以太网的传输介质

合集下载

计算机三级《网络技术》基础知识:以太网

计算机三级《网络技术》基础知识:以太网

计算机三级《网络技术》基础知识:以太网2015计算机三级《网络技术》基础知识:以太网1.以太网的发展1976年7月,Bob在ALOHA网络的基础上,提出总线型局域网的设计思想,并提出冲突检测、载波侦听与随机后退延迟算法,将这种局域网命名为以太网(Ethernet)。

以太网的核心技术是:介质访问控制方法CDMA/CD.这种方法解决了多结点共享公用总线的问题。

早期以太网的传输介质是同轴电缆,后用双绞线,再后用光纤。

2.以太网的帧结构与工作流程(1)以太网数据发送流程冲突:多个站点同时利用总线发送数据,导致数据接收不正确。

总线网没有控制中心,如果一个站点发送数据帧,以广播方式通过总线发送,每一个站点都能收到数据帧,其它站点也可以同时发送,因此冲突不可避免。

CSMA/CD发送流程可简单概括为:先听后发,边听边发,冲突停止,延迟重发。

实现公共传输介质的控制策略,需要解决的问题是:载波侦听,冲突检测,冲突后的处理方法。

(a)载波侦听结点利用总线发送数据时,首先侦听总线是否空闲,以太网规定发送数据采用曼彻斯特编码。

判断总线是否空闲可以判断总线上是否有电平跳变。

不发生跳变总线空闲。

此时如果有结点已准备好发送数据,可以启动发送。

(b)冲突检测方法载波侦听不能完全消除冲突,原因是数字信号是以一定的速率传输的。

例如:结点A发送数据帧时,离他1000m距离的结点在一定的时间延迟后才能收到数据帧,此时间段内如果B也发送数据,造成冲突。

从物理层上看,冲突时多个信号叠加,导致波形不同于任何结点的波形信号。

解决方案:结点A发送数据前,先发送侦听信号,如果侦听信号在最大距离传输时间2倍时,没有冲突信号出现,结点A肯定取得总线的访问权。

冲突信号的延迟时间=2*D/V。

其中:D是结点到最远结点的距离,V表示信号传输速度,信号往返的时间为延迟时间。

进行冲突检测的方法有两种:比较法和编码违例法。

比较法:将发送信号波形与从总线上接收的信号比较,如果不同说明有冲突。

cat5e

cat5e

cat5eCAT5e:一种用于以太网数据传输的传输介质概述:CAT5e(Category 5 enhanced)是一种用于以太网数据传输的传输介质。

它是传输速度高达1千兆位每秒(Gbps)的标准以太网线缆的改进版。

在信息技术领域,CAT5e被广泛应用于家庭网络、办公室网络以及数据中心等环境。

CAT5e的优势:1. 更高的传输速度:CAT5e相比于传统的CAT5线缆,可以提供更高的传输速度,达到1Gbps。

这使得它成为适用于高速数据传输和音频/视频流媒体的理想选择。

2. 提供更好的信号质量:CAT5e线缆采用了更好的继电器和抗干扰设计,可以提供更可靠的信号传输和更低的误码率。

3. 兼容性强:CAT5e线缆可以与低于1Gbps的设备兼容,这使得它成为迁移和升级网络的可行选择。

CAT5e的技术规格:1. 针对性能的增强:CAT5e线缆的8个导线中的每一个都被精确地扭曲和绞合。

这种设计有助于减少串扰和干扰,提供更好的信号质量。

2. 高质量的外壳:CAT5e线缆通常具有厚实的外壳,可以提供更好的电气保护和机械保护。

这有助于降低线缆在安装和使用过程中受到的损坏和干扰。

3. 支持高频段:CAT5e线缆支持从1MHz到100MHz的频段,这使得它适用于各种数据传输需求。

如何正确安装CAT5e:1. 测量和准备:在安装CAT5e线缆之前,首先需要测量连接点之间的距离,并提前计划安装的路径。

确定适当的线缆长度,并采购所需数量的线缆。

2. 准备工具和材料:安装CAT5e需要一些基本工具和材料,例如电缆剥皮工具、压线钳、模块化连结器等。

3. 剥皮和绞合:使用电缆剥皮工具剥开线缆两侧外壳,并将每根线缆的绞合部分解开。

确保每根线缆都保持相同的长度。

4. 连接器安装:使用压线钳将模块化连结器安装到每根线缆的末端。

确保每个线缆的连接器正确和牢固地安装。

5. 连接测试:一旦安装完成,使用网络测试仪对CAT5e连接进行测试,以确保每个连接点都正常工作。

计算机网络应用 标准以太网

计算机网络应用  标准以太网

计算机网络应用 标准以太网标准以太网也常被称为传统以太网或共享式以太网,它是最早时期的以太网类型,其带宽只有10Mbps ,它使用载波监听多路访问/冲突检测(CSMA/CD )访问控制方法,解决了连接在同一总线上的多个网络节点有秩序的共享同一传输信道的问题,提高了局域网共享信道的利用率,因此得以发展和流行。

以太网的传输介质主要以双绞线为主,所有的以太网都必须遵循IEEE 802.3标准,如表5-1所示为IEEE 802.3定义的标准以太网标准。

表5-1 IEEE 802.3 标准以太网标准在该标准中,前面的数字表示数据传输速率,单位是“Mb/s ”,最后一个数字表示一段网线的长度(基准长度为100m ),Base 表示“基带”,Broad 表示“带宽”。

下面详细介绍10Base-5、10Base-2、10Base-T 、10Base-F 和10Base-36标准。

1.10Base-5和10Base-210Base-5是最早的以太网IEEE 802.3标准,它采用直径为10mm 、电阻为50Ω的粗同轴电缆进行连接,允许每段有100个站点,最大传输距离为500m ,在设计时需要遵循5-4-3标准。

提 示 在5-4-3标准中,数字5表示网络中任意两个端到端的节点之间最多只能有5个电缆段;数字4表示网络中任意两个端到端的节点之间最多只能有4个中继器;数字3表示网络中任意两个端到端的节点之间最多只能有3个共享网段。

在使用10Base-5标准以太网时,站点必须使用收发器连接到电缆上,或者使用介质连接单元(MAU ),这些设备用一个“吸血鬼”龙头压倒电缆上,其安装规则如下:● 网段的最大长度为500m ; ● 电缆最大长度为2500m ;● 收发器间的最短距离为2.5m ;● 网段两端必须使用终结器,一端还必须接地; ● 收发器电缆不能超过45m 。

10Base-2与10Base-5基本相同,如在使用的传输介质、传输速度及遵循5-4-3标准等方面。

计算机网络练习题及答案3

计算机网络练习题及答案3

计算机网络练习题及答案第3章数据链路层一、单项选择题1.以太网可以采用的传输介质有( )。

A. 光纤B. 双绞线C.同轴电缆D.以上均可以2.目前,最流行的以太网组网的拓扑结构是()。

A.A. 总线结构B. 环型结构C.星型结构D. 网状结构3.各种网络在物理层互连时要求()A.数据传输率和链路协议都相同B.数据传输率相同,链路协议可不同C.数据传输率可不同,链路协议相同D.数据传输率和链路协议都可不同4.对于基带CSMA/CD而言,为了确保发送站点在传输时能检测到可能存在的冲突,数据帧的传输时延至少要等于信号传播时延的( )A.1倍B. 2倍C.4倍D. 2.5倍5.截断二进制指数类型退避算法解决了()。

A.站点检测到冲突后延迟发送的时间B.站点检测到冲突后继续等待的时间C. 站点是如何对冲突进行检测D.站点如何避免冲突6.MAC地址通常存储在计算机的()。

A.内存中B.网卡上C.硬盘上D.高速缓冲区7.下面关于以太网的描述哪个是正确的?()A.数据是以广播方式发送的B.所有节点可以同时发送和接收数据C.两个节点相互通信时,第三个节点不检测总线上的信号D.网络中有一个控制中心,用于控制所有节点的发送和接收8.在以太网中,集线器的级联()A.必须使用直通UTP电缆B.必须使用交叉UTP电缆C.必须使用同一种速率的集线器D.可以使用不同速率的集线器9.下列哪种说法是正确的?()A.集线器可以对接收到的信号进行放大B.集线器具有信息过滤功能C.集线器具有路径检测功能D.集线器具有交换功能10.以太网交换机中的端口/MAC地址映射表()A.是由交换机的生产厂商建立的B.是交换机在数据转发过程中通过学习动态建立的C.是由网络管理员建立的D.是由网络用户利用特殊的命令建立的11.下列哪种说法是错误的?()A.以太网交换机可以对通过的信息进行过滤B.以太网交换机中端口的速率可能不同C.在交换式以太网中可以划分VLAND.利用多个以太网交换机组成的局域网不能出现环12.10BASE T采用的是( )的物理连接结构。

以太网规范

以太网规范

以太网规范以太网(Ethernet)是一种广泛应用于计算机网络的局域网技术。

它是由Xerox、Digital和Intel在20世纪70年代合作开发的,并在20世纪80年代被标准化为IEEE 802.3。

以太网规范包括了物理层和数据链路层两个部分,它定义了网络的传输介质、数据传输的方式以及网络设备之间的通信规则。

在物理层方面,以太网规范定义了几种不同的传输介质,如双绞线、同轴电缆和光纤等。

其中,最常见和广泛使用的是双绞线。

以太网使用双绞线作为传输介质的优点是成本低廉、易于安装和维护,并且具有较高的传输速度和较低的信号损耗。

在数据链路层方面,以太网规范定义了帧的格式、地址的分配、数据的传输方式等。

以太网帧的格式由目的MAC地址、源MAC地址、类型字段和数据字段组成。

其中,MAC地址是用于唯一标识网络设备的物理地址。

以太网规范还定义了一种称为CSMA/CD(Carrier Sense Multiple Access with Collision Detection)的介质访问控制方式,用于避免多个设备同时访问网络介质而产生冲突。

以太网规范还规定了不同速率的以太网,包括10 Mbps的Ethernet、100 Mbps的Fast Ethernet和1000 Mbps的Gigabit Ethernet。

这些不同速率的以太网可以互操作,即可以在同一网络中同时使用。

不同速率的以太网主要通过改变传输介质的速率、电平和编码方式来实现。

以太网规范还定义了一些其他的技术,如虚拟局域网(VLAN)和链路聚合(Link Aggregation)。

虚拟局域网允许将一个物理局域网划分为多个逻辑上的局域网,提供更好的网络管理和安全性。

链路聚合允许将多个以太网链路绑定在一起,形成一个更高带宽的链路,提供更好的网络性能和冗余备份。

总体而言,以太网规范为计算机网络提供了一个灵活、可靠和高性能的局域网技术。

它的发展和标准化为互联网的发展做出了重要贡献,并且在现代网络中仍然得到广泛应用。

以太网的三种以太网标准

以太网的三种以太网标准

以太网的三种以太网标准以太网是一种局域网技术,它使用双绞线或光纤作为传输介质,采用CSMA/CD(载波监听多路访问/冲突检测)协议来实现数据的传输。

在以太网的发展历程中,出现了多种不同的标准,其中最为常见的有以太网、快速以太网和千兆以太网。

本文将对这三种以太网标准进行介绍和比较。

首先,以太网是最早的以太网标准,它使用10Mbps的传输速率,采用基带传输技术,传输距离最远为100米。

在以太网中,数据帧的最小长度为64字节,最大长度为1518字节。

以太网使用CSMA/CD协议来解决数据冲突问题,但随着网络规模的扩大,以太网的传输速率已经无法满足需求,因此出现了更高速的以太网标准。

其次,快速以太网是在以太网的基础上进行改进的,它使用100Mbps的传输速率,采用基带传输技术,传输距离最远为100米。

快速以太网在数据帧的最小长度和最大长度上与以太网保持一致,但由于传输速率的提升,快速以太网能够更快地传输数据,适用于对传输速度要求较高的场景。

快速以太网的出现,使得局域网的传输速度得到了显著提升,大大改善了网络性能。

最后,千兆以太网是目前应用最为广泛的以太网标准,它使用1Gbps的传输速率,采用基带传输技术,传输距离最远为100米。

千兆以太网在数据帧的最小长度和最大长度上与以太网和快速以太网保持一致,但由于传输速率的进一步提升,千兆以太网能够更快地传输大容量数据,适用于对传输带宽要求较高的场景。

千兆以太网的出现,进一步提升了局域网的传输速度和带宽,满足了现代网络应用对高速数据传输的需求。

综上所述,以太网的发展经历了以太网、快速以太网和千兆以太网三种不同的标准,它们分别采用了不同的传输速率和技术,适用于不同的网络场景。

随着网络应用的不断发展,以太网标准也在不断演进,未来可能会出现更高速的以太网标准,以满足日益增长的网络传输需求。

在选择以太网标准时,需要根据实际需求和网络环境来进行合理的选择,以实现最佳的网络性能和传输效果。

以太网传输介质的知识

以太网传输介质的知识
光纤
光纤是一种由玻璃或塑料制成的纤维,能够传输光信号。它的传输速度非常快,带宽也非 常高,而且不受电磁干扰的影响。光纤的传输距离非常远,甚至可以达到几十公里,但价 格较高,适用于需要高速、长距离、大容量的网络传输。
选择依据及应用场景分析
传输距离
如果需要较长的传输距离,可以选择光纤或同轴电缆;如 果传输距离较短,可以选择双绞线。
可回收再利用
以太网传输介质应具有可回收再 利用的特性,减少废弃物的产生 和对环境的破坏。
THANKS FOR WATCHING
感谢您的观看
芯径与数值孔径
多模光纤的芯径较粗,通常在50100μm之间,数值孔径较大,能 够接收更多的光信号。
传输距离与带宽
多模光纤的传输距离相对较短,一 般在几公里以内,但其带宽较高, 适用于短距离高速数据传输。
单模光纤
传输原理
单模光纤仅允许一种模式的光传输, 通过控制光的入射角度和光纤的芯径 实现。
芯径与数值孔径
以太网传输介质的知识
contents
目录
• 以太网传输介质概述 • 铜质传输介质 • 光纤传输介质 • 无线传输介质 • 各类传输介质性能比较与选择依据 • 以太网传输介质未来发展趋势及挑战
01 以太网传输介质概述
定义与分类
定义
以太网传输介质是指用于以太网 通信的各种物理媒介,它们承载 着数据信号在以太网设备之间进 行传输。
应用
曾广泛应用于有线电视、 计算机网络等领域,现已 逐渐被光纤等新型传输介 质所取代。
铜质传输介质性能比较
传输距离
传输速率
双绞线的传输距离相对较短,一般不超过 100米;同轴电缆的传输距离较长,可达到 几百米甚至几公里。
双绞线的传输速率受到一定限制,一般适 用于低速或中速网络;同轴电缆的传输速 率较高,适用于高速网络。

弱电工程网络传输基础知识讲解

弱电工程网络传输基础知识讲解
• PC连接PC • 交换机连接交换机 • 路由器连接路由器
➢ 翻转双绞线 双绞线一端采用任意线序,另一端线序完全相反 用于网络设备console管理(不能用于数据传输)
直通双绞线与交叉双绞线图例
➢ 图例
1 8
10/100M网络使用1、3、2、6传输数据 1000M网络使用全部8根线缆传输数据
光纤接口类型
➢ SC ➢ LC ➢ ST ➢ FC ➢ MT-RJ(淘汰)
光电转换器
➢ 概述
将光纤介质转换成铜线接入 将铜线转换成光纤介质接入 俗称:光猫、光电收发器
光纤终端盒
➢ 概述
光纤与光纤的熔接、光纤与尾纤的熔接以及光连接器的交接 光纤及其元件提供机械保护和环境保护 提供光缆终端的安放和余端光纤存储的空间
双绞线分类
➢ 非屏蔽双绞线
绝缘套管中无屏蔽层 价格低廉,用途广泛
➢ 屏蔽双绞线
绝缘套管中外层由铝铂包裹, 以减小辐射
价格相对较高,高要求场合应 用
双绞线标准
➢ CAT-1/2/3/4
1/2/3/4类双绞线,目前已淘汰
➢ CAT-5
5类双绞,可用于100M以太网传输
➢ CAT-5e/6
微细的光纤封装在塑料护套中 ,使得它能够弯曲而不至于断 裂
光在光导纤维的传导损耗比电 在电线传导的损耗低得多,光 纤被用作长距离的信息传递
➢ 光缆概述
光缆一般由多根光纤和塑料保 护套管及塑料外皮构成
光纤分类
➢ 单模光纤
当光纤的几何尺寸可以于光波长相比拟时,即纤芯的几何尺寸 与光信号波长相差不大时,一般为5~10um,光纤只允许一种 模式在其中传播,单模光纤具有极宽的带宽,特别适用于大容 量、长距离的光纤通信
超5类/6类双绞线,可用于1,000M以太网传输

以太网介绍

以太网介绍

以太网是一种产生较早,使用相当广泛的局域网。

以太网最初是由Xerox公司研制而成的,并且在1980年由DEC公司和Xerox公司共同使之规范成形。

后来它被作为802.3标准为电气与电子工程师协会(IEEE)所采纳。

最开始以太网只有10Mbps的吞吐量,它所使用的是CSMA/CD(带有冲突检测的载波侦听多路访问)的访问控制方法,通常把这种最早期的10Mbps以太网称之为标准以太网。

以太网主要有两种传输介质,那就是双绞线和同轴电缆。

所有的以太网都遵循IEEE 802.3标准,下面列出是以太网和IEEE 802.3之间的区别以及不同IEEE 802.3物理层协议之间的区别,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是100m),Base表示“基带”的意思,Broad代表“带宽”。

它不是一种具体的网络,是一种技术规范。

以太网是当今现有局域网采用的最通用的通信协议标准。

该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。

以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10BaseT以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。

直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。

一、标准以太网开始以太网只有10Mbps的吞吐量,使用的是CSMA/CD(带有碰撞检测的载波侦听多路访问)的访问控制方法,这种早期的10Mbps以太网称之为标准以太网。

以太网主要有两种传输介质,那就是双绞线和同轴电缆。

所有的以太网都遵循IEEE802.3标准,下面列出是IEEE802.3的一些以太网络标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是100m),Base表示“基带”的意思,Broad代表“带宽”。

03计算机网络练习题

03计算机网络练习题

第3章数据链路层一、单项选择题1.以太网可以采用的传输介质有( )。

A. 光纤B. 双绞线C.同轴电缆D.以上均可以2.目前,最流行的以太网组网的拓扑结构是()。

A. A. 总线结构B. 环型结构C.星型结构D. 网状结构3.各种网络在物理层互连时要求()A.数据传输率和链路协议都相同B.数据传输率相同,链路协议可不同C.数据传输率可不同,链路协议相同D.数据传输率和链路协议都可不同4.对于基带CSMA/CD而言,为了确保发送站点在传输时能检测到可能存在的冲突,数据帧的传输时延至少要等于信号传播时延的( )A.1倍B. 2倍C.4倍D. 2.5倍5.截断二进制指数类型退避算法解决了()。

A.站点检测到冲突后延迟发送的时间B.站点检测到冲突后继续等待的时间C. 站点是如何对冲突进行检测D.站点如何避免冲突6.MAC地址通常存储在计算机的()。

A.内存中B.网卡上C.硬盘上D.高速缓冲区7.下面关于以太网的描述哪个是正确的?()A.数据是以广播方式发送的B.所有节点可以同时发送和接收数据C.两个节点相互通信时,第三个节点不检测总线上的信号D.网络中有一个控制中心,用于控制所有节点的发送和接收8.在以太网中,集线器的级联()A.必须使用直通UTP电缆B.必须使用交叉UTP电缆C.必须使用同一种速率的集线器D.可以使用不同速率的集线器9.下列哪种说法是正确的?()A.集线器可以对接收到的信号进行放大B.集线器具有信息过滤功能C.集线器具有路径检测功能D.集线器具有交换功能10.以太网交换机中的端口/MAC地址映射表()A.是由交换机的生产厂商建立的B.是交换机在数据转发过程中通过学习动态建立的C.是由网络管理员建立的D.是由网络用户利用特殊的命令建立的11.下列哪种说法是错误的?()A.以太网交换机可以对通过的信息进行过滤B.以太网交换机中端口的速率可能不同C.在交换式以太网中可以划分VLAND.利用多个以太网交换机组成的局域网不能出现环12.10BASE T采用的是( )的物理连接结构。

以太网培训教程

以太网培训教程

以太网培训教程以太网是当前最常见的网络技术之一,广泛运用于各行各业。

因此,学习以太网技术对于网络从业人员来说至关重要。

本文将为大家介绍以太网培训教程。

一、以太网基础知识首先,了解以太网应具备的基础知识是必要的。

以太网是指一种局域网技术,它能够快速、准确地在网络中传输大量的数据。

以太网最早是由Xerox、Intel和Digital三家公司于20世纪70年代合作开发出的。

关于以太网标准,最初的10BASE-T规格使用了双绞线,最高可传输10 Mbps 的数据,而现在常用的100BASE-TX规格则使用的是双绞线,最高可传输100 Mbps 的数据。

同时还有更高速的千兆以太网(Gigabit Ethernet)等规格。

除了了解以太网的技术规格,还应该掌握以太网中的常用术语。

如“MAC地址”、“交换机”、“路由器”等。

二、以太网的拓扑结构以太网的拓扑结构是指连接在网络设备上的节点之间的物理布置。

常见的以太网拓扑结构包括总线型、星型、树型、环形等。

每种不同的拓扑结构都有其适用的场景。

以太网各种拓扑结构的特点、优缺点和适用场景对于网络工程师来说是重要的知识点。

例如,星型拓扑结构具有易于管理、检修的优点,但是它仅能在交换机故障时受到影响;而相比之下,总线型拓扑结构则更加容易扩展,但拓扑结构较为复杂,且易受到噪声和干扰的影响。

三、以太网的传输介质以太网的传输介质主要包括双绞线、同轴电缆、光纤等。

其中,双绞线是最为常见的一种传输介质。

双绞线在以太网中的应用十分广泛,其中,最为常见的是用于传输100 Mbps 数据的100BASE-TX双绞线。

同时,双绞线的质量和性能因素也会影响整个以太网的稳定性和传输速度。

因此,学习双绞线的相关知识和技巧,如如何识别双绞线类别、如何接线,对于网络从业人员来说至关重要。

四、以太网的网络设备以太网的网络设备主要包括交换机、路由器、网桥等。

其中,交换机是以太网中最为重要的网络设备之一。

以太网基础知识培训试题

以太网基础知识培训试题

以太网基础知识培训试题# 以太网基础知识培训试题## 一、单选题(每题2分,共20分)1. 以太网的发明者是:A. 罗伯特·梅特卡夫B. 比尔·盖茨C. 史蒂夫·乔布斯D. 蒂姆·伯纳斯-李2. 以太网的传输介质不包括:A. 双绞线B. 同轴电缆C. 光纤D. 无线电波3. 以太网的帧类型中,最小帧长为:A. 64字节B. 128字节C. 256字节D. 512字节4. 以太网地址(MAC地址)的长度是:A. 24位B. 32位C. 48位D. 64位5. 以太网使用的冲突检测机制是:A. CSMA/CDB. CSMA/CAC. CSMA/CTD. CSMA/CC## 二、多选题(每题3分,共15分)6. 以下哪些是10BASE-T以太网的传输介质?A. 双绞线B. 同轴电缆C. 光纤D. 无线7. 以太网的交换机可以实现以下哪些功能?A. 数据包转发B. 冲突域隔离C. 广播域隔离D. 流量控制8. 以下哪些是全双工通信的特点?A. 可以同时发送和接收数据B. 需要更宽的带宽C. 减少了冲突的可能性D. 需要更复杂的硬件支持## 三、判断题(每题1分,共10分)9. 以太网只能在同一局域网内进行数据传输。

()10. 以太网帧的最大长度是1500字节。

()11. 以太网的MAC地址是全球唯一的。

()12. 以太网的CSMA/CD机制可以完全避免冲突。

()13. 以太网的交换机可以替代路由器。

()## 四、简答题(每题5分,共20分)14. 简述以太网的工作原理。

15. 描述以太网帧的结构。

16. 解释什么是以太网的全双工通信。

17. 以太网交换机与集线器(Hub)有何不同?## 五、应用题(每题5分,共25分)18. 假设你有一个以太网网络,需要连接50台计算机。

请描述你将如何设计这个网络。

19. 描述如何使用以太网测试工具来检测网络中的问题。

20. 如果你发现以太网网络中存在大量的广播风暴,你将如何处理?21. 假设你正在使用以太网进行文件传输,但传输速度异常缓慢,请分析可能的原因并提出解决方案。

计算机局域网试题及答案

计算机局域网试题及答案

计算机局域网试题及答案一、单选题(每题2分,共10分)1. 局域网(LAN)通常指的是哪种网络?A. 广域网B. 城域网C. 局域网D. 个人区域网答案:C2. 以太网使用的传输介质是什么?A. 光纤B. 同轴电缆C. 双绞线D. 无线信号答案:C3. 以下哪个协议不属于TCP/IP协议簇?A. HTTPB. FTPC. SNMPD. IPX答案:D4. 局域网中,MAC地址是用于什么?A. 网络层寻址B. 传输层寻址C. 数据链路层寻址D. 表示网络设备型号答案:C5. 哪种拓扑结构的网络中,所有节点都直接连接到一个中心节点?A. 星型B. 环型C. 总线型D. 网状型答案:A二、多选题(每题3分,共15分)1. 以下哪些设备是局域网中常见的?A. 路由器B. 交换机C. 集线器D. 网桥答案:B, C, D2. 局域网中,以下哪些因素会影响网络性能?A. 网络带宽B. 网络拓扑结构C. 网络设备的性能D. 网络协议答案:A, B, C, D3. 以下哪些是局域网中常用的传输介质?A. 双绞线B. 光纤C. 无线信号D. 同轴电缆答案:A, B, C, D4. 以下哪些是局域网中常用的网络协议?A. TCP/IPB. IPX/SPXC. NetBEUID. AppleTalk答案:A, B, C, D5. 以下哪些是局域网中常见的网络故障?A. 物理连接问题B. 配置错误C. 网络拥塞D. 病毒感染答案:A, B, C, D三、判断题(每题1分,共10分)1. 局域网的速度通常比广域网快。

(对)2. 所有局域网都必须使用路由器进行数据传输。

(错)3. 交换机可以减少网络冲突域。

(对)4. 无线局域网不需要任何硬件设备即可工作。

(错)5. 集线器可以提高网络的传输速率。

(错)6. 网络拓扑结构对网络性能没有影响。

(错)7. MAC地址是全球唯一的。

(对)8. 以太网使用CSMA/CD协议来避免数据冲突。

简述以太网的介质访问控制方式的原理

简述以太网的介质访问控制方式的原理

简述以太网的介质访问控制方式的原理以太网的介质访问控制方式(MediumAccessControl,MAC)是针对以太网网络的一种协议,主要负责控制以太网中发送和接收数据的方式,并且定义了不同的网络节点的传输顺序。

它的主要作用是确保以太网网络内部的网络节点所发出的数据被正确地处理,以确保网络内部的数据传输准确无误。

以太网的介质访问控制方式采用了传输介质共享方式(Carrier Sense Multiple Access with Collision Detection,CSMA/CD),它是一种无信道分配的协议,通常也被称为“自己感受性的多址控制”(Self-Sensing Multiple Access,SSMA)协议。

在此方式下,网络节点可以自行监测传输介质的状态,而不需要先向中央网络节点申请介质的使用权,也不需要中央网络节点进行任何形式的介质分配。

当网络节点要发送数据时,会通过向传输介质发出“感受信号”来检测传输介质所处的状态,如果介质所处状态为空闲,则可以进行发送;如果介质正在被其他节点使用,则发送方会等待,直到介质空闲再进行发送。

当网络内有多个网络节点同时发送数据时,由于传输介质有限,数据会发生碰撞(collision),此时碰撞的网络节点会停止发送并释放介质,然后重新发起发送,重新进行“感受信号”的检测来决定发送何时。

为了尽量避免发生碰撞,网络节点必须十分小心地选择发送的时机,以使介质空闲能够更长一段时间。

这也就需要网络节点采用“延迟感受法”(Delay Sensing),即网络节点在发出“感受信号”时,先等待一定时间再向传输介质发出“感受信号”,以此来减少碰撞的概率。

此外,在进行发送时,节点还需要采用“乱序发送”(Scrambled Transmission),即网络节点在进行发送时,会随机调整发送的时机,以减少碰撞的概率。

以太网的介质访问控制方式,提供了一种准确无误的网络数据传输方式,以保证网络内部的数据传输准确无误。

以太网标准3

以太网标准3

以太网标准3以太网标准3是指IEEE 802.3标准,它是以太网技术的一种标准化规范。

以太网是一种局域网技术,它使用CSMA/CD协议来控制数据包的传输。

以太网标准3是对以太网技术的一种规范化,它包括了物理层和数据链路层的标准,以及一些其他的规范。

首先,以太网标准3规定了以太网的物理层标准。

物理层标准规定了以太网的传输介质、传输速率、传输距离等参数。

在以太网标准3中,常用的传输介质包括双绞线、光纤和同轴电缆。

传输速率常见的有10Mbps、100Mbps、1000Mbps等不同的速率。

传输距离则取决于传输介质和传输速率,一般可以达到几百米到几十公里不等。

这些物理层标准的规定,为以太网的实际应用提供了基础支持。

其次,以太网标准3还规定了以太网的数据链路层标准。

数据链路层标准规定了以太网的帧格式、MAC地址、流控制等内容。

以太网的帧格式包括了前导码、目的地址、源地址、长度/类型、数据和校验序列等字段。

MAC地址是以太网设备的唯一标识,用于在局域网中唯一标识一个设备。

流控制则是通过CSMA/CD协议来实现,它能够有效地避免数据包的冲突和碰撞,保证数据的可靠传输。

此外,以太网标准3还包括了一些其他的规范,比如对网络设备的性能要求、对网络管理的规定等。

这些规范的制定,使得不同厂商生产的以太网设备能够互通互用,保证了以太网技术的广泛应用和发展。

总的来说,以太网标准3是对以太网技术的一种标准化规范,它包括了物理层和数据链路层的标准,以及一些其他的规范。

这些规范的制定,为以太网技术的应用和发展提供了基础支持,保证了不同厂商生产的设备能够互通互用,从而推动了以太网技术的广泛应用和发展。

在未来,随着网络技术的不断发展,以太网标准3也将不断进行更新和完善,以适应新的需求和新的应用场景。

以太网的标准

以太网的标准

以太网的标准以太网是一种局域网技术,它使用了一种称为CSMA/CD(载波监听多点接入/碰撞检测)的协议来控制数据的传输。

以太网的标准是由IEEE(电气和电子工程师协会)制定的,它定义了以太网的物理层和数据链路层的规范,以及数据帧的格式和传输速率等。

本文将介绍以太网的标准,包括以太网的物理层标准、数据链路层标准和数据帧格式等内容。

以太网的物理层标准包括了电缆、连接器和传输介质等规范。

最常用的以太网物理层标准是IEEE 802.3标准,它定义了几种不同的传输介质和速率。

常见的以太网传输介质包括双绞线、光纤和同轴电缆等,而常见的连接器包括RJ-45和光纤连接器等。

此外,IEEE 802.3标准还定义了以太网的传输速率,包括10 Mbps、100 Mbps、1 Gbps、10 Gbps等不同的速率。

在数据链路层,以太网的标准定义了MAC(媒体访问控制)地址的格式和规范。

MAC地址是一个48位的地址,通常用十六进制表示,它唯一地标识了网络中的每个设备。

以太网的标准还定义了数据帧的格式,包括前导码、目的地址、源地址、类型字段、数据字段和校验序列等部分。

此外,以太网的标准还规定了最大传输距离、最大数据帧长度和最小帧间隔等参数。

除了IEEE 802.3标准外,还有一些其他的以太网标准,如IEEE 802.11标准用于无线局域网,IEEE 802.15标准用于蓝牙和ZigBee等无线个人局域网。

这些标准在物理层和数据链路层上有所不同,但都遵循了CSMA/CD协议和数据帧格式的基本原则。

总的来说,以太网的标准是网络通信的基础,它规定了网络设备之间的通信方式和数据传输的规范,保证了网络的稳定和可靠性。

随着技术的发展,以太网的标准也在不断更新和完善,以适应新的应用和需求。

因此,了解和遵循以太网的标准对于网络工程师和系统管理员来说是非常重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以太网的传输介质以太网可以采用多种连接介质,包括同轴缆、双绞线和光纤等。

其中双绞线多用于从主机到集线器或交换机的连接,而光纤则主要用于交换机间的级联和交换机到路由器间的点到点链路上。

同轴缆作为早期的主要连接介质已经逐渐趋于淘汰。

注意区分双绞线中的直通线和交叉线两种连线方法.以下连接应使用直通电缆:交换机到路由器以太网端口计算机到交换机计算机到集线器交叉电缆用于直接连接LAN 中的下列设备:交换机到交换机交换机到集线器集线器到集线器路由器到路由器的以太网端口连接计算机到计算机计算机到路由器的以太网端口CSMA/CD共享介质以太网带冲突检测的载波侦听多路访问(CSMA/CD) 技术规定了多台电脑共享一个通道的方法。

这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。

这个方法要比令牌环网或者主控制网要简单。

当某台电脑要发送信息时,必须遵守以下规则:开始: 如果线路空闲,则启动传输,否则转到第4步。

发送: 如果检测到冲突,继续发送数据直到达到最小报文时间(保证所有其他转发器和终端检测到冲突),再转到第4步。

成功传输: 向更高层的网络协议报告发送成功,退出传输模式。

线路忙: 等待,直到线路空闲线路进入空闲状态- 等待一个随机的时间,转到第1步,除非超过最大尝试次数。

超过最大尝试传输次数: 向更高层的网络协议报告发送失败,退出传输模式。

就像在没有主持人的座谈会中,所有的参加者都通过一个共同的媒介(空气)来相互交谈。

每个参加者在讲话前,都礼貌地等待别人把话讲完。

如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。

这时,如果两个参加者等待的时间不同,冲突就不会出现。

如果传输失败超过一次,将采用退避指数增长时间的方法(退避的时间通过截断二进制指数退避算法(truncated binary exponential backoff)来实现)。

最初的以太网是采用同轴电缆来连接各个设备的。

电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。

一根简单网线对于一个小型网络来说还是很可靠的,对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。

因为所有的通信信号都在共用线路上传输,即使信息只是发给其中的一个终端(destination),某台电脑发送的消息都将被所有其他电脑接收。

在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。

这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。

共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。

接口的工作模式以太网卡可以工作在两种模式下:半双工和全双工。

半双工:半双工传输模式实现以太网载波监听多路访问冲突检测。

传统的共享LAN是在半双工下工作的,在同一时间只能传输单一方向的数据。

当两个方向的数据同时传输时,就会产生冲突,这会降低以太网的效率。

全双工:全双工传输是采用点对点连接,这种安排没有冲突,因为它们使用双绞线中两个独立的线路,这等于没有安装新的介质就提高了带宽。

例如在上例的车站间又加了一条并行的铁轨,同时可有两列火车双向通行。

在全双工模式下,冲突检测电路不可用,因此每个全双工连接只用一个端口,用于点对点连接。

标准以太网的传输效率可达到50%~60%的带宽,全双工在两个方向上都提供100%的效率。

以太网的工作原理以太网采用带冲突检测的载波帧听多路访问(CSMA/CD)机制。

以太网中节点都可以看到在网络中发送的所有信息,因此,我们说以太网是一种广播网络。

以太网的工作过程如下:当以太网中的一台主机要传输数据时,它将按如下步骤进行:1、监听信道上是否有信号在传输。

如果有的话,表明信道处于忙状态,就继续监听,直到信道空闲为止。

2、若没有监听到任何信号,就传输数据3、传输的时候继续监听,如发现冲突则执行退避算法,随机等待一段时间后,重新执行步骤1(当冲突发生时,涉及冲突的计算机会发送会返回到监听信道状态。

注意:每台计算机一次只允许发送一个包,一个拥塞序列,以警告所有的节点)4、若未发现冲突则发送成功,所有计算机在试图再一次发送数据之前,必须在最近一次发送后等待9.6微秒(以10Mbps运行)。

帧结构以太网帧的概述:以太网的帧是数据链路层的封装,网络层的数据包被加上帧头和帧尾成为可以被数据链路层识别的数据帧(成帧)。

虽然帧头和帧尾所用的字节数是固定不变的,但依被封装的数据包大小的不同,以太网的长度也在变化,其范围是64~1518字节(不算8字节的前导字)。

冲突/冲突域冲突(Collision):在以太网中,当两个数据帧同时被发到物理传输介质上,并完全或部分重叠时,就发生了数据冲突。

当冲突发生时,物理网段上的数据都不再有效。

冲突域:在同一个冲突域中的每一个节点都能收到所有被发送的帧。

影响冲突产生的因素:冲突是影响以太网性能的重要因素,由于冲突的存在使得传统的以太网在负载超过40%时,效率将明显下降。

产生冲突的原因有很多,如同一冲突域中节点的数量越多,产生冲突的可能性就越大。

此外,诸如数据分组的长度(以太网的最大帧长度为1518字节)、网络的直径等因素也会影响冲突的产生。

因此,当以太网的规模增大时,就必须采取措施来控制冲突的扩散。

通常的办法是使用网桥和交换机将网络分段,将一个大的冲突域划分为若干小冲突域。

广播/广播域广播:在网络传输中,向所有连通的节点发送消息称为广播。

广播域:网络中能接收任何一设备发出的广播帧的所有设备的集合。

广播和广播域的区别:广播网络指网络中所有的节点都可以收到传输的数据帧,不管该帧是否是发给这些节点。

非目的节点的主机虽然收到该数据帧但不做处理。

广播是指由广播帧构成的数据流量,这些广播帧以广播地址(地址的每一位都为“1”)为目的地址,告之网络中所有的计算机接收此帧并处理它。

共享式以太网共享式以太网的典型代表是使用10Base2/10Base5的总线型网络和以集线器为核心的星型网络。

在使用集线器的以太网中,集线器将很多以太网设备集中到一台中心设备上,这些设备都连接到集线器中的同一物理总线结构中。

从本质上讲,以集线器为核心的以太网同原先的总线型以太网无根本区别。

集线器的工作原理:集线器并不处理或检查其上的通信量,仅通过将一个端口接收的信号重复分发给其他端口来扩展物理介质。

所有连接到集线器的设备共享同一介质,其结果是它们也共享同一冲突域、广播和带宽。

因此集线器和它所连接的设备组成了一个单一的冲突域。

如果一个节点发出一个广播信息,集线器会将这个广播传播给所有同它相连的节点,因此它也是一个单一的广播域。

集线器的工作特点:集线器多用于小规模的以太网,由于集线器一般使用外接电源(有源),对其接收的信号有放大处理。

在某些场合,集线器也被称为“多端口中继器”。

集线器同中继器一样都是工作在物理层的网络设备。

共享式以太网存在的弊端:由于所有的节点都接在同一冲突域中,不管一个帧从哪里来或到哪里去,所有的节点都能接受到这个帧。

随着节点的增加,大量的冲突将导致网络性能急剧下降。

而且集线器同时只能传输一个数据帧,这意味着集线器所有端口都要共享同一带宽。

交换式以太网交换式结构:在交换式以太网中,交换机根据收到的数据帧中的MAC地址决定数据帧应发向交换机的哪个端口。

因为端口间的帧传输彼此屏蔽,因此节点就不担心自己发送的帧在通过交换机时是否会与其他节点发送的帧产生冲突。

为什么要用交换式网络替代共享式网络:·减少冲突:交换机将冲突隔绝在每一个端口(每个端口都是一个冲突域),避免了冲突的扩散。

·提升带宽:接入交换机的每个节点都可以使用全部的带宽,而不是各个节点共享带宽。

以太网交换机交换机的工作原理:·交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。

·交换机将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。

·如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发。

这一过程称之为泛洪(flood)。

·广播帧和组播帧向所有的端口转发。

交换机的三个主要功能:·学习:以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的端口映射起来存放在交换机缓存中的MAC地址表中。

·转发/过滤:当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧则转发至所有端口)。

·消除回路:当交换机包括一个冗余回路时,以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径。

交换机的工作特性:·交换机的每一个端口所连接的网段都是一个独立的冲突域。

·交换机所连接的设备仍然在同一个广播域内,也就是说,交换机不隔绝广播(唯一的例外是在配有VLAN的环境中)。

·交换机依据帧头的信息进行转发,因此说交换机是工作在数据链路层的网络设备交换机的操作模式交换机处理帧有不同的操作模式:存储转发:交换机在转发之前必须接收整个帧,并进行检错,如无错误再将这一帧发向目的地址。

帧通过交换机的转发时延随帧长度的不同而变化。

直通式:交换机只要检查到帧头中所包含的目的地址就立即转发该帧,而无需等待帧全部的被接收,也不进行错误校验。

由于以太网帧头的长度总是固定的,因此帧通过交换机的转发时延也保持不变。

注意:直通式的转发速度大大快于存储转发模式,但可靠性要差一些,因为可能转发冲突帧或带CRC错误的帧。

生成树协议消除回路:在由交换机构成的交换网络中通常设计有冗余链路和设备。

这种设计的目的是防止一个点的失败导致整个网络功能的丢失。

虽然冗余设计能够消除单点失败的问题,但也导致了交换回路的产生,它会导致以下问题。

·广播风暴·同一帧的多份拷贝·不稳定的MAC地址表因此,在交换网络中必须有一个机制来阻止回路,而生成树协议(Spanning Tree Protocol)的作用正在于此。

生成树的工作原理:生成树协议的国际标准是IEEE802.1b。

运行生成树算法的网桥/交换机在规定的间隔(默认2秒)内通过网桥协议数据单元(BPDU)的组播帧与其他交换机交换配置信息,其工作的过程如下:·通过比较网桥优先级选取根网桥(给定广播域内只有一个根网桥)。

相关文档
最新文档