边长都为1,格点的顶点坐标分别为 、 、 .若 外接圆的圆心为P ,则点P 的坐标为______ .以点D 为顶点,在网格中画一个格点 ,使 ∽ ,且相似比为1: 画出符合要求的一个三角形即可19.已知,如图,中,,,D为BC边上一点,.求证: ∽ ;在原图上作交AC与点E,请直接写出另一个与相似的三角形,并求出DE的长.20.如图,已知,,请用尺规过点A作一条直线,使其将分成两个相似的三角形保留作图痕迹,不写作法21.已知:如图,在菱形ABCD中,垂足为E,对角线,,求边AB的长;的值.人教版数学九年级下27.1《图形的相似》测试(含答案及解析)5 / 1122. 如图,已知 , ,请用尺规过点A 作一条直线,使其将 分成两个相似的三角形 保留作图痕迹,不写作法答案和解析【答案】1. C2. C3. B4. B5. C6. C7. D8. D9. B10. 511. 2,,412. 解:如图所示:所画正方形即为所求.13. 1:414. ;15. 解:所画图形如下:就是所求的相似三角形.16. 、、17. 解:如图所示:18.19. 证明:,,,,,,,∽ ;解:,∽ ,∽ ,.人教版数学九年级下27.1《图形的相似》测试(含答案及解析)7 / 1120. 解:如图,AD 为所作.21. 解: 连接AC ,AC 与BD 相交于点O ,四边形ABCD 是菱形,, ,中, ,,;,菱形 ,,,,,.22. 解:如图所示:AD 即为所求.【解析】1. 解:A 、各有一顶角或底角是 的两个等腰三角形相似,故错误,不符合题意;B 、有两边之比为2:3的两个三角形不一定相似,故错误,不符合题意;C 、各有一个角是 的两个等腰三角形相似,正确,符合题意;D 、两个直角三角形不一定相似,故错误,不符合题意;故选C .利用相似图形的定义逐一判断后即可确定正确的选项.本题考查了相似图形的知识,能够了解相似图形的定义是解答本题的关键,难度不大. 2. 解: 矩形对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;各角对应相等的两个五边形相似,对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;C . 等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确; 各边对应成比例的六边形对应角不一定相等,所以不一定是相似六边形,故本选项错误;故选:C.根据相似图形的定义,对应边成比例,对应角相等对各选项分析判断后利用排除法求解.本题考查了相似图形的定义,熟记定义是解题的关键,要注意从边与角两个方面考虑解答.3. 解::菱形的两组对角不一定分别对应相等,故所有的菱形不一定都相似;即:选项错误.:放大镜下的图形与原图形只是大小不相等,但形状相同,所以它们一定相似;即:选项错误.:等边三角形的三个内角相等,三条边都相等,故所有的等边三角形都相似;即:选项正确:有一个角为110度的两个等腰三角形一定相似因为它们的顶角均为,两锐角均为,根据“两内角对应相等的两个三角形相似”即可判定故:选项正确.:只有长与宽对应成比例的两个矩形相似,故选项正确故:选B利用相似的定义逐一的对五个选项进行判定.本题考查了相似图形的判定,解题的关键是要掌握相似图形的概念与判定方法.4. 解:A、任意两个菱形,对应边成比例,对应角不一定相等,不符合相似的定义,故不符合题意;B、任意两个等边三角形,对应角相等,对应边一定成比例,符合相似的定义,故符合题意;C、两个两个等腰三角形,无法确定形状是否相等,故不符合题意;D、两个矩形,对应角相等,对应边不一定成比例,故不符合题意.故选:B.根据相似图形的定义和图形的性质对每一项进行分析,即可得出一定相似的图形.本题考查相似形的定义,熟悉各种图形的性质和相似图形的定义是解题的关键.5. 解:A、六边形与五边形不可能是相似图形,故本选项错误;B、两图形不是相似图形,故本选项错误;C、,两三角形相似,故本选项正确;D、直角梯形与等腰梯形不是相似图形,故本选项错误.故选C.根据相似图形的定义对各选项分析判断后利用排除法求解.本题考查了相似图形的判定,是基础题,准确识图是解题的关键.6. 解:矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件;锐角三角形、直角三角形的原图与外框相似,因为其三个角均相等,三条边均对应成比例,符合相似的条件;正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件.故选C.根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.7. 解:A、两个矩形的对应角相等,但对应边的比不一定相等,故错误;B、两个等腰梯形不一定相似,故错误;C、对应边成比例且对应角相等的两个四边形是全等形,故错误;D、有一个内角相等的菱形是相似图形,故正确,故选D.根据相似图形的定义,结合选项,用排除法求解.本题考查相似形的定义,熟悉各种图形的性质是解题的关键.人教版数学九年级下27.1《图形的相似》测试(含答案及解析)9 / 11 8. 解:A 、邻边之比相等的两个平行四边形不一定相似,所以A 选项错误;B 、有一个角是 两个等腰三角形不一定相似,所以B 选项错误;C 、两个直角三角形不一定相似,所以C 选项错误;D 、有一个角是 的两个菱形一定相似,所以D 选项正确.故选:D .根据四边形相似要有对应角相等,对应边的比相等可对A 、D 进行判断;根据 的角可能为顶角,也可能为底角可以对B 进行判断;根据三角形判定方法对C 进行判断. 本题考查了命题与定理:判断一件事情的语句,叫做命题 许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果 那么 ”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理. 9. 解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B .根据放大镜成像的特点,结合各变换的特点即可得出答案.本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.10. 解: 一个三角形的各边长扩大为原来的5倍,扩大后的三角形与原三角形相似,相似三角形的周长的比等于相似比,这个三角形的周长扩大为原来的5倍,故答案为:5.由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.11.解:的边长分别为1,,2为直角三角形, , ,根据等边三角形的三线合一,可作三边比为1: :2的三角形,故相似比 ,k 可取2, ,4.故答案为:2, ,4.根据题意可得:在正六边形网格找与 相似的三角形;即找三边的比值为1: :2的直角三角形;分析图形可得:共三种情况得出答案即可.此题主要考查了相似三角形的判定与性质,结合各边长得出符合题意的图形是解题关键. 12. 直接根据阴影部分面积得出正方形边长,进而得出答案.此题主要考查了应用设计与作图,正确得出正方形边长是解题关键.13. 解:因为原图中边长为5cm 的一个等边三角形放大成边长为20cm 的等边三角形, 所以放大前后的两个三角形的面积比为5: :4,故答案为:1:4.根据等边三角形周长的比是三角形边长的比解答即可.本题考查了相似三角形对应边比值相等的性质,关键是根据等边三角形面积的比是三角形边长的比的平方解答.14. 解:利用相似图形对应角相等,对应边成比例,只有,图形全等,符合题意.故答案为:,.根据相似图形的定义直接判断得出即可.本题考查的是相似形的定义,结合图形,即图形的形状相同,但大小不一定相同的变换是相似变换.15. 利用勾股定理计算出三角形的三边长,再让它的各边都乘以2,得到新三角形的三边长,从网格中画出即可.本题主要考查了作图中的相似变换问题,难度不大,注意看清题意是关键.16. 解:把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形.所画图形如下所示:它的三个对应顶点的坐标分别是:、、.故答案为:、、.根据把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形,在改变的过程中保持形状不变大小可变即可得出答案.本题考查了相似变换作图的知识,注意图形的相似变换不改变图形中每一个角的大小;图形中的每条线段都扩大或缩小相同的倍数.17. 先作轴对称图形,再把它利用位似变换放大为相似比为2:1的等腰梯形.考查了作图相似变换,作位似变换的图形的依据是相似的性质画位似图形的一般步骤为:确定位似中心,分别连接并延长位似中心和能代表原图的关键点;根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.18. 解:如图,点P即为所求,其坐标为,故答案为:;如图,即为所求三角形.分别作AC、AB的中垂线,两直线的交点即为所求点P;根据相似比为1:2可得,,,据此可得.本题主要考查三角形的外心和相似图形,熟练掌握三角形的外心到三顶点的距离相等及相似三角形的性质是解题的关键.19. 在与中,有,根据已知边的条件,只需证明夹此角的两边对应成比例即可;由知 ∽ ,又,易证 ∽ ,则: ∽ ,然人教版数学九年级下27.1《图形的相似》测试(含答案及解析)后根据相似三角形的对应边成比例得出DE的长.本题主要考查了相似三角形的判定及性质平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;两组对应边的比相等且相应的夹角相等的两个三角形相似;相似三角形的对应边成比例.20. 过点A作于D,利用等角的余角相等可得到,则可判断与相似.本题考查了作图相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到解决本题的关键是利用有一组锐角相等的两直角三角形相似.21. 首先连接AC,AC与BD相交于点O,由四边形ABCD是菱形,可得,,又由,可求得OC的长,然后由勾股定理求得边AB的长;由,利用菱形,即可求得AE的长,在中可求得BE,则可求得的余弦值.本题主要考查菱形的性质、勾股定理以及三角函数等知识此题难度适中,注意掌握辅助线的作法、数形结合思想的应用.22. 直接利用直角三角形的性质过点A作,即可得出答案.此题主要考查了相似变换,正确应用直角三角形的性质是解题关键.11 / 11。
图形的相似经典测试题及答案
A.4B.8C.16D.24
【答案】C
【解析】
【分析】
延长根据相似三角形得到 ,再过点 作垂线,利用相似三角形的性质求出 、 ,进而确定点 的坐标,确定 的值.
【详解】
解:过点 作 ,垂足为 ,
是正方形,
5.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P与点B之间的距离为( )
A.1B. C.1或3D. 或5
【答案】D
【解析】
【分析】
分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得 ,可求BE,DE的长,由勾股定理可求PB的长.
【答案】C
【解析】
试题分析:根据相似图形的定义,可由三角形相似,那么它们边长的比相同,均为5:6:8,乙那个20cm的边可以当最短边,最长边和中间大小的边.
故选:C.
点睛:本题考查的是相似形的定义,相似图形的形状相同,但大小不一定相同.
13.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD边于点F,则 =()
【详解】
解:在平行四边形ABCD中,
AB=CD,∠BAE=∠DCF,BC=DA,
∵E,F分别是边AD,BC的中点,
∴AE=CF,
∴△ABE≌△CDF,故①正确;
∵AD∥BC,
∴△AGE∽△CGB,△CHF∽△AHD,
∴AG∶CG=EG∶BG=AE∶CB,CH∶AH=CF∶AD,
∵E,F分别是边AD,BC的中点,
中考数学常考考点专题之图形的相似测试卷
中考数学常考考点专题之图形的相似测试卷一.选择题(共12小题)1.下列各组图形中一定是相似形的是( ) A .两个等腰梯形 B .两个矩形C .两个直角三角形D .两个等边三角形2.如图,在正方形ABCD 中,AC 、BD 相交于点O .E 为OB 上一点,DF ⊥EC 于点F ,交CO 于点Q ,连结AF 交BD 于点T .若QF CF=34,则AT TF的值为( )A .2521B .43C .1D .1093.如图,在△ABC 与△ADE 中,∠BAC =∠D ,要使△ABC 与△ADE 相似,还需满足下列条件中的( )A .AC AD=AB AEB .ACAD=BC DEC .ACAD=AB DED .ACAD=BC AE4.如图,四边形ABCD 是平行四边形,点E ,F 分别在AD 的延长线,CB 的延长线上,连接EF 分别交AB ,CD 于点G ,H ,则下列结论错误的是( )A .CH DH=FH EHB .BG CD=FG EFC .AD BF=GH FGD .DH AG=DE AD5.若a b=23,则a+b b的值为( )A .13B .23C .53D .356.如图,已知AB ∥CD ∥EF ,BC :CE =3:4,AF =21,那么DF 的长为( )A .9B .12C .15D .187.如图,在边长为1的正方形网格上有两个相似三角形△ABC 和△EDF ,则∠ABC +∠ACB 的度数为( )A .135°B .90°C .60°D .45°8.如图,在平行四边形ABCD 中,AC 、BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =3,则下列结论:①AF DF=12;②S △BCE =27;③S △ABE =12;④△AEF ∽△ACD .其中一定正确的是( )A .①②③④B .①④C .②③④D .①②9.已知三个数1、3、4,如果再添上一个数,使它们能组成一个比例式,那么这个数可以是( ) A .6B .8C .10D .1210.在△ABC 中,∠ACB =90°,用直尺和圆规在AB 上确定点D ,使△ACD ∽△CBD ,根据作图痕迹判断,正确的是 ( )A.B.C.D.11.△ABO三个顶点的坐标分别为A(2,4),B(6,0),C(0,0),以原点O为位似中心,把这个三角形缩小为原来的12,可以得到△A'B'O,则点A′的坐标是()A.(1,2)B.(1,2)或(﹣1,﹣2)C.(2,1)或(﹣2,﹣1)D.(﹣2,﹣1)12.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加下列一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.APAB =ABACD.APAB=BPBC二.填空题(共9小题)13.如图,E是平行四边形ABCD边BC的延长线上一点,BC=2CE,则CF:DF=.14.如图,校园里一片小小的树叶,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么AP的长度为cm.15.若x3=y 5=z 7,则x−y+z x+y−z= .16.如图,△ABC 是等边三角形,点D ,E 分别在BC ,AB 上,AE =BD ,CE 与AD 相交于点F ,DG 是△CDF 的高,若BD =2,CD =4,则DG 的长等于 .17.已知ab=35,则b+a b−a= .18.如图,四边形ABCD 是正方形,点E 在CB 的延长线上,连接AE ,AF ⊥AE 交CD 于点F ,连接EF ,点H 是EF 的中点,连接BH ,则下列结论中: ①BE =DF ; ②∠BEH =∠BAH ;③BHCF =√22; ④若AB =4;DF =1,则△BEH 的面积为32.其中正确的是 .(将所有正确结论的序号填在横线上)19.如图,在矩形ABCD 中,AB =3,BC =6,点E 是射线BC 上一动点,将△ABE 沿AE 翻折得到△AEF ,延长AF 交CD 的延长线于点G ,当BE =3EC 时,线段DG 的长为 .20.如图,l 1∥l 2∥l 3,BC =2cm ,DF EF=3,则AB 的长为 .21.小孔成像的示意图如图所示,光线经过小孔O ,物体AB 在幕布前形成倒立的实像CD (点A ,B 的对应点分别是C ,D ).若物体AB 的高为6cm ,小孔O 到物体和实像的水平距离BE ,CE 分别为8cm 、6cm ,则实像CD 的高度为 cm .三.解答题(共4小题)22.在矩形ABCD 中,AB =4,AD =10,E 是AD 上的一点,且AE =2,M 是直线AB 上一点,射线ME 交直线CD 于点F ,EG ⊥ME 交直线BC 于点G ,连结MG 、FG ,直线FG 交直线AD 于点N .(1)①当点M 为AB 中点时,求DF 与EG 的长; ②求MG FG的值.(2)若△EGN 为等腰三角形时,求满足条件的AM 的长.23.如图,矩形OABC 边OA ,OC 分别在x 轴,y 轴上,且OA =8,OC =6,连接OB ,点D为OB中点,点E从点A出发以每秒1个单位长度运动到点B停止,设运动时间为t (0<t<6),连接DE,作DF⊥DE交OA于F,连接EF.(1)如图1,当四边形DF AE为矩形时,求t的值;(2)如图2,试证明在运动过程中,△DFE∽△ABO;(3)当t为何值时,△AEF面积最大?最大值为多少?24.如图,在平行四边形ABCD中,AB=8.在BC的延长线上取一点B,使CE=13BC,连接AE,AE与CD交于点F.(1)求证:△ADF∽△ECF;(2)求DF的长.25.如图,在△ABC中,D为BC上一点,∠BAD=∠C.(1)求证:△ABD∽△CBA;(2)若AB=6,BD=3,求CD的长.。
相似图形测试题及答案
相似图形测试题及答案一、选择题(每题3分,共30分)1. 下列选项中,哪一项不是相似图形?A. 两个全等的三角形B. 两个等腰三角形,底边相等,顶角不相等C. 两个矩形,长宽比相等D. 两个圆,半径比不相等答案:D2. 相似图形的对应边长比是:A. 相等B. 不相等C. 相等且成比例D. 不成比例答案:C3. 两个相似图形的面积比是边长比的平方,那么周长比是:A. 边长比B. 边长比的平方C. 边长比的立方D. 边长比的倒数答案:A4. 如果两个图形相似,那么它们的对应角:A. 相等B. 不相等C. 互补D. 互为邻角答案:A5. 相似图形的对应高线比是:A. 相等B. 不相等C. 相等且成比例D. 不成比例答案:C6. 相似图形的对应中线比是:A. 相等B. 不相等C. 相等且成比例D. 不成比例答案:C7. 相似图形的对应角平分线比是:A. 相等B. 不相等C. 相等且成比例D. 不成比例答案:C8. 相似图形的对应边长比是2:3,那么面积比是:A. 2:3B. 4:9C. 9:16D. 3:2答案:B9. 相似图形的对应边长比是1:2,那么周长比是:A. 1:2B. 2:1C. 2:4D. 4:2答案:A10. 相似图形的对应边长比是1:3,那么面积比是:A. 1:3B. 3:1C. 1:9D. 9:1答案:C二、填空题(每题4分,共20分)1. 两个相似三角形的对应边长比是3:4,那么它们的周长比是______。
答案:3:42. 两个相似图形的对应边长比是4:5,那么它们的面积比是______。
答案:16:253. 如果两个相似图形的面积比是9:16,那么它们的边长比是______。
答案:3:44. 相似图形的对应角平分线比是2:3,那么它们的周长比是______。
答案:2:35. 两个相似矩形的长宽比是2:3,那么它们的面积比是______。
答案:4:9三、解答题(每题10分,共20分)1. 已知两个相似三角形的对应边长分别是3cm和4cm,求它们的面积比。
相似图形测试题及答案
相似图形测试题及答案### 相似图形测试题及答案#### 题目一:识别相似图形题目描述:给定一组图形,找出其中形状和结构相似的图形。
图形组A:- 图形1:圆形- 图形2:正方形- 图形3:三角形- 图形4:圆形图形组B:- 图形1:圆形- 图形2:正方形- 图形3:三角形- 图形4:椭圆形答案:在图形组A中,相似的图形是图形1和图形4,它们都是圆形。
在图形组B中,没有两个图形是完全相似的,但图形1和图形4在形状上最为接近,都是圆形或椭圆形。
#### 题目二:找出不同图形题目描述:在一组图形中,找出与其他图形不同的那一个。
图形组C:- 图形1:菱形- 图形2:菱形- 图形3:菱形- 图形4:圆形图形组D:- 图形1:正方形- 图形2:长方形- 图形3:正方形- 图形4:正方形答案:在图形组C中,图形4与其他三个菱形不同,因为它是一个圆形。
在图形组D中,图形2与其他三个正方形不同,因为它是一个长方形。
#### 题目三:图形变换题目描述:给定一个基础图形,通过旋转、翻转或平移,找出与之匹配的图形。
基础图形:- 图形E:一个向上的箭头变换图形组:- 图形1:一个向下的箭头- 图形2:一个向左的箭头- 图形3:一个向右的箭头- 图形4:一个向上的箭头答案:图形4是基础图形E的直接匹配,因为它是一个向上的箭头。
图形1、2和3分别是基础图形的旋转或翻转版本。
#### 题目四:图形组合题目描述:将给定的两个图形组合,形成一个新的图形。
图形组F:- 图形1:半圆形- 图形2:半圆形图形组G:- 图形1:半圆形- 图形2:三角形答案:在图形组F中,将两个半圆形组合可以形成一个完整的圆形。
在图形组G中,将半圆形和三角形组合可以形成一个扇形或一个有尖角的图形。
通过这些测试题,可以考察观察者对图形的识别能力、空间想象力以及逻辑推理能力。
正确答案的得出需要仔细观察图形的特点,理解图形之间的相似性和差异性,以及掌握图形变换的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.1 图形的相似
一.选择题:
1、下列各组数中,成比例的是( )
A .-7,-5,14,5
B .-6,-8,3,4
C .3,5,9,12
D .2,3,6,12
2、如果x:(x+y)=3:5,那么x:y =( )
A. B. C. D.
3、如图,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( )
A 、21
B 、31
C 、32
D 、4
1
4、下列说法中,错误的是( )
(A )两个全等三角形一定是相似形 (B )两个等腰三角形一定相似
(C )两个等边三角形一定相似 (D )两个等腰直角三角形一定相似
5、如图,RtΔA BC 中,∠C =90°,D 是AC 边上一点,AB =5,AC =4,若ΔABC ∽ΔBDC , 则CD = .
238
33258
A .2
B .32
C .43
D .94
二、填空题
6、已知a =4,b =9,c 是a b 、的比例中项,则c = .
7、如图,要使ΔABC ∽ΔACD ,需补充的条件是 .(只要写出一种)
8、如图,小东设计两个直角,来测量河宽DE ,他量得AD =2m ,BD =3m
DE
为
9、一公园占地面积约为8000002m ,若按比例尺1∶2000缩小后,其面积约为
2m .
10、如图,点P 是RtΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点P 作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条.
(第10题)
(第5题)
(第7题)
三、解答题
11、如图18—95,AB是斜靠在墙壁上的长梯,梯脚B距墙80cm,梯上点D距墙70cm,BD长55cm.求梯子的长.(8分)
12、如图,已知AC⊥AB,BD⊥AB,AO=78cm,BO=42cm,CD
=159cm,求CO和DO.(8分)
13、如图,在正方形网格上有111C B A ∆∽222A C B ∆,这两个三角形相似
吗?如果相似,求出222111A C B A C B ∆∆和的面积比.(15分)
14、已知:如图,在△ABC 中,点D 、E 、F 分别在AC 、AB 、BC 边上,且四边形CDEF 是正方形,AC =3,BC =2,求△ADE 、△EFB 、△ACB 的周长之比和面积之比.(10分)
15、如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.
P A B D
C
参考答案
一、选择题:1.B 2.D 3.A 4.D 5.D 二、填空题:
6、±6;
7、∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB ;
8、6m ;
9、0.2;10、3 三、解答题: 11.梯子长为440cm
12.cm DO cm CO 65.55,35.103==(提示:设xcm DO =,则()cm x CO -=159,因为
AB BD AB AC ⊥⊥,,︒=∠=∠90B A ,BOD
AOC ∠=∠,所以△AOC ∽△BDO ,
所以
DO
CO
BO AO =即
x
x -=1594278,所以65
.55=x ) 13、相似,相似比为
(提示:,且222111135C A B C A B ∠=︒=∠)
14、周长之比:ADE ∆的周长:EFB ∆的周长:ACB ∆的周长5:2:3=;
25
:4:9::=∆∆∆ACB EFB AD E S S S .设x EF =,则
x
AD x EF -==3,.所以
5:2:3::=AC EF AD .因为△ADE ∽△EFB ∽△ACB ,所以可求得周
长比等于相似比,面积比等于相似比的平方.
15、(1)若点A,P,D 分别与点B,C,P 对应,即△APD ∽△BCP,
∴
AD AP BP BC =, ∴273
AP
AP =-, ∴AP 2-7AP+6=0, ∴AP=1或AP=6,
检测:当AP=1时,由BC=3,AD=2,BP=6,
1
:4,1:2222111=∆∆C B A C B A S S 22211221
1==B A B A C A C A
∴
AP AD
BC BP
=, 又∵∠A=∠B= 90°,∴△APD ∽△BCP. 当AP=6时,由BC=3,AD=2,BP=1, 又∵∠A=∠B=90°, ∴△APD ∽△BCP.
(2)若点A,P,D 分别与点B,P,C 对应,即△APD ∽△BPC.
∴
AP AD BP BC =,∴273AP AP =-, ∴AP=14
5
. 检验:当AP=145时,由BP=21
5
,AD=2,BC=3,
∴AP AD
BP BC
=, 又∵∠A=∠B=90°,∴△APD ∽△BPC.
因此,点P 的位置有三处,即在线段AB 距离点A 1、14
5
、6 处.。