2012年三校第三次联考数学试卷

合集下载

2025届江西省南昌三校高三第三次模拟考试数学试卷含解析

2025届江西省南昌三校高三第三次模拟考试数学试卷含解析

2025届江西省南昌三校高三第三次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( ) A .14B .13C .532D .3162.函数的图象可能是下面的图象( )A .B .C .D .3.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有( ) A .120种B .240种C .480种D .600种4.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是( )A .3?i ≤B .4?i ≤C .5?i ≤D .6?i ≤5.已知集合{}10A x x =+≤,{|}B x x a =≥,若A B R =,则实数a 的值可以为( )A .2B .1C .0D .2-6.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( ) A .12B .12-C .12i D .12i -7.函数2|sin |2()61x f x x=+ )A .B .C .D .8.如图是计算11111++++246810值的一个程序框图,其中判断框内应填入的条件是( )A .5k ≥B .5k <C .5k >D .6k ≤9.已知函数()5sin 12f x x π⎛⎫=+ ⎪⎝⎭,要得到函数()cos g x x =的图象,只需将()y f x =的图象( )A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 10.已知实数x ,y 满足2212x y +≤,则2222267x y x y x +-++-+的最小值等于( )A .625B .627C 63-D .962-11.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .23B .21C .35D .3212.()6321x x x ⎫-⎪⎭的展开式中的常数项为( ) A .-60B .240C .-80D .180二、填空题:本题共4小题,每小题5分,共20分。

2024-2025学年河北省沧州市三校联考高三(上)期中数学试卷(含答案)

2024-2025学年河北省沧州市三校联考高三(上)期中数学试卷(含答案)

2024-2025学年河北省沧州市三校联考高三(上)期中数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x ∈N|19<1x <14},B ={x||x|<7},则A ∩B =( )A. {5}B. {5,6}C. {4,5,6}D. {5,6,7}2.已知z−1z +3=2−i ,则z =( )A. −2−2iB. −2+2iC. −5+2iD. −5−2i3.在△ABC 中,D ,E 分别是边BC ,AC 的中点,点F 满足DF =2FA ,则EF =( )A. 13AB +16ACB. 13AB−16ACC. 16AB +13ACD. 16AB−13AC4.已知sin (α−β)=m ,tan α=4tan β,则sin (α+β)=( )A. 5m3B. 2m3C. 3m2D. 3m45.已知圆柱和圆锥的底面半径相等,体积相等,且它们的侧面积之比为1:3,则圆锥的高与底面半径之比为( )A.39 B. 13C.33 D.2 336.若函数f(x)={−x 2+2ax−6,x⩽1a ln x +5,x >1在R 上是增函数,则a 的取值范围为( )A. [1,+∞)B. [1,6]C. (−∞,1]∪[6,+∞)D. (0,1]∪[6,+∞)7.函数f(x)=3sin (2x−π4)−sin 3x 在区间[0,3π]上的零点个数为( )A. 4B. 5C. 6D. 88.已知函数f(x)的定义域为R ,f(x +2)为偶函数,f(x)−1为奇函数,且f(x)在区间[6,8]上是增函数.记a =f(−33),b =f(19),c =f(88),则( )A. a <b <cB. c <b <aC. b <c <aD. a <c <b二、多选题:本题共3小题,共18分。

2012东北三省三校联考(三模)理数

2012东北三省三校联考(三模)理数

哈师大附中2012高三第三次模拟考试(理科数学)参考答案一.选择题:BCCDC CADCA DA二.填空题:13.2281(3)25x y -+= 14. 10 15. 83 16. ①②④ 三.解答题:17. 解:(1)由已知:())6f x x πω=+ 3 分 由222πω=⨯得:2πω= 5 分所以:()sin()26f x x ππ=+ 故:3(1)2f = 7 分(2)由(1)知:()sin()226f x m x m πππ+=++ 为偶函数, 所以:sin()126m ππ+=±,故:()262m k k Z ππππ+=+∈ 即:22()3m k k Z =+∈ 故:正数m 的最小值为2312 分 18. 解:(Ⅰ)从5组数据中选取2组数据共有2510C =种情况,其中抽到的2组数据都在[25,30]的共有221C =种情况,所以事件“25302530m n ≤≤⎧⎨≤≤⎩”的概率为110. ……4分 (Ⅱ)根据数据,求得1(1011127)104x =+++=,1(23242615)224y =+++=, 41102311241226715911i i i x y ==⨯+⨯+⨯+⨯=∑,42222211011127414i i x ==+++=∑. 由公式求得12221911410223141441014n i ii n i i x y nx y b x nx∧==--⨯⨯===-⨯-∑∑, ……6分 3112210147a yb x ∧∧=-=-⨯=-, ……8分 所以y 关于x 的线性回归方程为311147y x ∧=-. ……10分 当14x =时,311216141477y ∧=⨯-=,2166|30|177-=<, 所以该研究所得到的线性回归方程是可靠的. ……12分19.解:(1)如图,以C 为原点建立空间直角坐标系,由已知:F(0,0,1)B,A , D (0,1,0),E( ……2分(BD ∴= ,(0,0,1)CF =,0)CA =0BD CF BD CF ∙=∴⊥0BD CA BD CA ∙=∴⊥又CF CA CBD =∴⊥ 平面AEFC ……5分 (2)由(1)知:(0,1,1)1)FE FD FB ==-=- 设平面EFB 法向量为111(,,)m x y z =由00m FE m FB ⎧=⎪⎨=⎪⎩得:3,1)m =- ……7分 设平面EFD 法向量为222(,,)n x y z =由00n FE n FD ⎧=⎪⎨=⎪⎩得:(,1)n = ……9分cos ,3m n ∴<>==- ……11分 所以:二面角B EFD --的余弦值为3 ……12分 20.. 解:(Ⅰ)设椭圆C 方程为:221(0,0,)mx ny m n m n +=>>≠依题意得:22221()(124(14m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩解得:2,4m n ==椭圆C 的方程为:22241x y += 5 分(Ⅱ) OM 和ON 的斜率之积为12 ,可知OM 和ON 的斜率存在且不为0, 设OM 的斜率为k , 则ON 的斜率为12k , 直线OM 的方程为:y kx =, 直线ON 的方程为:12y x k=, 设11(,)M x y ,2,2()N x y ,由22241x y y kx ⎧+=⎨=⎩得22(24)1k x +=,解得212124x k =+,221224k y k =+EB同理由2224112x y y x k ⎧+=⎪⎨=⎪⎩解得222212k x k =+ , 22214(12)y k =+ ………………9分∴22OM ON +=22221122x y x y +++ =222222112424124(12)k k k k k k +++++++ 223(12)34(12)4k k +==+. 即证得22OM ON +34=为定值. ………………………12分21.解:(1)由已知:/2()2(2)2f x ax x x =-<- 1分依题意得:/()0f x ≤在(0,2)上恒成立.1(2)a x x ⇔≤-在(0,2)上恒成立. 3分 因为:1()(2)u x x x =-在(0,2)上的最小值为1. 所以:a 的取值范围是:(,1]-∞5分 (2)1a >∴ 由22(1)2(1)'()0(2)2a x a f x x x---=-=<- 得:21(1)a x a--=解得:1212,12x x == …… 7分9分当:1x=:2()(12ln(10f x a=+>(1)a>所以:(,1x∈-∞时,()0f x>即:()0f x=在(,1-∞+内无解;令22ax e--=,则222ax e-=-<所以:2200()2ln440af x ax e a a-=+<-=,故(1x∈+又因为:()f x在(1上是减函数,所以:()0f x=在(1内必有一根。

2012届浙江省三校高三数学联考卷

2012届浙江省三校高三数学联考卷

2012届浙江省三校高三数学联考卷数学(文)试题一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 计算21ii- 得 ( ▲ ) A .3i -+ B. 1i -+ C. 1i - D. 22i -+(2) 从集合{1,1,2}A =-中随机选取一个数记为k ,从集合{2,1,2}B =-中随机选取一个数记为b ,则直线y kx b =+不经过第三象限的概率为 ( ▲ )A .29 B. 13 C. 49D. 59 (3) 某程序的框图如图所示,则运行该程序后输出的B 的值是( ▲ ) A .63 B .31 C .15 D .7 (4) 若直线l 不平行于平面a ,且l a ⊄,则A. a 内的所有直线与l 异面B. a 内不存在与l 平行的直线C. a 内存在唯一的直线与l 平行D. a 内的直线与l 都相交(5) 在圆06222=--+y x y x 内,过点E (0,1)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为 ( ▲ )A .25B .C .215D .(6)在下列区间中,函数()43x f x e x =+-的零点所在的区间为( ▲ ) A.(14,12) B.(-14,0) C.(0,14 ) D.(12,34) (7)设函数()sin(2)cos(2)44f x x x ππ=+++,则( ▲ )A.()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称 B.()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称 C.()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称 D.()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称(8)已知函数22, 1,(), 1,x ax x f x ax x x ⎧+≤⎪=⎨+>⎪⎩ 则“2a ≤-”是“()f x 在R 上单调递减”的( ▲ )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(9) 设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别是1F 、2F ,过点2F 的直线交双曲线右支于不同的两点M 、N .若△1MNF 为正三角形,则该双曲线的离心率为(▲)AB C D .3(10) 设)(x f 是定义在R 上的奇函数,且当0≥x 时,2)(x x f =. 若对任意的[,2]x t t ∈+,不等式)(2)(x f t x f ≥+恒成立,则实数t 的取值范围是 ( ▲ )A.)+∞B.[2)+∞,C.(0,2]D.[1]- 二.填空题:本大题共7小题,每小题4分,满分28分.(11) 右图是2011年CCTV 青年歌手电视大奖赛上某一位选手得分的茎叶统 计图,去掉一个最高分和一个最低分后,所剩数据的方差为_______▲ _。

浙江省三校高三联考数学(理)试题.pdf

浙江省三校高三联考数学(理)试题.pdf

2012届浙江省三校高三数学联考卷 数学(理)试题 一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 计算 得 ( ▲ ) A. B. C. D. (2) 从集合中随机选取一个数记为,从集合中随机选取一个数记为,则直线不经过第三象限的概率为 ( ▲ ) A. B. C. D. (3) 某程序的框图如图所示,则运行该程序后输出的的值是( ▲ ) A. B. C. D. (4) 在圆内,过点E(0,1)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为 ( ▲ ) A. B. C. D. (5) 已知函数有两个零点、,则有 ( ▲ ) (6) 若均为锐角,且,则的大小关系为( ▲ ) A. B. C. D.不确定 (7)在长方体ABCD—A1B1C1D1中,过长方体的顶点A与长方体12条棱所成的角都相等的平面有 ( ▲ ) A.1个 B.2个 C.3个 D.4个 (8)已知函数 则“”是“在上单调递减”的( ▲ ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 (9) 设双曲线的左、右焦点分别是、,过点的直线交双曲线右支于不同的两点、.若△为正三角形,则该双曲线的离心率为 A. B. C. D. 设是定义在上的奇函数,且当时,. 若对任意的,不等式恒成立,则实数的取值范围是A. B. C. D. 二.填空题:本大题共7小题,每小题4分,满分28分. (11) 二项式的展开式中的系数为,则实数等于___▲ . (12) 一空间几何体三视图如图所示,则该几何体的 体积为___▲ . (13) 已知实数满足约束条件 则的最大值等于___▲ . 你能HOLD住吗(14)在中,角所对的边分别是,若 ,,则的面积 等于 ___▲ . (15) 将“你能HOLD住吗”8个汉字及英文字母填入5×4的方 格内,其中“你”字填入左上角,“吗”字填入右下角,将 其余6个汉字及英文字母依次填入方格,要求只能横读或 竖读成一句原话,如图所示为一种填法,则共有___▲ 种 不同的填法。

广东省广州三校2024-2025学年高一上学期期中联考数学试题

广东省广州三校2024-2025学年高一上学期期中联考数学试题

广东省广州三校2024-2025学年高一上学期期中联考数学试题一、单选题1.已知集合{}24,,3401A x x k B x x x k ⎧⎫=∈=∈=--≤⎨⎬+⎩⎭ZZ ∣∣,则A B = ()A .{}1,1,2,4-B .{}4,2,1,1---C .[)(]1,00,4-⋃D .[)(]4,00,1- 2.给出下列命题,其中是正确命题的是()A .两个函数()f x =()g x 表示的是同一函数B .函数()1f x x=的单调递减区间是()(),00,-∞+∞ C .若函数()f x 的定义域为[]0,2,则函数()2f x 的定义域为[]0,1D .命题“[)0,x ∞∀∈+,210x +>”的否定是“(),0x ∃∈-∞,210x +≤”3.近日,我国某生命科学研究所的生物研究小组成员通过大量的实验和数据统计得出睡眠中的恒温动物的脉搏率f (单位时间内心跳的次数)与其自身体重W 满足()130=≠k f k W的函数模型.已知一只恒温动物兔子的体重为2kg 、脉搏率为205次1min -⋅,若经测量一匹马的脉搏率为41次1min -⋅,则这匹马的体重为()A .350kgB .450kgC .500kgD .250kg4.已知R a b c ∈,,,那么下列命题中正确的是()A .若a b >,则22ac bc >B .若a bc c>,则a b >C .若0a >,0b >,则22b a a ba b+≥+D .若22a b >且0ab >,则11a b<5.关于x 的不等式20ax bx c ++<的解集为()(),23,-∞-⋃+∞,则下列说法正确的个数是()个.①0a <;②关于x 的不等式0bx c +>的解集为(),6-∞-;③0a b c ++>;④关于x 的不等式20cx bx a -+>的解集为11,32∞∞⎛⎫⎛⎫--⋃+ ⎪ ⎪⎝⎭⎝⎭.A .1B .2C .3D .46.已知函数()f x 为定义在R 上的奇函数,且在[)0,1为减函数,在[)1,+∞为增函数,()20f =,则不等式()()110x f x +-≥的解集为()A .(][],11,3-∞-B .[]{}1,31-C .(][),11,-∞-+∞ D .[]13,-7.已知()g x 是定义域为R 的函数,()22g x ax =+,若对任意的1212x x <<<,都有()()12123g x g x x x ->--成立,则实数a 的取值范围是()A .[)0,∞+B .3,04⎡⎤-⎢⎥⎣⎦C .3,4∞⎛⎫-+ ⎪⎝⎭D .3,4∞⎡⎫-+⎪⎢⎣⎭8.若对于定义域内的每一个x ,都有()()f kx kf x =,则称函数()f x 为“双k 倍函数”.已知函数()f x 是定义在[]1,4上的“双2倍函数”,且当[)1,2x ∈时,()24127f x x x =-+-,若函数()y f f x a ⎡⎤=-⎣⎦恰有4个不同的零点,则实数a 的取值范围为()A .()1,2B .[]1,4C .()(]1,22,4 D .(]1,4二、多选题9.已知实数a 满足14a a -+=,下列选项中正确的是()A .1a a--=B .2214a a -+=C .1122a a -+=D .3322a a -+=10.已知0,0x y >>,且21x y +=,则下列正确的有()A .xy的最大值是18B .24x y +的最小值是C .12x y+的最大值是9D 11.定义在()0,∞+上的函数()f x 满足下列条件:(1)()()x f yf x xf y y ⎛⎫=-⎪⎝⎭;(2)当1x >时,()0f x >,则()A .()10f =B .当01x <<时,()0f x <C .()()22f x f x ≥D .()f x 在()1,+∞上单调递增三、填空题12.4130320.064(πe)9-+-⨯=⎝⎭.13.已知幂函数()f x过点⎛ ⎝⎭,若()(32)1a f f a <+-,则实数a 的取值范围是.14.定义区间(a ,b ),[a ,b ),(a ,b ],[a ,b ]的长度均为d b a =-,多个区间并集的长度为各区间长度之和,例如,(1,2) [3,5)的长度d=(2-1)+(5-3)=3.用[x ]表示不超过x 的最大整数,记{x }=x -[x ],其中x R ∈.设()[]{}f x x x =⋅,()1g x x =-,当0x k ≤≤时,不等式()()f x g x <解集区间的长度为5,则k 的值为.四、解答题15.已知集合12324x A x ⎧⎫=≤≤⎨⎬⎩⎭,{}22440,R B x x x m m =-+-≤∈.(1)若3m =,求A B ⋂;(2)若存在正实数m ,使得“x A ∈”是“x B ∈”成立的充分不必要条件,求正实数m 的取值范围.16.设()212y mx m x m =+-+-.(1)若不等式2y ≥-对一切实数x 恒成立,求实数m 的取值范围;(2)解关于x 的不等式()()2121R +-+-<-∈mx m x m m m .17.学习机是一种电子教学类产品,也统指对学习有辅助作用的所有电子教育器材.学习机较其他移动终端更注重学习资源和教学策略的应用,课堂同步辅导、全科辅学功能、多国语言学习、标准专业词典以及内存自由扩充等功能成为学习机的主流竞争手段,越来越多的学习机产品全面兼容网络学习、情境学习、随身学习机外教、单词联想记忆、同步教材讲解、互动全真题库、权威词典、在线图书馆等多种模式,以及大内存和SD/MMC 卡内存自由扩充功能根据市场调查.某学习机公司生产学习机的年固定成本为20万元,每生产1万部还需另投入16万元.设该公司一年内共生产该款学习机x 万部并全部销售完,每万部的销售收入为()R x 万元,且()24,0105300,10a x x R x b x xx -<≤⎧⎪=⎨->⎪⎩.当该公司一年内共生产该款学习机8万部并全部销售完时,年利润为1196万元;当该公司一年内共生产该款学习机20万部并全部销售完时,年利润为2960万元.(1)写出年利润W (万元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款学习机的生产中所获得的利润最大?并求出最大利润.18.双曲函数是工程数学中一类重要的函数,它也是一类最重要的基本初等函数,它的性质非常丰富,常见的两类双曲函数为正余弦双曲函数,解析式如下:双曲正弦函数e e sinh 2x xx --=,双曲余弦函数:e e cosh 2x x x -+=(1)请选择下列2个结论中的一个结论进行证明:选择______(若两个均选择,则按照第一个计分)①22cosh sinh 1x x -=②22cosh 2cosh sinh x x x=+(2)请证明双曲正弦函数sinh x 在R 上是增函数;(3)求函数22cosh sinh cosh y x x x =++在R 上的值域.19.已知函数()y F x =的定义域为D ,t 为大于0的常数,对任意x D ∈,都满足()()()2F x t F x t F x ++->,则称函数()y F x =在D 上具有“性质A ”.(1)试判断函数2x y =和函数2y x =-是否具有“性质A ”(无需证明);(2)若函数()y f x =具有“性质A ”,且()102f f ⎛⎫> ⎪⎝⎭,求证:对任意n ∈N ,都有()()1f n f n >+;(3)若函数()y g x =的定义域为R ,且具有“性质A ”,试判断下列命题的真假,并说明理由,①若()y g x =在区间(),0-∞上是严格增函数,则此函数在R 上也是严格增函数;②若()y g x =在区间(),0-∞上是严格减函数,则此函数在R 上也是严格减函数.。

天津市2012届高三第三次六校联考 理科数学试题

天津市2012届高三第三次六校联考 理科数学试题

数学试卷(理科)一、选择题(每题5分,共40分). 1.复数i 34ia z +=∈+R ,则实数a 的值是( ). A .43-B .43C .34D .34-2.下列有关命题的说法正确的是( ). A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. B .“1x =-”是“2560x x --=”的必要不充分条件.C .命题“存在x ∈R ,使得210x x ++<”的否定是:“对任意x ∈R ,均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.3.若某程序框图如图所示,则输出的p 的值是( ).A . 21B .26C . 30D . 554.在等差数列{}n a 中,()()3456814164336a a a a a a a ++++++=,那么该数列的前14项和为( ).A .20B .21C .42D .845.若二项式321nx x ⎛⎫+ ⎪⎝⎭的展开式中,只有第六项系数最大,则展开式中的常数项是( ).A .150B .210C .220D .2506.设F 是抛物线C 1:y 2=2px (p >0)的焦点,点A 是抛物线与双曲线C 2:22221x y ab-= (a>0,b >0)的一条渐近线的一个公共点,且AF ⊥x 轴,则双曲线的离心率为( ).(第3题图)A .BC.2D . 27.若()1e ,1x -∈,ln a x =,ln 12xb ⎛⎫= ⎪⎝⎭,ln exc =,则( ).A .c b a >>B .b a c >>C .a b c >>D .b c a >> 8.设()y f x =在(,1]-∞上有定义,对于给定的实数K ,定义(),()(),()K f x f x K f x K f x K≤⎧=⎨>⎩,给出函数1()24x x f x +=-,若对于任意(,1]x ∈-∞,恒有()()K f x f x =,则( ). A .K 的最大值为0 B .K 的最小值为0 C .K 的最大值为1 D .K 的最小值为1二、填空题(每题5分,共30分).9.某单位有青年职工160人,中年职工人数是老年职工人数的2倍,老、中、青职工共有430人.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为________________.10.如下图是一个组合几何体的三视图,则该几何体的体积是______________.(第10题图)11.若曲线1C :cos 1sin x r y r θθ=⎧⎨=+⎩(θ为参数,0r >)与曲线2C:2x y ⎧=⎪⎨=-+⎪⎩(t 为参数)有公共点,则r 的取值范围是____________.12.如图,PA 是圆O 的切线,A 是切点,直线P O 交圆O 于B 、C 两点,D 是O C 的中点,连结AD 并延长交圆O 于点E,若PA =30APB = ,则AE =________.13.如图,在△ABC 中,AN =31NC ,P 是BN 上的一点,若AP =m AB +112AC ,则实数m的值为___________.14.已知函数()f x 的定义域为[1,5-,部分对应值如下表.()f x 的导函数()y f x '=的图象如图所示:(第14题图)下列关于()f x 的命题: ①函数()f x 是周期函数; ②函数()f x 在[]0,2是减函数;③如果当[]1,x t ∈-时,()f x 的最大值是2,那么t 的最大值为4; ④当12a <<时,函数()y f x a =-有4个零点;⑤函数()y f x a =-的零点个数可能为0、1、2、3、4个. 其中正确命题的序号是_______________.二、填空题(每题5分,共30分).9._____________ 10._____________ 11._____________12._____________ 13._____________ 14._____________ 三、解答题.15.(本小题满分13分)已知函数()f x =4x ⋅cos4x 2cos4x +.(Ⅰ)若()1f x =,求2cos()3x π-的值;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,且满足1cos 2a C cb +=,求()f B 的取值范围.16(本小题满分13分)盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球(Ⅰ)求取出的3个球中至少有一个红球的概率;(Ⅱ)求取出的3个球得分之和恰为1分的概率;(Ⅲ)设ξ为取出的3个球中白色球的个数,求ξ的分布列和数学期望.17.(本小题满分13分)如图所示,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA = 1,PD= 2 ,E为PD上一点,PE = 2ED.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求二面角D-AC-E的余弦值;(Ⅲ)在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.EPDCBA18.(本小题满分13分)已知曲线)0()0,0(1:222222221≥=+≥>>=+x r y x C x b a by ax C :和曲线都过点A(0,-1),且曲线1C 所在的圆锥曲线的离心率为23.(Ⅰ)求曲线1C 和曲线2C 的方程;(Ⅱ)设点B,C 分别在曲线1C ,2C 上,21,k k 分别为直线AB,AC 的斜率,当124k k =时,问直线BC 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.19.(本小题满分14分)已知数列{}n a 、{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 项和为n S .(Ⅰ)求证:数列1n b ⎧⎫⎨⎬⎩⎭为等差数列;(Ⅱ)设2n n n T S S =-,求证:1n n T T +>;(Ⅲ)求证:对任意的n N *∈都有21122n n S n ++≤≤成立.20.(本小题满分14分)已知函数()()ln 1f x x ax =+-的图象在1x =处的切线与直线210x y +-=平行. (Ⅰ)求实数a 的值; (Ⅱ)若方程()()134f x m x =-在[]2,4上有两个不相等的实数根,求实数m 的取值范围;(Ⅲ)设常数1p ≥,数列{}n a 满足()1ln n n n a a p a +=+-(n ∈+N ),1ln a p =.求证:1n n a a +≥.数学答案(理科)一、选择题1—4 BDCB 5---8 BADD二、填空题9.18 10.π12836+11. 2⎡⎫+∞⎪⎢⎪⎣⎭12.7710 13.113 14.②三、解答题15.(本小题满分13分) (Ⅰ)解:由题意得:2()coscos 444x x x f x =+111cossin()22222262x x x π=++=++……3分若()1f x =,可得1sin()262x π+=,则22cos()2cos ()1332x x ππ-=--212sin ()1262x π=+-=-………6分(Ⅱ)由1cos 2a c cb +=可得222122a b cac b ab+-+=,即222b c a bc +-=2221cos 22b c aA bc+-∴==,得2,33A B C ππ=+=……9分2003236262B BB πππππ<<⇒<<⇒<+<13()sin()(1,)2622B f B π∴=++∈ ………13分16、(本小题满分13分) 解:(Ⅰ)12713937=-=CC P ………….. 3分(Ⅱ)记 “取出1个红色球,2个白色球”为事件B ,“取出2个红色球, 1个黑色球”为事件C ,则 122123243399C C C C 5()()()C C 42P B C P B P C +=+=+=. ………….. 6分(Ⅲ)ξ可能的取值为0123,,,. ………….. 7分 3639C 5(0)C 21P ξ===, 123639C C 45(1)C 84P ξ===,213639C C 3(2)C14P ξ===, 3339C 1(3)C84P ξ===. ………….. 11分ξ的分布列为:ξ的数学期望545310123121841484E ξ=⨯+⨯+⨯+⨯= . …13分17、(本小题满分13分) 解:(Ⅰ) PA = PD = 1 ,PD = 2 ,∴ PA 2+ AD 2= PD 2, 即:PA ⊥ AD ---2分又PA ⊥ CD , AD , CD 相交于点D,∴ PA ⊥ 平面ABCD -------4分 (Ⅱ)过E 作EG//PA 交AD 于G , 从而EG ⊥ 平面ABCD ,且AG = 2GD , EG = 13 PA = 13 , ------5分连接BD 交AC 于O, 过G 作GH//OD ,交AC 于H ,连接EH . GH ⊥ AC , ∴EH ⊥ AC ,∴∠ EHG 为二面角D —AC―E 的平面角. -----6分 ∴tan ∠EHG =EG GH = 22 .∴二面角D —AC―E 的平面角的余弦值为36-------8分 (Ⅲ)以AB , AD , PA 为x 轴、y 轴、z 轴建立空间直角坐标系.则A (0 ,0, 0),B (1,0,0) ,C (1,1,0),P (0,0,1),E (0 , 23 ,13 ),AC = (1,1,0),AE = (0 , 23 ,13) ---9分设平面AEC 的法向量n = (x, y,z ) , 则 ⎪⎩⎪⎨⎧=⋅=⋅0AE n AC n ,即:⎩⎨⎧=+=+020z y y x , 令y = 1 , 则n = (- 1,1, - 2 ) -------------10分 假设侧棱PC 上存在一点F,且CF = λCP , (0 ≤ λ ≤ 1), 使得:BF//平面AEC, 则BF ⋅n = 0.又因为:BF = BC + CF = (0 ,1,0)+ (-λ,-λ,λ)= (-λ,1-λ,λ),∴BF ⋅n =λ+ 1- λ- 2λ = 0 , ∴λ = 12,所以存在PC 的中点F, 使得BF//平面AEC . ----------------13分18. (本小题满分13分)解:(Ⅰ)由已知得21b =,24a =,21r =. ……2分 所以曲线1C 的方程为2214xy +=(0x ≥). ……3分 曲线2C 的方程为221x y +=(0x ≥). ……4分 (Ⅱ)将11y k x =-代入2214xy +=,得()22111480k xk x +-=.……5分设()11,A x y ,()22,B x y ,则10x =,1221841k x k =+,212122141141k y k x k -=-=+.所以2112211841,4141k k B k k ⎛⎫- ⎪++⎝⎭. ……7分 将21y k x =-代入221x y +=,得()2222120k x k x +-=. 设()33,C x y ,则232221k x k =+,2232322111k y k x k -=-=+,所以212222221,11k k C k k ⎛⎫- ⎪++⎝⎭. ……9分 因为214k k =,所以21122118161,161161k k C k k ⎛⎫- ⎪++⎝⎭则直线B C 的斜率2211221111122111614116141188416141BC k k k k k k k k k k ---++==--++, ……11分所以直线B C 的方程为:21122111418141441k k y x k k k ⎛⎫--=-- ⎪++⎝⎭,即1114y x k =-+.…12分 故B C 过定点()0,1. ……13分 19.(本小题满分14分)(Ⅰ)证明:由1n n b a =-得1n n a b =+代入11(1)n n n a a a +-=-得1(1)n n n b b b +=+整理得11n n n n b b b b ++-=,----------------------------------------------------------------1分 ∵0n b ≠否则1n a =,与12a =矛盾 从而得1111n nb b +-=, ---------------------------------------------------------------------3分∵1111b a =-= ∴数列1{}nb 是首项为1,公差为1的等差数列------------------4分(Ⅱ)∵1nn b =,则1n b n=. 111123n S n=++++∴2n n n T S S =-=111111111(1)231223nn nn+++++++-+++++=111122n n n +++++ ---------------------------------------------------6分证法1:∵1111111()2322122n n T T n n n n n n +-=+++-++++++++=11121221n n n +-+++=11102122(21)(22)n n n n -=>++++∴1n n T T +>.-----------------------------------------------------------------8分证法2:∵2122n n +<+ ∴112122n n >++∴1111022221n n T T n n n +->+-=+++∴1n n T T +>.---------------------------------------------------------------8分(Ⅲ)用数学归纳法证明: ①当1n =时2111111,1,122222n n S n +=+=++=+,不等式成立;-----------9分 ②假设当n k =(1k ≥,k N *∈)时,不等式成立,即21122k k S k +≤≤+,那么当1n k =+时1121111222k kk S ++=+++++11112212kk k +≥+++++ 112111222kk k k ++>++++个1122k =++112k +=+---------------------------------------------------------12分1121111222k kk S ++=+++++11112212kk k +≤+++++ 2111222kk kk <++++个=1(1)2k ++ ∴当1n k =+时,不等式成立由①②知对任意的n N *∈,不等式成立.---------------------------------------------------14分 20.(本小题满分14分) (Ⅰ)a x x f -+=11)(', 1a 21-a -2121)1(f '=∴=-=∴由题意知a ---------3分(Ⅱ)由(1)m x x x x x f =-+∴-+=)1(ln 4,)1ln()(原方程为, 设x x x g -+=))1ln(4)(,得xx xx g +-=-+=13114)(',0)3(',0)('g 3x 2,0)('g 4x 3=>≤≤<≤≤∴g x x 时,当时当, 上是减函数。

广东省惠州市第一中学、深圳实验学校、东莞中学等三校2024-2025学年高三上学期9月联考数学试题

广东省惠州市第一中学、深圳实验学校、东莞中学等三校2024-2025学年高三上学期9月联考数学试题

广东省惠州市第一中学、深圳实验学校、东莞中学等三校2024-2025学年高三上学期9月联考数学试题一、单选题 1.已知集合1{|0},{N |||2}2x M x Q x x x -=≤=∈≤+,则M Q ⋂=( ) A .{1,0,1}- B .[0,1]C .(2,1]-D .{0,1}2.设复数12iiz -=(i 为虚数单位),则在复平面内z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.设a ,R b ∈,则“0a b <<”是11a b>的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.函数()3sin 1x xf x x =+的部分图象大致为( ) A . B .C .D .5.已知对数函数log a y x =(0a >且1a ≠)是减函数,若3m a =,3a n =,log 3a p =,则,,m n p 的大小关系是( ) A .m n p >>B .n m p >>C .n p m >>D .p n m >>6.已知()()sin cos ,tan tan 3x y x y x y -=+-=,则()tan x y -=( ) A .1B .1-C .3D .3-7.已知函数()2ln ,021,0x x x f x x x x >⎧=⎨--+≤⎩函数()()()()21g x f x a f x a =---⎡⎤⎣⎦,则下列结论正确的是( )A .若1e<-a ,则()g x 恰有2个零点B .若()g x 恰有2个零点,则a 的取值范围是()1,2,e ∞∞⎛⎫--⋃+ ⎪⎝⎭C .若()g x 恰有3个零点,则a 的取值范围是[)0,1D .若12a ≤<,则()g x 恰有4个零点8.已知函数2()2ln f x ax x x =-+有两个不同的极值点12,x x ,则12()()f x f x +的取值范围为( )A .(,-∞B .(,-∞C .(,3)-∞-D .(,3]-∞-二、多选题9.设ω为正实数,已知函数()π4sin 3f x x ω⎛⎫=+ ⎪⎝⎭,则下列结论正确的是( )A .当1ω=时,函数()f x 的图象的一条对称轴为5π6x =B .已知()14f x =-,()24f x =,且12x x -的最小值为π2,则2ω=C .当2ω=时,函数()f x 的图象向左平移π12个单位长度后,得到函数()4cos2g x x = D .若()f x 在区间ππ,62⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围是10,3⎛⎤⎥⎝⎦10.已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则( )A .()f x 的图象关于点()2,1对称B .()f x 是以8为周期的周期函数C .20241(42)2024k f k =-=∑D .存在函数()h x ,使得对R x ∀∈,都有()()||h g x x =11.已知定义在[)0,+∞上的函数()f x 满足当[]0,2x ∈时,()2,0142,12x x f x x x ≤≤⎧=⎨-<≤⎩,当2x >时,满足()()2R f x mf x m =-∈,(m 为常数),则下列叙述中正确的为( )A .当12m =时,()31f = B .当[4,6]x ∈时,()f x 的解析式为()222(4),452(6),56m x x f x m x x ⎧-≤≤=⎨--<≤⎩ C .当1m >时,()24x m mf x ≥在[)0,+∞上恒成立D .当01m <<时,函数()f x 的图象与直线1*2N n y m n -=∈,在[]0,2n 上的交点个数为21n -三、填空题12.已知函数)2()3log f x x =,正数,a b 满足()(31)0f a f b +-=,则3b aab+的最小值为.13.药物的半衰期指的是血液中药物浓度降低到一半所需时间.在特定剂量范围内,t (单位,h )内药物在血液中浓度由1p (单位,g /mL μ)降低到2p (单位,g /mL μ),则药物的半衰期120.693ln ln tT p p ⋅=-.已知某时刻测得药物甲、乙在血液中浓度分别为36g /mL μ和54g /mL μ,经过一段时间后再次测得两种药物在血液中浓度都为24g /mL μ,设药物甲、乙的半衰期分别为1T ,2T ,则12T T =. 14.若,a b 为正实数,且21()e 2x f x ax bx =--在x ∈R四、解答题15.我们知道,函数y =f x 的图象关于坐标原点成中心对称图形的充要条件是函数y =f x 为奇函数,有同学发现可以将其推广为:函数y =f x 的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.已知函数()1212xf x -=+.(1)证明:函数()f x 的图象关于点()1,1对称;(2)判断函数()f x 的单调性(不用证明),若()()2522f a f a -+->,求实数a 的取值范围.16.记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知sin 2sin 0c B b C -=. (1)求角B ;(2)设AB 的中点为D ,若CD b =,且1a c -=,求ABC V 的面积.17.已知函数()()log (0xa f x a a a =->且1)a ≠.(1)求函数()f x 的定义域;(2)当2a =时,关于x 的不等式()()2log 21xf x x m -+≤+恒成立,求实数m 的最小值.18.已知函数32()3f x x mx m =-+.(1)当1m =时,求()f x 在点(0,(0))f 处的切线方程; (2)讨论()f x 的单调性;(3)若()f x 有三个不相等的零点123,,x x x ,且()f x 在点()(),i i x f x 处切线的斜率为()1,2,3i k i =,求m 的取值范围及123111k k k ++的值. 19.定义:如果函数()y f x =与()y g x =的图象上分别存在点M 和点N 关于x 轴对称,则称函数()y f x =和()y g x =具有“伙伴”关系. (1)设函数()(N )2n n f x x n n +=≥∈,,()1g x x =-,①证明()n y f x =和()y g x =在1(,1)2上具有“伙伴”关系;②若()n y f x =和()y g x =在1(,1)2上的关于x 轴的对称点M 和N 的横坐标为n x ,判断并证明数列23,,,n x x x L L 的增减性. (2)若函数()e 1x F x =-和sin ()1(0)m xG x m x=+<在区间(0,π)上具有“伙伴”关系,求m 的取值范围.。

2012年高三三校生数学模拟试卷

2012年高三三校生数学模拟试卷

2011——2012年安宁市博识学校模拟试卷一、选择题(每小题5分,共60分)1.函数y =2211x x ---的定义域是A.-1≤x ≤1B.x ≥1或x ≤-1C.0≤x ≤1D.{-1,1}2函数21(0)21x x y x +=<-的反函数是( )A.21log (1)1x y x x +=<-- B.21log (1)1x y x x +=>- C.21log (1)1x y x x -=<-+ D.21log (1)1x y x x -=>+ 3“2x <”是“260x x --<”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件4数列{}n a 满足()131n n a a n +=-≥且17a =,则3a 的值是( ) A 1 B 4 C -3 D 65不等式()302x x x +≤-的解集( ) A (][],30,2-∞-U B [][)3,02,-+∞U C []3,2-- D (],3[0,2)-∞-U6如果sin ()A π+=12,那么cos 32A π⎛⎫- ⎪⎝⎭的值是( ) A 12-B 12 C-2 D27化简:cottan 22x x -= (A)tan x (B)cot x (C)2tan x (D)2cot x 8函数y =Asin(ωx +φ)(A >0,ω>0,|φ|<2π=的图象如 图所示,则y 的表达式为 ( )A .y =2sin(611x 10π+) B .y =2sin(611x 10π-)C .y =2sin(2x +6π) D .y =2sin(2x -6π) 9双曲线x 2-y 2=1的离心率是(A)2 (B)22 (C)21(D)2 10要得到函数y=2cos (2x -4π)的图象,只需将函数y=2cos2x 的图象 (A )向左平移4π个单位 (B ) 向右平移4π个单位(C ) 向左平移8π个单位 (D ) 向右平移8π个单位11若f(x)是周期为4的奇函数,且f (-5)=1,则A .f(5)=1B .f(-3)=1C .f(1)=-1D .f(1)=112已知不等式⎩⎨⎧>≤--a x 02x x 2的解集是∅,则实数a 的取值范围是(A) a >2 (B)a <-1 (C)a ≥2 (D)a ≤-1 二、填空题(每小题5分,共40分) 13 522log 253log 64+=_______________14点(-2,1)到直线3x -4y -2=0的距离等于_________15在等差数列{a n }中,若a 5=4, a 7=6, 则a 9=______16椭圆122=+y mx 的准线与y 轴平行,那么m 的取值范围为17.已知A 和B 是两个命题,如果A 是B 的充分条件,那么A 是B 的_________条件.18命题“若x 、y 是奇数,则x +y 是偶数”的逆否命题是_________. 19.若不等式ax 2+bx +2>0的解集为{x |-3121<<x },则a +b =_________. 20.tg20°+tg40°+3tg20°tg40°的值是_______.答 题 卷一、选择题(每小题5分,共60分)二、填空题(每小题5分,共40分)13 14 15 16 17 18 19 20 三、解答题(本题共50分)21 在1和15之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,求这两个正数22已知cos(α-2,32)2sin(,91)2πβαβ且=--=<α<π,0<β<2π,求cos(α+β)的值.23已知点A(-2,-1)和B(2,3),圆C:x2+y2= m2,当圆C与线段..AB没有公共点时,求m的取值范围.24周长为l的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形底边上为2x,求此框架围成图形的面积y与x的函数式y=f(x),并写出它的定义域.25已知函数f(x)=sin 2x+2sinxcosx+3cos 2x 求 (1) f(x) 的单调递增区间。

山西省四校2012届高三数学第三次联考试题 理

山西省四校2012届高三数学第三次联考试题 理

2012届高三年级第三次四校联考数学(理)试题(满分150分,考试时间为120分钟)一、选择题:(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z 的共轭复数为z ,若1z i =-(i 为虚数单位)则2zz z+的值为 A.i 3- B.i 2- C.i D.i - 2.曲线ln y x x =在点),(e e 处的切线与直线1x ay +=垂直,则实数a 的值为A .2 B.-2 C.12 D.12-3.设函数)0)(32sin()32sin()(>-++=ωπωπωx x x f 的最小正周期为π,则A.)(x f 在)2,0(π单调递减B.)(x f 在)4,0(π单调递增C.)(x f 在)2,0(π单调递增D.)(x f 在)4,0(π单调递减4.已知等比数列{}n a 中,各项都是正数,且2312,21,a a a 成等差数列,则8967a a a a ++等于A.21+B.21-C.223+D.223-5. 下列命题中是假命题的是 A.m R ∃∈,使243()(1)mm f x m x -+=-⋅是幂函数B.0a ∀>,函数2()ln ln f x x x a =+-有零点C.,R αβ∃∈,使cos()cos cos αβαβ+=+D.R ϕ∀∈,函数()sin()f x x ϕ=+都不是偶函数6. 已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =3,BC =2,则棱锥O -ABCD 的体积为A. 51B. 351C. 251D. 5167. 定义在R 上的函数()x f 满足()()()()⎩⎨⎧>---≤-=0,210,8log 2x x f x f x x x f ,则()3f 的值为A. 1B.2C.2-D.3-8. 连续投掷两次骰子得到的点数分别为n m ,,向量(,)a m n =与向量)0,1(=b的夹角记为α,则α)4,0(π∈的概率为A.185B.125C.21D.1279.执行如图所示的程序框图,输入N 的值为2012, 则输出S 的值是 A.2011 B.2012C.2010D.200910.设x 、y 满足约束条件⎪⎩⎪⎨⎧≥≤+-≥+-00432032y y x y x ,若目标函数by ax z +=(其中0,0>>b a )的最大值为3,则ba 21+的最小值为 A.3B.1C.2D.411.已知双曲线22221(0,0)x y a b a b-=>>与抛物线28y x =有一个公共的焦点F ,且两曲线的一个交点为P ,若|PF|=5,则双曲线的渐近线方程为 A.33y x =±B.3y x =±C.2y x =±D.22y x =±12. 已知函数 ()x f y =是定义在R 上的增函数,函数()1-=x f y 的图象关于点(1, 0)对称. 若对任意的R y x ∈,,不等式()()0821622<-++-y y f x x f 恒成立,则当x >3时,22y x +的取值范围是A. (3, 7)B. (9, 25)C. (13, 49)D. (9, 49)二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在题中横线上) 13. 若0sin a xdx π=⎰,则二项式61()a x x-展开式中含x 的项的系数是_______. 14. 有七名同学站成一排照相,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有_________.15.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是______(单位:m 2).正视图 侧视图 俯视图16. 函数|1|,1()1()1,12x a x f x x -=⎧⎪=⎨+≠⎪⎩若关于x 的方程22()(23)()30f x a f x a -++=有五个不同的实数解,则a 的取值范围是________.三、解答题(本大题共6小题,满分70分,解答应给出文字说明,证明过程或演算步骤) 17.(本题满分12分)在ABC ∆中,a ,b ,c 分别是角A,B,C 的对边,且(2)cos cos 0a c B b C ++=. (1)求角B 的值;(2)已知函数()2cos(2)f x x B =-,将()f x 的图像向左平移12π个单位长度后得到函数()g x 的图像,求()g x 的单调增区间.18.(本题满分12分)如图,四棱锥S ABCD -的底面是正方形,SD ⊥平面ABCD ,SD AD a ==,点E 是SD 上的点,且()01DE a λλ=<≤.(1)求证:对任意的(]0,1λ∈,都有AC ⊥BE ; (2)若二面角C-AE-D 的大小为60,求λ的值.19.(本题满分12分)中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q (简称血酒含量,单位是毫克/100毫升),当20≤Q ≤80时,为酒后驾车;当Q >80时,为醉酒驾车.某市公安局交通管理部门于2011年2月的某天晚上8点至11点在市区设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q ≥140的人数计入120≤Q <140人数之内).(1)求此次拦查中醉酒驾车的人数;(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数X 的分布列和期望.20.(本题满分12分)已知椭圆2222:1x y C a b +=(0)a b >>的离心率为22,以原点为圆心,椭圆的短半轴长为半径的圆与直线20x y -+=相切.DABCS E(1)求椭圆C 的方程;(2) 若过点M (2,0)的直线与椭圆C 相交于两点,A B ,设P 为椭圆上一点,且满足OP t OB OA =+(O 为坐标原点)PB PA <25时,求实数t 取值范围.21. (本题满分12分)已知函数1()(2)ln 2()f x a x ax a R x=-++∈. (1)当0a =时,求()f x 的极值; (2)求()f x 的单调区间;(3)若对任意的[]12(3,2),,1,3a x x ∈--∈,恒有12(ln3)2ln3()()m a f x f x +->- 成立,求实数m 的取值范围. 请考生在(22)、(23)、(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本题满分10分)选修4-1:几何证明与选讲如图,已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点B .C ,APC ∠的平分线分别交AB .AC 于点D .E .(1)证明:ADE AED ∠=∠.(2)若AC=AP ,求PCPA的值. 23. (本题满分10分)选修4-4:坐标系与参数方程已知点(1cos ,sin )P αα+,参数[0,]απ∈,点Q 在曲线C :92)4ρπθ=+上(1)求点P 的轨迹方程和曲线C 的直角坐标方程; (2)求点P 与点Q 之间距离的最小值。

2012数学三试题及答案

2012数学三试题及答案

x→0
x4
( ) 【解析】 lim ex2
e − 2−2cos x
e2−2cos x = lim
e −1 x2 +2cos x−2
x2 + 2 cos x − 2
= lim
=
1
x→0
x4
x→0
x4
x→0
x4
12
(16)(本题满分 10 分)
∫∫ 计算二重积分 ex xydxdy ,其中 D 为由曲线 y = x 与 y = 1 及 y 轴为边界的无界区域
(2) 设函数 y(x) = (ex −1)(e2x − 2)⋯(enx − n), 其中 n 为正整数,则 y '(0) =
()
(A) (−1)n−1(n −1)! (B) (−1)n (n −1)! (C) (−1)n−1n!
(D) (−1)n n!
答案:(A)
【解析】因为 y '(0) = lim y(x) − y(0) = lim (ex −1)(e2x − 2)⋯(enx − n) = (−1)n−1(n −1)!
=
⎜ ⎜
0
1
0
⎟ ⎟


⎜⎝ 0 0 2⎟⎠
P = (α1,α2 ,α3 ),Q = (α1 + α2 ,α2 ,α3 ), 则 Q−1AQ =
()
⎛1 0 0⎞
(A)
⎜ ⎜
0
2
0
⎟ ⎟
⎜⎝ 0 0 1 ⎟⎠
⎛1 0 0⎞
(B)
⎜ ⎜
0
1
0
⎟ ⎟
⎜⎝ 0 0 2⎟⎠
⎛2 0 0⎞
(C)
⎜ ⎜
0

2012六校第三次联考理科数学试题

2012六校第三次联考理科数学试题

主视图左视图2222012届第三次六校联考 高三数学(理科)试题 2012. 2.8命题人:田立新 张和发本试卷共4页,21小题,满分150分.考试用时120分钟. 参考公式:锥体体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高. 第 Ⅰ 卷一.选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,A B 是非空集合,命题甲:AB B =,命题乙:A B ⊂≠,那么 ( )A.甲是乙的充分不必要条件B. 甲是乙的必要不充分条件C.甲是乙的充要条件D. 甲是乙的既不充分也不必要条件 2.复数21ii =- ( ) A . 1i - B. 1i -+ C. 1i + D. 1i --3.已知点(,)N x y 在由不等式组002x y x y x +≥⎧⎪-≥⎨⎪≤⎩确定的平面区域内,则(,)N x y 所在平面区域的面积是( )A .1B .2C .4D .84.等差数列{a n }中,已知35a =,2512a a +=,29n a =,则n 为 ( ) A. 13 B. 14 C. 15 D. 165. 函数21log 1xy x+=-的图像 ( ) A . 关于原点对称 B. 关于主线y x =-对称 C. 关于y 轴对称 D. 关于直线y x =对称6.若某空间几何体的三视图如图所示,则该几何体的体积是 ( )A.B.7.已知平面,,αβγ,直线,m l ,点A ,有下面四个命题: A . 若l α⊂,mA α=则l 与m 必为异面直线;B. 若,l l m α则m α;C. 若 , , ,l m l m αββα⊂⊂则 αβ;D. 若 ,,,m l l m αγγαγβ⊥==⊥,则l α⊥.其中正确的命题是 ( )8.某种游戏中,黑、黄两个“电子狗”从棱长为1的正方体ABCD -A 1B 1C 1D 1的顶点A 出发沿棱向前爬行,每爬完一条棱称为“爬完一段”,黑“电子狗”爬行的路线是AA 1→A 1D 1→…,黄“电子狗”爬行的路线是AB →BB 1→…,它们都遵循如下规则:所爬行的第i +2段与第i 段所在直线必须异面直线(其中i 是正整数).设黑“电子狗”爬完2012段、黄“电子狗”爬完2011段后各自停止在正方体的某个顶点处,这时黑、黄“电子狗”间的距离是 ( ) A. 0B. 1C.2D.3第 Ⅱ 卷二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题:第9、10、11、12、13题是必做题,每道试题考生都必须做答.9. 0-=⎰.10.函数2()sin cos2f x x x =+,x R ∈的最小正周期为 11.在直角ABC ∆中, 90=∠C ,30=∠A , 1=BC ,D 为斜边AB 的中点,则 CD AB ⋅= .12.若双曲线22219x y a -=(0)a >的一条渐近线方程为320x y -=,则以双曲线的顶点和焦点分别为焦点和顶点的椭圆的离心率为__________.13.将“杨辉三角”中的数从左到右、从上到下排 成一数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…, 右图所示程序框图用来输出此数列的前若干项并求其和,若输入m=4则相应最后的输出S 的值是__________.ONMBA(二)选做题:第14、15题是选做题,考生只能从中选做一题.14.(坐标系与参数方程选做题)已知曲线1C 、2C 的极坐标方程分别为2cos()2πρθ=-+,cos()104πθ-+=,则曲线1C 上的点与曲线2C 上的点的最远距离为________.15.(几何证明选讲选做题) 如图,点M 为O 的弦AB 上的一点,连接MO .MN OM ⊥,MN 交圆于N ,若2MA =,4MB =,则MN = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,S 是该三角形的面积, (1)若(2sin cos ,sin cos )2B a B B B =-,(sin cos ,2sin )2Bb B B =+,//a b ,求角B 的度数;(2)若8a =,23B π=,S =b 的值.17(本小题满分12分)甲、乙两人各射击一次,击中目标的概率分别是32和4假设两人射击是否击中目标,相互 之间没有影响;每人各次射击是否击中目标,相互之间也没有影响⑴求甲射击3次,至少1次未击中...目标的概率; ⑵假设某人连续2次未击中...目标,则停止射击,问:乙恰好射击4次后,被中止射击的概率是多少?⑶设甲连续射击3次,用ξ表示甲击中目标的次数,求ξ的数学期望E ξ. (结果可以用分数表示)图1图218. (本小题满分14分)如图,四边形ABCD 中(图1),E 是BC 的中点,1,DC =BC =,AB AD ==将(图1)沿直线折起,使二面角A BD C --为060(如图2) (1)求证:AE ⊥平面BDC ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点B 到平面ACD 的距离.19(本小题满分14分)已知函数()241(12)ln(21)22x a f x a x x +=-+++ .(1)设1a =时,求函数()f x 极大值和极小值; (2)a R ∈时讨论函数()f x 的单调区间.20.(本小题满分l4分)如图,P 是抛物线C :212y x =上横坐标大于零的一点,直线l 过点P 并与抛物线C 在点P 与抛物线C 相交于另一点Q .(1)当点P 的横坐标为2时,求直线l 的方程;(2)若0OP OQ ⋅=,求过点,,P Q O 的圆的方程.21. (本小题满分l4分)已知数列{}n a 的前n 项和为n S ,正数数列{}n b 中 ,2e b =(e 为自然对数的底718.2≈)且*N n ∈∀总有12-n 是n S 与n a 的等差中项,1 1++n n n b b b 与是的等比中项.(1) 求证: *N n ∈∀有n n n a a 21<<+; (2) 求证:*N n ∈∀有13ln ln ln )1(2321-<+++<-n n n a b b b a .。

2025届福建省福州市三校联考高三第三次模拟考试数学试卷含解析

2025届福建省福州市三校联考高三第三次模拟考试数学试卷含解析

2025届福建省福州市三校联考高三第三次模拟考试数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|A x y ==,2{|}10B x x x =-+≤,则A B =( ) A .[12]-, B.[-C.(-D.⎡⎣2.若关于x 的不等式1127kxx ⎛⎫≤⎪⎝⎭有正整数解,则实数k 的最小值为( ) A .9B .8C .7D .63.将函数()2sin(3)(0)f x x ϕϕπ=+<<图象向右平移8π个单位长度后,得到函数的图象关于直线3x π=对称,则函数()f x 在,88ππ⎡⎤-⎢⎥⎣⎦上的值域是( ) A .[1,2]-B.[C.⎡⎤⎢⎥⎣⎦D.[4.已知点()11,A x y ,()22,B x y 是函数()2f x bx =的函数图像上的任意两点,且()y f x =在点1212,22x x x x f ⎛++⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线与直线AB 平行,则( ) A .0a =,b 为任意非零实数 B .0b =,a 为任意非零实数 C .a 、b 均为任意实数D .不存在满足条件的实数a ,b5.已知集合{2,3,4}A =,集合{},2B m m =+,若{2}A B =,则m =( )A .0B .1C .2D .46.已知1F 、2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,过2F 作双曲线C 的一条渐近线的垂线,分别交两条渐近线于点A 、B ,过点B 作x 轴的垂线,垂足恰为1F ,则双曲线C 的离心率为( ) A .2BC.D7.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .128.已知命题p :,x R ∃∈使1sin 2x x <成立. 则p ⌝为( ) A .,x R ∀∈1sin 2x x ≥均成立 B .,x R ∀∈1sin 2x x <均成立 C .,x R ∃∈使1sin 2x x ≥成立D .,x R ∃∈使1sin 2x x 成立 9.已知直线2:0l x m y +=与直线:0n x y m ++=则“//l n ”是“1m =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件10.已知数列{}n a 的通项公式为22n a n =+,将这个数列中的项摆放成如图所示的数阵.记n b 为数阵从左至右的n 列,从上到下的n 行共2n 个数的和,则数列n n b ⎧⎫⎨⎬⎩⎭的前2020项和为( )A .10112020B .20192020C .20202021D .1010202111.已知向量(,1),(3,2)a m b m ==-,则3m =是//a b 的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件12.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

高中数学大题规范解答-全得分系列之(十)概率与统计的综合问题答题模板

高中数学大题规范解答-全得分系列之(十)概率与统计的综合问题答题模板

概率与统计是高中数学的重要学习内容,在高考试卷中,每年都有所涉及,以解答题形式出现的试题常常设计成包含概率计算,统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,注重考查基础知识和基本方法;以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算.“大题规范解答——得全分”系列之(十)概率与统计的综合问题答题模板[典例](2012辽宁高考改编·满分12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料判断是否有95%的把握认为“体育迷”与性别有关?(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),[教你快速规范审题]1.审条件,挖解题信息 观察条件―→−−−−−−→借助直方可确定图非体育迷及体育迷人数2.审结论,明解题方向观察所求结论―→完成2×2列联表并判断“体育迷”与性别的相关性 −−−→需要确定a ,b ,c ,d 及K 2的值3.建联系,找解题突破口由直方图及条件确定体育迷与非体育迷人数―→完成列联表―→计算K 2可判断结论1.审条件,挖解题信息观察条件―→确定“超级体育迷”标准且有2名女性“超级体育迷” −−−−−−→由率分布直方频图 确定“超级体育迷”的人数2.审结论,明解题方向观察所求结论―→从“超级体育迷”中任取2人求至少有1名女性观众的概率 −−−−→分分析类1名女性观众或两名女性观众3.建联系,找解题突破口由频率分布直方图确定“超级体育迷”的人数−−−−−→列法列出举举所有基本事件并计数为n 和至少有1名女性的基本事件,计数为m mP n−−−−→代入=求概率[教你准确规范解题](1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而完成2×2列联表如下:(3分)将2×2列联表中的数据代入公式计算,得K 2=100×(30×10-45×15)275×25×45×55=10033≈3.030.因为3.030<3.841,所以我们没有95%的把握认为“体育迷”与性别有关.(6分)(2)由频率分布直方图可知,“超级体育迷”为5人,从而一切可能结果所组成的基本事件为(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2),其中a i 表示男性,i =1,2,3,b j 表示女性,j =1,2.由10个基本事件组成,而且这些基本事件的出现是等可能的.(9分)用A 表示“任选2人中,至少有1人是女性”这一事件,则A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)},(11分)事件A 由7个基本事件组成,因而P (A )=710.(12分)[常见失分探因]忽视直方图纵轴表示为频率组距导致每组人数计算失误.K 2的计算不准确、导致结果判断出错.1.“超级体育迷”人数计算错误导致失误.2.由5人中任取2人列举出所有可能结果时重复或遗漏某一情况导致失误.————————————[教你一个万能模板]—————————————————―→―→―→―→1.(2012·佛山模拟)已知某车间加工零件的个数x 与所花费时间y (h)之间的线性回归方程为y ^=0.01x +0.5,则加工600个零件大约需要的时间为( )A .6.5 hB .5.5 hC .3.5 hD .0.3 h解析:选A 将600代入线性回归方程y ^=0.01x +0.5中得需要的时间为6.5 h. 2.(2013·衡阳联考)已知x 与y 之间的一组数据:已求得关于y 与x 的线性回归方程y ^=2.1x +0.85,则m 的值为( ) A .1 B .0.85 C .0.7D .0.5解析:选D 回归直线必过样本中心点(1.5,y ),故y =4,m +3+5.5+7=16,得m =0.5.3.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是( )A .列联表中c 的值为30,b 的值为35B .列联表中c 的值为15,b 的值为50C .根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”D .根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系” 解析:选C 由题意知,成绩优秀的学生数是30,成绩非优秀的学生数是75,所以c =20,b =45,选项A 、B 错误.根据列联表中的数据,得到K 2=105×(10×30-20×45)255×50×30×75≈6.109>3.841,因此有95%的把握认为“成绩与班级有关系”.4.已知x 、y 的取值如下表:从所得的散点图分析,y 与x 线性相关,且y =0.95x +a ,则a ^=( ) A .2.5 B .2.6 C .2.7D .2.8解析:选B 因为回归方程必过样本点的中心(x ,y ),又x =2,y =4.5,则将(2,4.5)代入y ^=0.95x +a ^可得a ^=2.6.5.(2012·湖南高考)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不.正确的是( ) A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg解析:选D 由于回归直线的斜率为正值,故y 与x 具有正的线性相关关系,选项A 中的结论正确;回归直线过样本点的中心,选项B 中的结论正确;根据回归直线斜率的意义易知选项C 中的结论正确;由于回归分析得出的是估计值,故选项D 中的结论不正确.6.(2013·合肥检测)由数据(x 1,y 1),(x 2,y 2),…,(x 10,y 10)求得线性回归方程y ^=b ^x +a ^,则“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B x 0,y 0为这10组数据的平均值,又因为回归直线y ^=b ^x +a ^必过样本中心点(x ,y ),因此(x 0,y 0)一定满足线性回归方程,但坐标满足线性回归方程的点不一定是(x ,y ).7.(2012·唐山模拟)考古学家通过始祖鸟化石标本发现:其股骨长度x (cm)与肱骨长度y (cm)的线性回归方程为y ^=1.197x -3.660,由此估计,当股骨长度为50 cm 时,肱骨长度的估计值为________ cm.解析:根据回归方程y ^=1.197x -3.660,将x =50代入,得y =56.19,则肱骨长度的估计值为56.19 cm.答案:56.198.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K 2的观测值k =27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(有关,无关)解析:由观测值k =27.63与临界值比较,我们有99%的把握说打鼾与患心脏病有关. 答案:有关9.(2012·宁夏模拟)某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程y ^=bx +a 中b =-2,预测当气温为-4℃时,用电量的度数约为________.解析:x =10,y =40,回归方程过点(x ,y ), ∴40=-2×10+a . ∴a =60.∴y ^=-2x +60.令x =-4,∴y ^=(-2)×(-4)+60=68. 答案:6810.已知x ,y 的一组数据如下表:(1)从x ,y (2)对于表中数据,甲、乙两同学给出的拟合直线分别为y =13x +1与y =12x +12,试利用“最小平方法(也称最小二乘法)”判断哪条直线拟合程度更好.解:(1)从x ,y 中各取一个数组成数对(x ,y ),共有25对,其中满足x +y ≥10的有(6,4),(6,5),(7,3),(7,4),(7,5),(8,2),(8,3),(8,4),(8,5),共9对.故所求概率P =925.(2)用y =13x +1作为拟合直线时,所得y 值与y 的实际值的差的平方和为S 1=⎝⎛⎭⎫43-12+(2-2)2+(3-3)2+⎝⎛⎭⎫103-42+⎝⎛⎭⎫113-52=73.用y =12x +12作为拟合直线时,所得y 值与y 的实际值的差的平方和为S 2=(1-1)2+(2-2)2+⎝⎛⎭⎫72-32+(4-4)2+⎝⎛⎭⎫92-52=12. ∵S 2<S 1,∴直线y =12x +12的拟合程度更好.11.(2012·东北三省联考)某学生对其亲属30人的饮食习惯进行了一次调查,并用茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)(1)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯; (2)根据以上数据完成下列2×2的列联表:(3)能否有99%的把握认为其亲属的饮食习惯与年龄有关,并写出简要分析. 解:(1)30位亲属中50岁以上的人多以食蔬菜为主,50岁以下的人多以食肉为主. (2)(2)K 2=30(8-128)12×18×20×10=30×120×12012×18×20×10=10>6.635,有99%的把握认为亲属的饮食习惯与年龄有关.12.某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如下表:(1)(2)求年推销金额y 关于工作年限x 的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额. 解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为y ^=b ^x +a ^.则b ^=∑x =15(x i -x )(y i -y -)∑x =15 (x i -x )2=1020=0.5,a ^=y -b ^x -=0.4, ∴年推销金额y 关于工作年限x 的线性回归方程为 y ^=0.5x +0.4.(3)由(2)可知,当x =11时,y ^=0.5x +0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年推销金额为5.9万元.1.某研究机构对高三学生的记忆力x 和判断力y 进行统计分析,所得数据如下表:则y 对x 的线性回归直线方程为( ) A.y ^=2.3x -0.7 B.y ^=2.3x +0.7 C.y ^=0.7x -2.3D.y ^=0.7x +2.3解析:选C ∵∑i =14x i y i =6×2+8×3+10×5+12×6=158,x =6+8+10+124=9,y =2+3+5+64=4.∴b ^=158-4×9×436+64+100+144-4×81=0.7,a ^=4-0.7×9=-2.3.故线性回归直线方程为y ^=0.7x -2.3.2.(2012·东北三校联考)某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2×2列联表进行独立性检验,经计算K 2=7.069,则有________的把握认为“学生性别与是否支持该活动有关系”.附:解析:因为7.069与附表中的6.635最接近(且大于6.635),所以得到的统计学结论是:有99%的把握认为“学生性别与是否支持该活动有关系”.答案:99%3.某网站就“民众是否支持加大修建城市地下排水设施的资金投入”进行投票.按照北京暴雨前后两个时间收集有效投票,暴雨后的投票收集了50份,暴雨前的投票也收集了50份,所得统计结果如下表:已知工作人员从所有投票中任取一个,取到“不支持投入”的投票的概率为25.(1)求列联表中的数据x ,y ,A ,B 的值;(2)绘制条形统计图,通过图形判断本次暴雨是否影响到民众对加大修建城市地下排水设施的投入的态度?(3)能够有多大把握认为北京暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关?附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )解:(1)设“从所有投票中抽取一个,取到不支持投入的投票”为事件A , 由已知得P (A )=y +30100=25,所以y =10,B =40,x =40,A =60.(2)由(1)知北京暴雨后支持为4050=45,不支持率为1-45=15,北京暴雨前支持率为2050=25,不支持率为1-25=35.条形统计图如图所示,由图可以看出暴雨影响到民众对加大修建城市地下排水设施的投入的态度.(3)K 2=100(30×40-20×10)250×50×40×60=1000 00050×20×60=503≈16.78>10.828.故至少有99.9%的把握认为北京暴雨对民众是否赞成加大对修建城市地下排水设施的投入有关.1.以下是某地最新搜集到的二手楼房的销售价格y (单位:万元)和房屋面积x (单位:m 2)的一组数据:若销售价格y 和房屋面积x 具有线性相关关系. (1)求销售价格y 和房屋面积x 的回归直线方程;(2)根据(1)的结果估计当房屋面积为150 m 2时的销售价格.解:(1)由题意知,x =80+105+110+115+1355=109,y =18.4+22+21.6+24.8+29.25=23.2.设所求回归直线方程为y ^=bx +a ,则b =∑i =1n(x i -109)(y i -23.2)∑i =1n(x i -109)2=3081 570≈0.196 2, a =y -b x ≈23.2-0.196 2×109=1.814 2,故回归直线方程为y ^=0.196 2x +1.814 2. (2)由(1)知,当x =150时,估计房屋的销售价格为y ^=0.196 2×150+1.814 2=31.244 2(万元).2.(2012·徐州二模)在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520名女性中,有6人患色盲.(1)根据以上数据建立一个2×2列联表;(2)若认为“性别与患色盲有关系”,求出错的概率. 解:(1)2×2列联表如下:(2)假设H 0:“性别与患色盲没有关系”,根据(1)中2×2列联表中数据,可求得K 2=1 000×(38×514-6×442)2480×520×44×956≈27.14,又P (K 2≥10.828)=0.001,即H 0成立的概率不超过0.001,故若认为“性别与患色盲有关系”,则出错的概率为0.1%.。

黑龙江省哈三中2012届高三数学第三次模拟考试 文 新人教A版【会员独享】

黑龙江省哈三中2012届高三数学第三次模拟考试 文 新人教A版【会员独享】

2012届四校联考第三次高考模拟考试数学试卷(文史类)考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的某某、某某填写清楚;(2)选择题必须使用2B 铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整, 字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I 卷 (选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知复数i z 311-=,i z 2322-=,则21z z ⋅等于A. 8B. 8-C. i 8D. i 8-2. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是A. )2()1()23(f f f <-<- B. )2()23()1(f f f <-<-C. )23()1()2(-<-<f f fD. )1()23()2(-<-<f f f3. 已知角α2的顶点在原点, 始边与x 轴非负半轴重合, 终边过⎪⎪⎭⎫⎝⎛-23,21, )[πα2,02∈则 =αtanA. 3-B. 3C. 33D. 33±4. 已知P 为边长为2的正方形ABCD 及其内部一动点,若PBC PAB ∆∆,面积均不大于1,则BP AP ⋅取值X 围是A. ⎪⎭⎫⎢⎣⎡23,21B. ()2,1-C. ⎥⎦⎤ ⎝⎛21,0 D. []1,1-5.已知某几何体的正视图和侧视图均为边长为1的正方形,则这个几何体的体积不可能 是 `A.21 B.4π C. 1 D.3π 6. 已知等差数列{}n a 的公差为3-,若其前13项和15613=S , 则=++1062a a a A. 36 B. 39 C. 42 D. 45 7. 右面的程序框图表示求式子32×35×311×323×347×395的值, 则判断框内可以填的条件为 A. ?90≤i B. ?100≤i C.?200≤i D. ?300≤i 8. 下列命题中正确的是A. 函数[]π2,0,sin ∈=x x y 是奇函数B. 函数)26sin(2x y -=π在区间⎥⎦⎤⎢⎣⎡3,0π上是单调递增的 C. 函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值是1- D. 函数x x y ππcos sin ⋅=是最小正周期为2的奇函数9. 已知21,F F 分别是双曲线12222=-by a x 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于B A ,两点,若2ABF ∆是锐角三角形,则该双曲线离心率的取值X 围是A. ⎪⎪⎭⎫ ⎝⎛+221,1B. ⎪⎪⎭⎫ ⎝⎛+∞+,221 C. ()21,1+ D. ()+∞+,21 10. 已知0,0>>b a 且函数()22423+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于A. 2B. 3C. 6D. 911. 已知抛物线)0(:2>=a ax y C 的焦点到准线的距离为41, 且C 上的两点()()2211,,,y x B y x A 关于直线m x y +=对称,并且2121-=x x ,那么m =A.23B.25 C. 2 D. 3 12. 已知函数⎩⎨⎧>≤+=.0,ln ,0,1)(x x x kx x f 则下列关于函数[]1)(+=x f f y 的零点个数的判断正确的是A. 当0>k 时,有3个零点;当0<k 时,有2个零点B. 当0>k 时,有4个零点;当0<k 时,有1个零点C. 无论k 为何值,均有2个零点D. 无论k 为何值,均有4个零点2012年四校联考第三次高考模拟考试数学试卷(文史类) 第Ⅱ卷 (非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13. 已知},1|{},lg |{2+=∈==∈=x y R y N x y R x M 集合N M =___________ 14. 已知四面体ABC P -的外接球的球心O 在AB 上,且⊥PO 平面ABC , AB AC 32=,若四面体ABC P -的体积为23,则该球的体积为_____________ 15. 已知y x ,满足条件⎪⎩⎪⎨⎧≤-+≥+-≥.052,02,0y x y x x 则y x z 3+=的最大值是____________16. 在ABC ∆中,角C B A 、、所对的边分别为c b a 、、,且c A b B a 21cos cos =-,当)tan(B A -取最大值时,角C 的值为三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17. (本小题满分12分)已知数列{}n a 的前n 项和为n S , 满足)1(22--=n n a n S n n , 且211=a . (Ⅰ) 令n n S nn b 1+=, 证明:)2(1≥=--n n b b n n ;(Ⅱ) 求{}n a 的通项公式.18.(本小题满分12分)口袋里装有4个大小相同的小球, 其中两个标有数字1, 两个标有数字2.(Ⅰ) 第一次从口袋里任意取一球, 放回口袋里后第二次再任意取一球, 记第一次与第二次取到小球上的数字之和为ξ. 当ξ为何值时, 其发生的概率最大? 说明理由; (Ⅱ) 第一次从口袋里任意取一球, 不再放回口袋里, 第二次再任意取一球, 记第一次与第二次取到小球上的数字之和为η. 求η大于2的概率.19. (本小题满分12分)如图,四棱锥ABCD P -的底面是正方形,ABCD PD 底面⊥,点E 在棱PB 上. (Ⅰ) 求证:平面⊥AEC 平面PDB ; (Ⅱ) 当22==AB PD ,且31=-PED A V 时,确定点E 的位置,即求出EB PE 的值.20. (本小题满分12分)在平面直角坐标系中,已知()()()()()2,,1,,,,0,2,0,221--x N x M y x P A A ,若实数λ使得⋅=⋅P A ON OM 12λP A 2(O 为坐标原点). (Ⅰ)求P 点的轨迹方程,并讨论P 点的轨迹类型; (Ⅱ)当22=λ时,是否存在过点()2,0B 的直线l 与(Ⅰ)中P 点的轨迹交于不同的两点F E ,(E 在F B ,之间),且1>∆∆EOFOBES S .若存在,求出该直线的斜率的取值X 围,若不存在,说明理由.21. (本小题满分12分)已知函数x a x a x x f ln )12()(2++-= (Ⅰ) 当1=a 时, 求函数)(x f 的单调增区间; (Ⅱ)求函数)(x f 在区间[]e ,1上的最小值;(III) 设x a x g )1()(-=,若存在⎥⎦⎤⎢⎣⎡∈e e x ,10,使得)()(00x g x f ≥成立,某某数a 的取值X 围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲如图, ABC ∆内接于⊙O , AB 是⊙O 的直径, PA 是过点A 的直线, 且ABC PAC ∠=∠.(Ⅰ) 求证: PA 是⊙O 的切线;(Ⅱ)如果弦CD 交AB 于点E , 8=AC ,5:6:=ED CE , 3:2:=EB AE , 求BCE ∠sin ..ABCOEDP23. (本小题满分10分) 选修4-4:坐标系与参数方程.在直角坐标系xOy 中, 过点)23,23(P 作倾斜角为α的直线l 与曲线1:22=+y x C 相交于不同的两点N M ,. (Ⅰ) 写出直线l 的参数方程;(Ⅱ) 求PNPM 11+ 的取值X 围.24. (本小题满分10分) 选修4-5:不等式选讲设不等式112<-x 的解集为M , 且M b M a ∈∈,. (Ⅰ) 试比较1+ab 与b a +的大小;(Ⅱ) 设A m ax 表示数集A 中的最大数, 且⎭⎬⎫⎩⎨⎧+=b abb a ah 2,,2max , 求h 的X 围. 2012年四校联考第三次高考模拟考试数学试卷(文史类)答案及评分标准一、选择题:二、填空题:13.{}1≥x x 14.π3415.1016.2π 三、解答题:17. (Ⅰ)()()1212---=-n n S S n S n n n ……………………………………… 2分n S nn S n n n n -+=--111 n b b n n =--1…………………………………………… 6分(Ⅱ)11=b , n b b n n =--1, 121-=---n b b n n , , 212=-b b 累加得22n n b n +=……………………………………… 10分22n S n =∴ ,()22121≥-=-=-n n S S a n n n …………………… 11分 经检验211=a 符合212-=n a n ,212-=∴n a n ……… 12分 18. (Ⅰ) 设标号为1的球为A ,B ,标号为2的球为C ,D所有基本事件包括:(A ,A ),(B ,B ),(C ,C ),(D ,D ),(A ,B ),(A ,C ),(A ,D )(B ,C ),(B ,D ),(C D ),(D ,A ),(C ,A ),(B ,A ),(D ,B ),(C ,B ),(D ,C )共16种.设事件1A 表示数字和为2,包括: (A ,A ),(B ,B )(A ,B ),(B ,A )共4种,41164)(1==A P 设事件2A 表示数字和为3,包括: (A ,C ),(A ,D ),(B ,C ),(B ,D ),(D ,A ),(C ,A )D ,B ),(C ,B )共8种,21168)(2==A P 设事件3A 表示数字和为4,包括: (C ,C ),(D ,D ),(C D ),(D ,C )共4种,41164)(3==A P ∴数字和为3时概率最大. ……………………………… 6分 (Ⅱ) 所有基本事件包括: (A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C D )共6种. 设事件1B 表示数字和为3, 包括: (A ,C ),(A ,D ),(B ,C ),(B ,D ),3264)(1==B P 设事件2B 表示数字和为4, 包括: (CD ),61)(2=B P数字和大于2的概率为()65)(21=+B P B P 答:数字和为3时概率最大,数字和大于2的概率为65……… 12分 19. (Ⅰ)设AC 交BD 于O ,连接OEABCD PD ⊥ ,AC PD ⊥∴,AC BD ⊥PBD AC ⊥∴,又AEC AC ⊆,PBD ACE ⊥∴……………………………… 6分(Ⅱ) 3231=⨯⨯=∆-ABD ABD P S PD V PDE A ABD E V V --=∴,,即1=EBPE……… 12分20. (Ⅰ) 化简得:()()2222121λλ-=+-y x ①1±=λ时方程为0=y 轨迹为一条直线 ②0=λ时方程为222=+y x 轨迹为圆③()()1,00,1⋃-∈λ时方程为()1122222=-+λy x 轨迹为椭圆④()()+∞⋃-∞-∈,11,λ时方程为()1122222=--λy x 轨迹为双曲线. ……………………………… 6分(Ⅱ)P ∴=,22λ 点轨迹方程为1222=+y x . 21::x x S S OBF OBE =∆∆由已知得1>-∆∆∆OBE OBF OBE S S S ,则1121>-x x x ,12121<<∴x x .设直线EF 直线方程为2+=kx y ,联立方程可得:()0682122=+++kx xk23,02>∴>∆k , 21,x x 同号∴2121x x x x =∴221221216,218k x x k k x x +=+-=+………………………… 8分设m x x =21 ,则()()⎪⎭⎫ ⎝⎛∈+=+=+29,46332122221221k k m m x x x x 1027232<<k ,⎪⎪⎭⎫ ⎝⎛--⋃⎪⎪⎭⎫ ⎝⎛∈26,1030310303,26k ..…………………… 12分21. (Ⅰ)当1=a 时,x x x x g ln 3)(2+-=,0132)(2>+-='x x x x g 1>x 或21<x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省南昌市2012年三校第三次联考数学试卷
说明:本卷共有六个大题,28个小题,全卷满分120分,考试时间120分钟.考试可以使
用计算器.试卷分为试题卷和答题卷。

考生只能按要求在答题卷指定的位置作答,否则不给分。

一、选择题(本大题共12小题,每小题3分,共36分) 1.-3的绝对值是( )
A .3
B . -3
C .
31 D .3
1- 2.据新华社北京2012年1月19日电,截至2011年末,北京常住人口已经突破20 000 000人,用科学记数法表示20 000 000这个数字为 ( ) A .8
102⨯
B .61020⨯
C .9102.0⨯
D . 7
102⨯
3. 直线y=x -1的图像经过的象限是( )
A. 第二、三、四象限
B.第一、二、四象限
C. 第一、三、四象
D.第一、二、三象限 4.某户家庭今年1-5月的用电量分别是:72,66,52,58,68,这组数据的中位数是( ) A .52 B .58 C .66 D .68 5.设x -2y = 2, 则3-x +2y 的值是( )
A .0
B . 1
C .2
D .3 6.抛物线2
(2)3y x =-+的对称轴是( )
A .直线x =-2
B .直线 x =2
C .直线x =-3
D .直线x =3 7.下列运算中,结果正确的是 ( )
A .a a a 34=-
B .5210a a a =÷
C .532a a a =+
D .1243a a a =⋅ 8.如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画
的三视图中的俯视图应该是( )
A .两个相交的圆
B .两个内切的圆
C .两个外切的圆
D .两个外离的圆 9.一把大遮阳伞,伞面撑开时可近似地看成是圆锥形,如图,它的母线长是2. 5米,底面半径为2米,则做这把遮阳伞需用布料的面积是( )平方米(接缝不计) A . π3 B .π4 C .π5 D .π4
25
(第9题图)
(第8题图)
10.已知C B A ,,是⊙O 上不同的三个点,︒=∠50AOB ,则=∠ACB ( )
A .︒50
B .︒25
C .︒50或︒130
D .︒25或︒155 11.将抛物线122--=x y 向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( ) A .
23个单位 B .1个单位 C .2
1
个单位 D .2个单位 12.如图,在Rt △ABC 中,AB=CB ,BO ⊥AC 于点O ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连结DE 、EF.下列结论:①tan ∠ADB=2;②图中有4对全等三角形;③若将△DEF 沿EF 折叠,则点D 不一定落在AC 上;④BD=BF ;⑤S 四边形DFOE= S △AOF ,上述结论中错误的个数是( )
A .1个
B .2个
C .3个
D .4个 二、填空题(本题共4小题,每小题3分,共12分) 13.直线x y 2=经过点(-1,b ),则b = . 14.一元二次方程0)32(=+x x 的解为 . 15.已知a ≠0,12S a =,212S S =,32
2
S S =,…,201220112S S =,则2012S =
(用含a 的代数式表示).
16.已知菱形ABCD 的边长为6,∠A =60︒,如果点P 是菱形内一点,且PB =PD =23,那
么AP 的长为________.
三、(本大题共5小题,每小题各4分,共20分) 17.计算:345tan )2
1
(2--︒+-.
18.解不等式组并求其整数解。

()⎪⎩⎪
⎨⎧<≥+x
x x x -81-3-1323
-
19.已知:如图,菱形ABCD 中,E F ,分别是CB CD ,上的点,且CE =CF . 求证:AE AF =.
(第12题图
)
C
20. 如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知
原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上.改善后滑滑板会加长多少?(精确到0.01)(
2.449=== )
21.如图,在一个边长为1的正方形网格上,把△ABC 向右平移4个方格,再向上平移2个
方格,得到△A ′B ′C ′(A ′ B ′分别对应A 、B ). (1)请画出平移后的图形,并标明对应字母; (2)求四边形AA ′B ′B 的周长.(结果保留根式)
四、(本大题共4小题,每小题6分,共24分)
22.已知:如图,直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,
且AC 平分∠P AE ,过C 作CD PA ⊥于D . (1) 求证:CD 为⊙O 的切线;
(2) 若DC +DA =6,⊙O 的直径为10,求AB 的长.
23.为了更好治理和净化运河,保护环境,运河综合治理指挥部决定购买10台污水处理设
备.现有A 、B 两种型号的设备,其中每台的价格、月处理污水量如下表. 经调查:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买3台B 型设备少6万元. (1)求b a ,的值;
(2)由于受资金限制,运河综合治理指挥部决定购买污水处理设备的资金不超过110万元,
问每月最多能处理污水多少吨?
A
B
C
30°
45°
C B
A
第21题
24.甲乙丙三个同学在打兵乓球时,为了确定哪两个人先打,商定三人伸出手来,若其中两人的手心或手背同时向上,则这两个人先打,如果三个人手心或手背都向上则重来. (1)求甲乙两人先打的概率; (2)求丙同学先打的概率.
25.某市教育局为了解九年级学生每天体育锻炼是否超过1小时及未超过1小时的原因(分
“不喜欢”、“没时间”及“其它”三类),随机抽查了部分九年级学生,绘制成如下的二份统计图.请根据图中信息,回答下列问题: (1) 该教育局共抽查了多少名学生?
(2) 2011年这个地区初中毕业生约为2. 8万人,按此调查,请估计2011年该地区初中毕业生中每天锻炼超过1小时的学生人数.
五、(本大题共2小题,每小题8分,共16分) 26.如图,直线y=kx-1与x 轴、y 轴分别交与B 、C 两点,tan∠OCB=
2
1
. (1) 求B 点的坐标和k 的值;
(2) 若点A (x ,y )是第一象限内的直线y=kx-1上的一个动点.当点A 运动过程中,试
写出△AOB 的面积S 与x 的函数关系式; (3) 探索:当点A 运动到什么位置时,△AOB 的面积是
4
1;
1小时人数扇形统计图
未超过1小时
超过1小时
人数
锻炼未超过...1小时原因的频数分布直方图
90(第25题图)
27. 矩形纸片ABCD 中,12AD cm =,现将这张纸片按下列图示方式折叠,AE 是折痕. (1)如图1,P ,Q 分别为AD ,BC 的中点,点D 的对应点F 在PQ 上,求PF 和AE 的长;
(2)如图2,BC CQ AD DP 31
,31==,点D 的对应点F 在PQ 上,求AE 的长; (3)如图3,BC n
CQ AD n DP 1
,1==
,点D 的对应点F 在PQ 上.直接写出AE 的长(用含n 的代数式表示) .
六、(本大题共1小题,每小题12分,共12分)
28. 在梯形ABCD 中,AD ∥BC ,BA ⊥AC ,∠B = 450,AD = 2,BC = 6,以BC 所在直线
为x 轴,建立如图所示的平面直角坐标系,点A 在y 轴上。

(1) 求过A 、D 、C 三点的抛物线的解析式。

(2) 求△ADC 的外接圆的圆心M 的坐标,并求⊙M 的半径。

(3) E 为抛物线对称轴上一点,F 为y 轴上一点,求当E D +EC +FD +FC 最小时,EF 的长。

A
B
C
D P Q
E
F
(第27题图1)
A
B C D P
Q
E
F
(第27题图2)
A B
C D P
Q
E
F
(第27题图3)。

相关文档
最新文档