北京市海淀区2020学年九年级上期期中考试数学试卷及答案

合集下载

北京市海淀区2023-2024学年九年级上学期期中模拟数学试题

北京市海淀区2023-2024学年九年级上学期期中模拟数学试题

北京市海淀区2023-2024学年九年级上学期期中模拟数学试题一、单选题1.“鸡”不仅代表着吉祥,还代表着守时、准信,深受人们喜爱.以下四个图形中能够通过图旋转得到的是( )A .B .C .D .2.关于x 的一元二次方程22310x x +-=的二次项系数,一次项系数,常数项分别是( ) A .2,3,1-B .2,3-,1C .2,3-,1-D .2-,3,13.将抛物线()228y x =--向下平移3个单位,再向右平移3个单位后的解析式为( ) A .()255y x =-- B .()2511y x +-=C .()2511y x --=D .()2511y x =-+4.如图,定点B ,C ,D 在O e 上,连接BO DO CD BC ,,,, 若134C ∠=︒,则BOD ∠的度数为( )A .46︒B .67°C .92︒D .96︒5.二次函数2y ax bx c =++自变量和函数量的部分对应值如下表所示,则关于x 的不等式250ax bx c ++-≤的解集为( )A .2x ≤-B . 0x ≥C .2x ≤-或0x ≥D .20x -≤≤6.如图,在ABC V 中,6AB AC ==,120A ∠=︒,过点A 作AD BC ⊥,延长AD 至点N ,使得AD DN =,在平面上有一动点M ,使90AMN ∠=︒,连接BM ,则BM 的最小值为( )A .3 BC .3D .37.如图,二次函数2y ax bx c =++的图象与y 轴交于()0,c ,对称轴为1x =-,对于此二次函数,有以下四个结论:①2240ab a c ->; ②2a 2b 2c 0-+>;③若此抛物线经过点(),C t n ,则2t -+一定是方程20ax bx c n ++-=的一个根 ;④320b c +<,中所有正确结论的序号是( )A .①④B .①③C .②④D .②③8.风寒效应是一种因刮风所引起的使体感温度较实际气温低的现象,科学家提出用风寒温度描述刮风时的体感温度,并通过大量实验找出了风寒温度和风速的关系.下表中列出了当气温为5℃时,风寒温度T (℃)和风速v (km /h )的几组对应值,那么当气温为5℃时,风寒温度T 与风速v 的函数关系最可能是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .无法确定二、填空题9.在平面直角坐标系中,点()1,6A 关于原点对称的点的坐标是 10.若关于x 的方程2221x mx +-=有一个根为1,则m 的值为11.若点()12,B y -,()20.5,C y ,()31.3,D y 在抛物线()22y x x =+的图象上,则1y ,2y ,3y 的大小关系为(用“>”或“=”进行连接)12.紫砂壶是我国特有的手工制造陶土工艺品,图2是正确使用该工具时的示意图.如图3,O e 为某紫砂壶的壶口,已知A ,B 两点在O e 上,直线l 过点O ,且l AB ⊥于点D ,交Oe 于点C .若12AB =,2CD =,则这个紫砂壶的壶口半径r 的长为13.抛物线226y x x =--,当14x -<<时,函数y 的取值范围是 14.在ABC V 中,90BAC ∠=︒,AB AC =,将ABP V 绕点A 逆时针旋转后能与ACP '△重合,当B ,P ,P '在同一条直线上,连接PC ,若3AP =,5BP =,则PC =.15.已知某抛物线上部分点的横坐标x ,纵坐标的对应值如下表:那么该抛物线的顶点坐标是;当1x k -<≤时,总有40y -≤<,则k 的取值范围是三、解答题16.数学课上,褚老师进行了一个数学游戏,具体规则如下:已知抛物线2y ax bx c =++,给定了I 和II 两个条件框,甲同学要从条件框I 中任选一个条件,乙同学从条件框II 中任选两个条件,若选定的三个条件能使这个抛物线唯一确定,则游戏胜利;若无法唯一确定或此抛物线不存在,则游戏失败. 【条件框I 】【条件框II 】(1)甲同学在条件I 中选择条件③,若游戏失败,写出一个乙同学选择的方案; (2)无论甲同学选择了条件框I 中的哪个条件,游戏都胜利,写出乙同学可能选择的方案.(填写序号即可)17.方程:2115550x xx -+=-.18.如图,在等边ABC V 中,点D 是AB 边上一点,连接CD ,将线段CD 绕点C 按顺时针方向旋转60°后得到CE ,连接AE .求证:AE BD =.19.已知:a 是方程2310x x ++=的一个根,求代数式()()()2()21122a a a a +++-++的值. 20.ABC V 中,90ABC ∠=︒,30A ∠=︒,将ABC V 绕点C 顺时针旋转90︒得到EDC △,其中,点B 对应点D ,点A 对应点E ,连接BD(1)依题意补全图形;直接写出BD 与EC 的数量关系(2)过点D 作DP AB ⊥,交AC 于点T ,若2TC =,求AT 的长21.已知:关于x 的一元二次方程()2102x k k x -+-+=(1)求证:该方程总有两个实数根(2)若方程的有一个根大于3,求k 的取值范围22.在平面直角坐标系xOy 中,抛物线()2y a x h k =-+的对称轴为直线3x = (1)若此抛物线过点()2,3,()0,11,求抛物线的解析式(2)当1a =时,对任意x 值,都有()22a x h k x -+>+,结合图象,直接写出k 的取值范围. 23.列一元二次方程解决实际问题:如图,某校计划在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.若要使草坪的面积为2540m ,求道路宽的长度.24.在平面直角坐标系xOy 中,抛物线223y mx mx m =--+(0m >)顶点为Q .(1)求抛物线顶点Q 的坐标.(2)在平面内有三点()()3356A B ,,,,点C 是由点B 向下平移4个单位得到的; ①直接写出点C 的坐标;②若抛物线223y mx mx m =--+(0m >)与三角形ABC 有2个交点,结合图象,直接写出m 的取值范围.25.排球是一项风靡全球的运动,也是北京体育中考选考球类的一项.如图,排球运动场的场地长18m ,球网高度2.24m ,球网在场地中央,距离球场左、右边界均为9m .小刚在场地左侧边界练习发球,排球的飞行路线可以看作是对称轴垂直于水平面的抛物线的一部分.在球飞行时,将球与场地左边界的水平距离记为x (米),与地面的高度记为y (米) 以下是小刚的某一次练习的部分数据:(1)求此抛物线的解析式()()20y a x h k a =-+< (2)在此基础上,小刚继续练习:第一次练习:只将出手高度增加1m ,排球飞行轨迹的大致形状与(1)中完全一样 第二次练习:改变排球的飞行轨迹,使其飞行轨迹近似满足此抛物线:()20.047 2.5y x =--+ ①直接写出第一次练习的抛物线解析式;②我们将满足以下两个条件的发球叫做“有效发球”: 条件I :发球后,排球能过球网;条件II :发球后,排球的第一落点在右半区,且在右边界以里. 任意选择一次练习,判断此次练习是否为一次“有效发球”,并说明理由.26.在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>的对称轴是x t =,不重合的两点()11,y ,()252,t y -在此抛物线上 (1)若12y y =,求t 的值(2)若12y c y <<, 求t 的取值范围27.在ABC V 中,AC BC =,90ACB ∠=︒,点D 在BC 边上(不与点B ,C 重合),将线段AD 绕点A 顺时针旋转90︒,得到线段AE ,连接DE .(1)根据题意补全图形,并证明:EAC ADC ∠=∠;(2)过点C 作AB 的平行线,交DE 于点F ,用等式表示线段EF 与DF 之间的数量关系,并证明.28.在平面直角坐标系xOy 中,对于线段MN ,点Q 和图形T 进行以下定义:若线段MN 绕点Q 旋转180度后,新线段AB (A 对应M ,B 对应N )在图形T 里(包括图形T 边界),我们就称点Q 是图形T 和线段MN 的凸显点,若点Q 在图形T 里(包括边界),且满足凸显点定义 则称点Q 是图形T 和线段MN 的凸显差距点(1)已知()42,,()62,是线段p 的两个端点,()3,0C -,()3,3D -,()1,3E ,()10F ,,我们将四边形CDEF 称为图形1T .则下列点是图形1T 和线段p 的凸显点的是(填写序号)①()111Q ,; ②()222Q , ; ③()320Q ,; ④()41.51.5Q , (2)若()0M t ,,()1,1N t -,图形2T 以点()2,2P 为中心作边长为6的正方形,且各边均与坐标轴平行,①若 (),2Q Q x ,当12t <≤时,存在点Q 使得Q 为图形2T 和线段MN 的凸显差距点,求此时点Q 横坐标Q x 的取值范围.②以点P 为中心作边长为3的正方形,且各边均与坐标轴平行,我们将其与图形2T 的非重叠部分记为图形3T .直线l 过点()0,2-,线段MN 关于直线l 对称后的线段记作线段m ,无论直线l 如何旋转,总会有点Q 是图形3T 和线段m 的凸显差距点,直接写出t 的取值范围.。

2019-2020海淀区初三上学期期中数学试卷及答案

2019-2020海淀区初三上学期期中数学试卷及答案

2019~2020学年北京海淀区初三上学期期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. A.,, B.,, C.,, D.,,一元二次方程的二次项系数、一次项系数、常数项分别是( ).3-x -2=0x 23-1-231-23-123122. A. B. C. D.里约奥运会后,受到奥运健儿的感召,群众参与体育运动的热度不减,全民健身再次成为了一种时尚,球场上也出现了更多年轻人的身影.请问下面四幅球类的平面图案中,是中心对称图形的是( ).3. A. B. C. D.用配方法解方程,配方正确的是( ).+6x +2=0x 2=9(x +3)2=9(x -3)2=6(x +3)2=7(x +3)24. A. B. C. D.如图,小林坐在秋千上,秋千旋转了,小林的位置也从点运动到了点,则的度数为( ).80°A A ′∠OAA ′40°50°70°80°5. A.向左平移个单位 B.向右平移个单位C.向上平移个单位D.向下平移个单位将抛物线平移后得到抛物线,则平移方式为( ).y =2x 2y =2+1x 211116. A.点在圆外 B.点在圆内 C.点在圆上 D.无法确定在中,,以点为圆心,以长为半径作圆,点与该圆的位置关系为( ).△ABC ∠C =90°B BC A A A A二、填空题(本题共18分,每小题3分)A. B. C. D.π2π3π4π8. A. B. C. D.已知是关于的方程的根,则的值为().2x +ax -3a =0x 2a -442459. A., B.,C. D.,给出一种运算:对于函数,规定.例如:若函数,则有.函数,则方程的解是().y =x n =n y ′x n -1=y 1x 4=4y 1′x 3=y 2x 3=12y 2′=4x 1=-4x 2=2x 13√=-2x 23√==0x 1x 2=2x 1=-2x 210. A. B. C. D.太阳影子定位技术是通过分析视频中物体的太阳影子变化,确定视频拍摄地点的一种方法.为了确定视频拍摄地的经度,我们需要对比视频中影子最短的时刻与同一天东经度影子最短的时刻.在一定条件下,直杆的太阳影子长度(单位:米)与时刻(单位:时)的关系满足函数关系(,,是常数),如图记录了三个时刻的数据,根据上述函数模型和记录的数据,则该地影子最短时,最接近的时刻是( ).120l t l =a +bt +c t 2a b c t 12.751313.3313.511.方程的解为 .-x =0x 212.请写出一个对称轴为的抛物线的解析式 .x =313.如图,用直角曲尺检查半圆形的工件,其中合格的是图 (填“甲”、“乙”或“丙”),你的根据是 .14.若关于的方程有两个相等的实数根,则的值是 .x -2x -k =0x 2k三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)爱智康15.如图,内接于⊙,,半径的长为,则的长为 .△ABC O ∠C =45°OB 3AB 16.指居民消费价格指数,反映居民家庭购买消费商品及服务的价格水平的变动情况.的涨跌率在一定程度受到季节性因素和天气因素的影响.根据北京市年与年涨跌率的统计图中的信息,请判断年月份与年月份,同月份比较涨跌率下降最多的月份是 月;请根据图中提供的信息,预估北京市年第四季度涨跌率变化趋势是 ,你的预估理由是 .CPI CPI 20152016CPI 201518~201618~CPI 2016CPI 17.解方程:.+4x =6x 218.求抛物线的对称轴和顶点坐标,并画出图象.y =-2x x 219.如图,、是半圆上的两点,为圆心,是直径,,求的度数.A D O BC ∠D =35°∠OAC20.已知:,求证:关于的方程有两个不相等的实数根.+2m -3=0m 2x -2mx -2m =0x 221.如图,在等边中,点是边上一点,连接,将线段绕点按顺时针方向旋转后得到,连接.求证:.△ABC D AB CD CD C 60°CE AE AE //BC 22.如图,在线段上找一点,把分为和两段,其中是较小的一段,如果,那么称线段被点黄金分割.为了增加美感,黄金分割经常被应用在绘画、雕塑、音乐、建筑等艺术领域.如图,在我国古代紫禁城的中轴线上,太和门位于太和殿与内金水桥之间靠近内金水桥的一侧,三个建筑的位置关系满足黄金分割,已知太和殿到内金水桥的距离约为丈,求太和门到太和殿之间的距离(的近似值取).1AB C C AB AC CB BC BC ?AB =AC 2AB C 21005√ 2.223.如图是某公园一块草坪上的自动旋转喷水装置,这种旋转喷水装置的旋转角度为,它的喷灌区是一个扇形.小涛同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图.如图,、两点的距离为米,求这种装置能够喷灌的草坪面积.1240°2A B 1824.(1)二次函数图象的开口向 ,顶点坐标是 ,的值为 .下表是二次函数的部分,的对应值:…………y =a +bx +c x 2x y x -1-120121322523y m 14-1-74-2-74-1142m(2)当时,的取值范围是 .(3)当抛物线的顶点在直线的下方时,的取值范围是 .x >0y y =a +bx +c x 2y =x +n n 25.(1)求证:.(2)过点作于点,若,,求的长.如图,在中,,以为直径的⊙分别交,于点,,过点作⊙的切线交的延长线于点,连接.△ABC AB =BC AB O AC BC D E A O BC F AE ∠ABC =2∠CAF C CM ⊥AF M CM =4BE =6AE 26.(1)如果函数图象上各点横坐标不变,纵坐标变为原来的倍,得到的函数图象的表达式为.(2)回答下列问题:1将函数图象上各点的横坐标不变,纵坐标变为原来的 倍,得到函数的图象.2将函数图象上各点的纵坐标不变,横坐标变为原来的倍,得到图象的函数表达式为.小华在研究函数与图象关系时发现:如图所示,当时,,;当时,,;;当时,,.他得出如果将函数图象上各点的横坐标不变,纵坐标变为原来的倍,就可以得到函数的图象.类比小华的研究方法,解决下列问题:=x y 1=2x y 2x =1=1y 1=2y 2x =2=2y 1=4y 2?x =a =a y 1=2a y 2=x y 12=2x y 2y =3x 3y =x 2y =4x 2y =x 2227.(1)的值为 .(2)若抛物线与轴正半轴交于点,其对称轴与轴交于点,当是等腰直角三角形时,求的值.(3)点的坐标为,若该抛物线与线段有且只有一个交点,求的取值范围.在平面直角坐标系中,抛物线的对称轴为.xOy y =+mx +n -1x 2x =2m y A x B △OAB n C (3,0)OC n 28.(1)在菱形中,,为对角线上的一点(不与、重合),将射线绕点顺时针旋转角之后,所得射线与直线交于点.试探究线段与的数量关系.小宇发现点的位置,和的大小都不确定,于是他从特殊情况开始进行探究.ABCD ∠BAD =αE AC A C EB E βAD F EB EF E αβ如图,当时,菱形是正方形.小宇发现,在正方形中,平分,作于,于.由角平分线的性质可知,进而可得≌,并由全等三角形的性质得到与的数量关系为 .(2)如图,当,时.1依题意补全图形.2请帮小宇继续探究()的结论是否成立.若成立,请给出证明;若不成立,请举出反例说明.(3)小宇在利用特殊图形得到了一些结论之后,在此基础上对一般的图形进行了探究,设,若旋转后所得的线段与的数量关系满足()中的结论,请直接写出角,,满足的关系: .1α=β=90°ABCD AC ∠BAD EM ⊥AD M EN ⊥AB N EM =EN △EMF △ENB EB EF 2α=60°β=120°1∠ABE =γEF EB 1αβγ29.(1)如图,若,,则 , .(2)在正方形中,点.1如图,若点在直线上,且,求点的坐标.点到的距离定义如下:点为的两边上的动点,当最小时,我们称此时的长度为点到的距离,记为.特别的,当点在的边上时,.在平面直角坐标系中,.P ∠AOB Q ∠AOB P Q P Q P ∠AOB d(P ,∠AOB )P ∠AOB d(P ,∠AOB )=0xOy A (4,0)1M (0,2)N (-1,0)d(M ,∠AOB )=d(N ,∠AOB )=OABC B (4,4)2P y =3x +4d(P ,∠AOB )=22√P2如图,若点在抛物线上,满足的点有__________个,请你画出示意图,并标出点.3P y =-4x 2d(P ,∠AOB )=22√P P2019~2020学年北京海淀区初三上学期期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)二、填空题(本题共18分,每小题3分)1.【答案】A2.【答案】C3.【答案】D4.【答案】B5.【答案】C6.【答案】A7.【答案】B8.【答案】B9.【答案】D10.【答案】C11.【答案】或0112.【答案】y =(x -3)213.【答案】1.2.乙的圆周角所对的弦是直径90°三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)14.【答案】-115.【答案】32√16.【答案】1.2.3.“上涨”、“下降”、“先减后增”都可年月份与年月份,同月份比较涨跌率下降最多的月份中,月下降幅度最大,而相较于月,月的有所增加,但仍是下降趋势8201518~201618~CPI 836~78~CPI 17.【答案】,.=-2+x 110--√=-2-x 210--√18.【答案】对称轴为,顶点为.x =1(1,-1)19.【答案】的度数为.∠OAC 55°20.【答案】证明见解析.21.【答案】证明见解析.22.【答案】太和门到太和殿的距离为丈.6023.【答案】这种装置能够喷灌的草坪面积为平方米.72π24.【答案】(1)1.2.3.上(2)(3)(1,-2)2y ?-2n >-325.【答案】(1)证明见解析.(2)826.【答案】(1)12(2)y =9x4y =14x 227.【答案】(1)(2)(3)或-431?n <4n =528.【答案】(1).12成立,证明见解析.(2)(3)或.EB =EF α+β=180°++γ=180α2β2°29.【答案】(1)1.2.1,2(2)11(-2,-2)(0,4)4。

北京市海淀区2020届初三期中数学试题及答案

北京市海淀区2020届初三期中数学试题及答案
A.图1和图3B.图2和图3C.图2和图4D.图1和图4
8.如图,在平面直角坐标系xOy中,抛物线 与x轴交于A,B两点.若顶点C到x
轴的距离为8,则线段AB的长度为
A.2
B.
C.
D.4
二、填空题(本题共16分,每小题2分)
9.在平面直角坐标系中,点 绕原点旋转180°后所得到的点的坐标为.
10.写出一个对称轴是y轴的抛物线的解析式:.

∴ ……………………………………………………………………………2分


在△ABD与△CBE中,
……………………………………………………………………………3分
∴△ABD≌△CBE.……………………………………………………………………………4分

∴ …………………………………………………………………………………5分
求证:∠CAB=∠D.
证明:连接AO并延长,交⊙O于点E.
∵AB与⊙O相切于点A,
∴∠EAB=90°.
∴∠EAC+∠CAB=90°.
∵AE是⊙O的直径,
∴∠ECA=90°().(填推理的依据)
∴∠E+∠EAC=90°.
∴∠E=.
∵ ,
∴∠E=∠D().(填推理的依据)
∴∠CAB=∠D.
20.如图,一条公路的转弯处是一段圆弧( ),点 是这段弧所
,则 的长为________.
15.如图,已知正方形OBCD的三个顶点坐标分别为B(1,0),
C(1,1),D(0,1).若抛物线 与正方形OBCD的边
共有3个公共点,则h的取值范围是___________.
16.如图,在 中,
(1)作AB和BC的垂直平分线交于点O;

2019-2020学年北京海淀初三期中数学(含解析).docx

2019-2020学年北京海淀初三期中数学(含解析).docx

北京海淀初三上期中数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.一元二次方程2230x x --=的二次项系数、一次项系数、常数项分别是( ).A .2,1,3B .2,1,3-C .2,1-,3D .2,1-,3-2.下列图形是中心对称图形的是( ).A .B .C .D .3.二次函数2(+1)2y x =--的最大值是( ).A .2-B .1-C .1D .24.已知⊙O 的半径是4,OP 的长为3,则点P 与⊙O 的位置关系是( ).A .点P 在圆内B .点P 在圆上C .点P 在圆外D .不能确定5.将抛物线2y x =沿y 轴向下平移2个单位,得到的抛物线的解析式为( ).A .22y x =+B .22y x =-C .()22y x =+D .()22y x =-6.已知扇形的半径为6,圆心角为60︒,则这个扇形的面积为( ).A .9πB .6πC .3πD .π7.用配方法解方程243x x +=,下列配方正确的是( ).A .2(2)1x -=B .2(2)7x -=C .2(2)7x +=D .2(2)1x +=8.已知二次函数2y ax bx c =++的图象如图所示,则下列选项中不正确...的是( ). A .0a < B .0c > C .012ba<-< D .0a b c ++<9.如图,ABC △内接于⊙O ,BD 是⊙O 的直径.若33DBC ∠=︒,则A ∠等于( ).A .33︒B .57︒C .67︒D .66︒10.小明乘坐摩天轮转一圈,他离地面的高度y (米)与旋转时间x (分)之间的关系可以近似地用二次函数来刻画.经测试得出部分数据如下表:/x 分2.663.23 3.46 /y 米69.1669.6268.46下列选项中,最接近摩天轮转一圈的时间的是( ). A .7分 B .6.5分C .6分D .5.5分二、填空题(本题共18分,每小题3分)11.方程(1)(2)0x x --=的解为__________.12.请写出一个开口向上且经过(0,1)的抛物线的解析式__________.13.若二次函数225y x =-的图象上有两个点(2,)A a 、,则a __________b (填“<”或“=”或“>”).14.如图,A 、B 、C 三点在⊙O 上,100AOC ∠=︒,则ABC ∠=__________︒.15.用一块直径为4米的圆桌布平铺在对角线长为4米的正方形桌面上(如示意图),若四周下垂的最大长度相等,则这个最大长度x 为_______米(2取1.4).16.如图,O 是边长为1的等边ABC △的中心,将AB 、BC 、CA 分别绕点A 、点B 、点C 顺时针旋转α(0180α︒<<︒),得到AB '、BC '、CA ',连接A B ''、B C ''、AC''、OA '、OB '.(1)A OB ''∠=__________︒.(2)当α=__________︒时,A B C '''△的周长最大.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解方程:232x x =-.(3,)B b18.若抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值.19.已知点(3,0)在抛物线23(3)y x k x k =-++-上,求此抛物线的对称轴.20.如图,AC 是⊙O 的直径,PA ,PB 是⊙O 的切线,A ,B 为切点,25BAC ∠=︒.求P ∠的度数.21.已知1x =是方程2250x ax a -+=的一个根,求代数式23157a a --的值.22.一圆柱形排水管的截面如图所示,已知排水管的半径为1m ,水面宽AB 为1.6m .由于天气干燥,水管水面下降,此时排水管水面宽变为1.2m ,求水面下降的高度.23.已知关于x 的方程23(3)0(0)x a x a a ---=>. (1)求证:方程总有两个不相等的实数根. (2)若方程有一个根大于2,求a 的取值范围.24.在设计人体雕像时,若使雕像的上部(腰以上)与下部(腰以下)的高度的比等于下部与全部(全身)的高度比,则可以增加视觉美感.按此比例,如果雕像的高为2m ,那么它的下部应设计为多高(5取2.2).25.已知AB 是⊙O 的直径,AC 、AD 是⊙O 的弦,2AB =,2AC =,1AD =,求CAD ∠的度数.26.抛物线21y x bx c =++与直线22y x m =-+相交于(2,)A n -、(2,3)B -两点. (1)求这条抛物线的解析式.(2)若41≤≤x -,则21y y -的最小值为________.27.如图,AB 为⊙O 的直径,C 为⊙O 上一点,CD AB ⊥于点D .P 为AB 延长线上一点,2PCD BAC ∠=∠.(1)求证:CP 为⊙O 的切线. (2)1BP =,5CP =. ①求⊙O 的半径;②若M 为AC 上一动点,则OM DM +的最小值为__________.28.探究活动:利用函数(1)(2)y x x =--的图象(如图1)和性质,探究函数(1)(2)y x x =--的图象与性质. 下面是小东的探究过程,请补充完整:(1)函数(1)(2)y x x =--的自变量x 的取值范围是___________;(2)如图2,他列表描点画出了函数(1)(2)y x x =--图象的一部分,请补全函数图象;图1 图2解决问题:设方程1(1)(2)04x x x b ----=的两根为1x 、2x ,且12x x <,方程21324x x x b -+=+的两根为3x 、4x ,且34x x <.若12b <<,则1x 、2x 、3x 、4x 的大小关系为__________(用“<”连接).29.在平面直角坐标系xOy中,半径为1的⊙O与x轴负半轴交于点A,点M在⊙O上,将点M绕点A顺时针旋转60︒得到点Q.点N为x轴上一动点(N不与A重合),将点M绕点N顺时针旋转60︒得到点P.PQ与x轴所夹锐角为α.(1)点M的横坐标为12,点N与点O重合,则α=________︒.(2)若点M、点Q的位置如图2所示,请在x轴上任取一点N,画出直线PQ,并求α的度数;(3)当直线PQ与⊙O相切时,点M的坐标为_________.图1 图2 备用图北京海淀初三上期中数学试卷答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案 DAAABBCDBC二、填空题(本题共18分,每小题3分)题号 11 12 1314 15 16 答案11x =,22x =21y x =+ (答案不唯一)<1300.6120,150三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:2320x x -+=,(1)(2)0x x --=.∴10x -=或20x -=. ∴11x =,22x =.18.解:∵抛物线23y x x a =++与x 轴只有一个交点,∴0∆=, 即940a -=. ∴94a =.19.解:∵点(3,0)在抛物线23(3)y x k x k =-++-上,∴20333(3)k k =-⨯++-, ∴9k =.∴抛物线的解析式为23129y x x =-+-. ∴对称轴为2x =.20.解:∵PA ,PB 是⊙O 的切线,∴PA PB =. ∴PAB PBA ∠=∠. ∵AC 为⊙O 的直径, ∴CA PA ⊥. ∴90PAC ∠=︒. ∵25BAC ∠=︒, ∴65PAB ∠=︒.∴180250P PAB ∠=︒-∠=︒.21.解:∵1x =是方程2250x ax a -+=的一个根,∴2150a a -+=, ∴251a a -=-.∴原式23(5)7a a =--10=-.22.解:如图,下降后的水面宽CD 为1.2m ,连接OA ,OC ,过点O 作ON CD ⊥于N ,交AB 于M .∴90ONC ∠=︒.∵∥AB CD ,∴90OMA ONC ∠=∠=︒. ∵ 1.6AB =, 1.2CD =,∴10.82AM AB ==,10.62CN CD ==. 在Rt OAM △中,∵1OA =,∴220.6OM OA AM =-=. 同理可得0.8ON =. ∴0.2MN ON OM =-=. 答:水面下降了0.2米.23.(1)证明:22(3)43()(3)a a a ∆=--⨯⨯-=+. ∵0a >, ∴2(3)0a +>. 即0∆>.∴方程总有两个不相等的实数根. (2)解方程,得11x =-,23a x = ∵方程有一个根大于2, ∴23a>. ∴6a >.24.解:如图,雕像上部高度AC 与下部高度BC 应有::2AC BC BC =, 即22BC AC =. 设BC 为m x .依题意,得22(2)x x =-.解得115x =-+,215x =--(不符合题意,舍去). 51 1.2-≈.答:雕像的下部应设计为1.2m .25.解:如图1,当点D 、C 在AB 的异侧时,连接OD 、BC . ∵AB 是⊙O 的直径, ∴90ACB ∠=︒. 在Rt ACB △中, ∵2AB =,2AC =, ∴2BC =.∴45BAC ∠=︒. ∵1OA OD AD ===, ∴60BAD ∠=︒.∴105CAD BAD BAC ∠=∠+∠=︒.当点D 、C 在AB 的同侧时,如图2,同理可得45BAC ∠=︒,60BAD ∠=︒. ∴15CAD BAD BAC ∠=∠-∠=︒. ∴CAD ∠为15︒或105︒.26.解:(1)∵直线22y x m =-+经过点(2,3)B -, ∴322m -=-⨯+. ∴1m =.∵直线22y x m =-+经过点(2,)A n -, ∴5n =.∵抛物线21y x bx c =++过点A 和点B , ∴542342b c b c =-+⎧⎨-=++⎩,∴解得23b c =-⎧⎨=-⎩.∴2123y x x =--. (2)12-.27.(1)证明:连接OC .∵2PCD BAC ∠=∠,2POC BAC ∠=∠,∴POC PCD ∠=∠. ∵CD AB ⊥于点D , ∴90ODC ∠=︒. ∴90POC OCD ∠+∠=︒. ∴90PCD OCD ∠+∠=︒. ∴90OCP ∠=︒. ∴半径OC CP ⊥. ∴CP 为⊙O 的切线. (2)①设⊙O 的半径为r . 在Rt OCP △中,222OC CP OP +=. ∵1BP =,5CP =, ∴222(5)(1)r r +=+. 解得2r =.∴⊙O 的半径为2. ②2143. 过点O 作AC 的对称点E ,连结CE 、CO 、CD , 线段ED 与线段AC 交于M 点,由轴对称可知,CO CE =,OCA ECA ∠=∠,OM DM +的最小值为即为ED .90ECD ACD ECA ∠=∠+∠=︒,在Rt OCP △中,2OC =,3OP =,5CP =,253OC PC CD OP ⋅==. 在Rt ECD △中,由勾股定理可得, 222225214()233DE CD CE =+=+=. 即OM DM +的最小值为2143.28.解:(1)1x ≤或2x ≥.(2)如图所示:1342x x x x <<<.29.解:(1)60.(2).连接MQ ,MP .记MQ ,PQ 分别交x 轴于E ,F .∵将点M 绕点A 顺时针旋转60︒得到点Q ,将点M 绕点N 顺时针旋转60︒得到点P , ∴MAQ △和MNP △均为等边三角形.∴MA MQ =,MN MP =,60AMQ NM ∠=∠=︒.∴AMN QMP ∠=∠.∴MAN △≌MQP △.∴MAN MQP ∠=∠.∵AEM QEF ∠=∠,∴60QFE AMQ ∠=∠=︒.∴60α=︒.(3)31(,)22或31(,)22--. 连结OK ,过M 作ME x ⊥轴于E ,x y F E P Q A O M N由(2)可知,α始终等于60︒,直线PQ 与x 轴交于H ,以AH 为边向下构建等边AHG △,MAH QAG ∠=∠,在MAH △和QAG △中,AM AQMAH QAG AH AG=⎧⎪∠=∠⎨⎪=⎩, ∴MAH △≌QAG △(SAS ),∴60AHM AGQ ∠=∠=︒.∵PQ 与⊙O 相切,∴OK PQ ⊥,1OK =.在Rt OKH △中,60OHK ∠=︒, ∴233OH =.设EH x =,则3ME x =,233OE x =-,在Rt OME △中,由勾股定理可知,22223()(3)13x x -+=, 解得36x =. ∴32OE =,12ME =, 即31(,)22M . 同理31(,)22M --.∴当直线PQ 与⊙O 相切时,点M 的坐标为31(,)22或31(,)22--.北京海淀初三上期中数学试卷部分答案解析一、选择题(本题共30分,每小题3分)1.【答案】D【解析】一元二次方程2230x x --=的二次项系数是2、一次项系数1-、常数项分别是3-.2.【答案】A【解析】依据中心对称图形的定义可知,只有图形A 是中心对称图形.3.【答案】A【解析】二次函数2(+1)2y x =--的最大值是为2-.4.【答案】A【解析】已知⊙O 的半径是4,OP 的长为3,OP R <,则点P 在⊙O 内.5.【答案】B【解析】将抛物线2y x =沿y 轴向下平移2个单位,得到的抛物线的解析式为22y x =-.6.【答案】B【解析】已知扇形的半径为6,圆心角为60︒,则这个扇形的面积为260π66π360S ⨯==.7.【答案】C【解析】用配方法解方程243x x +=,24434x x ++=+,2(2)7x +=.8.【答案】D【解析】依题可知,0a <,0b >,0c >,012b a<-<,0a b c ++>.9.【答案】B【解析】连结DC ,∵BD 是⊙O 的直径,∴90BCD ∠=︒.∵33DBC ∠=︒,∴9057A BDC DBC ∠=∠=︒-∠=︒.10.【答案】C【解析】依表格可知,二次函数的对称轴接近3,所以摩天轮转一圈最接近的时间为6分钟.二、填空题(本题共18分,每小题3分)11.【答案】11x =,22x =【解析】方程(1)(2)0x x --=的解为11x =,22x =.12.【答案】21y x =+(答案不唯一)【解析】开口向上且经过(0,1)的抛物线的解析式21y x =+(答案不唯一),0a >,1c =即可.13.【答案】<【解析】若二次函数225y x =-的图象上有两个点(2,)A a 、,开口向上,对称轴为y 轴,点B 离对称轴更远,则a b <.(3,)B b14.【答案】130【解析】∵100AOC ∠=︒,∴AC 所对的圆周角为50︒, ∴130ABC ∠=︒.15.【答案】0.6【解析】依题可知,正方形的对角线即为圆桌的直径4, ∴正方形的边长为22,圆心到正方形的边心距为2, 即220.6x =-≈.16.【答案】120,150【解析】(1)连接OA 、OB 、OC 、OC '. 依题可知,AB AB '=BC BC '==CA CA '==, BAB CBC ACA α'''∠===.∵O 是等边ABC △的中心,∴OA OB OC ==,30OAB OBC OCA ∠=∠=∠=︒, 120AOB BOC AOC ∠=∠=∠=︒,OAB '△≌OBC '△≌OCA '△,∴AOB COA ''∠=∠,∴120A OB AOC ''∠=∠=︒.(2)OAB '△≌OBC '△≌OCA '△,∴OA OB OC '''==,120A OB A OC B OC ''''''∠=∠=∠=︒, ∴A B C '''△为等边三角形.A B C '''△周长最大,OB '要最大,当且仅当O 、A 、B '三点共线时,OB '最大, 180OAB BAB '∠+∠=︒,即150α=︒.OB '最大值为313OA AB OA AB '+=+=+,A B C '''△的周长最大值为33+.。

北京市海淀区2020—2021年初三上期中学业水平调研数学试题含答案

北京市海淀区2020—2021年初三上期中学业水平调研数学试题含答案

北京市海淀区2020—2021年初三上期中学业水平调研数学试题含答案初三第一学期期中学业水平调研数学2020.11 学校___________________ 姓名________________ 准考证号__________________注意事项1.本调研卷共8页,满分100分,考试时刻120分。

2.在调研卷和答题纸上准确填写学校名称,姓名和准考证号。

3.调研卷答案一律填涂或书写在答题纸上,在调研卷上作答无效。

4.在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5.调研终止,请将本调研卷和答题纸一并交回。

一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.抛物线21y x=+的对称轴是A.直线1x=-B.直线1x=C.直线0x=D.直线1y= 2.点(21)P-,关于原点对称的点P'的坐标是A.(21)-,B.(21)--,C.(12)-,D.(12)-,3.下列App图标中,既不是中心对称图形也不是轴对称图形的是A B C D4.用配方法解方程2240x x--=,配方正确的是A.()213x-=B.()214x-=C.()215x-=D.()213x+= 5.如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点. 若大圆半径为2,小圆半径为1,则AB的长为A.23B.22C5D.2BA PO6.将抛物线2(1)2y x =+-向上平移a 个单位后得到的抛物线恰好与x 轴有一个交点,则a 的值为A .1-B .1C .2-D .27.下图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原先的图案重合的是A B C D8.已知一个二次函数图象通过11(3)P y -,,22(1)P y -,,33(1)P y ,,44(3)P y ,四点,若324y y y <<,则1234y y y y ,,,的最值情形是A .3y 最小,1y 最大B .3y 最小,4y 最大C .1y 最小,4y 最大D .无法确定二、填空题(本题共16分,每小题2分)9.写出一个以0和2为根的一元二次方程:________.10.函数2y ax bx c =++的图象如图所示,则ac 0.(填“>”,“=”,或“<”)11.若关于x 的方程2410x x k -+-=有两个不相等的实数根,则k的取值范畴是 .12.如图,四边形ABCD 内接于⊙O ,E 为直径CD 延长线上一点,且AB ∥CD ,若∠C =70°,则∠ADE 的大小为________.13.已知O 为△ABC 的外接圆圆心,若O 在△ABC 外,则△ABC 是________(填“锐角三角形”或“直角三角形”或“钝角三角形”).14.在十三届全国人大一次会议记者会上,中国科技部部长表示,2021年我国新能源汽车保有量已居于世界前列.2020年和2021年我国新能源汽车保有量如图所示.设我国2020至2021年新能源汽车保有量年平均增长率为x ,依题意,可列方程为 .EC2015年和2017年我国新能源汽车保有量统计图172.945.1年份保有量/万辆201720155010015020015.如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于(1,0),(3,0)两点,请写出一个满足0y <的x的值 .16.如图,⊙O 的动弦AB ,CD 相交于点E ,且AB CD =,BED α∠=(090)α︒<<︒.在①BOD α∠=,②90OAB α∠=︒-,③12ABC α∠=中,一定成立的 是 (填序号).三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分) 17.解方程:()236x x x +=+.18.如图,将ABC △绕点B 旋转得到DBE △,且A ,D ,C三点在同一条直线上. 求证:DB 平分ADE ∠.xy31OEDCBA19.下面是小董设计的“作已知圆的内接正三角形”的尺规作图过程.已知:⊙O .求作:⊙O 的内接正三角形作法:如图,① 作直径AB ;② 以B 为圆心,OB 为半径作弧,与⊙O 交于C ,D 两点; ③ 连接AC ,AD ,CD .因此△ACD 确实是所求的三角形.依照小董设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明:证明:在⊙O 中,连接OC ,OD ,BC ,BD ,∵ OC =OB =BC ,∴ △OBC 为等边三角形(___________)(填推理的依据). ∴ ∠BOC =60°.∴ ∠AOC =180°-∠BOC =120°. 同理 ∠AOD =120°,∴ ∠COD =∠AOC =∠AOD =120°.∴ AC =CD =AD (___________)(填推理的依据). ∴ △ACD 是等边三角形.20.已知1-是方程20x ax b +-=的一个根,求222a b b -+的值.21.生活中看似平常的隧道设计也专门精巧.如图是一张盾构隧道断面结构图,隧道内部为以O 为圆心AB 为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A 到顶棚的距离为0.8a ,顶棚到路面的距离是3.2a ,点B 到路面的距离为2a .请你求出路面的宽度l .(用含a 的式子表示)22.如图,在平面直角坐标系xOy 中,抛物线2y x ax b =++通过点()20A -,,()13B -,. (1)求抛物线的解析式;(2)设抛物线的顶点为C ,直截了当写出点C 的坐标和BOC ∠的度数.23.用长为6米的铝合金条制成如图所示的窗框,若窗框的高为x 米,窗户的透光面积为y平方米(铝合金条的宽度不计).x 米(1)y 与x 之间的函数关系式为 (不要求写自变量的取值范畴); (2)如何安排窗框的高和宽,才能使窗户的透光面积最大?并求出现在的最大面积.24.如图,在△ABC 中,AB AC =,以AB 为直径作⊙O 交BC 于点D ,过点D 作AC 的垂线交AC 于点E ,交AB 的延长线于点F . (1)求证:DE 与⊙O 相切;(2)若CD BF =,3AE =,求DF 的长.25.有如此一个问题:探究函数332x x y -++=的图象与性质.小东依照学习函数的体会,对函数332x x y -++=的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)化简函数解析式,当3x ≥时,y =___________,当3x <时y =____________; (2)依照(1)中的结果,请在所给坐标系中画出函数332x x y -++=的图象;备用图xy–5–4–3–2–1123456–4–3–2–1123456O xy–5–4–3–2–1123456–4–3–2–1123456O(3)结合画出的函数图象,解决问题:若关于x 的方程3312x x ax -+++=只有一个实数根,直截了当写出实数a 的取值范畴:___________________________.26.在平面直角坐标系xOy 中,抛物线22(0)y ax x a =-≠与x 轴交于点A ,B (点A 在点B 的左侧).(1)当1a =-时,求A ,B 两点的坐标; (2)过点(30)P ,作垂直于x 轴的直线l ,交抛物线于点C .①当2a =时,求PB PC +的值;②若点B 在直线l 左侧,且14PB PC +≥,结合函数的图象,直截了当写出a 的取值范畴.27. 已知∠MON =α,P 为射线OM 上的点,OP =1.(1)如图1,︒=60α,A ,B 均为射线ON 上的点,OA =1,OB >OA ,△PBC 为等边三角形,且O ,C 两点位于直线PB 的异侧,连接AC . ①依题意将图1补全;②判定直线AC 与OM 的位置关系并加以证明;(2)若︒=45α,Q 为射线ON 上一动点(Q 与O 不重合),以PQ 为斜边作等腰直角△PQR ,使O ,R 两点位于直线PQ 的异侧,连接OR . 依照(1)的解答体会,直截了当写出△POR 的面积.图1 备用图28.在平面直角坐标系xOy 中,点A 是x 轴外的一点,若平面内的点B 满足:线段AB的长度与点A 到x 轴的距离相等,则称点B 是点A 的“等距点”.(1)若点A 的坐标为(0,2),点1P (2,2),2P (1,4-),3P (3-1)中,点A 的“等距点”是_______________;(2)若点M (1,2)和点N (1,8)是点A 的两个“等距点”,求点A 的坐标; (3)记函数3y =(0x >)的图象为L ,T 的半径为2,圆心坐标为(0,)T t .若在L 上存在点M ,T 上存在点N ,满足点N 是点M 的“等距点”,直截了当写出t 的取值范畴.初三第一学期期中学业水平调研数 学 参 考 答 案2020.11一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.220-=x x (答案不唯独) 10.< 11.5<k 12.110°13.钝角三角形 14.245.1(1)172.9+=x 15.2 (答案不唯独)16.①③(注:每写对一个得1分) 三、解答题(本题共68分) 17.解法一:解:(2)3(2)x x x +=+,(2)3(2)0+-+=x x x ,(2)(3)0+-=x x , 20x +=或30x -=,12=-x ,23x =.解法二:解:方程化为 260x x --=. 2425b ac ∆=-=.152x ±==, 12=-x ,23x =.18.证明:∵ 将△ABC 绕点B 旋转得到△DBE , ∴△ABC ≌△DBE∴BA=BD .∴∠A =∠ADB . ∵∠A =∠BDE , ∴ ∠ADB =∠BDE . ∴ DB 平分∠ADE .EDCBA19. 解:(1)(2)三条边都相等的三角形是等边三角形.在同圆或等圆中,相等的圆心角所对的弦相等.20.解:∵1-是方程20+-=x ax b 的一个根, ∴ 10--=a b . ∴1+=a b . ∴222a b b -+()()2a b a b b =+-+2a b b =-+a b =+ 1= .21.解:如图,连接OC .由题意知0.8 3.226=++=AB a a a a .3OC OB a ∴==. ∴=-=OE OB BE a .由题意可知AB CD ⊥于E ,∴2CD CE =.在Rt OCE △中,===CE .CD ∴=.22.解:(1)∵抛物线2y x ax b =++通过点(20)(13)A B --,,,,∴4201 3.a b a b -+=⎧⎨-+=⎩,解得68.a b =⎧⎨=⎩,∴268y x x =++.(2)(3,1)C --,90BOC ∠=︒.23.(1)2332=-+y x x ; 注:没有化简不扣分.(2)当31322()2b x a =-=-=⨯-时,y 有最大值24933424()2ac b a --==⨯-. 答:当窗框的高为1米,宽为32米时,窗户的透光面积最大,最大面积为32平方米. 24.(1)证明:连接OD .∵AB 是⊙O 的直径, ∴90ADB ∠=°. ∴AD BC ⊥. 又∵AB AC =, ∴12∠=∠. ∵OA OD =, ∴2ADO ∠=∠. ∴1ADO ∠=∠. ∴OD ∥AC . ∵DE AC ⊥于点E , ∴=90ODF AED =︒∠∠. ∴OD ⊥ED . ∴DE 与⊙O 相切. (2)∵AB AC =,AD BC ⊥,∴12∠=∠,CD BD =. ∵CD BF =, ∴=BF BD . ∴3F =∠∠.∴4323F =∠+∠=∠∠.∵OB OD =, ∴5=423=∠∠∠. ∵90ODF =︒∠,∴330F ==︒∠∠,4560=∠=︒∠. ∵90ADB =︒∠, ∴2130∠=∠=︒. ∴2F =∠∠. ∴ DF AD =.∵130=︒∠,90AED =︒∠, ∴2AD ED =.∵222AE DE AD +=,3AE =,∴AD =∴DF =25.(1)化简函数解析式,当3x ≥时,y =x ,当3x <时y = 3 ;(2)依照(1)中的结果,画出函数332x x y -++=的图象如下:(3)0<a 或1≥a 或23=a . (注:每得出一个正确范畴得1分) 26.(1)当1=-a 时,有22y x x =--.令0y =,得220x x --=. 解得120,2x x ==-.∵点A 在点B 的左侧, ∴(20)A -,,(00)B ,.(2)①当2=a 时,有222y x x =-.令0y =,得2220x x -=. 解得1201x x ==,. ∵点A 在点B 的左侧, ∴(00)A ,,(10)B ,. ∴2PB =.当3=x 时,292312=⨯-⨯=c y . ∴12PC =. ∴14PB PC +=. ②59≤-a 或2≥a . 27.(1)①依题意,将图1补全;NCMPB A O②AC OM ∥.证明:连接AP∵1OA OP ==,︒=60α ,∴△OAP 是等边三角形. ∴=60OP PA OPA OAP ==︒,∠∠. ∵△PBC 是等边三角形, ∴=60PB PC BPC =︒,∠.∴OPA APB BPC APB +=+∠∠∠∠.即OPB APC =∠∠. ∴△OBP ≌△ACP . ∴60PAC O ==︒∠∠. ∴OPA PAC =∠∠. ∴AC OM ∥.OABPMCN(2)14POR S =△. 28.(1)1P ,3P ;(2)∵点()12M ,和点()18N ,是点A 的两个“等距点” ,∴AM AN =.∴点A 在线段MN 的垂直平分线上.设MN 与其垂直平分线交于点C ,()A A A x y ,,∴(15)C ,,==5A AM AN y =. ∴=3CM . ∴224AC AM MC =-=.∴点A 的坐标为(35)-,或(55),. (3)24t -<≤.。

2019_2020学年北京海淀区初三上学期期中数学试卷-详解版

2019_2020学年北京海淀区初三上学期期中数学试卷-详解版

A.
B.
C.
D.
【答案】 B
【解析】 抛物线
向下平移 个单位得到

故选 .
5. 已知水平放置的圆柱形排水管道,管道截面半径是 面宽度为( ).
,若水面高
.则排水管道截面的水
A.
B.
C.
D.
【答案】 C 【解析】 过 作
⊙ 于点 ,


由题意可知,





中,





故选 .
6. 如图,在 中,




这四个图案中,阴影部分的面积不. 小. 于. 该图案外圈大圆面积一半的是( ).
A. 图 和图
B. 图 和图
C. 图 和图
D. 图 和图
【答案】 A 【解析】 图一:阴影部分面积等于大圆面积的一半,故正确;
图二:
圆半径为 ,则内接正三角形
中,
是 边上的高,






, ,
, ∴图二错误; 图三:


可知

又因

所以

如图,已知
﹐过 作
轴于点 ,
易知

又因


所以

所以点 的坐标为

将点 的坐标
代入抛物线
的解析式可得

并与( )中得到的
联立方程组可得:
解得
得抛物线的解析式为

2


27. 如图,在等腰 点 ,作射线 接.
中,

2020-2021学年北京市海淀区教院附中九年级(上)期中数学试卷(附答案详解)

2020-2021学年北京市海淀区教院附中九年级(上)期中数学试卷(附答案详解)

2020-2021学年北京市海淀区教院附中九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.已知两个相似三角形的相似比为2:3,那么这两个三角形的面积之比为()A. 3:2B. 4:6C. 4:9D. 2:32.已知:x+yx−2y =52,则xy的值为()A. 13B. 14C. 3D. 43.在△ABC中,D为AB边上一点,DE//BC交AC于点E,若ADDB=35,DE=6,则BC的长度为()A. 8B. 10C. 16D. 184.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A. 10mB. 12mC. 15mD. 40m5.如图,在平面直角坐标系xOy中,点P(4,3),OP与x轴正半轴的夹角为α,则tanα的值为()A. 35B. 45C. 34D. 436.二次函数y=−2x2的图象如何移动就得到y=−2(x−1)2+3的图象()A. 向左移动1个单位,向上移动3个单位B. 向右移动1个单位,向上移动3个单位C. 向左移动1个单位,向下移动3个单位D. 向右移动1个单位,向下移动3个单位7.抛物线y=−x2−2x+24的顶点坐标是()A. (−1,25)B. (−1,−25)C. (1,−21)D. (1,21)8.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A. (54√3+10)cmB. (54√2+10)cmC. 64cmD. 54cm9.已知函数y=ax2+bx+c的图象如图所示,则函数y=ax+b的图象是()A.B.C.D.10.如图,在等边△ABC中,AB=4,当直角三角板MPN的60°角的顶点P在BC上移动时,斜边MP始终经过AB边的中点D,设直角三角板的另一直角边PN与AC相交于点E.设BP=x,CE=y,那么y与x之间的函数图象大致是()A.B.C.D.二、填空题(本大题共6小题,共12.0分)11.若0°<α<90°,tanα=1,则sinα=______,cosα=______.212.请写出一个开口向上,并且与y轴交于点(0,−1)的抛物线的解析式______.13.在Rt△ABC中,∠C=90°,sinA=3,AB=8,则BC=______,AC=______.414.若抛物线y=x2−2x−k与x轴有两个交点,则实数k的取值范围是______.15.小莉站在离一棵树水平距离为2米的地方,用一块含30°的直角三角板按如图所示的方式测量这棵树的高度,已知小莉的眼睛离地面的高度是1.5米,那么她测得这棵树的高度为______.(结果保留根号)16.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).则正方形ABCD的面积为______,延长CB交x轴于点A1,作正方形A1B1C1C,则正方形A1B1C1C的面积为______;延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,正方形A2015B2015C2015C2014的面积为______.三、计算题(本大题共1小题,共4.0分)17.计算:2sin45°+sin60°−cos30°+tan260°.四、解答题(本大题共11小题,共54.0分)18.如图,在△ABC中,∠C=90°,sinA=2,D为AC上5一点,∠BDC=45°,DC=6,求AD的长.19.已知:如图,在△ABC中,D是AB上一点,且∠ACD=∠B,若AC=5,AB=9,CB=6.(1)求证:△ADC∽△ACB;(2)求CD的长.20.已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:(1)可求得m的值为______;(2)求出这个二次函数的解析式;(3)当y>3时,x的取值范围为______.21.已知二次函数y=2x2+4x−6.(1)把函数配成y=a(x−ℎ)2+k的形式;(2)求函数与x轴交点坐标;(3)用五点法画函数图象根据图象回答:(4)当y≥0时,则x的取值范围为______.(5)当−3<x<0时,则y的取值范围为______.22.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为格点三角形,图中的△ABC就是格点三角形,在建立平面直角坐标系后,点B的坐标为(−1,−1).(1)把△ABC向左平移8格后得到△A1B1C1,在坐标系的方格纸中画出△A1B1C1的图形并直接写出点B1的坐标为______.(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,在坐标系的方格纸中画出△A2B2C的图形并直接写出点B2的坐标为______.(3)在现有坐标系的方格纸中把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3.23.如图,在▱ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.求证:BE⋅EC=FC⋅CD.24.已知:如图,等腰△ABC中,AB=BC,AE⊥BC于E,EF⊥AB于F,若CE=2,cos∠AEF=4,求BE的5长.25.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.26.已知二次函数y=x2−2(k+1)x+k2−2k−3与x轴有两个交点.(1)求k的取值范围;(2)当k取最小的整数时,求二次函数的解析式;(3)将(2)中求得的抛物线在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你画出这个新图象,并求出新图象与直线y=x+m有三个不同公共点时m的值.27.对于二次函数y=x2−3x+2和一次函数y=−2x+4,把y=t(x2−3x+2)+(1−t)(−2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.现有点A(2,0)和抛物线E上的点B(−1,n),请完成下列任务:(1)当t=2时,求抛物线y=t(x2−3x+2)+(1−t)(−2x+4)的顶点坐标;(2)点A______(填在或不在)在抛物线E上;(3)n的值为______.(4)通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,求出该定点坐标.(5)二次函数y=−3x2+5x+2是二次函数y=x2−3x+2和一次函数y=−2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.28.在平面直角坐标系xOy中,抛物线y=mx2+3x+5+m与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,4),D为OC的中点.(1)求m的值;(2)抛物线的对称轴与x轴交于点E,在直线AD上是否存在点F,使得以点A、B、F为顶点的三角形与△ADE相似?若存在,请求出点F的坐标,若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点G,使△GBC中BC边上的高为5√2?若存在,求2出点G的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:∵两个相似三角形的相似比为2:3,∴这两个三角形的面积之比为4:9.故选:C.由两个相似三角形的相似比为2:3,根据相似三角形的面积比等于相似比的平方,即可求得答案.此题考查了相似三角形的性质.注意熟记定理是解此题的关键.2.【答案】D【解析】解:由x+yx−2y =52,得2x+2y=5x−10y,两边都加(−5x−2y),得−3x=−12y,两边都除以−3y,得xy=4.故选:D.根据比例的性质,可得整式,根据等式的性质,可得答案.本题考查了比例的性质,利用比例的性质得出2x+2y=5x−10y是解题关键,又利用了等式的性质.3.【答案】C【解析】解:∵ADDB =35,∴ADAB =38,∵DE//BC,∴DEBC =ADAB=38,又DE=6,∴BC=16,故选:C.根据平行线分线段成比例定理得到比例式,代入已知数据计算即可.本题考查的是平行线分线段成比例定理,平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.4.【答案】C【解析】【解析】本题考查了相似的应用,属于基础题.根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,1.83=x25,解得:x=15.故选C.5.【答案】C【解析】【解析】过P作PN⊥x轴于N,PM⊥y轴于M,则∠PMO=∠PNO=90°,∵x轴⊥y轴,∴∠MON=∠PMO=∠PNO=90°,∴四边形MONP是矩形,∴PM=ON,PN=OM,∵P(4,3),∴ON=PM=4,PN=3,∴tanα=PNON =34,故选:C.【分析】过P作PN⊥x轴于N,PM⊥y轴于M,根据点P的坐标求出PN和ON,解直角三角形求出即可.本题考查了点的坐标和解直角三角形,能求出PN和ON的长是解此题的关键.6.【答案】B【解析】解:由y=−2x2的图象得到y=−2(x−1)2+3的图象,得向右移动1个单位,向上移动3个单位.故选:B.根据图象平移规律:左加右减,上加下减,可得答案.本题考查了二次函数图象与几何变换,熟记函数图象平移规律是解题关键.7.【答案】A【解析】解:∵y=−x2−2x+24=−(x+1)2+25,∴该抛物线的顶点坐标为(−1,25),故选:A.将函数解析式化为顶点式,即可得到该抛物线的顶点坐标.本题考查二次函数的性质,解答本题的关键是会将抛物线解析式化为顶点式.8.【答案】C【解析】【分析】本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.过A作AE⊥CP于E,过B作BF⊥DQ于F,则可得AE和BF的长,依据端点A与B之间的距离为10cm,即可得到可以通过闸机的物体的最大宽度.【解答】解:如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=12AC=12×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选:C.9.【答案】B【解析】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=−b2a>0,∴b>0,∴函数y=ax+b的图象经过第二四象限且与y轴正半轴相交,故选:B.根据抛物线开口向下确定出a<0,再根据对称轴确定出b,然后根据一次函数的性质确定出函数图象即可得解.本题考查了二次函数图象,一次函数图象,根据抛物线的开口方向与对称轴确定出a、b 的正负情况是解题的关键.10.【答案】B【解析】解:∵等边△ABC中,AB=4,BP=x,∴BD=2,PC=4−x,∠B=∠C=60°,∵∠MPN=60°,∴∠DPB+∠EPC=120°,∵∠EPC+∠PEC=120°,∴∠DPB=∠PEC,∴△BPD∽△CEP,∴BPCE =BDCP,即xy=24−x,∴y=12x(4−x)=−12(x−2)2+2,(0≤x≤4).故选B.根据等边三角形的性质得BD=2,PC=4−x,∠B=∠C=60°,由于∠MPN=60°,易得∠DPB=∠PEC,根据三角形相似的判定方法得到△BPD∽△CEP,利用相似比即可得到y =12x(4−x),配方得到y =−12(x −2)2+2,然后根据二次函数的性质对各选项进行判断.本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了等边三角形的性质.11.【答案】√55 2√55【解析】解:设锐角α的对边为k ,则锐角α的邻边为2k ,∴斜边为√k 2+(2k)2=√5k ,∴sinα=√5=√55,cosα=√5=2√55, 故答案为:√55,2√55. 根据锐角三角函数的定义和勾股定理可求出答案.本题考查锐角三角函数和勾股定理,理解锐角三角函数的定义,掌握勾股定理是解决问题的关键.12.【答案】y =x 2−1(答案不唯一)【解析】【试题解析】解:抛物线的解析式为y =x 2−1.故答案为:y =x 2−1(答案不唯一).根据题意写出即可.本题考查了二次函数的性质,开放型题目,答案不唯一,所写函数解析式的二次项系数一定要大于0并且与y 轴交于点(0,−1).13.【答案】6 2√7【解析】解:在Rt △ABC 中,∠C =90°,sinA =BCAB ,∵sinA =34,AB =8,∴BC=6,由勾股定理得:AC=√AB2−BC2=√82−62=2√7,故答案为:6;2√7.根据正弦的定义求出BC,根据勾股定理求出AC.本题考查的是锐角三角函数的定义、勾股定理的应用,掌握锐角A的对边a与斜边c的比叫做∠A的正弦是解题的关键.14.【答案】k>−1【解析】解:∵抛物线y=x2−2x−k与x轴有两个交点,∴△>0,即(−2)2−4×1×(−k)>0.整理得:4+4k>0.解得:k>−1.故答案为:k>−1.抛物线y=x2−2x−k与x轴有两个交点,则△≥0,从而可求得k的取值范围.本题主要考查的是抛物线与x轴的交点,明确当△>0是抛物线与x轴有两个交点是解题的关键.15.【答案】(2√3+1.5)米3【解析】解:如图所示:过A作CD的垂线,设垂足为E点,则AE=BC=2米,AB=CE=1.5米.Rt△ADE中,AE=2米,∠DAE=30°,(米),∴DE=AE⋅tan30°=2√33+1.5)米.∴CD=CE+DE=(2√33+1.5)米.故答案为:(2√33过小莉的视点作树的垂线,通过构建直角三角形来求这棵树的高度.此题考查了仰角的定义、通过解直角三角形解决实际问题的能力.构造直角三角形是解决问题的关键.16.【答案】5 454 5×(94)2015【解析】解:∵点A 的坐标为(1,0),点D 的坐标为(0,2),∴OA =1,OD =2,∵∠AOD =90°,∴AB =AD =√12+22=√5,∠ODA +∠OAD =90°,∵四边形ABCD 是正方形,∴∠BAD =∠ABC =90°,S 正方形ABCD =(√5)2=5,∴∠ABA 1=90°,∠OAD +∠BAA 1=90°,∴∠ODA =∠BAA 1,∴△ABA 1∽△DOA ,∴BA 1OA =AB OD ,即BA 11=√52, ∴BA 1=√52, ∴CA 1=3√52, ∴正方形A 1B 1C 1C 的面积=(3√52)2=5×94=454,…,第n 个正方形的面积为5×(94)n , ∴第2015个正方形即A 2015B 2015C 2015C 2014的面积为5×(94)2015;故答案为:5,454,5×(94)2015.先求出正方形ABCD 的边长和面积,再求出第一个正方形A 1B 1C 1C 的面积,得出规律,根据规律即可求出正方形A 2015B 2015C 2015C 2014的面积.本题考查了正方形的性质以及坐标与图形性质;通过求出正方形ABCD 和正方形A 1B 1C 1C 的面积得出规律是解决问题的关键.17.【答案】解:2sin45°+sin60°−cos30°+tan 260°.=2×√22+√32−√32+(√3)2,=√2+3.故答案为:√2+3.【解析】先把各角的三角函数值代入,再根据实数混合运算的法则进行计算即可.本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.18.【答案】解:∵∠C=90°,∠BDC=45°,∴∠DBC=45°,∵DC=6,∴BC=6,∵sinA=2,5∴AB=15,∴AC=√AB2−BC2=√152−62=3√21,∴AD=AC−DC=3√21−6.【解析】根据已知条件求出BC=DC=6,再根据正弦的定义求出AB,再根据勾股定理求出AC,最后根据AD=AC−DC求出AD的长.此题考查了解直角三角形,用到的知识点是直角三角形的性质、正弦的定义、勾股定理,关键是根据题意求出AB的长.19.【答案】(1)证明:在△ADC与△ACB中,∵∠ABC=∠ACD,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴CD:BC=AC:AB∴CD⋅AB=BC⋅AC,即9CD=5×6,∴CD=10.3【解析】(1)根据两角对应相等,两三角形相似即可证明△ADC∽△ACB;(2)根据相似三角形的对应边成比例得出CD:BC=AC:AB,将数值代入计算即可求出CD的长本题主要考查相似三角形的判定和性质,掌握利用两组角对应相等可判定两个三角形相似是解题的关键.20.【答案】3 x <0或x >4【解析】解:(1)(2)根据题意得:{c =3a +b +c =04a +2b +c =−1,解得:{a =1b =−4c =3.则函数的解析式是:y =x 2−4x +3,当x =4时,m =16−16+3=3;(3)函数图象经过(0,3),(4,3),当y >3时,则x 的取值范围为:x <0或x >4.故答案是:3;x <0或x >4.(1)(2)把表中的三个点(0,3),(1,0),(2,−1)代入函数的解析式,得到关于a ,b ,c 的方程组,即可求得解析式,把x =4代入即可求得m 的值;(3)根据函数的图象开口方向,增减性即可确定.本题考查了待定系数法求函数的解析式以及二次函数的性质,理解函数的增减性是关键.21.【答案】x ≥1或x ≤−3 0>y ≥−8【解析】解:(1)y =2x 2+4x −6=2(x +1)2−8;(2)令y =0,则0=2x 2+4x −6,解得:x =1,或x =−3,函数与x 轴交点坐标为(1,0),(−3,0);(3)用五点法画函数图象如下:(4)当y≥0时,则x的取值范围为x≥1或x≤−3.(5)当−3<x<0时,则y的取值范围为0>y≥−8.(1)利用配方法化为顶点式即可;(2)根据图象与x轴的相交的特点可求出坐标;(3)已知抛物线解析式,确定对称轴以后,在对称轴左右两边对称取值即可;(4)当图象在x轴及其上方时y≥0,据此写出x的取值范围;(5)因为顶点坐标(−1,−8)在−3<x<0的范围内,根据图象,可确定函数值y的范围.此题考查了二次函数的性质与图象,考查了通过配方法求顶点式,求顶点坐标,对称轴,开口方向;还考查了根据对称轴列表、画图的方法,二次函数的增减性及观察图象回答问题的能力.22.【答案】(−9,−1)(5,5)【解析】解:(1)如图所示:△A1B1C1,即为所求;点B1的坐标为:(−9,−1);故答案为:(−9,−1);(2)如图所示:△A2B2C,即为所求;点B2的坐标为:(5,5);故答案为:(5,5);(3)如图所示:△AB3C3,即为所求.(1)直接利用平移的性质分别得出对应点位置进而得出答案;(2)直接利用旋转的性质分别得出对应点位置进而得出答案;(3)直接利用位似图形的性质进而得出对应点位置进而得出答案.此题主要考查了旋转变换以及平移变换、位似变换,正确得出对应点位置是解题关键.23.【答案】证明:∵四边形ABCD是平行四边形,∴AB//CD,AD//BC,AB=CD,∴∠B=∠ECF,∠DAE=∠AEB,又∵∠DAE=∠F,∴∠AEB=∠F,∴△ABE∽△ECF,∴BEFC =ABEC,∴BE⋅EC=FC⋅CD.【解析】由平行四边形的性质可知AB//CD,AD//BC,根据平行线的性质得到∠B=∠ECF,∠DAE=∠AEB,又因为∠DAE=∠F,进而可证明:△ABE∽△ECF,由相似三角形的性质即可证得结论.本题考查了平行四边形的性质,相似三角形的判定和性质,熟练掌握相似三角形的判定是解题的关键.24.【答案】解:∵AE⊥BC于E,EF⊥AB于F,∴∠AEB=∠AFE=90°.∴∠B+∠BAE=∠BAE+∠AEF=90°.∴∠B=∠AEF.∵cos∠AEF=45,∴cos∠B=45.∵cos∠B=BEAB,AB=BC,CE=2,∴设BE=4a,则AB=5a,CE=a.∴a=2.∴BE=8.,从而可以得到【解析】根据题意,通过变化可得∠B=∠AEF,CE=2,cos∠AEF=45BE、AB的关系,从而可以解答本题.本题考查解直角三角形,解题的关键是建立各个角之间的关系,找准所求问题需要的条件.25.【答案】解:如图所示建立平面直角坐标系,此时,抛物线与x轴的交点为C(−100,0),D(100,0),设这条抛物线的解析式为y=a(x−100)(x+100),∵抛物线经过点B(50,150),可得150=a(50−100)(50+100).解得a=−1,50(x−100)(x+100).∴y=−150x2+200,即抛物线的解析式为y=−150顶点坐标是(0,200)∴拱门的最大高度为200米.【解析】因为拱门是抛物线形的建筑物,所以符合抛物线的性质,以CD的中垂线为y轴,CD所在的直线为x轴,可列出含有未知量的抛物线解析式,由A、B的坐标可求出抛物线的解析式,然后就变成求抛物线的顶点坐标的问题.本题考查的二次函数在实际生活中的应用,根据题意正确的建立坐标轴可使问题简单化,数形结合,很基础的二次函数问题.26.【答案】解:(1)∵抛物线与x轴有两个交点,∴△=4(k+1)2−4(k2−2k−3)=16k+16>0.∴k>−1.∴k的取值范围为k>−1.(2)∵k>−1,且k取最小的整数,∴k=0.∴y=x2−2x−3=(x−1)2−4.(3)翻折后所得新图象如图所示.平移直线y=x+m知:直线位于l1和l2时,它与新图象有三个不同的公共点.①当直线位于l1时,此时l1过点A(−1,0),∴0=−1+m,即m=1.②∵当直线位于l2时,此时l2与函数y=−x2+2x+3(−1≤x≤3)的图象有一个公共点∴方程x+m=−x2+2x+3,即x2−x−3+m=0有两个相等实根.∴△=1−4(m−3)=0,即m=13.4.综上所述,m的值为1或134【解析】(1)由抛物线与x轴有两个交点可知△>0,从而可求得k的取值范围;(2)先求得k的最小整数值,从而可求得二次函数的解析式;(3)先根据函数解析式画出图形,然后结合图形找出抛物线与x轴有三个交点的情形,最后求得直线的解析式,从而可求得m的值.本题主要考查的是二次函数的综合应用,根据题意画出如图,找出新图象与直线y=x+ m有三个不同公共点的条件是解题的关键.27.【答案】在6【解析】解:(1)将t=2代入抛物线E中,得:y=t(x2−3x+2)+(1−t)(−2x+4)= 2x2−4x=2(x−1)2−2,∴此时抛物线的顶点坐标为:(1,−2);(2)将x=2代入y=t(x2−3x+2)+(1−t)(−2x+4),得y=0,∴点A(2,0)在抛物线E上,故答案为:在;(3)将x=−1代入抛物线E的解析式中,得:n=t(x2−3x+2)+(1−t)(−2x+4)=6.故答案为:6;(4)将抛物线E的解析式展开,得:y=t(x2−3x+2)+(1−t)(−2x+4)=t(x−2)(x+1)−2x+4∴抛物线E必过定点(2,0)、(−1,6);(5)将x=2代入y=−3x2+5x+2,y=0,即点A在抛物线上.将x=−1代入y=−3x2+5x+2,计算得:y=−6≠6,即可得抛物线y=−3x2+5x+2不经过点B,二次函数y=−3x2+5x+2不是二次函数y=x2−3x+2和一次函数y=−2x+4的一个“再生二次函数”.(1)把t=2代入抛物线的解析式,利用配方法,即可解决问题.(2)边点A坐标代入即可判断.(3)把点B的坐标代入即可求出n的值.(4)可得y=t(x2−3x+2)+(1−t)(−2x+4)=t(x−2)(x+1)−2x+4,则得出抛物线E必过定点(2,0)、(−1,6).(5)根据“再生二次函数”的定义,即可判断.本题是二次函数综合题,考查了待定系数法、一次函数的应用等知识,理解“再生二次函数”的定义是解题的关键.28.【答案】解:(1)抛物线y=mx2+3x+5+m与y轴交于点C(0,4),∴5+m=4.∴m=−1.(2)抛物线的解析式为y=−x2+3x+4.可求抛物线与x轴的交点A(−1,0),B(4,0).可求点E的坐标(32,0).由图知,点F在x轴下方的直线AD上时,△ABF是钝角三角形,不可能与△ADE相似,所以点F一定在x轴上方.此时△ABF与△ADE有一个公共角,两个三角形相似存在两种情况:①当ABAF =AEAD时,由于E为AB的中点,此时D为AF的中点,可求F点坐标为(1,4).②当ABAF =ADAE时,5AF=√552,解得:AF=5 √52.如图(2)过F点作FH⊥x轴,垂足为H.∴ADAF =0AAH.∵D是OC的中点,∴OD=2,∴由勾股定理得:AD=√5,∴√55√52=11+OH,∴OH=32,由勾股定理得:FH=√1254−254=5∴F的坐标为(32,5)(3)在抛物线的对称轴上存在符合题意的点G.由题意,可知△OBC为等腰直角三角形,直线BC为y=−x+4.如图(3)∵MQ//BC,QP=52√2,由勾股定理,得∴CQ=5∴可求与直线BC 平行且距离为52√2的直线为y =−x +9或y =−x −1.∴点G 在直线y =−x +9或y =−x −1上.∵抛物线的对称轴是直线x =32,∴{y =−x +9x=32或{y =−x −1x=32, 解得:{y =152x=32或{y =−52x=32.∴点G 的坐标为(32,152)或(32,−52).【解析】(1)由抛物线y =mx 2+3x +5+m 与y 轴交于点C(0,4),把C 点的坐标代入解析式建立方程,求出方程的解,就可以求出m 的值.(2)先求出抛物线与x 轴的交点坐标,根据抛物线的对称性求出E 点的坐标,然后根据对应角不同的情况就可以求出F 的不同坐标.(3)先由待定系数法求出直线BC 的解析式,然后由题目的条件求出与直线BC 平行且距离为52√2的直线的解析式,再由抛物线的对称轴与这些与BC 平行的直线的解析式构建方程组求出其解,就可以求出G 的坐标.本题考查了两条直线相交或平行的问题,待定系数法求二次函数的解析式,相似三角形的判定与性质,等腰直角三角形的性质,勾股定理的运用.。

北京市北京市海淀区2019-2020学年九年级上学期数学期中考试试卷及参考答案

北京市北京市海淀区2019-2020学年九年级上学期数学期中考试试卷及参考答案

北京市北京市海淀区2019-2020学年九年级上学期数学期中考试试卷一、单选题1. 下列图案中,是中心对称图形的是()A .B .C .D .2. 抛物线的顶点坐标为()A . (-1,2)B . (1,2)C . (1,-2)D . (2,1)3. 体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A . MB . NC . PD . Q4. 将抛物线向下平移3个单位,得到的抛物线为()A .B .C .D .5. 已知水平放置的圆柱形排水管道,管道截面半径是1 m,若水面高0.2 m. 则排水管道截面的水面宽度为()A . 0.6 mB . 0.8 mC . 1.2 mD . 1.6 m6. 如图,在⊙O中,, . 则的度数为()A .B .C .D .7. 下列是关于四个图案的描述.图1所示是太极图,俗称“阴阳鱼”,该图案关于外圈大圆的圆心中心对称;图2所示是一个正三角形内接于圆;图3所示是一个正方形内接于圆;图4所示是两个同心圆,其中小圆的半径是外圈大圆半径的三分之二.这四个图案中,阴影部分的面积不小于该图案外圈大圆面积一半的是()A . 图1和图3B . 图2和图3C . 图2和图4D . 图1和图48. 如图,在平面直角坐标系xOy中,抛物线与x轴交于A, B两点. 若顶点C到x轴的距离为8,则线段AB的长度为()A . 2B .C .D . 4二、填空题9. 在平面直角坐标系中,点绕原点旋转180°后所得到的点的坐标为________.10. 写出一个对称轴是y轴的二次函数的解析式________.11. 如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,则∠BAC=________.12. 若二次函数的图象上有两点 , 则 ________ .(填“>”,“=”或“<”)13. 如图,边长为2的正方形ABCD绕着点C顺时针旋转90°,则点A运动的路径长为________.14. 如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于________.15. 如图,已知正方形OBCD的三个顶点坐标分别为B(1,0),C(1,1), D(0,1). 若抛物线与正方形OBCD的边共有3个公共点,则h的取值范围是________.16. 如图,在中,⑴作AB和BC的垂直平分线交于点O;⑵以点O为圆心,OA长为半径作圆;⑶⊙O分别与AB和BC的垂直平分线交于点M,N;⑷连接AM,AN,CM,其中AN与CM交于点P.根据以上作图过程及所作图形,下列四个结论中,①;②;③点O是的外心;④点P是的内心.所有正确结论的序号是________.三、解答题17. 已知抛物线的对称轴为,是抛物线上一点,求该抛物线的解析式.18. 如图,等腰三角形ABC中,BA=BC,∠ABC=α.作AD⊥BC于点D,将线段BD绕着点B顺时针旋转角α后得到线段B E,连接CE. 求证:BE⊥CE.19. 请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.20. 如图,一条公路的转弯处是一段圆弧(),点是这段弧所在圆的圆心. , C是上一点,,垂足为,,求这段弯路的半径.21. 已知二次函数的图象与轴只有一个公共点.(1)求该二次函数的解析式;(2)当时,y的最大值为,最小值为.22. 如图,已知等边三角形ABC,O为△ABC内一点,连接OA,OB,OC,将△BAO绕点B旋转至△BCM.(1)依题意补全图形;(2)若OA= ,OB= ,OC=1,求∠OCM的度数.23. 如图,在Rt△ABC 中,∠C=90°,以BC为直径的半圆交AB于点D,O是该半圆所在圆的圆心,E为线段AC上一点,且ED=EA.(1)求证:ED是⊙O的切线;(2)若,∠A=30°,求⊙O的半径.24. 悬索桥,又名吊桥,指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁. 其缆索几何形状一般近似于抛物线.从缆索垂下许多吊杆(吊杆垂直于桥面),把桥面吊住.某悬索桥(如图1),是连接两个地区的重要通道. 图2是该悬索桥的示意图.小明在游览该大桥时,被这座雄伟壮观的大桥所吸引. 他通过查找资料了解到此桥的相关信息:这座桥的缆索(即图2中桥上方的曲线)的形状近似于抛物线,两端的索塔在桥面以上部分高度相同,即AB=CD, 两个索塔均与桥面垂直. 主桥AC的长为600 m,引桥CE的长为124 m.缆索最低处的吊杆MN长为3 m ,桥面上与点M相距100 m处的吊杆PQ长为13 m.若将缆索的形状视为抛物线,请你根据小明获得的信息,建立适当的平面直角坐标系,求出索塔顶端D与锚点E的距离.图225. 探究函数的图象与性质.小娜根据学习函数的经验,对函数的图象与性质进行了探究.下面是小娜的探究过程,请补充完整:(1) 下表是x 与y 的几组对应值.x…023…y…0mn 3…请直接写出:m=,n=;(2) 如图,小娜在平面直角坐标系xOy 中,描出了上表中已经给出的各组对应值为坐标的点,请再描出剩下的两个点,并画出该函数的图象;(3)结合画出的函数图象,解决问题:若方程 有三个不同的解,记为x , x , x ,且x < x <x . 请直接写出x + x +x 的取值范围.26.在平面直角坐标系xOy 中,抛物线与直线 交于A, B 两点,其中点A 在x轴上.(1)用含有b 的代数式表示c ;(2) ①若点B 在第一象限,且,求抛物线的解析式;② 若 ,结合函数图象,直接写出b 的取值范围.27. 如图,在等腰△ABC 中,AB=AC ,,将点C 关于直线AB对称得到点D ,作射线BD 与CA 的延长线交于点E ,在CB 的延长线上取点F ,使得BF=DE ,连接AF.备用图123123123(1) 依题意补全图形;(2) 求证:AF=AE ;(3) 作BA 的延长线与FD 的延长线交于点P ,写出一个∠ACB 的值,使得AP=AF 成立,并证明.28. 在平面内,C 为线段AB 外的一点,若以A ,B ,C 为顶点的三角形为直角三角形,则称C 为线段AB 的直角点. 特别地,当该三角形为等腰直角三角形时,称C 为线段AB 的等腰直角点.(1) 如图1,在平面直角坐标系xOy 中,点M 的坐标为,在点P ,P,P 中,线段OM 的直角点是;(2) 在平面直角坐标系xOy 中,点A ,B的坐标分别为, ,直线l的解析式为 .①如图2,C 是直线l 上的一个动点,若C 是线段AB 的直角点,求点C的坐标;②如图3,P 是直线l 上的一个动点,将所有线段AP 的等腰直角点称为直线l 关于点A 的伴随点.若⊙O 的半径为r ,且⊙O 上恰有两个点为直线l 关于点A 的伴随点,直接写出r 的取值范围.参考答案1.2.3.1234.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.。

2019-2020北京市海淀区初三年级上数学期中试卷

2019-2020北京市海淀区初三年级上数学期中试卷

2019-2020北京市海淀区初三年级上数学期中试卷数学一、 选择题(本题共24分;每小题3分)下列各题均有四个选项;其中只有一个..是符合题意的. 1.一元二次方程23610x x --=的二次项系数、一次项系数、常数项分别是 A .3;6;1B .3;6;-1C .3;-6;1D .3;-6;-1 2.把抛物线2y x =向上平移1个单位长度得到的抛物线的表达式为A .21y x =+B . 21y x =-C .21y x =-+ D .21y x =--3.如图;A ;B ;C 是⊙O 上的三个点;若∠C =35°;则∠AOB 的大小为 A .35° B .55° C .65°D .70°4.下列手机手势解锁图案中;是中心对称图形的是A .B .C .D .5.用配方法解方程2420x x -+=;配方正确的是 A .2(2=2x -)B .2(+2=2x )C .2(-2=-2x )D .2(-2=6x )6.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n °后能与原来的图案重 合;那么n 的值可能是 A .45 B .60C .90D .1207.二次函数21y ax bx c =++与一次函数2y mx n =+的图象如图所示;则满足2ax bx c mx n ++>+的x 的取值范围是A .-3<x <0B .x <-3或x >0C .x <-3或x >1D .0<x <38.如图1.动点P 从格点A 出发;在网格平面内运动. 设点P 走过的路程为s ;点P 到直线l 的距离为d .已 知d 与s 的关系如图2所示.下列选项中;可能是点 P 的运动路线的是A .B .C .D .二、填空题(本题共24分;每小题3分)9.点 P (-1;2)关于原点的对称点的坐标为 .10.写出一个图象开口向上;过点(0;0)的二次函数的表达式:.11.如图3;四边形ABCD内接于⊙O;E为CD的延长线上一点;若∠B=110°;则∠ADE的大小为.12.抛物线y=x2-x-1与x轴的公共点的个数是.13.如图4;在平面直角坐标系xOy中;点A、点B的坐标分别为(0;2);(-1;0);将线段AB绕点O顺时针旋转;若点A的对应点A´的坐标为(2;0);则点B的对应点B´的坐标为.14.已知抛物线y=x2+2x经过点(-4;y1);(1;y2);则y1y2 (填“>”;“=”或“<”)15.如图5;⊙O的半径OA与弦BC交于点D;若OD=3;AD=2;BD=CD;则BC的长为.16.下面是“作已知三角形的高”的尺规作图过程.已知:△ABC求作:BC边上的高AD 作法:如图;(1)分别以点A和点C为圆心;大于12AC的长为半径作弧;两弧相交于P、Q两点;(2)作直线PQ;交AC于点O;(3)以O为圆心;OA为半径作⊙O;与CB的延长线交于点D;连接AD;线段AD即为所作的高请回答:该尺规作图的依据是.三、解答题(本题共72分;第17题4分;第18—23题;每小题5分;第24—25题;每小题7分;第26—28题;每小题8分)17.解方程:x2-4x+3=0.18.如图;等边三角形ABC的边长为3;点D是线段BC上的点;CD=2;以AD为边作等边三角形ADE;连接CE;求CE的长.19.已知m 是方程的一个根;的值.20.如图;在⊙O 中;. 求证:∠B =∠C .21.如图;ABCD 是一块边长为4米的正方形苗圃.园林部门拟将其改造为矩形AEFG 的形状.其中点E 在AB 边上;点G 在AD 的延长线上;DG =2BE .设BE 的长为x 米;改造后苗圃AEFG 的面积为y 平方米 (1)y 与x 之间的函数关系式为________________(不需写自变量的取值范围);(2)根据改造方案;改造后的矩形苗圃AEFG 的面积与原正方形苗圃ABCD 的面积相等;请问此时BE 的长为多少米?22. 关于的一元二次方程011222=-+-+m x m x )(有两个不相等的实数根1x ;2x . (1)求实数m 的取值范围;(2)是否存在实数m ;使得1x 2x =0成立?如果存在;求出m 的值;如果不存在;请说明理由.23.古代丝绸之路上的花剌子模地区曾经诞生过一位伟大的数学家——“代数学之父”阿尔▪花拉子米.在研究一元二次方程解法的过程中;他觉得“有必要用几何学方式来证明曾用数字解释过的问题的正确性”. 以21039x x +=为例;花拉子米的几何解法如下:如图;在边长为x 的正方形的两个相邻边上作边长分别为x 和5的矩形;再补上一个边长为5的小正方形;最终把图形补成一个大正方形.通过不同的方式来表示大正方形的面积;可以将原方程化为2__)(+x =39+_______;从而得到此方程的正根是___________.24.如图;在平面直角坐标系xOy 中;点A 的坐标为(1;0);点P 的横坐标为2;将点A 绕点.P .旋转;使它的对应点B 恰好落在x 轴上(不与A 点重合);再将点B 绕点.O .逆时针旋转90°得到点C . (1)直接写出点B 和点C 的坐标;(2)求经过A 、B 、C 三点的抛物线的表达式.25.如图;AB 为⊙O 直径;点C 在⊙O 上;过点O 作OD ⊥BC 交BC 于点E ;交⊙O 于点D ;CD ∥AB . (1)求证:E 为OD 的中点;(2)若CB =6;求四边形CAOD 的面积.26.在平面直角坐标系xOy 中;已知抛物线C : y =x 2-4x +4和直线l :y =kx -2k (k >0). (1)抛物线C 的顶点D 的坐标为____________; (2)请判断点D 是否在直线l 上;并说明理由;(3)记函数244222x x x y kx k x ⎧-+≤=⎨->⎩,,的图象为G ;点M (0;t );过点M 垂直于y 轴的直线与图象G 交于点11P x y (,);22x y Q(,).当1<t <3时;若存在t 使得124x x +=成立;结合图象;求k 的取值范围.27.对于平面直角坐标系xOy 中的点P ;给出如下定义:记点P 到x 轴的距离为1d ;到y 轴的距离为2d ;若12d d ≤;则称1d 为点P 的“引力值”;若12d d >;则称2d 为点P 的“引力值”.特别地;若点P 在坐标轴上;则点P 的“引力值”为0.例如;点P (-2;3)到x 轴的距离为3;到y 轴的距离为2;因为2< 3;所以点P 的“引力值”为2. (1)①点A (1;-4)的“引力值”为 ;②若点B (a ;3)的“引力值”为2;则a 的值为 ;(2)若点C 在直线24y x =-+上;且点C 的“引力值”为2.求点C 的坐标;(3)已知点M 是以D (3;4)为圆心;半径为2的圆上的一个动点;那么点M 的“引力值”d 的取值范围是 .28.在Rt△ABC中;斜边AC的中点M关于BC的对称点为点O;将△ABC绕点O顺时针旋转至△DCE;连接BD;BE;如图所示(1)在①∠BOE;②∠ACD;③∠COE中;等于旋转角的是(填出满足条件的角的序号);(2)若∠A=α;求∠BEC的大小(用含α的式子表示);(3)点N是BD的中点;连接MN;用等式表示线段MN与BE之间的数量关系;并证明.2017年北京市海淀区初三年级期中试卷数学二、 选择题(本题共24分;每小题3分)下列各题均有四个选项;其中只有一个..是符合题意的. 1.一元二次方程23610x x --=的二次项系数、一次项系数、常数项分别是 A .3;6;1B .3;6;-1C .3;-6;1D .3;-6;-1【答案】D 【解析】难度:★本题考查了一元二次方程的系数;难度易.2.把抛物线2y x =向上平移1个单位长度得到的抛物线的表达式为A .21y x =+B . 21y x =-C .21y x =-+ D .21y x =--【答案】A【解析】难度:★本题考查了二次函数图象平移问题“上加下减”;难度易.3.如图;A;B;C是⊙O上的三个点;若∠C=35°;则∠AOB的大小为A.35°B.55°C.65°D.70°【答案】D【解析】难度:★本题考查了圆周角定理;难度易.4.下列手机手势解锁图案中;是中心对称图形的是A.B.C.D.【答案】B【解析】难度:★本题考查了中心对称图形;难度易.5.用配方法解方程2420x x -+=;配方正确的是 A .2(2=2x -)B .2(+2=2x )C .2(-2=-2x )D .2(-2=6x )【答案】A 【解析】难度:★本题考查了一元二次方程的解法——配方法;难度易.6.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n °后能与原来的图案重 合;那么n 的值可能是 A .45 B .60C .90D .120【答案】D 【解析】难度:★本题考查了特殊图形的旋转角;难度易.7.二次函数21y ax bx c =++与一次函数2y mx n =+的图象如图所示;则满足2ax bx c mx n ++>+的x 的取值范围是A .-3<x <0B .x <-3或x >0C .x <-3或x >1D .0<x <3【答案】A 【解析】难度:★本题考查了二次函数与一次函数复合的不等式问题;“利用谁大谁的图象在上方”;结合交点来解题;难度易. 8.如图1.动点P 从格点A 出发;在网格平面内运动. 设点P 走过的路程为s ;点P 到直线l 的距离为d .已 知d 与s 的关系如图2所示.下列选项中;可能是点P的运动路线的是A.B.C.D.【答案】D【解析】难度:★本题考查了动点图象问题:点到直线的距离;难度易.二、填空题(本题共24分;每小题3分)9.点P(-1;2)关于原点的对称点的坐标为.【答案】(1;-2)【解析】难度:★本题考查点的对称;难度易.10.写出一个图象开口向上;过点(0;0)的二次函数的表达式:.【答案】y=x2(答案不唯一)【解析】难度:★本题考查二次函数性质;难度易.11.如图3;四边形ABCD内接于⊙O;E为CD的延长线上一点;若∠B=110°;则∠ADE的大小为.【答案】110°【解析】难度:★本题考查圆内接四边形对角互补、邻补角的性质;难度易.13.抛物线y=x2-x-1与x轴的公共点的个数是.【答案】2个【解析】难度:★本题考查二次函数与一元二次方程结合;判别式判断根的情况;难度易.13.如图4;在平面直角坐标系xOy中;点A、点B的坐标分别为(0;2);(-1;0);将线段AB绕点O顺时针旋转;若点A的对应点A´的坐标为(2;0);则点B的对应点B´的坐标为.【答案】(0;1)【解析】难度:★本题考查旋转三要素:旋转中心、旋转方向、旋转角度;难度易.14.已知抛物线y=x2+2x经过点(-4;y1);(1;y2);则y1y2 (填“>”;“=”或“<”=【答案】>【解析】难度:★本题考查二次函数对称性、增减性;难度易.15.如图5;⊙O的半径OA与弦BC交于点D;若OD=3;AD=2;BD=CD;则BC的长为.【答案】8【解析】难度:★本题考查圆的垂径定理、勾股定理;难度易.16.下面是“作已知三角形的高”的尺规作图过程.已知:△ABC求作:BC边上的高AD 作法:如图;(3)分别以点A和点C为圆心;大于12AC的长为半径作弧;两弧相交于P、Q两点;(4)作直线PQ;交AC于点O;(3)以O为圆心;OA为半径作⊙O;与CB的延长线交于点D;连接AD;线段AD即为所作的高请回答:该尺规作图的依据是.【答案】①到线段两端距离相等的点在线段的垂直平分线上. ②两点确定一条直线. ③直径所对圆周角是90°. 【解析】难度:★★本题考查尺规作图;难度较难.三、解答题(本题共72分;第17题4分;第18—23题;每小题5分;第24—25题;每小题7分;第26—28题;每小题8分)17.解方程:x 2-4x +3=0.+3=0x 4-2x 解:【答案】 (x -1)(x -3)=0 x -1=0或x -3=0 =32x =1;1x 【解析】难度:★本题考查一元二次方程解法(方法不唯一);难度易 .19.如图;等边三角形ABC 的边长为3;点D 是线段BC 上的点;CD =2;以AD 为边作等边三角形ADE ;连接CE ;求CE 的长.【答案】解:∵△ABC 、△ADE 为等边三角形 ∴BC =AB =AC =3;AD =AE∠BAD +∠DAC =∠CAE +∠DAC =60° ∴∠BAD =∠CAE 在△ABD 和△ACE 中∴△ABD≌△ACE(SAS)∴CE=BD∵BD=BC CD=1∴CE=1【解析】难度:★本题考查等边三角形性质、全等三角形证明;难度易.19.已知m 是方程的一个根;的值.【答案】解:=m2-6m+9+m2-4=2m2-6m+5∵m是方程x2-3x+1=0 的一个根∴m2-3m+1=0∴m2-3m =-1原式=2(m2-3m)+5=2×(-1)+5=3【解析】难度:★本题考查了方程根的定义;整式化简与整体代入思想.21.如图;在⊙O 中;求证:∠B=∠C.【答案】解:在⊙O中;∴AB=CD在△AOB和△COD中OA=ODOB=OCAB=CD∴△AOB≌△DOC(SSS)∴∠B=∠C【解析】难度:★本题考查了圆的基本定理(在同圆或等圆中;如果两条弧相等;那么它所对的圆周角相等;所对弦相等).21.如图;ABCD 是一块边长为4米的正方形苗圃.园林部门拟将其改造为矩形AEFG 的形状.其中点E 在AB 边上;点G 在AD 的延长线上;DG =2BE .设BE 的长为x 米;改造后苗圃AEFG 的面积为y 平方米 (1)y 与x 之间的函数关系式为________________(不需写自变量的取值范围);(2)根据改造方案;改造后的矩形苗圃AEFG 的面积与原正方形苗圃ABCD 的面积相等;请问此时BE 的长为多少米?【答案】解:(1)y =(4-x )(4+2x ) =-2x 2+4x +16(2)-2x 2+4x +16 =16 2x 24x = 02x (x 2)= 0 x 1=0;x 2=2 ∴BE =2 【解析】难度:★本题考查了一元二次方程实际应用与方程的求解.22. 关于的一元二次方程011222=-+-+m x m x )(有两个不相等的实数根1x ;2x . (1)求实数m 的取值范围;(2)是否存在实数m ;使得1x 2x =0成立?如果存在;求出m 的值;如果不存在;请说明理由.【答案】解:(1)x 2(m 1)x +m 21=0a =1;b =2(m 1);c =m 2 1△=b 24ac =[2(m 1)]24×1×(m 21)=-8m +8∵方程有两个不相等的实数根 ∴△>0 故 m <1(2)∵12b x a△22b x a△∴x 1·x 2=224b a △=22244b b acca a要使x 1·x 2=0;∴2101m∴m 2-1=0 ∴m 1=1;m 2=-1; ∵m <1; ∴m 1=-1即当m =-1时;x 1x 2=0.【解析】难度:★★本题考查了一元二次方程根的判别式;求根公式与分式运算.24.古代丝绸之路上的花剌子模地区曾经诞生过一位伟大的数学家——“代数学之父”阿尔▪花拉子米.在研究一元二次方程解法的过程中;他觉得“有必要用几何学方式来证明曾用数字解释过的问题的正确性”. 以21039x x +=为例;花拉子米的几何解法如下:如图;在边长为x 的正方形的两个相邻边上作边长分别为x 和5的矩形;再补上一个边长为5的小正方形;最终把图形补成一个大正方形.通过不同的方式来表示大正方形的面积;可以将原方程化为2__)(+x =39+_______;从而得到此方程的正根是___________.【答案】解:∵x 2+10x +25=39+25 ∴(x +5)2=39+25 (x +5)2=64 x +5=±8 ∵x 是正解 ∴x =3 【解析】难度:★本题考查配方法求解一元二次方程根的问题.24.如图;在平面直角坐标系xOy 中;点A 的坐标为(1;0);点P 的横坐标为2;将点A 绕点.P .旋转;使它的对应点B 恰好落在x 轴上(不与A 点重合);再将点B 绕点.O .逆时针旋转90°得到点C .(1)直接写出点B和点C的坐标;(2)求经过A、B、C三点的抛物线的表达式.【答案】(1)B(3;0) C(0;3)(2)y=x 24x+3解:(1)由题意可知:PA=PB△P AB为等腰三角形点P的横坐标为2点A的坐标为(1,0)∴点B的坐标为(3,0)由旋转可知:C(0;3)(2)由(1)得A(1;0)、B(3;0)、C(0;3)设经过A、B、C三点的解析式为y=a(x1)(x3)(a)代入点C(0;3)得: 3=a(01)(03)∴a=1∴y=(x1)(x3)∴y=x 24x+3【解析】难度:★★(1)旋转、平面直角坐标系、等腰三角形的性质(2)二次函数的解析式25.如图;AB为⊙O直径;点C在⊙O上;过点O作OD⊥BC交BC于点E;交⊙O于点D;CD∥AB.(1)求证:E为OD的中点;(2)若CB=6;求四边形CAOD的面积.【答案】解:(1)证明:∵OD为⊙O的半径;且OD⊥BC于点E∴由垂径定理知:BE=CE∵CD∥AB∴∠DCE=∠OBE在△DCE与△OBE中∴△DCE≌△OBE(ASA)∴OE=DE∴E为OD的中点(2)由(1)可知:OE=12OD=12OB;EB=12BC=3在Rt△OEB中;设OE=x,OB=2x 由勾股定理可得:x2+32=(2x)2解得:3即3;OB=23∵AB为⊙O的直径∴AC ⊥BC又∵OD ⊥BC∴OE ∥AC 且OE=12AC ∴AC=2OE=23由(1)可知:△DCE ≌△OBE∴四边形CAOD 的面积=△ACB 面积 ∴S △ACB=12AC BC ⋅⋅=63 即四边形CAOD 的面积为63 【解析】难度★★(1)考查垂径定理;全等三角形 (2)勾股定理全等三角形的性质26.在平面直角坐标系xOy 中;已知抛物线C : y =x 2-4x +4和直线l :y =kx -2k (k >0). (1)抛物线C 的顶点D 的坐标为____________; (2)请判断点D 是否在直线l 上;并说明理由;(3)记函数244222x x x y kx k x ⎧-+≤=⎨->⎩,,的图象为G ;点M (0;t );过点M 垂直于y 轴的直线与图象G 交于点11P x y (,);22x y Q(,).当1<t <3时;若存在t 使得124x x +=成立;结合图象;求k 的取值范围.【答案】(1)D (2;0); (2)在;理由见解析; (3)1<k <3. 解:(1)y =x 24x +4y=(x 2)2∴点D 的坐标为(2;0) (2)当x=2时;y=2k 2k=0 ∴点D 在直线l 上(3)抛物线的对称轴为直线x=2若两点关于直线x=2对称;则22a bx x += ;即4a b x x += 由题可知124x x +=则P 、Q 两点关于直线x =2对称; 抛物线y=x 24x+4(x ≤2)关于直线x=2的对称部分为图中y=x 24x+4(x>2);直线y=1和直线y=3与抛物线y=x 24x+4(x>2)分别交于N 、M 点;所以满足题意的点在M 、N 之间;可求M (2+3;3)N (3;1)设过点D 、M 的直线为1l ;过点D 、N 的直线为1l '; 那么;直线1l 的解析式为y=3x 23 直线1l '的解析式为y=x 2∴当1<t<3时;满足题意的k 的取值范围为-1<k 3【解析】难度★★★(1)二次函数的定义和性质 (2)一次函数的性质27.对于平面直角坐标系xOy 中的点P ;给出如下定义:记点P 到x 轴的距离为1d ;到y 轴的距离为2d ;若12d d ≤;则称1d 为点P 的“引力值”;若12d d >;则称2d 为点P 的“引力值”.特别地;若点P 在坐标轴上;则点P 的“引力值”为0.例如;点P (-2;3)到x 轴的距离为3;到y 轴的距离为2;因为2< 3;所以点P 的“引力值”为2. (1)①点A (1;-4)的“引力值”为 ;②若点B (a ;3)的“引力值”为2;则a 的值为 ;(2)若点C 在直线24y x =-+上;且点C 的“引力值”为2.求点C 的坐标;(3)已知点M 是以D (3;4)为圆心;半径为2的圆上的一个动点;那么点M 的“引力值”d 的取值范围是 .【答案】 (1)① 1 ② 2a =或-2(2)C 的坐标为(-2;8)或(3;-2)(3)771d +≤≤解;(2)当2x =时;0y =;0d =;舍去; 当-2x =时;8y =;2d =;此时C (-2;8); 当2y =时;1x =;1d =;舍去;当-2y =时;3x =;2d =;此时C (3;-2); 综上C 的坐标为(-2;8)或(3;-2)(3)由(1)(2)问和定义可知;当12d d ≤;“引力值”取1d ;当12d d >时;“引力值”取2d ;则可知取一个点横纵坐标绝对值较小的为“引力值”;所以作辅助直线y x =.又因为⊙O 在第一象限;在y x =轴上方时;x y <;取x 值.在y x =下方时;y x <;取y 值.在y x =上;均可取.如图;当1x =时;M 为直线1x =与D 的切点;此时;d 取最小值1.设y x =与D 交于N 、Q 两点;当M 与Q 点重合时;d 取最大值.作DE NQ ⊥于E 点;连结DN ;作DH ⊥x 轴于H ;交NQ 于点P .可知;45QOH ∠=︒;D (3;4);可求PH =OH =3;OP =32DP =4-3=1. 又由45DPE ∠=︒ ;可求DE =PE =22.可求OE =OP +PE =223222=.由ND = r =2;DE =22;90DMN ∠=︒;可求NE =142.由垂径定理得EQ =142;可求OQ =OE +EQ =2142..则可得Q (772+;772+);此时d 取最大值为772+综上所述;7712d +≤≤. 【解析】难度★★★★(1)套定义;分类讨论.(2)分类讨论;分点到x 轴的距离为2和点到y 轴的距离为2种情况.点到x 轴的距离为2时;再分2y =和-2y =.根据定义取C (3;-2)点到y 轴的距离为2时;再分2x =和-2x =.根据定义取C (-2;8)28.在Rt △ABC 中;斜边AC 的中点M 关于BC 的对称点为点O ;将△ABC 绕点O 顺时针旋转至 △DCE ;连接BD ;BE ;如图所示(1)在①∠BOE ;②∠ACD ;③∠COE 中;等于旋转角的是 (填出满足条件的角的序号);(2)若∠A =α;求∠BEC 的大小(用含α的式子表示);(3)点N 是BD 的中点;连接MN ;用等式表示线段MN 与BE 之间的数量关系;并证明.【答案】(1)③(2)∠BEC =α(3)BE=2MN【解析】难度:★★★★解:(1)∠BOC =∠COE =∠AOD ;均为旋转角(2)解法一:∵△ABC 绕点O 顺时针旋转至△DCE∴BO =CO =EO∴B、E、C在以O为圆心、BO为半径的圆上.。

2019-2020学年北京市海淀区九年级第一学期期中数学试卷(含答案)

2019-2020学年北京市海淀区九年级第一学期期中数学试卷(含答案)

初三第一学期期中学业水平调研数 学2019.11一、选择题 (本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1. 下列图案中,是中心对称图形的是A B C D 2. 抛物线2(1)2y x =-+的顶点坐标为A .(1,2)-B . (1,2)C .(1,2)-D .(2,1)3. 体育课上,小悦在点O 处进行了四次铅球试投,铅球分别落在图中的M ,N ,P ,Q 四个点处, 则表示他最好成绩的点是A .MB .NC .PD .Q4. 将抛物线22y x =向下平移3个单位,得到的抛物线为A .223y x =+B .223y x =-C .()223y x =+D . ()223y x =-5. 已知水平放置的圆柱形排水管道,管道截面半径是1 m ,若水面高0.2 m. 则排水管道截面的水面宽度为 A.0.6 m B.0.8 m C.1.2 m D.1.6 m6. 如图,在⊙O 中,OA BC ⊥,25ADB ∠=︒. 则AOC ∠的度数为A .30︒B .45︒C .50︒D .55︒7. 下列是关于四个图案的描述.图1所示是太极图,俗称“阴阳鱼”,该图案关于外圈大圆的圆心中心对称; 图2所示是一个正三角形内接于圆; 图3所示是一个正方形内接于圆;图4所示是两个同心圆,其中小圆的半径是外圈大圆半径的三分之二.图1 图2 图3 图4这四个图案中,阴影部分的面积不小于...该图案外圈大圆面积一半的是 A. 图1和图3B. 图2和图3C. 图2和图4D. 图1和图48. 如图,在平面直角坐标系xOy 中,抛物线22y x mx n =-++与x 轴交于A , B 两点. 若顶点C 到x轴的距离为8,则线段AB 的长度为 A .2 B . C D .4二、填空题(本题共16分,每小题2分)9. 在平面直角坐标系中,点(3,2)P -绕原点旋转180°后所得到的点的坐标为 . 10.写出一个对称轴是y 轴的抛物线的解析式: . 11. 如图,P A ,PB 是⊙O 的切线,A ,B 为切点,AC 是⊙O 的直径. 若50P ∠=︒,则BAC ∠= °.。

北京市海淀区2023-2024学年九年级上学期期中数学试题

北京市海淀区2023-2024学年九年级上学期期中数学试题

北京市海淀区2023-2024学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________.....已知点()21,A y -在抛物线上,则12,y y 的大小关系正确的是()12y y <.12y y =12y y >.不能确定.一元二次方程30=经过配方变形为22)x k -=,则的值是()3-.7-17.将抛物线()0y ax c a =≠向下平移,关于平移前后的抛物线,下列说法正确的).开口方向改变.开口大小改变.对称轴不变.顶点位置不变α=︒,则bA.若30α=︒,则b=C.若60二、填空题9.方程240x-=的解是10.在平面直角坐标系xOy是.11.请写出一个顶点在原点且开口向下的抛物线解析式12.若关于x的一元二次方程为.中,13.如图,在ABC⊥,则旋转角的度数是AD BC“”15.如图,二次函数(2y x =则自变量x 的取值范围是三、解答题16.在平面直角坐标系xOy 中,点P 的坐标为(),m n ,称关于x 的方程20x mx n ++=为点P 的对应方程.如图,点()1,0A -,点()1,1B ,点()2,2C -.给出下面三个结论:①点A的对应方程有两个相等的实数根;②在图示网格中,若点(P△≌△(1)求证:AOE COF(2)记四边形ABFE的面积为关系.19.已知m是方程2x x--y x=-20.已知二次函数2(1)在下图所示的平面直角坐标系中画出该二次函数的图象;P-____________该函数的图象上(填(2)点()2,7四、证明题21.已知关于x 的一元二次方程()2120x m x m +-+-=.(1)求证:该方程总有两个实数根;(2)若该方程有一个根是正数,求m 的取值范围.五、解答题22.如图,在平面直角坐标系xOy 中,()()2,4,2,0A B --,将OAB 绕原点O 顺时针旋转90︒得到OA B ''△(,A B ''分别是A 、B 的对应点).(1)在图中画出OA B ''△,点A '的坐标为____________;(2)若点(),2M m 位于OAB 内(不含边界),点M '为点M 绕原点O 顺时针旋转90︒的对应点,直接写出M '的纵坐标n 的取值范围.23.阅读下面的材料并完成解答.《田亩比类乘除捷法》是我国南宋数学家杨辉的著作,其中记载了这样一个数学问题:“直田积八百六十四步,只云长阔共六十步,欲先求阔步,得几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽之和为60步,问它的宽是多少步?书中记载了这个问题的几何解法:①将四个完全相同的面积为864平方步的矩形,按如图所示的方式拼成一个大正方形,则大正方形的边长为____________步;②中间小正方形的面积为____________平方步;③若设矩形田地的宽为x 步,则小正方形的面积可用含x 的代数式表示为____________;(1)小刚第一次投掷时水平距离x与竖直高度x0123水平距离/m(1)依题意补全图形;(2)求证:FD AB =;(3)DF 交BC 于点G ,用等式表示线段CE 和FG 的数量关系,并证明.六、证明题28.在平面直角坐标系xOy 中,已知点M 不与原点重合.对于点P 给出如下定义:点P 关于点M 的对称点为P ',点P '关于直线OM 的对称点为Q ,称点Q 是点P 关于点M 的“转称点”.(1)如图,已知点()(),0,1,1M t P t +,点Q 是点P 关于点M 的“转称点”.①当2t =时,在图中画出点Q 的位置,并直接写出点Q 的坐标;②PQ 的长度是否与t 有关?若无关,求PQ 的长;若有关,说明理由;(2)已知点()3,4,A ABC △是边长为2的等边三角形(点,,A B C 按逆时针方向排列),点N 是点B 关于点C 的“转称点”,在ABC 绕点A 旋转的过程中,当BN 最大时,直接写出此时OB 的长.。

【解析版】北京市海淀区2020-2021学年九年级上期中数学试卷(样卷全套)

【解析版】北京市海淀区2020-2021学年九年级上期中数学试卷(样卷全套)

2020-2021学年北京市海淀区九年级(上)期中数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.如图图形是中心对称图形的是( )A. B. C. D.2.将抛物线y=x2向上平移1个单位,得到的抛物线的解析式为( )A. y=x2+1 B. y=x2﹣1 C. y=(x+1)2+1 D. y=(x﹣1)2+13.袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋子中摸出1个球.下面说法正确的是( ) A.这个球一定是黑球B.这个球一定是白球C.“摸出黑球”的可能性大D.“摸出黑球”和“摸出白球”的可能性一样大4.用配方法解方程x2﹣2x﹣3=0时,配方后得到的方程为( )A.(x﹣1)2=4 B. (x﹣1)2=﹣4 C. (x+1)2=4 D. (x+1)2=﹣45.如图,⊙O为正五边形ABCDE的外接圆,⊙O的半径为2,则的长为( )A. B. C. D.6.如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于( )A. 29° B. 31° C. 59° D. 62°7.已知二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣4x+m=0的两个实数根是( )A. x1=1,x2=﹣1 B. x1=﹣1,x2=2 C. x1=﹣1,x2=0 D. x1=1,x2=38.如图,C是半圆O的直径AB上的一个动点(不与A,B重合),过C作AB的垂线交半圆于点D,以点D,C,O为顶点作矩形DCOE.若AB=10,设AC=x,矩形DCOE的面积为y,则下列图象中能表示y与x的函数关系的图象大致是( )A. B. C. D.二、填空题(本题共16分,每小题4分)9.如图,PA,PB分别与⊙O相切于点A,B,连接AB.∠APB=60°,AB=5,则PA的长是.10.若关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值为.11.在平面直角坐标系xOy中,函数y=x2的图象经过点M(x1,y1),N(x2,y2)两点,若﹣4<x1<﹣2,0<x2<2,则y1 y2 .(用“<”,“=”或“>”号连接)12.如图,正方形ABCD中,点G为对角线AC上一点,AG=AB.∠CAE=15°且AE=AC,连接GE.将线段AE绕点A逆时针旋转得到线段AF,使DF=GE,则∠CAF的度数为.三、解答题(本题共30分,每小题5分)13.解方程:x2+3x﹣1=0.14.如图,∠DAB=∠EAC,AB=AD,AC=AE.求证:BC=DE.15.已知二次函数的图象经过点(0,1),且顶点坐标为(2,5),求此二次函数的解析式.16.如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数.17.若x=1是关于x的一元二次方程x2﹣4mx+2m2=0的根,求代数式2(m﹣1)2+3的值.18.某厂工业废气年排放量为450万立方米,为改善城市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,求每期减少的百分率是多少?四、解答题(本题共2020每小题5分)19.如图是某市某月1日至15日的空气质量指数趋势图,空气质量指数不大于100表示空气质量优良,空气质量指数大于2020示空气重度污染.(1)由图可知,该月1日至15日中空气重度污染的有天;(2)小丁随机选择该月1日至15日中的某一天到达该市,求小丁到达该市当天空气质量优良的概率.2020知关于x的方程ax2+(a﹣3)x﹣3=0(a≠0).(1)求证:方程总有两个实数根;(2)若方程有两个不相等的负整数根,求整数a的值.21.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30.(1)求证:CG是⊙O的切线;(2)若CD=6,求GF的长.22.阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:x1,x2,x3,称为数列x1,x2,x3.计算|x1|,,,将这三个数的最小值称为数列x1,x2,x3的价值.例如,对于数列2,﹣1,3,因为|2|=2,=,=,所以数列2,﹣1,3的价值为.小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列﹣1,2,3的价值为;数列3,﹣1,2的价值为1;….经过研究,小丁发现,对于“2,﹣1,2”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为.根据以上材料,回答下列问题:(1)数列﹣4,﹣3,2的价值为;(2)将“﹣4,﹣3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值为,取得价值最小值的数列为(写出一个即可);(3)将2,﹣9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的价值的最小值为1,则a的值为.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy中,抛物线y=x2﹣(m﹣1)x﹣m(m>0)与x轴交于A,B两点(点A 在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的表达式;(3)在(2)的条件下,经过点C的直线l:y=kx+b(k<0)与抛物线的另一个交点为D.该抛物线在直线l上方的部分与线段CD组成一个新函数的图象.请结合图象回答:若新函数的最小值大于﹣8,求k的取值范围.24.将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0°<α<12020得到线段AD,连接CD.(1)连接BD,①如图1,若α=80°,则∠BDC的度数为;②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图2,以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED=90°,求α的值.25.如图,在平面直角坐标系xOy中,点P(a,b)在第一象限.以P为圆心的圆经过原点,与y轴的另一个交点为A.点Q是线段OA上的点(不与O,A重合),过点Q作PQ的垂线交⊙P于点B(m,n),其中m≥0.(1)若b=5,则点A坐标是;(2)在(1)的条件下,若OQ=8,求线段BQ的长;(3)若点P在函数y=x2(x>0)的图象上,且△BQP是等腰三角形.①直接写出实数a的取值范围: ;②在,,这三个数中,线段PQ的长度可以为,并求出此时点B的坐标.2020-2021学年北京市海淀区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.如图图形是中心对称图形的是( )A. B. C. D.考点: 中心对称图形.分析:根据中心对称图形的概念求解.解答:解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.点评:本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.将抛物线y=x2向上平移1个单位,得到的抛物线的解析式为( )A. y=x2+1 B. y=x2﹣1 C. y=(x+1)2+1 D. y=(x﹣1)2+1考点: 二次函数图象与几何变换.分析:先得到抛物线y=x2的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)向上平移1个单位得到的点的坐标为(0,1),然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=x2的顶点坐标为(0,0),点(0,0)向上平移1个单位得到的点的坐标为(0,1),所以所得到的抛物线的解析式为y=x2+1.故选A.点评:本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.3.袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋子中摸出1个球.下面说法正确的是( ) A.这个球一定是黑球B.这个球一定是白球C.“摸出黑球”的可能性大D.“摸出黑球”和“摸出白球”的可能性一样大考点: 可能性的大小.分析:根据概率公式先求出摸出黑球和白球的概率,再进行比较即可得出答案.解答:解:∵布袋中有除颜色外完全相同的6个球,其中4个黑球、2个白球,∴从布袋中随机摸出一个球是黑球的概率为=,摸出一个球是白球的概率为=,∴摸出黑球”的可能性大;故选C.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.用配方法解方程x2﹣2x﹣3=0时,配方后得到的方程为( )A. (x﹣1)2=4 B. (x﹣1)2=﹣4 C. (x+1)2=4 D. (x+1)2=﹣4考点: 解一元二次方程-配方法.分析:在本题中,把常数项﹣3移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:把方程x2﹣2x﹣3=0的常数项移到等号的右边,得到x2﹣2x=3,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=4,配方得(x﹣1)2=4.故选:A.点评:本题考查了解一元二次方程﹣﹣配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.如图,⊙O为正五边形ABCDE的外接圆,⊙O的半径为2,则的长为( )A. B. C. D.考点: 弧长的计算.分析:利用正五边形的性质得出中心角度数,进而利用弧长公式求出即可.解答:解:如图所示:∵⊙O为正五边形ABCDE的外接圆,⊙O的半径为2,∴∠AOB==72°,∴的长为:=π.故选:D.点评:此题主要考查了弧长公式应用,得出圆心角度数是解题关键.6.如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于( )A. 29° B. 31° C. 59° D. 62°考点: 圆周角定理.分析:由AB是⊙O的直径,根据直径所对的圆周角是直角,求得∠ADB=90°,继而求得∠A 的度数,然后由圆周角定理,求得∠C的度数.解答:解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=59°,∴∠A=90°﹣∠ABD=31°,∴∠C=∠A=31°.故选B.点评:此题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.此题难度不大,注意掌握数形结合思想的应用.7.已知二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣4x+m=0的两个实数根是( )A. x1=1,x2=﹣1 B. x1=﹣1,x2=2 C. x1=﹣1,x2=0 D. x1=1,x2=3考点: 抛物线与x轴的交点.分析:根据抛物线与x轴交点的性质和根与系数的关系进行解答.解答:解:∵二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),∴关于x的一元二次方程x2﹣4x+m=0的一个根是x=1.∴设关于x的一元二次方程x2﹣4x+m=0的另一根是t.∴1+t=4,解得 t=3.即方程的另一根为3.故选:D.点评:本题考查了抛物线与x轴的交点.注意二次函数解析式与一元二次方程间的转化关系.8.如图,C是半圆O的直径AB上的一个动点(不与A,B重合),过C作AB的垂线交半圆于点D,以点D,C,O为顶点作矩形DCOE.若AB=10,设AC=x,矩形DCOE的面积为y,则下列图象中能表示y与x的函数关系的图象大致是( )A. B. C. D.考点: 动点问题的函数图象.分析:按点C在半径OA或半径OB上两种情况分类讨论;首先运用射影定理求出DC的长度,借助矩形的面积公式即可求得y与x的函数关系.解答:解:根据题意结合图形,分情况讨论:如图,①当点C在半径OA上时,连接AD、BD;∵AB为半圆O的直径,∴∠ADB=90°,而DC⊥AB,∴DC2=AC•BC,而AC=x,BC=10﹣x,∴DC=,而OC=5﹣x,∴y=(5﹣x);②当点C在半径OB上,即点C′的位置时,同理可求:y=(x﹣5),综上所述,y与x的函数关系式为:y=.所以,y与x之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有C选项图象符合.故选:C.点评:该题主要考查了圆周角定理及其推论、射影定理、矩形的面积公式等几何知识点及其应用问题;作辅助线,牢固掌握圆周角定理及其推论、射影定理等几何知识点是解题的关键.二、填空题(本题共16分,每小题4分)9.如图,PA,PB分别与⊙O相切于点A,B,连接AB.∠APB=60°,AB=5,则PA的长是 5 .考点: 切线的性质.分析:利用切线长定理得出PA=PB,再利用等边三角形的判定得出△PAB是等边三角形,即可得出答案.解答:解:∵PA,PB分别与⊙O相切于点A,B,∴PA=PB,∵∠APB=60°,∴△PAB是等边三角形,∴AB=PA=5,故答案为:5.点评:此题主要考查了切线长定理以及等边三角形的判定与性质,得出△PAB是等边三角形是解题关键.10.若关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值为 4 .考点: 根的判别式.分析:根据判别式的意义得到△=(﹣4)2﹣4k=0,然后解一次方程即可.解答:解:根据题意得△=(﹣4)2﹣4k=0,解得k=4.故答案为4.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.在平面直角坐标系xOy中,函数y=x2的图象经过点M(x1,y1),N(x2,y2)两点,若﹣4<x1<﹣2,0<x2<2,则y1 >y2 .(用“<”,“=”或“>”号连接)考点: 二次函数图象上点的坐标特征.分析:根据二次函数的性质即可求解.解答:解:由y=x2可知,∵a=1>0,∴抛物线的开口向上,∵抛物线的对称轴为y轴,∴当x>0时,y随x的增大而增大,∵﹣4<x1<﹣2,0<x2<2,∴2<﹣x1<4,∴y1>y2.点评:本题考查了二次函数图象上的点的坐标特征及二次函数的性质.当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;当a<0,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧,y随x的增大而减小;12.如图,正方形ABCD中,点G为对角线AC上一点,AG=AB.∠CAE=15°且AE=AC,连接GE.将线段AE绕点A逆时针旋转得到线段AF,使DF=GE,则∠CAF的度数为30°或60°.考点: 旋转的性质.分析:根据旋转的性质可得AE=AF,然后利用“边边边”证明△AGE和△ADF全等,根据全等三角形对应角相等可得∠DAF=∠CAE,然后分点F在AD的下方和上方两种情况讨论求解.解答:解:∵线段AE绕点A逆时针旋转得到线段AF,∴AE=AF,∵四边形ABCD是正方形,∴AB=AD,∵AG=AB,∴AD=AG,在△AGE和△ADF中,,∴△AGE≌△ADF(SSS),∴∠DAF=∠CAE=15°,∵AC为正方形ABCD的对角线,∴∠CAD=45°,点F在AD的下方时,∠CAF=∠CAD﹣∠DAF=45°﹣15°=30°,点F在AD的上方时,∠CAF=∠CAD+∠DAF=45°+15°=60°,综上所述,∠CAF的度数为30°或60°.故答案为:30°或60°.点评:本题考查了旋转的性质,正方形的性质,全等三角形的判定与性质,熟记性质并求出∠DAF的度数是解题的关键,作出图形更形象直观.三、解答题(本题共30分,每小题5分)13.解方程:x2+3x﹣1=0.考点: 解一元二次方程-公式法.专题: 计算题.分析:找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.解答:解:这里a=1,b=3,c=﹣1,∵△=9+4=13,∴x=,则x1=,x2=.点评:此题考查了解一元二次方程﹣公式法,熟练掌握求根公式是解本题的关键.14.如图,∠DAB=∠EAC,AB=AD,AC=AE.求证:BC=DE.考点: 全等三角形的判定与性质.专题: 证明题.分析:求出∠DAE=∠BAC,根据SAS推出△BAC≌△DAE,根据全等三角形的性质得出即可.解答:证明:∵∠DAB=∠EAC,∴∠DAB+∠BAE=∠EAC+∠BAE,∴∠DAE=∠BAC,在△BAC和△DAE中,∴△BAC≌△DAE,∴BC=DE.点评:本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.15.已知二次函数的图象经过点(0,1),且顶点坐标为(2,5),求此二次函数的解析式.考点: 待定系数法求二次函数解析式.分析:根据抛物线的顶点坐标设出,抛物线的解析式为:y=a(x﹣2)2+5,再把(0,1)代入,求出a的值,即可得出二次函数的解析式.解答:解:设抛物线的解析式为:y=a(x﹣2)2+5,把(0,1)代入解析式得,1=a(0﹣2)2+5,解得a=﹣1,则抛物线的解析式为:y=﹣2x2+4x+1.点评:本题主要考查了用待定系数法求二次函数解析式,在已知抛物线顶点坐标的情况下,通常用顶点式设二次函数的解析式.16.如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数.考点: 圆内接四边形的性质;圆周角定理.分析:先根据圆内接四边形的性质推出∠ADC=50°,再根据圆周角定理推出∠AOC=100°,然后根据等腰三角形的性质及三角形内角和定理即可得出∠OAC的度数.解答:解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,∵∠ABC=130°,∴∠ADC=180°﹣∠ABC=50°,∴∠AOC=2∠ADC=100°.∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=(180°﹣∠AOC)=40°.点评:本题主要考查圆内接四边形的性质、圆周角定理、等腰三角形的性质及三角形内角和定理,关键在于求出∠AOC的度数.17.若x=1是关于x的一元二次方程x2﹣4mx+2m2=0的根,求代数式2(m﹣1)2+3的值.考点: 一元二次方程的解.分析:把x=1代入已知方程可以求得2m2﹣4m=﹣1,然后将其代入整理后的所求代数式进行求值即可.解答:解:依题意,得 1﹣4m+2m2=0,∴2m2﹣4m=﹣1,∴2(m﹣1)2+3=2(m2﹣2m+1)+3=2m2﹣4m+5=﹣1+5=4.即2(m﹣1)2+3=4.点评:本题考查了一元二次方程的解.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.18.某厂工业废气年排放量为450万立方米,为改善城市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,求每期减少的百分率是多少?考点:一元二次方程的应用.专题: 增长率问题.分析:等量关系为:450×(1﹣减少的百分率)2=288,把相关数值代入计算即可;解答:解:设每期减少的百分率为x,根据题意得:450×(1﹣x)2=288,解得:x1=1.8(舍去),x2=0.2解得x=2020答:每期减少的百分率是2020点评:考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.四、解答题(本题共2020每小题5分)19.如图是某市某月1日至15日的空气质量指数趋势图,空气质量指数不大于100表示空气质量优良,空气质量指数大于2020示空气重度污染.(1)由图可知,该月1日至15日中空气重度污染的有 3 天;(2)小丁随机选择该月1日至15日中的某一天到达该市,求小丁到达该市当天空气质量优良的概率.考点: 条形统计图;概率公式.分析: (1)根据空气质量指数大于2020示空气重度污染,找出统计图中空气质量指数大于2020天数即可;(2)根据统计图求出空气质量优良的天数,再根据概率公式列式计算即可.解答:解:(1)根据统计图可得:空气质量指数大于2020有5日、8日、15日,共3天;故答案为:3.(2)小丁随机选择该月1日至15日中的某一天到达该市,则到达该市的日期有15种不同的选择,在其中任意一天到达的可能性相等,由图可知,其中有9天空气质量优良,则P(到达当天空气质量优良)==.点评:本题考查的是条形统计图和概率公式.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20205分)(2014秋•海淀区期中)已知关于x的方程ax2+(a﹣3)x﹣3=0(a≠0).(1)求证:方程总有两个实数根;(2)若方程有两个不相等的负整数根,求整数a的值.考点: 根的判别式;解一元二次方程-因式分解法.分析: (1)根据a≠0,得出原方程为一元二次方程,再根据△=(a+3)2即可得出方程总有两个实数根.(2)先求出原方程的解是x1=﹣1,x2=,再根据此方程有两个负整数根,且a为整数,得出a=﹣1或﹣3,最后根据x1=﹣1,x2=得出a≠﹣3即可.解答:解:(1)∵a≠0,∴原方程为一元二次方程.∴△=(a﹣3)2﹣4×a×(﹣3)=(a+3)2.∵(a+3)2≥0.∴此方程总有两个实数根.(2)解原方程,得 x1=﹣1,x2=.∵此方程有两个负整数根,且a为整数,∴a=﹣1或﹣3.∵x1=﹣1,x2=.∴a≠﹣3.∴a=﹣1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.21.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30.(1)求证:CG是⊙O的切线;(2)若CD=6,求GF的长.考点: 切线的判定.分析: (1)连接OC,根据三角形内角和定理可得∠DCG=180°﹣∠D﹣∠G=12020再计算出∠GCO的度数可得OC⊥CG,进而得到CG是⊙O的切线;(2)设EO=x,则CO=2x,再利用勾股定理计算出EO的长,进而得到CO的长,然后再计算出FG的长即可.解答: (1)证明:连接OC.∵OC=OD,∠D=30°,∴∠OCD=∠D=30°.∵∠G=30°,∴∠DCG=180°﹣∠D﹣∠G=12020∴∠GCO=∠DCG﹣∠OCD=90°.∴OC⊥CG.又∵OC是⊙O的半径.∴CG是⊙O的切线.(2)解:∵AB是⊙O的直径,CD⊥AB,∴CE=CD=3.∵在Rt△OCE中,∠CEO=90°,∠OCE=30°,∴EO=CO,CO2=EO2+CE2.设EO=x,则CO=2x.∴(2x)2=x2+32.解得x=(舍负值).∴CO=2.∴FO=2.在△OCG中,∵∠OCG=90°,∠G=30°,∴GO=2CO=4.∴GF=GO﹣FO=2.点评:此题主要考查了切线的判定,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.22.阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:x1,x2,x3,称为数列x1,x2,x3.计算|x1|,,,将这三个数的最小值称为数列x1,x2,x3的价值.例如,对于数列2,﹣1,3,因为|2|=2,=,=,所以数列2,﹣1,3的价值为.小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列﹣1,2,3的价值为;数列3,﹣1,2的价值为1;….经过研究,小丁发现,对于“2,﹣1,2”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为.根据以上材料,回答下列问题:(1)数列﹣4,﹣3,2的价值为;(2)将“﹣4,﹣3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值为,取得价值最小值的数列为﹣3,2,﹣4;或2,﹣3,﹣4.(写出一个即可);(3)将2,﹣9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的价值的最小值为1,则a的值为11或4 .考点: 规律型:数字的变化类.专题: 阅读型.分析: (1)根据上述材料给出的方法计算其相应的价值即可;(2)按照三个数不同的顺序排列算出价值,由计算可以看出,要求得这些数列的价值的最小值;只有当前两个数的和的绝对值最小,最小只能为|﹣3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a的数值即可.解答:解:(1)因为|﹣4|=4,||=3.5,||=,所以数列﹣4,﹣3,2的价值为.(2)数列的价值的最小值为||=,数列可以为:﹣3,2,﹣4,;或2,﹣3,﹣4.(3)当||=1,则a=0,不合题意;当||=1,则a=11;当||=1,则a=4.故答案为:;,﹣3,2,﹣4,;或2,﹣3,﹣4;11或4.点评:此题考查数字的变化规律,理解运算的方法是解决问题的关键.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy中,抛物线y=x2﹣(m﹣1)x﹣m(m>0)与x轴交于A,B两点(点A 在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的表达式;(3)在(2)的条件下,经过点C的直线l:y=kx+b(k<0)与抛物线的另一个交点为D.该抛物线在直线l上方的部分与线段CD组成一个新函数的图象.请结合图象回答:若新函数的最小值大于﹣8,求k的取值范围.考点: 二次函数综合题.专题: 综合题.分析: (1)对于抛物线解析式,令y=0得到关于x的方程,求出方程的解,根据A在B的左侧且m大于0,求A的坐标即可;(2)由(1)的结果表示出B的坐标,根据抛物线与y轴交于点C,表示出C坐标,进而表示出AB与OC,由三角形ABC面积为15,利用三角形面积公式列出关于m的方程,求出方程的解得到m的值,即可确定出抛物线解析式;(3)由(2)中m的值确定出C坐标,设直线l解析式为y=kx+b,把C坐标代入求出b的值,抛物线解析式配方后,经判断得到当点D在抛物线对称轴右侧时,新函数的最小值有可能大于﹣8,令y=﹣8求出x的值,确定出抛物线经过点(3,﹣8),把(3,﹣8)代入一次函数解析式求出k的值,由图象确定出满足题意k的范围即可.解答:解:(1)∵抛物线y=x2﹣(m﹣1)x﹣m(m>0)与x轴交于A、B两点,∴令y=0,即x2﹣(m﹣1)x﹣m=0,解得:x1=﹣1,x2=m,又∵点A在点B左侧,且m>0,∴点A的坐标为(﹣1,0);(2)由(1)可知点B的坐标为(m,0),∵抛物线与y轴交于点C,∴点C的坐标为(0,﹣m),∵m>0,∴AB=m+1,OC=m,∵S△ABC=15,∴m(m+1)=15,即m2+m﹣30=0,解得:m=﹣6或m=5,∵m>0,∴m=5;则抛物线的表达式为y=x2﹣4x﹣5;(3)由(2)可知点C的坐标为(0,﹣5),∵直线l:y=kx+b(k<0)经过点C,∴b=﹣5,∴直线l的解析式为y=kx﹣5(k<0),∵y=x2﹣4x﹣5=(x﹣2)2﹣9,∴当点D在抛物线顶点处或对称轴左侧时,新函数的最小值为﹣9,不符合题意;当点D在抛物线对称轴右侧时,新函数的最小值有可能大于﹣8,令y=﹣8,即x2﹣4x﹣5=﹣8,解得:x1=1(不合题意,舍去),x2=3,∴抛物线经过点(3,﹣8),当直线y=kx﹣5(k<0)经过点(3,﹣8)时,可求得k=﹣1,由图象可知,当﹣1<k<0时新函数的最小值大于﹣8.点评:此题属于二次函数综合题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,抛物线与x轴的交点,以及二次函数的图象与性质,熟练掌握二次函数的图象与性质是解本题的关键.24.将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0°<α<12020得到线段AD,连接CD.(1)连接BD,①如图1,若α=80°,则∠BDC的度数为30°;②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图2,以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED=90°,求α的值.考点: 几何变换综合题.分析: (1)①根据图形旋转的性质可知AB=AC=AD,再由圆周角定理即可得出结论;②不变,证明过程同①;(2)过点AM⊥CD于点M,连接EM,先根据AAS定理得出△AEB≌△AMC,故可得出AE=AM,∠BAE=∠CAM,所以△AEM是等边三角形.根据AC=AD,AM⊥CD可知CM=DM.故可得出点A、C、D在以M为圆心,MC为半径的圆上.由圆周角定理可得出结论.解答:解:(1)①∵线段AC,AD由AB旋转而成,∴AB=AC=AD.∴点B、C、D在以A为圆心,AB为半径的圆上.∴∠BDC=∠BAC=30°.故答案为:30°.②不改变,∠BDC的度数为30°.方法一:由题意知,AB=AC=AD.∴点B、C、D在以A为圆心,AB为半径的圆上.∴∠BDC=∠BAC=30°.方法二:由题意知,AB=AC=AD.∵AC=AD,∠CAD=α,∴∠ADC=∠C==90°﹣α.∵AB=AD,∠BAD=60°+α,∴∠ADB=∠B===60°﹣α.∴∠BDC=∠ADC﹣∠ADB=(90°﹣α)﹣(60°﹣α)=30°.(2)过点AM⊥CD于点M,连接EM.∵∠AMD=90°,∴∠AMC=90°.在△AEB与△AMC中,,∴△AEB≌△AMC(AAS).∴AE=AM,∠BAE=∠CAM.∴∠EAM=∠EAC+∠CAM=∠EAC+∠BAE=∠BAC=60°.∴△AEM是等边三角形.∴EM=AM=AE.∵AC=AD,AM⊥CD,∴CM=DM.又∵∠DEC=90°,∴EM=CM=DM.∴AM=CM=DM.∴点A、C、D在以M为圆心,MC为半径的圆上.∴α=∠CAD=90°.点评:本题考查的是几何变换综合题,涉及到图形旋转的性质、等边三角形的性质及圆周角定理,难度适中.25.如图,在平面直角坐标系xOy中,点P(a,b)在第一象限.以P为圆心的圆经过原点,与y轴的另一个交点为A.点Q是线段OA上的点(不与O,A重合),过点Q作PQ的垂线交⊙P于点B(m,n),其中m≥0.(1)若b=5,则点A坐标是(0,10) ;(2)在(1)的条件下,若OQ=8,求线段BQ的长;(3)若点P在函数y=x2(x>0)的图象上,且△BQP是等腰三角形.①直接写出实数a的取值范围: a≥1 ;②在,,这三个数中,线段PQ的长度可以为,并求出此时点B的坐标.。

2019-2020学年北京市海淀区九年级(上)期中数学试卷(解析版)

2019-2020学年北京市海淀区九年级(上)期中数学试卷(解析版)

2019-2020学年北京市海淀区九年级(上)期中数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)下列图案中,是中心对称图形的是( )A .B .C .D .2.(2分)抛物线2(1)2y x =-+的顶点坐标为( )A .(1,2)-B .(1,2)C .(1,2)-D .(2,1)3.(2分)体育课上,小悦在点O 处进行了四次铅球试投,铅球分别落在图中的M ,N ,P ,Q 四个点处,则表示他最好成绩的点是( )A .MB .NC .PD .Q4.(2分)将抛物线22y x =向下平移3个单位长度所得到的抛物线是( )A .223y x =+B .223y x =-C .22(3)y x =-D .22(3)y x =+5.(2分)已知水平放置的圆柱形排水管道,管道截面半径是1m ,若水面高0.2m .则排水管道截面的水面宽度为( )A .0.6mB .0.8mC .1.2mD .1.6m6.(2分)如图,在O 中,OA BC ⊥,25ADB ∠=︒.则AOC ∠的度数为( )A .30︒B .45︒C .50︒D .55︒7.(2分)下列是关于四个图案的描述.图1所示是太极图,俗称“阴阳鱼”,该图案关于外圈大圆的圆心中心对称;图2所示是一个正三角形内接于圆;图3所示是一个正方形内接于圆;图4所示是两个同心圆,其中小圆的半径是外圈大圆半径的三分之二.这四个图案中,阴影部分的面积不小于该图案外圈大圆面积一半的是( )A .图1和图3B .图2和图3C .图2和图4D .图1和图48.(2分)如图,在平面直角坐标系xOy 中,抛物线22y x mx n =-++与x 轴交于A ,B 两点.若顶点C 到x 轴的距离为8,则线段AB 的长度为( )A .2B .CD .4二、填空题(本题共16分,每小题2分)9.(2分)在平面直角坐标系中,点(3,2)P -绕原点旋转180︒后所得到的点的坐标为 .10.(2分)写出一个对称轴是y 轴的抛物线的解析式: .11.(2分)如图,PA 、PB 是O 的切线,A 、B 为切点,AC 是O 的直径,50P ∠=︒,则BAC ∠= .12.(2分)若二次函数2(1)3y x =-+的图象上有两点(0,)A a ,(5,)B b ,则a b .(填“>”,“ =”或“<” )13.(2分)如图,边长为2的正方形ABCD 绕着点C 顺时针旋转90︒,则点A 运动的路径长为 .14.(2分)如图,在Rt ABC ∆中,90C ∠=︒,10AB =,若以点C 为圆心,CB 长为半径的圆恰好经过AB 的中点D ,则AC 的长等于 .15.(2分)如图,已知正方形OBCD 的三个顶点坐标分别为(1,0)B ,(1,1)C ,(0,1)D .若抛物线2()y x h =-与正方形OBCD 的边共有3个公共点,则h 的取值范围是 .16.(2分)如图,在ABC ∆中,(1)作AB 和BC 的垂直平分线交于点O ;(2)以点O 为圆心,OA 长为半径作圆;(3)O 分别与AB 和BC 的垂直平分线交于点M ,N ;(4)连接AM ,AN ,CM ,其中AN 与CM 交于点P .根据以上作图过程及所作图形,下列四个结论中,①2BC NC =;②2AB AM =;③点O 是ABC ∆的外心;④点P 是ABC ∆的内心. 所有正确结论的序号是 .三、解答题(本题共68分,第17~22题,每小题5分,第23~26题,每小题5分,第27~28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)已知抛物线2y x bx c =++的对称轴为1x =,(2,3)M -是抛物线上一点,求该抛物线的解析式.18.(5分)如图,等腰三角形ABC 中,BA BC =,ABC α∠=.作AD BC ⊥于点D ,将线段BD 绕着点B 顺时针旋转角α后得到线段BE ,连接CE .求证:BE CE ⊥.19.(5分)请完成下面题目的证明.如图,已知AB 与O 相切于点A ,点C ,D 在O 上.求证:CAB D ∠=∠.证明:连接AO 并延长,交O 于点E . AB 与O 相切于点A ,90EAB ∴∠=︒.90EAC CAB ∴∠+∠=︒. AE 是O 的直径,90ECA ∴∠=︒ .(填推理的依据) 90E EAC ∴∠+∠=︒.E ∴∠= .AC AC =,E D ∴∠=∠ .(填推理的依据) CAB D ∴∠=∠.20.(5分)如图,一条公路的转弯处是一段圆弧()AB ,点O 是这段弧所在圆的圆心.100AB m =,C 是AB 上一点,OC AB ⊥,垂足为D ,10CD m =,求这段弯路的半径.21.(5分)已知二次函数21y x mx m =-+-的图象与x 轴只有一个公共点.(1)求该二次函数的解析式;(2)当03x 剟时,y 的最大值为,最小值为. 22.(5分)如图,已知等边三角形ABC ,O 为ABC ∆内一点,连接OA ,OB ,OC ,将BAO ∆绕点B 旋转至BCM ∆.(1)依题意补全图形;(2)若OA =,OB 1OC =,求OCM ∠的度数.23.(6分)如图,在Rt ABCC∠=︒,以BC为直径的半圆交AB于点D,O是该半∆中,90圆所在圆的圆心,E为线段AC上一点,且ED EA=.(1)求证:ED是O的切线;(2)若ED=,30∠=︒,求O的半径.A24.(6分)悬索桥,又名吊桥,指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁.其缆索几何形状一般近似于抛物线.从缆索垂下许多吊杆(吊杆垂直于桥面),把桥面吊住.某悬索桥(如图1),是连接两个地区的重要通道.图2是该悬索桥的示意图.小明在游览该大桥时,被这座雄伟壮观的大桥所吸引.他通过查找资料了解到此桥的相关信息:这座桥的缆索(即图2中桥上方的曲线)的形状近似于抛物线,两端的索塔在桥面以上部分高度相同,即AB CD=,两个索塔均与桥面垂直.主桥AC的长为600m,引桥CE的长为124m.缆索最低处的吊杆MN长为3m,桥面上与点M相距100m处的吊杆PQ长为13m.若将缆索的形状视为抛物线,请你根据小明获得的信息,建立适当的平面直角坐标系,求出索塔顶端D与锚点E的距离.25.(6分)探究函数|2|=-的图象与性质.y x x小娜根据学习函数的经验,对函数|2|=-的图象与性质进行了探究.y x x下面是小娜的探究过程,请补充完整:(1)下表是x与y的几组对应值.请直接写出:m=,n=;(2)如图,小娜在平面直角坐标系xOy中,描出了上表中已经给出的各组对应值为坐标的点,请再描出剩下的两个点,并画出该函数的图象;(3)结合画出的函数图象,解决问题:若方程|2|x x a -=有三个不同的解,记为1x ,2x ,3x ,且123x x x <<.请直接写出123x x x ++的取值范围.26.(6分)在平面直角坐标系xOy 中,抛物线2y x bx c =++与直线1y x =+交于A ,B 两点,其中点A 在x 轴上.(1)用含有b 的代数式表示c ;(2)①若点B 在第一象限,且AB =②若AB ,结合函数图象,直接写出b 的取值范围.27.(7分)如图,在等腰ABC ∆中,AB AC =,4560ACB ︒<∠<︒,将点C 关于直线AB 对称得到点D ,作射线BD 与CA 的延长线交于点E ,在CB 的延长线上取点F ,使得BF DE=,连接AF.(1)依题意补全图形;(2)求证:AF AE=;(3)作BA的延长线与FD的延长线交于点P,写出一个ACB∠的值,使得AP AF=成立,并证明.28.(7分)在平面内,C为线段AB外的一点,若以A,B,C为顶点的三角形为直角三角形,则称C为线段AB的直角点.特别地,当该三角形为等腰直角三角形时,称C为线段AB的等腰直角点.(1)如图1,在平面直角坐标系xOy中,点M的坐标为(4,0),在点1(0,1)P-,2(5,1)P,3(2,2)P中,线段OM的直角点是;(2)在平面直角坐标系xOy中,点A,B的坐标分别为(1,4),(1,6)-,直线l的解析式为7y x=-+.①如图2,C是直线l上的一个动点,若C是线段AB的直角点,求点C的坐标;②如图3,P是直线l上的一个动点,将所有线段AP的等腰直角点称为直线l关于点A的伴随点.若O的半径为r,且O上恰有两个点为直线l关于点A的伴随点,直接写出r的取值范围.2019-2020学年北京市海淀区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)下列图案中,是中心对称图形的是( )A .B .C .D .【分析】根据中心对称图形定义:把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【解答】解:A 、不是中心对称图形,故此选项不合题意;B 、不是中心对称图形,故此选项不合题意;C 、不是中心对称图形,故此选项不合题意;D 、是中心对称图形,故此选项符合题意;故选:D .【点评】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(2分)抛物线2(1)2y x =-+的顶点坐标为( )A .(1,2)-B .(1,2)C .(1,2)-D .(2,1)【分析】直接根据二次函数的顶点式可得出结论.【解答】解:抛物线的解析式为:2(1)2y x =-+,∴其顶点坐标为(1,2).故选:B .【点评】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.3.(2分)体育课上,小悦在点O 处进行了四次铅球试投,铅球分别落在图中的M ,N ,P ,Q 四个点处,则表示他最好成绩的点是( )A .MB .NC .PD .Q【分析】比较线段的长短,即可得到OP ON OQ OM >>>,进而得出表示他最好成绩的点.【解答】解:如图所示,OP ON OQ OM >>>,∴表示他最好成绩的点是点P ,故选:C .【点评】本题主要参考了比较线段的长短,比较两条线段长短的方法有两种:度量比较法、重合比较法.4.(2分)将抛物线22y x =向下平移3个单位长度所得到的抛物线是( )A .223y x =+B .223y x =-C .22(3)y x =-D .22(3)y x =+【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(0,3)-,平移不改变二次项系数,可根据顶点式求出平移后抛物线解析式.【解答】解:依题意,得平移后抛物线顶点坐标为(0,3)-,由平移不改变二次项系数,故得到的抛物线解析式为:223y x =-.故选:B .【点评】本题考查了二次函数图象与几何变换,抛物线平移问题,实际上就是两条抛物线顶点之间的问题,找到了顶点的变化就知道了抛物线的变化.5.(2分)已知水平放置的圆柱形排水管道,管道截面半径是1m ,若水面高0.2m .则排水管道截面的水面宽度为( )A .0.6mB .0.8mC .1.2mD .1.6m【分析】作OC AB ⊥于C ,交O 于D ,由垂径定理得出2AB BC =,90OCB ∠=︒,1OB OD m ==,0.2CD m =,求出0.8OC OD CD m =-=,由勾股定理求出BC ,即可得出AB . 【解答】解:作OC AB ⊥于C ,交O 于D ,连接OB ,如图所示:则2AB BC =,90OCB ∠=︒,1OB OD m ==,0.2CD m =,0.8OC OD CD m ∴=-=,0.6()BC m ∴==,2 1.2AB AC m ∴==,∴排水管道截面的水面宽度为1.2m ,故选:C .【点评】本题考查了垂径定理、勾股定理;熟练掌握垂径定理,由勾股定理求出BC 是解决问题的关键.6.(2分)如图,在O 中,OA BC ⊥,25ADB ∠=︒.则AOC ∠的度数为( )A .30︒B .45︒C .50︒D .55︒【分析】根据题意可知AB AC =,即可推出50AOC ∠=︒.【解答】解:OA BC ⊥,25ADB ∠=︒,∴AB AC =,250AOC ADB ∴∠=∠=︒.故选:C .【点评】本题主要考查圆周角定理、垂径定理,关键在于求出AB AC =.7.(2分)下列是关于四个图案的描述.图1所示是太极图,俗称“阴阳鱼”,该图案关于外圈大圆的圆心中心对称;图2所示是一个正三角形内接于圆;图3所示是一个正方形内接于圆;图4所示是两个同心圆,其中小圆的半径是外圈大圆半径的三分之二.这四个图案中,阴影部分的面积不小于该图案外圈大圆面积一半的是( )A .图1和图3B .图2和图3C .图2和图4D .图1和图4【分析】分别计算出各阴影部分的面积即可得到结论.【解答】解:设外圈大圆的半径为r ,则外圈大圆的面积2r π=,图1所示是太极图,俗称“阴阳鱼”,该图案关于外圈大圆的圆心中心对称,∴阴影部分的面积12=大圆面积一半;图2所示是一个正三角形的面积2212r π=<; 图3所示是一个正方形的面积221122222r r r r π=⨯⨯=>; 图4所示是两个同心圆,其中小圆的半径是外圈大圆半径的三分之二,∴小圆的面积224192r r ππ=<, 故选:A .【点评】本题考查了正多边形与圆,正多边形的面积的计算,正确的计算正多边形的面积是解题的关键.8.(2分)如图,在平面直角坐标系xOy 中,抛物线22y x mx n =-++与x 轴交于A ,B 两点.若顶点C 到x 轴的距离为8,则线段AB 的长度为( )A .2B .CD .4【分析】设顶点式22()8y x h =--+,再解方程22()80x h --+=得(2,0)A k -,(2,0)B k +,然后把B 点和A 点的横坐标相减得到AB 的长.【解答】解:设抛物线解析式为22()8y x h =--+,当0y =时,22()80x h --+=,解得12x k =-,22x k =+,所以(2,0)A k -,(2,0)B k +,所以2(2)4AB k k =+--=.故选:D .【点评】本题考查了抛物线与x 轴的交点:把求二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.二、填空题(本题共16分,每小题2分)9.(2分)在平面直角坐标系中,点(3,2)P -绕原点旋转180︒后所得到的点的坐标为 (3,2)- .【分析】将点P 绕原点旋转180︒,实际上是求点P 关于原点的对称点的坐标.【解答】解:根据题意得,点P 关于原点的对称点是点P ', P 点坐标为(3,2)-,∴点P '的坐标(3,2)-.故答案为:(3,2)-.【点评】本题考查了坐标与图形的变换-旋转,熟练掌握关于原点的对称点的坐标特征是解决问题的关键.10.(2分)写出一个对称轴是y 轴的抛物线的解析式: 21y x =+ .【分析】根据二次函数的性质写出一个符合的即可.【解答】解:抛物线的解析式为21y x =+,故答案为:21y x =+【点评】本题考查了二次函数的性质,能熟记二次函数的性质是解此题的关键,此题是一道开放型的题目,答案不唯一.11.(2分)如图,PA 、PB 是O 的切线,A 、B 为切点,AC 是O 的直径,50P ∠=︒,则BAC ∠= 25︒ .【分析】连接OB ,根据切线的性质定理以及四边形的内角和定理得到180130AOB P ∠=︒-∠=︒,再根据等边对等角以及三角形的内角和定理求得BAC ∠的度数.【解答】解:连接OB , PA 、PB 是O 的切线,A 、B 为切点,90PAO PBO ∴∠=∠=︒,360130AOB P PAO PBO ∴∠=︒-∠-∠-∠=︒,OA OB =,25BAC ∴∠=︒.【点评】此题综合运用了切线的性质定理、四边形的内角和定理、等边对等角以及三角形的内角和定理的应用,主要考查学生的推理和计算能力,注意:圆的切线垂直于过切点的半径.12.(2分)若二次函数2(1)3y x =-+的图象上有两点(0,)A a ,(5,)B b ,则a < b .(填“>”,“ =”或“<” )【分析】先根据已知条件求出二次函数的对称轴,再根据点A 、B 距离对称轴的远近即可判断出1y 与2y 的大小关系.【解答】解:二次函数数2(1)3y x =-+的对称轴是1x =,开口向上,点(0,)A a 距离对称轴较近,(5,)B b 距离对称轴较远,a b ∴<.故答案为:<.【点评】本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键.13.(2分)如图,边长为2的正方形ABCD 绕着点C 顺时针旋转90︒,则点A 运动的路径.【分析】先利用正方形的性质得到AC =A 运动的路径为以C 点为圆心,CA 为半径,圆心角为90度所对的弧,然后根据弧长公式计算即可.【解答】解:四边形ABCD 为边长为2的正方形,AC ∴=正方形ABCD 绕着点C 顺时针旋转90︒,∴点A 运动的路径长9022π==..【点评】本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了正方形的性质.14.(2分)如图,在Rt ABC ∆中,90C ∠=︒,10AB =,若以点C 为圆心,CB 长为半径的圆恰好经过AB 的中点D ,则AC 的长等于【分析】连接CD ,根据直角三角形斜边上的中线等于斜边的一半可得2AB CD =,求出圆的半径的长,再利用勾股定理列式进行计算即可得解.【解答】解:如图,90C ∠=︒,点D 为AB 的中点,210AB CD ∴==,5CD ∴=,5BC CD ∴==,在Rt ABC ∆中,AC ==故答案为:【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,求出圆的半径的长是解题的关键.15.(2分)如图,已知正方形OBCD 的三个顶点坐标分别为(1,0)B ,(1,1)C ,(0,1)D .若抛物线2()y x h =-与正方形OBCD 的边共有3个公共点,则h 的取值范围是 01h << .【分析】由于函数2()y x h =-的图象为开口向上,顶点在x 轴上的抛物线,因为O 、B 点为抛物线与与正方形ABCD 有有3个公共点的临界点,代入求出即可得解.【解答】解:函数2()y x h =-的图象为开口向上,顶点在x 轴上的抛物线,∴其图象与正方形OBCD 的边共有3个公共点为点O 和点B ,把点O 坐标代入2()y x h =-,得20(0)h =-0h ∴=;把点B 坐标代入2()y x h =-,得20(1)h =-1h ∴=.抛物线2()y x h =-与正方形OBCD 的边共有3个公共点,则h 的取值范围是01h <<. 故答案为:01h <<.【点评】本题考查二次函数图象与正方形交点的问题,需要先判断抛物线的开口方向,顶点位置及抛物线与正方形二者的临界交点,需要明确临界位置及其求法.16.(2分)如图,在ABC ∆中,(1)作AB 和BC 的垂直平分线交于点O ;(2)以点O 为圆心,OA 长为半径作圆;(3)O 分别与AB 和BC 的垂直平分线交于点M ,N ;(4)连接AM ,AN ,CM ,其中AN 与CM 交于点P .根据以上作图过程及所作图形,下列四个结论中,①2BC NC =;②2AB AM =;③点O 是ABC ∆的外心;④点P 是ABC ∆的内心. 所有正确结论的序号是 ①③④ .【分析】利用垂径定理可对①②进行判断;同时根据三角形外心的定义可对③进行判断;利用圆周角定理可得到CM 、AN 为角平分线,则利用三角形内心的定义可对④进行判断.【解答】解:作BC 的垂直平分线,则ON 平分BC ,则2BC NC =;所以①正确; 作AB 的垂直平分线,则OM 平分AB ,则2AB AM =,2AM AB >,所以②错误;所以③正确;利用M 点AB 的中点得到ACM BCM ∠=∠,点N 为BC 的中点得到BAN CAN ∠=∠,则P 点为ABC ∆的内心,所以④正确.故答案为①③④.【点评】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了垂径定理和圆周角定理.三、解答题(本题共68分,第17~22题,每小题5分,第23~26题,每小题5分,第27~28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)已知抛物线2y x bx c =++的对称轴为1x =,(2,3)M -是抛物线上一点,求该抛物线的解析式.【分析】利用待定系数法即可求得抛物线的解析式.【解答】解:因为2y x bx c =++的对称轴为1x =, 所以12b -=, 得2b =-,又因为(2,3)M -是抛物线上一点,所以232(2)2c -=+-⨯+.得3c =-,所以抛物线的解析式为223y x x =--.【点评】本题考查了待定系数法求二次函数的解析式,熟练掌握待定系数法是解题的关键.18.(5分)如图,等腰三角形ABC 中,BA BC =,ABC α∠=.作AD BC ⊥于点D ,将线段BD 绕着点B 顺时针旋转角α后得到线段BE ,连接CE .求证:BE CE ⊥.【分析】由旋转的性质和已知条件易证()ABD CBE SAS ∆≅∆由全等三角形的性质可得90ADB CEB ∠=∠=︒,进而开证明BE CE ⊥.【解答】证明:线段BD 绕点B 顺时针旋转角α得到线段BE ,BD BE ∴=,DBE α∠=,ABC α∠=,ABC DBE ∴∠=∠,AD BC ⊥,90ADB ∴∠=︒.在ABD ∆与CBE ∆中,,,,AB CB ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩()ABD CBE SAS ∴∆≅∆90ADB CEB ∴∠=∠=︒.BE CE ∴⊥.【点评】本题考查了旋转的性质以及全等三角形的判定和性质,熟记全等三角形的各种判定方法是证题的关键.19.(5分)请完成下面题目的证明.如图,已知AB 与O 相切于点A ,点C ,D 在O 上.求证:CAB D ∠=∠.证明:连接AO 并延长,交O 于点E . AB 与O 相切于点A ,90EAB ∴∠=︒.90EAC CAB ∴∠+∠=︒. AE 是O 的直径,90ECA ∴∠=︒ 直径所对的圆周角是90︒ .(填推理的依据)90∴∠+∠=︒.E EAC∴∠=.E=,AC ACE D∴∠=∠.(填推理的依据)∴∠=∠.CAB D【分析】根据圆周角定理和等式的性质填写理由即可.【解答】解:连接AO并延长,交O于点E.AB与O相切于点A,EAB∴∠=︒.90∴∠+∠=︒.EAC CAB90AE是O的直径,∴∠=︒,(直径所对的圆周角是90)︒ECA90∴∠+∠=︒.E EAC90∴∠=∠.E CADAC AC=,∴∠=∠(同弧所对的圆周角相等),E D∴∠=∠.CAB D故答案为:直径所对的圆周角是90︒.CAB∠,同弧所对的圆周角相等.【点评】本题考查了切线的性质,圆周角定理等知识点,熟记知识点是解题的关键.AB,点O是这段弧所在圆的圆20.(5分)如图,一条公路的转弯处是一段圆弧()心.100CD m=,求这段弯路的半径.=,C是AB上一点,OC ABAB m⊥,垂足为D,10【分析】根据题意,可以推出50AD BD ==,若设半径为r ,则10OD r =-,OB r =,结合勾股定理可推出半径r 的值.【解答】解:设这段弯路的半径为r m ,OC AB ⊥于D ,100()AB m =,150()2BD DA AB m ∴=== 10()CD m ∴=,得10()OD r m =-.Rt BOD ∆中,根据勾股定理有222BO BD DO =+即22250(10)r r =+-解得130()r m =.答:这段弯路的半径为130 m .【点评】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r 后,用r 表示出OD 、OB 的长度.21.(5分)已知二次函数21y x mx m =-+-的图象与x 轴只有一个公共点.(1)求该二次函数的解析式;(2)当03x 剟时,y 的最大值为,最小值为.【分析】(1)利用判别式的意义得到△24(1)0m m =--=,然后解方程求出m 得到该二次函数的解析式;(2)利用配方法得到2(1)y x =-,当03x 剟时,利用二次函数的性质得到1x =,y 有最小值0;3x =,y 有最大值,把3x =代入解析式可得到y 的最大值.【解答】解:(1)由题意二次函数图象与x 轴只有一个公共点.则方程210x mx m -+-=有两个相等的实数解,所以△24(1)0m m =--=.解得2m =;所以该二次函数的解析式为221y x x =-+,(2)因为2221(1)y x x x =-+=-,当03x 剟时,1x =,y 有最小值0;3x =,y 有最大值4,所以y 的最大值为4,最小值为0.【点评】本题考查了抛物线与x 轴的交点:把求二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.22.(5分)如图,已知等边三角形ABC ,O 为ABC ∆内一点,连接OA ,OB ,OC ,将BAO ∆绕点B 旋转至BCM ∆.(1)依题意补全图形;(2)若OA =,OB 1OC =,求OCM ∠的度数.【分析】(1)根据题目的条件要求直接补全图形即可;(2)连接OM ,易证OBM ∆为等边三角形,再根据勾股定理的逆定理即可证明OMC ∆是直角三角形,进而可求出OCM ∠的度数.【解答】解:(1)依题意补全图形,如图所示:(2)连接OM ,∆为等边三角形,ABCABC∴∠=︒.60∆,OA=OB=,BAO∆旋转得到BCM∴==MB OB=60MC OA∠=∠=︒,OBM ABC∴∆为等边三角形,OBM∴=,OM OB在OMC∆中,1OC=,MC=OM=2221+=,222∴+=.OC MC OM∴∠=︒.90OCM【点评】本题考查旋转变换,等边三角形的性质和判定,勾股定理的逆定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(6分)如图,在Rt ABC∠=︒,以BC为直径的半圆交AB于点D,O是该半∆中,90C圆所在圆的圆心,E为线段AC上一点,且ED EA=.(1)求证:ED是O的切线;(2)若ED=,30A∠=︒,求O的半径.【分析】(1)连接OD.根据等腰三角形的性质和切线的判定定理即可得到结论;(2)根据切线的性质得到ED EC====,求得ED EC EA可得到结论.【解答】(1)证明:连接OD.=,ED EA∴∠=∠,A ADE=,OB OD∴∠=∠,OBD BDO90∠=︒,ACB∴∠+∠=︒.90A ABC∴∠+∠=︒,90ADE BDO∴∠=,ODE90∴是O的切线;DE(2)解:90∠=︒,BC为直径,ACB∴是O的切线.ACDE是O的切线,∴=,ED ECED=2∴===.ED EC EA∴=,AC∠=︒,A∆中30Rt ABC∴=.BC4∴的半径为2.O【点评】本题考查了切线的判定和性质,直角三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.24.(6分)悬索桥,又名吊桥,指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁.其缆索几何形状一般近似于抛物线.从缆索垂下许多吊杆(吊杆垂直于桥面),把桥面吊住.某悬索桥(如图1),是连接两个地区的重要通道.图2是该悬索桥的示意图.小明在游览该大桥时,被这座雄伟壮观的大桥所吸引.他通过查找资料了解到此桥的相关信息:这座桥的缆索(即图2中桥上方的曲线)的形状近似于抛物线,两端的索塔在桥面以上部分高度相同,即AB CD=,两个索塔均与桥面垂直.主桥AC的长为600m,引桥CE的长为124m.缆索最低处的吊杆MN长为3m,桥面上与点M相距100m处的吊杆PQ长为13m.若将缆索的形状视为抛物线,请你根据小明获得的信息,建立适当的平面直角坐标系,求出索塔顶端D与锚点E的距离.【分析】建立平面直角坐标系并求得函数的解析式,令300y=求得DC的长,然后利用勾股定理求得DE的长即可.【解答】解:如图所示建立平面直角坐标系.依题意可知3MN =,13PQ =,100MP =,600AC =,124CE =,AB DC =,BA AC ⊥,DC AC ⊥,MN AC ⊥,PQ AC ⊥. 由抛物线的对称性可知,13002MC AC ==.则可得点坐标:(0,0)M ,(0,3)N ,(100,13)Q . 设抛物线的表达式为23y ax =+,因为抛物线经过点Q ,所以将点Q 的坐标带入得2131003a =+. 解得11000a =, 得抛物线的表达式为2131000y x =+, 当300x =时,得213003931000y =⨯+=, 因为DC AC ⊥,所以90DCE ∠=︒.所以531155DE =⨯=.答:索塔顶端D 与锚点E 的距离为155米.【点评】考查了二次函数的性质,解题的关键是建立适当的平面直角坐标系并求得函数的解析式,难度中等.25.(6分)探究函数|2|y x x =-的图象与性质.小娜根据学习函数的经验,对函数|2|y x x =-的图象与性质进行了探究.下面是小娜的探究过程,请补充完整:(1)下表是x 与y 的几组对应值.请直接写出:m = 1 ,n = ;(2)如图,小娜在平面直角坐标系xOy 中,描出了上表中已经给出的各组对应值为坐标的点,请再描出剩下的两个点,并画出该函数的图象;(3)结合画出的函数图象,解决问题:若方程|2|x x a -=有三个不同的解,记为1x ,2x ,3x ,且123x x x <<.请直接写出123x x x ++的取值范围.【分析】(1)把1x =和2x =代入|2|y x x =-,即可求出m 、n 的值;(2)画出该函数的图象即可;(3)根据画出函数|2|y x x =-的图象,即可求出|2|y x x =-的图象.【解答】解:(1)把1x =代入|2|y x x =-,得111m =⨯=.把2x =代入|2|y x x =-,得200n =⨯=.故答案为1m =,0n =;(2)如图:(3)由图形可知,123x x x ++的取值范围是12343x x x <++<+.【点评】本题考查了二次函数的图象与性质,二次函数图象上点的坐标特征,利用了数形结合思想.正确画出函数的图象是解题的关键.26.(6分)在平面直角坐标系xOy 中,抛物线2y x bx c =++与直线1y x =+交于A ,B 两点,其中点A 在x 轴上.(1)用含有b 的代数式表示c ;(2)①若点B 在第一象限,且AB =②若AB ,结合函数图象,直接写出b 的取值范围.【分析】(1)由题意直线1y x =+与x 轴交于点A ,可得点A 坐标为(1,0)-,将点A 坐标(1,0)-代入抛物线解析式,即可求解;(2)①设1y x =+与y 轴交于点C ,可得:A (1,0)-,C (0,1),45OAC ∠=︒,90ADB ∠=︒,则点B 的坐标为(2,3),即可求解;②(Ⅰ)当点B 在点A 右侧时,如上图所示,AB =0b =,AB >对称轴从0x =随AB 的增加向右侧移动,抛物线的对称轴02bx a=->,则0b <, 故0b …;(Ⅱ)当点B 在点A 的左侧,同理可得:6b …,即可求解. 【解答】解:(1)由题意直线1y x =+与x 轴交于点A 可得点A 坐标为(1,0)-, 抛物线2y x bx c =++经过点A所以将点A 坐标(1,0)-代入抛物线解析式可得 10b c -+=,即1c b =-.(2)①设1y x =+与y 轴交于点C ,可得:A (1,0)-,C (0,1).可知1OA OC ==. 又因90AOC ∠=︒, 所以45OAC ∠=︒.如图,已知AB =B 作BD x ⊥轴于点D ,则90ADB ∠=︒.又因45BAD ∠=︒,AB = 所以3AD BD ==.所以点B 的坐标为(2,3).将点B 的坐标(2,3)代入抛物线2y x bx c =++的解析式可得21b c +=-. 并与(1)中得到的1c b =-联立方程组可得:21,1.b c c b +=-⎧⎨=-⎩解得0,1.b c =⎧⎨=-⎩得抛物线的解析式为21y x =-;②(Ⅰ)当点B 在点A 右侧时,如上图所示,AB =0b =,AB >0x =随AB 的增加向右侧移动,抛物线的对称轴02bx a=->,则0b <, 故0b …;(Ⅱ)当点B 在点A 的左侧,当AB =同理可得:抛物线的表达式为:265y x x =++, 故:6b =,故AB 6b …; 综上,0b …或6b ….【点评】本题考查的是二次函数综合运用,涉及到一次函数、等腰直角三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.27.(7分)如图,在等腰ABC ∆中,AB AC =,4560ACB ︒<∠<︒,将点C 关于直线AB 对称得到点D ,作射线BD 与CA 的延长线交于点E ,在CB 的延长线上取点F ,使得BF DE =,连接AF .(1)依题意补全图形; (2)求证:AF AE =;(3)作BA 的延长线与FD 的延长线交于点P ,写出一个ACB ∠的值,使得AP AF =成立,。

2023-2024学年北京市海淀区九年级上学期期中数学试卷和答案解析

2023-2024学年北京市海淀区九年级上学期期中数学试卷和答案解析

2023-2024学年北京市海淀区九年级(上)期中数学试卷一、选择题(共16分,每题2分)A.1,3,1B.1,3,-1C.0,-3,1D.0,-3,-1 1.(2分)一元二次方程x2+3x-1=0的二次项系数、一次项系数和常数项分别是( )解:一元二次方程x2+3x-1=0的二次项系数、一次项系数、常数项分别是1,3,-1.故选:B.【解答】A.B.C.D.2.(2分)下列图形中,是中心对称图形的是( )解:选项A、B、C的图形不都能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项D的图形能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形.故选:D.【解答】A.y1>y2B.y1<y2C.y1=y2D.不能确定大小关系3.(2分)已知A(-1,y1),B(-2,y2)都在抛物线y=3x2上,则y1与y2之间的大小关系是( )解:∵函数y=3x2上的对称轴为y轴,∴A(-1,y1)、B(-2,y2)在对称轴左侧,∴抛物线开口向上,对称轴左侧y随x的增大而减小.∵-1>-2∴y1<y2.故选:B.【解答】A.-3B.-7C.1D.74.(2分)一元二次方程x2-4x+3=0经过配方变形为(x-2)2=k,则k的值是( )解:x2-4x+3=0,x2-4x=-3,x2-4x+4=-3+4,(x-2)2=1,∴k=1,故选:C.【解答】A.开口方向改变B.开口大小改变C.对称轴不变D.顶点位置不变5.(2分)将抛物线y=ax2+bx+c(a≠0)向下平移,关于平移前后的抛物线,下列说法正确的是( )解:将抛物线y=ax2+bx+c(a≠0)向下平移后,抛物线对称轴不变,开口方向和大小不变,顶点位置改变,【解答】故选:C .A .30B .45C .60D .1056.(2分)陀螺是一款常见的玩具.图1为通过折纸制作的一种陀螺,图2为这种陀螺的示意图.若将图2中的图案绕点O 旋转x °可以与自身重合,则x 的值可以是( )解:该图形内部是八边形,那么最小的旋转角度为x =3608=45,故选:B .【解答】A .2×150x =216B .150x 2=216C .150+150x 2=216D .150(1+x )2=2167.(2分)小明热爱研究鸟类,每年定期去北京各个湿地公园观鸟.从他的观鸟记录年度总结中摘取部分数据如下:观鸟记录年度总结2020年:观测鸟类150种2021年:观测鸟类2022年:观测鸟类216种设小明从2020年到2022年观测鸟类种类数量的年平均增长率为x ,则下列方程正确的是( )解:由题意得:150(1+x )2=216.故选:D .【解答】A .若α=30°,则b =12a B .若α=45°,则b =2aC .若α=60°,则b =aD .若α=90°,则b =2a 8.(2分)如图,在正方形ABCD 中,AC 为对角线,将AC 绕点A 逆时针旋转α(0°<α≤90°),得到线段AE ,连接CE ,设AB =a ,CE =b ,下列说法正确的是( )√解:当α=30°时,过点C 作CF ⊥AE ,如图:∵四边形是正方形,∴AC =2a ,【解答】√二、填空题(共16分,每题2分)根据旋转的性质可得AE =2a ,∴CF =22a ,AF =62a ,EF =2a −22a ,在Rt △CEF 中,根据勾股定理可得b 2=(3-2)a 2,∴b ≠12a ,故A 不合题意;当α=45°时,如图,AE =AC =2a ,CD =a ,根据勾股定理b 2=a 2+(2a )2=3a 2,∴b =3a ,故B 不合题意;当α=60°时,如图,∵AE =AC 2a ,∴△ACE 是等边三角形,∴b =2a ,故C 不合题意;当α=90°时,如图,∴AC =AE =2a ,∴CE =2a ,∴b =2a .故选:D .√√√√√√√√√√√√9.(2分)方程x 2-4=0的解是.解:x 2-4=0,移项得:x 2=4,两边直接开平方得:x 1=2,x 2=-2,故答案为:x 1=2,x 2=-2.【解答】10.(2分)在平面直角坐标系xOy 中,点A (3,4)与点B 关于原点对称,则点B 的坐标是.解:∵点A (3,4)与点B 关于原点对称,∴点B 的坐标是(-3,-4).故答案为:(-3,-4).【解答】11.(2分)写出一个顶点在坐标原点,开口向下的抛物线的表达式 .解:顶点在坐标原点,开口向下的抛物线的表达式可为y =-x 2.故答案为:y =-x 2.(答案不唯一)【解答】12.(2分)若关于x 的一元二次方程x 2-2x +m =0有两个相等的实数根,则实数m 的值为.解:∵关于x 的一元二次方程x 2-2x +m =0有两个相等的实数根,∴Δ=0,∴(-2)2-4m =0,∴m =1,故答案为:1.【解答】13.(2分)如图,在△ABC 中,AB =AC ,∠BAC =50°,将△ABC 绕点A 逆时针旋转到△ADE .若AD ⊥BC ,则旋转角的度数是 .解:∵AB =AC ,AD ⊥BC ,∴∠BAD =∠CAD =12∠BAC ,∵∠BAC =50°,∴∠BAD =25°,故答案为:25°.【解答】14.(2分)如图,在平面直角坐标系xOy 中,以某点为中心,将右上方图形“”旋转到图中左下方的阴影位置,则旋转中心的坐标是 .解:如图,点Q 即为旋转中心,Q (3,2).故答案为:(3,2).【解答】15.(2分)如图,二次函数y =2(x -1)2+k 的图象与y 轴的交点坐标为(0,1),若函数值y <1,则自变量x 的取值范围是 .解:∵二次函数y =2(x -1)2+k 的图象与y 轴的交点坐标为(0,1),对称轴为直线x =1,∴当x =2时,y =1,∵抛物线开口向上,【解答】三、解答题(共68分,第17-20题,每题5分,第21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.∴函数值y <1,自变量x 的取值范围是0<x <2,故答案为:0<x <2.16.(2分)在平面直角坐标系xOy 中,点P 的坐标为(m ,n ),称关于x 的方程x 2+mx +n =0为点P 的对应方程.如图,点A (-1,0),点B (1,1),点C (-2,2).给出下面三个结论:①点A 的对应方程有两个相等的实数根;②在图示网格中,若点P (m ,n )(m ,n 均为整数)的对应方程有两个相等的实数根,则满足条件的点P有3个;③线段BC 上任意点的对应方程都没有实数根.上述结论中,所有正确结论的序号是.解:①∵点A (-1,0),∴点A 的对应方程为x 2-x =0,解得x =0或x =1,故①错误;②∵点P (m ,n )(m ,n 均为整数)的对应方程有两个相等的实数根,∴方程x 2+mx +n =0有两个相等的实数根,∴Δ=m 2-4n =0,∴m 2=4n ,∵m ,n 都为整数,∴在图示网格中,m ,n 的整数解有V W X m =2n =1、V W X m =−2n =1、V W X m =0n =0共3个;故②正确;③∵点B (1,1),点C (-2,2),∴线段BC 的解析式为y =-13x +43(-2≤x ≤1),∴线段BC 上任意点的坐标为(m ,-13m +43),其对应方程为x 2+mx -13m +43=0,∴Δ=m 2-4(-13m +43)=m 2+43m -163=(m +23)2-529,∵-2≤m ≤1,∴-43≤m +23≤53,∴Δ=(m +23)2-529<0,∴线段BC 上任意点的对应方程都没有实数根,故③正确.故答案为:②③.【解答】17.(5分)解方程:x 2-6x +2=0(用配方法).解:x 2-6x +2=0移项,得x 2-6x =-2,即x 2-6x +9=-2+9,∴(x -3)2=7,解得x -3=±7,即x =3±7.∴x 1=3+7,x 2=3-7.【解答】√√√√18.(5分)如图,⏥ABCD 的对角线AC ,BD 交于点O ,EF 过点O 且分别与AD ,BC 交于点E ,F .(1)求证:△AOE ≌△COF ;(2)记四边形ABFE 的面积为S 1,⏥ABCD 的面积为S 2,用等式表示S 1和S 2的关系.(1)证明:∵四边形ABCD 是平行四边形,对角线AC ,BD 交于点O ,∴AD ∥BC ,OA =OC ,∴∠OAE =∠OCF ,【解答】在△AOE 和△COF 中,V Y Y W Y Y X ∠OAE =∠OCF OA =OC ∠AOE =∠COF,∴△AOE ≌△COF (ASA ).(2)在△ABC 和△CDA 中,V Y Y W Y Y X AB =CD BC =DA AC =CA,∴△ABC ≌△CDA (SSS ),∴S △ABC =S △CDA =12S ⏥ABCD ,∵△AOE ≌△COF ,∴S △AOE =S △COF ,∴S 四边形ABFE =S △四边形ABFO +S △AOE =S △四边形ABFO +S △COF =S △ABC =12S ⏥ABCD ,∴S 1=12S 2.19.(5分)已知m 是方程x 2-x -2=0的根,求代数式 m (m -1)+5 的值.解:∵m 是方程x 2-x -2=0的根,∴m 2-m -2=0,∴m 2-m =2,∴m (m -1)+5=m 2-m +5=2+5=7.【解答】20.(5分)已知二次函数y =x 2-2x .(1)在如图所示的平面直角坐标系中画出该二次函数的图象;(2)点P (-2,7) 该函数的图象上(填“在”或“不在”).解:(1)列表:x …-10123…y …30-103…描点、连线,画出函数图象如图:;(2)∵当x =-2时,y =x 2-2x =8,∴点P (-2,7)不在该函数的图象上.故答案为:不在.【解答】21.(6分)已知关于x 的一元二次方程x 2+(m -1)x +m -2=0.(1)求证:该方程总有两个实数根;(2)若该方程有一个根是正数,求m 的取值范围.(1)证明:∵一元二次方程x 2+(m -1)x +m -2=0,∴Δ=(m -1)2-4(m -2)=m 2-2m +1-4m +8=(m -3)2.∵(m -3)2≥0,∴Δ≥0.∴该方程总有两个实数根.(2)解:∵x 2+(m -1)x +m -2=0,∴(x +m -2)(x +1)=0,∴x 1=2-m ,x 2=-1.∵该方程有一个根是正数,∴2-m >0,∴m <2.【解答】22.(5分)如图,在平面直角坐标系xOy 中,A (-2,4),B (-2,0),将△OAB 绕原点O 顺时针旋转90°得到△OA 'B '(A ',B '分别是A ,B 的对应点).(1)在图中画出△OA ′B ′,点A '的坐标为 ;(2)若点M (m ,2)位于△OAB 内(不含边界),点M '为点M 绕原点O 顺时针旋转90°的对应点,直接写出M '的纵坐标n 的取值范围.解:(1)如图,△OA ′B ′即为所求.由图可得,A '(4,2).故答案为:(4,2).(2)由题意得,-2<m <-1,∴点M '在线段CD 上,且不与点C ,D 重合,∴1<n <2.【解答】23.(5分)阅读下面的材料并完成解答.《田亩比类乘除捷法》是我国南宋数学家杨辉的著作,其中记载了这样一个数学问题:“直田积八百六十四步,只云长阔共六十步,欲先求阔步,得几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽之和为60步,问它的宽是多少步?书中记载了这个问题的几何解法:①将四个完全相同的面积为864平方步的矩形,按如图所示的方式拼成一个大正方形,则大正方形的边长为步;②中间小正方形的面积为平方步;③若设矩形田地的宽为x 步,则小正方形的面积可用含x 的代数式表示为 ;④由②③可得关于x 的方程 ,进而解得矩形田地的宽为24步.解:①∵矩形田地的长与宽之和为60步,∴按如图所示的方式拼成一个大正方形,则大正方形的边长为60步.故答案为:60;②根据题意得:中间小正方形的面积为60×60-864×4=144(平方步).故答案为:144;③若设矩形田地的宽为x 步,则长为(60-x )步,中间小正方形的边长为(60-x -x )=(60-2x )步,【解答】∴小正方形的面积为(60-2x )2平方步.故答案为:(60-2x )2平方步;④由②③可得关于x 的方程:(60-2x )2=144.故答案为:(60-2x )2=144.24.(6分)在平面直角坐标系xOy 中,二次函数y =x 2+bx +c 的图象经过点(1,0),(3,0).(1)求该二次函数的解析式;(2)当x >3时,对于x 的每一个值,函数y =x +n 的值小于二次函数y =x 2+bx +c 的值,直接写出n 的取值范围.解:(1)∵二次函数y =x 2+bx +c 的图象经过点(1,0),(3,0),∴二次函数解析式为y =(x -1)(x -3),即y =x 2-4x +3;(2)当直线y =x +n 经过点(3,0)时,3+n =0,解得n =-3,此时函数y =x +n 的值等于二次函数y =x 2+bx +c 的值,所以当n ≤-3时,数y =x +n 的值小于二次函数y =x 2+bx +c 的值,即n 的取值范围为n ≤-3.【解答】25.(6分)在投掷实心球时,球以一定的速度斜向上抛出,不计空气阻力,在空中划过的运动路线可以看作是抛物线的一部分.如图,建立平面直角坐标系xOy ,实心球从出手到落地的过程中,它的竖直高度y (单位:m )与水平距离x (单位:m )近似满足二次函数关系,记出手点与着陆点的水平距离为投掷距离.(1)小刚第一次投掷时水平距离x 与竖直高度y 的几组数据如下:水平距离x /m01234竖直高度y /m 1.6 2.1 2.42.5 2.4①根据上述数据,实心球运行的竖直高度的最大值为m ;②求小刚第一次的投掷距离;(2)已知第二次投掷出手点竖直高度与第一次相同,且实心球达到最高点时水平距离与第一次也相同.若小刚第二次投掷距离比第一次远,则实心球第二次运行过程中竖直高度的最大值比第一次 (填“大”或“小”).解:(1)①由表格数据可知,抛物线的对称轴为直线x =2+42=3,当x =3时,y =2.5,故答案为:2.5;②设抛物线的解析式为:y =a (x -3)2+2.5,∵当x =0时,y =1.6,∴1.6=a ×32+2.5,解得a =−110,∴抛物线的解析式为:y =−110(x -3)2+2.5,当y =0时,0=−110(x -3)2+2.5,解得x 1=-2(舍去),x 2=8,答:小刚第一次的投掷距离为8m ;(2)∵第二次投掷实心球达到最高点时水平距离与第一次也相同,∴第二次投掷抛物线对称轴与第一次对称轴相同,又∵第二次投掷出手点竖直高度与第一次相同,第二次投掷距离比第一次远,∴实心球第二次运行过程中竖直高度的最大值比第一次小,故答案为:小.【解答】26.(6分)已知二次函数y =12x 2+bx +1.(1)若b =-1,求该二次函数图象的对称轴及最小值;(2)若对于任意的0≤x ≤2,都有y ≥-1,求b 的取值范围.解:(1)当b =-1时,y =12x 2+bx +1=12x 2-x +1=12(x -1)2+12,∴二次函数图象的对称轴为直线x =1,最小值为12;(2)∵y =12x 2+bx +1,∴对称轴为直线x =-b 2×12=-b ,①当x =-b ≤0,即b ≥0时,∴当0≤x ≤2时,y 随x 的增大而增大,∴当x =0时,y 最小,最小值为1>-1,∴b ≥0;②当0<-b <2时,即-2<b <0,此时对称轴在0~2段内,∴当x =-b 时y 有最小值,∴y min =12×(-b )2+b ×(-b )+1=-12b 2+1,令-12b 2+1≥-1,解得-2≤b ≤2,∴-2<b <0;③当x =-b ≥2时,即b ≤-2,∴当0≤x ≤2时,y 随x 的增大而减小,∴当x =2时,y min =12×22+2b +1=2b +3≥-1,解得b ≥-2,∴b =-2,综上所述,b 的取值范围为b ≥-2.【解答】27.(7分)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在AB 上(BD <AD ),过点D 作DE ⊥BC 于点E ,连接AE ,将线段EA 绕点E 顺时针旋转90°,得到线段EF ,连接DF .(1)依题意补全图形;(2)求证:FD =AB ;(3)DF 交BC 于点G ,用等式表示线段CE 和FG 的数量关系,并证明.(1)解:如图所示:(2)证明:∵AC =BC ,∠ACB =90°,∴∠B =∠BAC =45°,∵DE ⊥BC ,∴∠B =∠BDE =45°,∴BE =DE ,∵将线段EA 绕点E 顺时针旋转90°,得到线段EF ,∴AE =EF ,∠AEF =90°=∠BED ,∴∠BEA =∠DEF ,∴△BEA ≌△DEF (SAS ),∴FD =AB ;(3)FG =2CE ,理由如下:如图,过点D 作DH ⊥AC 于H ,又∵DE ⊥BC ,AC ⊥BC ,∴四边形DECH 是矩形,∴EC =DH ,∵DH ⊥AC ,∠BAC =45°,∴△ADH 是等腰直角三角形,∴AD =2DH =2EC ,∵△BEA ≌△DEF ,∴∠B =∠EDG =45°,∴DE =DG ,∵∠AEF =∠DEC =90°,∴∠DEA =∠CEF ,又∵AE =EF ,∴△DEA ≌△GEF (SAS ),∴FG =AD ,∴FG =2CE .【解答】√√√√28.(7分)在平面直角坐标系xOy 中,已知点M 不与原点重合.对于点P 给出如下定义:点P 关于点M 的对称点为P ′,点P ′关于直线OM 的对称点为Q ,称点Q 是点P 关于点M 的“转称点”.(1)如图,已知点M (t ,0),P (t +1,1),点Q 是点P 关于点M 的“转称点”.①当t =2时,在图中画出点Q 的位置,并直接写出点Q 的坐标;②PQ 的长度是否与t 有关?若无关,求PQ 的长;若有关,说明理由;(2)已知点A (3,4),△ABC 是边长为2的等边三角形(点A ,B ,C 按逆时针方向排列),点N 是点B 关于点C 的“转称点”,在△A BC 绕点A 旋转的过程中,当BN 最大时,直接写出此时OB 的长.解:(1)①当t =2时,点M (2,0),P (3,1),如图:∵点Q 是点P 关于点M 的“转称点”.∴P ′(1,-1),Q (1,1);②∵点M (t ,0),P (t +1,1),∴P ′(t -1,-1),Q (t -1,1),∴PQ ∥x 轴,∴PQ =t +1-(t -1)=2;∴PQ 的长度与t 有无关,PQ 的长为2;(2)如图:由“转称点”的定义得C 为BB ′的中点,D 为NB ′的中点,∴CD ∥BN ,CD =12BN ,∴当CD 最大时,BN 最大,由图得在△ABC 绕点A 旋转的过程中,当O 、B ,C 、B ′共线时,BN 最大,如图:∵△ABC 是边长为2的等边三角形【解答】∴BC =CB ′=2,AH =3,BH =1,∵点A (3,4),∴OA =32+42=5,∴OH =OA 2−AH 2=52−(3)2=22,∴OB =22-1.√√√√√√√。

2020北京海淀初三(上)期中数学含答案

2020北京海淀初三(上)期中数学含答案

2020北京海淀初三(上)期中数 学2020.11学校__________姓名__________准考证号__________第1-8题均有四个选项,符合题意的选项只有一个.1.拼图是一种广受欢迎的智力游戏,需要将形态各异的组件拼接在一起,下列拼图组件是中心对称图形的为2.一元二次方程22340x x +-=的一次项系数是A .-4B .-3C .2D .33.点A (1,2)关于原点对称的点的坐标是A .(1,-2)B .(-1,2)C .(-1,-2)D .(2,1)4.将抛物线2y x =向上平移2个单位长度,所得到的抛物线是A .22y x =+ B .22y x =- C .2()2y x =+D .2()2y x =-5.用配方法解方程2410x x ++=,下列变形正确的是A .25(2)x +=- B.2(25)x += C .23(2)x +=-D .2(23)x +=6.如图,不等边△ABC 内接于⊙O ,下列结论不成立的是A .∠1=∠2B .∠1=∠4C .∠AOB =2∠ACBD .∠ACB =∠2+∠37.如图,菱形ABCD 对角线AC ,BD 相交于点O ,点P ,Q 分别在线段BO ,AO 上,且PQ ∥AB .以PQ 为边作一个菱形,使得它的两条对角线分别在线段AC ,BD 上,设BP =x ,新作菱形的面积为y ,则反映y 与x 之间函数关系的图象大致是8.计算机处理任务时,经常会以圆形进度条的形式显示任务完成的百分比.下面是同一个任务进行到不同阶段时进度条的示意图:若圆半径为1,当任务完成的百分比为x 时,线段MN 的长度记为d (x ).下列描述正确的是 A .d (25%)=1B .当x >50%时,d (x )>1C .当12x x >时,()()12d x d x >D .当12100%x x +=时,()()12d x d x =二、填空题(本题共16分,每小题2分)9.已知二次函数2y x =-,请判断点A (1,-1)是否在该二次函数的图象上.你的结论为___________(填“是”或“否”).10.如图,正方形ABCD 的边长为6,点E 在边CD 上.以点A 为中心,把△ADE 顺时针旋转90°至△ABF 的位置.若DE =2,则FC =___________.11.已知关于x 的方程x 2=m 有两个相等的实数根,则m =___________.12.如图,在5×5的正方形网格中,两条网格线的交点叫做格点,每个小正方形的边长均为1.以点O 为圆心,5为半径画圆,共经过图中______个格点(包括图中网格边界上的点).13.某学习平台三月份新注册用户为200万,五月份新注册用户为338万,设四、五两个月新注册用户每月平均增长率为x ,则可列出的方程是___________.14.已知二次函数241y ax ax =-+(a 是常数),则该函数图象的对称轴是直线x =___________.15.如图,点A ,B ,C 在⊙O 上,顺次连接A ,B ,C ,O .若四边形ABCO 为平行四边形,则∠AOC =_______°.16.对于二次函数2y ax =和2y bx =.其自变量和函数值的两组对应值如下表所示:三、解答题(本题共68分,第17~22题,每小题5分,第23~26题,每小题6分,第27~28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.解方程:2616x x -=.18.如图,已知AB =BC ,∠BCD =∠ABD ,点E 在BD 上,BE =CD .求证:AE =BD .19.已知二次函数2y x bx c =++的图象过点A (0,3),B (1,0).(1)求这个二次函数的解析式; (2)画出这个函数的图象.20.已知关于x 的一元二次方程2420x x m -++=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为正整数,求此时方程的根.21.如图,△ABC 中,CA =CB ,以BC 为直径的半圆与AB 交于点D ,与AC 交于点E . (1)求证:点D 为AB 的中点; (2)求证:AD =DE .22.如图,用一条长40m 的绳子围成矩形ABCD ,设边AB 的长为x m .(1)边BC 的长为_________m ,矩形ABCD 的面积为____2m (均用含x 的代数式表示);(2)矩形ABCD 的面积是否可以是1202m ?请给出你的结论,并用所学的方程或者函数知识说明理由.23.如图,在平面直角坐标系xOy 中,一次函数y =-x +m 的图象过点A (1,3),且与x 轴交于点B .(1)求m 的值和点B 的坐标;(2)若二次函数2y ax bx =+图象过A ,B 两点,直接写出关于x 的不等式2ax bx x m +>-+的解集24.某滑雪场在滑道上设置了几个固定的计时点.一名滑雪者从山坡滑下,测得了滑行距离s (单位:m )与滑行时间t (单位:s )的若干数据,如下表所示:出,其中绝大部分的点都近似位于某条抛物线上.于是,我们可以用二次函数2)0(s at bt c t =++≥来近似地表示s 与t 的关系.(1)有一个计时点的计时装置出现了故障,这个计时点的位置编号可能是_________; (2)当t =0时,s =0,所以c =___________;(3)当此滑雪者滑行距离为30m 时,用时约为s (结果保留一位小数).25.如图1,AB 是⊙O 的直径,点C 在⊙O 上,D 为AC 的中点,连接BC ,OD .(1)求证:OD ∥BC ;(2)如图2,过点D 作AB 的垂线与⊙O 交于点E ,作直径EF 交BC 于点G .若G 为BC 中点,⊙O 的半径为2,求弦BC 的长.26.平面直角坐标系xOy 中,二次函数2y x bx c =++的图象与x 轴交于点A (4,0)和B (-1,0),交y 轴于点C .(1)求二次函数的解析式;(2)将点C 向右平移n 个单位,再次落在二次函数图象上,求n 的值;(3)对于这个二次函数,若自变量x 的值增加4时,对应的函数值y 增大,求满足题意的自变量x 的取值范围.27.△ABC 是等边三角形,点D 在BC 上,点E ,F 分别在射线AB ,AC 上,且DA =DE =DF .(1)如图1,当点D 是BC 的中点时,则∠EDF =___________°; (2)如图2,点D 在BC 上运动(不与点B ,C 重合).①判断∠EDF 的大小是否发生改变,并说明理由; ②点D 关于射线AC 的对称点为点G ,连接BG ,CG ,CE . 依题意补全图形,判断四边形BECG 的形状,并证明你的结论.28.在平面直角坐标系xOy 中,旋转角α满足0180α︒≤≤︒,对图形M 与图形N 给出如下定义:将图形M 绕原点逆时针旋转α得到图形'M .P 为图形'M 上任意一点,Q 为图形N 上的任意一点,称PQ 长度的最小值为图形M 与图形N 的“转后距”.已知点A ,点B (4,0),点C (2,0).(1)当α=90°时,记线段OA 为图形M . ①画出图形'M ;②若点C 为图形N ,则“转后距”为______________; ③若线段AC 为图形N ,求“转后距”;(2)已知点P (m ,0)在点B 的左侧,点1(,2Q m -,记线段AB 为图形M ,线段PQ 为图形N ,对任意旋转角α,“转后距”大于1,直接写出m 的取值范围.2020北京海淀初三(上)期中数学参考答案一、选择题 (本题共16分,每小题2分)9.是 10.8 11.0 12.413.()22001338x += 14.2 15.12016.1;3(每空1分)三、解答题(本题共68分,第17~22题,每小题5分,第23~26题,每小题6分,第27~28题,每小题7分) 17.方法一:269169x x -+=+()2325x -=35x -=±122,8x x =-=.方法二:原方程化为26160x x --=()()2246416100b ac ∆=-=--⨯-=.6102x ±==, 122,8x x =-=.方法三: 26160x x --= (8)(2)0x x -+=80x -=或20x +=122,8x x =-=18.证明:在△ABE 和△BCD 中,,,,AB BC ABD BCD BE CD =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△BCD (SAS ). ∴AE BD =.19.解:(1)∵二次函数2y x bx c =++的图象过点()0,3A ,()1,0B ,∴310c b c =⎧⎨++=⎩, 解得43b c =-⎧⎨=⎩,∴243y x x =-+. (2)列表:描点画图:20.解:(1)∵方程2420x x m -++=有两个不相等的实数根,∴()2442840m m ∆=-+=->,∴2m <.(2)∵m 为正整数,且2m <,∴1m =.当1m =时,方程为2430x x -+=,∴121,3x x ==.21.证明:(1)连接CD ,如图.∵BC 是半圆的直径,∴90BDC ∠=︒.∴CD AB ⊥.∵CA CB =,∴点D 为AB 的中点.(2)方法一:∵CA CB =,AD=BD ,∴∠ACD =∠BCD∴弧BD =弧DE∴BD=DE .∵AD=BD ,∴AD DE =.方法二:∵四边形BCED 是圆的内接四边形,∴180ABC DEC ∠+∠=︒.∵180AED DEC ∠+∠=︒,∴ABC AED ∠=∠.∵CA CB =,∴A ABC ∠=∠.∴A AED ∠=∠.∴AD DE =.22.解:(1)()20x -;()220x x -+;(2)不可以,理由如下:方法一:设矩形ABCD 的面积是S m 2,则220S x x =-+.∵20x <<0,∴当()201021x =-=⨯-时,S 有最大值100. ∵100<120,∴矩形ABCD 的面积不可以是120m 2.方法二:若矩形ABCD 的面积是120m 2,可得方程220120x x -+=,∵2480b ac ∆=-=-,∵0∆<,∴这个方程无实数根.∴矩形ABCD 的面积不可以是120m 2.23.解:(1)∵y x m =-+的图象过点()1,3A ,∴31m =-+.∴4m =.∴4y x =-+.令0y =,得4x =,∴点B 的坐标为()4,0.(2)14x <<.24.答:(1)3;(2)0;(3)3.1(写3.0或3.2均可给分).25.(1)方法一:证明:连接BD ,∵∴ABD CBD ∠=∠.∵ABD BDO ∠=∠∴CBD BDO ∠=∠∴OD ∥BC .方法二:证明:连接OC ,∵D 为的中点,∴. ∴12AOD COD AOC ∠=∠=∠.∵12B AOC ∠=∠,∴AOD B ∠=∠.∴OD ∥BC .(2)解:方法一:CC∵DE AB ⊥,AB 是⊙O 的直径,∴.∴AOD AOE ∠=∠.∵AOD B ∠=∠,AOE BOF ∠=∠,∴B BOF ∠=∠.∵G 为BC 中点,∴OF BC ⊥.∴90OGB ∠=︒.∴45B BOF ∠=∠=︒.∴OG BG =.∵2OB =,222OG BG OB +=,∴BG∴2BC BG ==方法二:∵G 为BC 中点,CC∴OF BC ⊥.∵OD ∥BC ,∴DO EF ⊥,∴△DOE 是等腰直角三角形,45E ∠=︒∵DE AB ⊥,∴45BOF EOA ∠=∠=︒,∴OG BG =.∵2OB =,222OG BG OB +=,∴BG∴2BC BG ==26.解:(1)∵二次函数2+y x bx c =+的图象与x 轴交于点()4,0A 和()1,0B -,∴164010b c b c ++=⎧⎨-+=⎩, 解得34b c =-⎧⎨=-⎩, ∴234y x x =--.(2)依题意,点C 的坐标为(0,4-), 该二次函数图象的对称轴为322b x =-=, 设点C 向右平移n 个单位后,所得到的点为D ,由于点D 在抛物线上,∴C ,D 两点关于二次函数的对称轴32x =对称. ∴点D 的坐标为(3,4-).∴3n CD ==.(3)方法一:记D ,E 为函数图象上两点,且4E D x x -=,原问题等价为当E D y y >时,求D x 的取值范围.当点D 与点E 关于对称轴对称时,可知12D x =-, 结合函数图象可知,当点D 向左移动时,E D y y <,不符题意;当点D 向右移动时,有E D y y >,符合题意. 故12D x >-方法二: 依题意,即当自变量取4x +时的函数值,大于自变量为x 时的函数值. 结合函数图象,由于对称轴为32x =,分为以下三种情况: ①当342x x <+≤时,函数值y 随x 的增大而减小,与题意不符; ②当342x x <<+时,需使得33422x x -<+-,方可满足题意,联立解得1322x -<<; ③342x x ≤<+时,函数值y 随x 的增大而增大,符合题意,此时32x ≥. 综上所述,自变量x 的取值范围是12x >-. 27.(1)120︒(2)①不发生改变,理由如下:方法一:∵△ABC 是等边三角形,∴60BAC ∠=︒.∵DA DE DF ==∴点A ,E ,F 在以D 为圆,DA 长为半径的圆上,∴2120EDF BAC ∠=∠=︒.方法二:∵DA DE DF ==,∴DAE DEA ∠=∠,DAF DFA ∠=∠.∵△ABC 是等边三角形,∴60BAC ABC ACB ∠=∠=∠=︒.∴120DCF EBD ∠=∠=︒.∵ACB CDF DFA ∠=∠+∠,BAC BAD DAF ∠=∠+∠,∴CDF BAD DEA ∠=∠=∠.∴180180120EDF BDE CDF BDE DEA EBD ∠=︒-∠-∠=︒-∠-∠=∠=︒. ②补全图形如下:四边形BECG 为平行四边形,证明如下:由①知,120EDF ∠=︒,∵60BDE BED ∠+∠=︒,60BDE CDF ∠+∠=︒,∴BED CDF ∠=∠.在△CDF 和△BED 中,,,,DCF EBD CDF DEA DF ED ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CDF ≌△BED (AAS ).GFED CB A∴CD BE =.∵点D 和点G 关于射线AC 对称,∴CD CG =,2120DCG ACD EBD ∠=∠=︒=∠. ∴BE CG =,且BE CG ∥.∴四边形BECG 为平行四边形.28.(1)①图形M '如图所示:②2;③连接AC ,作OD AC ⊥于D ,作AE OC ⊥于E ,如图.依题意,OD 的长度即为所求转后距. ∵()1,3A ,()2,0C ,∴3AE =,2OC =,1CE =.在Rt △AEC 中,222AC AE CE =+=.∵1122AOC S AE OC OD AC ∆=⋅=⋅,∴AE OC OD AC⋅==.(2)5m <-或02m <<.。

北京市海淀区北京大学附属中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

北京市海淀区北京大学附属中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

2024~2025学年度第一学期期中练习九年级数学学科试卷2024年11月考生须知:1.本试卷共8页,共三道大题,28道小题.满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写班级、姓名.3.答案一律填涂或书写在答题卡相应位置上,用黑色字迹签字笔作答.4.考试结束,只交答题卡,并妥善保管试卷.一、选择题(共16分,每题2分)第1~8题均有四个选项,符合题意的选项只有一个.1.下列图形中,既是中心对称图形也是轴对称图形的是( ).A .B .C .D .2.在平面直角坐标系内,点关于原点的对称点Q 的坐标为( ).A .B .C .D .3.一元二次方程的解是( ).A .,B .C .,D .,4.抛物线的顶点坐标是( ).A .B .C .D .5.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是( ).A .B .C .D .6.北京市2021年人均可支配收入为7.5万元,2023年达到8.18万元,若2021年至2023年间每年人均可支配收入的增长率都为x ,则下面所列方程正确的是( ).A .B.()3,2P -()3,2-()3,2()2,3-()3,2--20x x +=10x =21x =121x x ==11x =-21x =10x =21x =-()212y x =-+()1,2()1,2-()1,2-()1,2--144︒90︒72︒60︒()28.1817.5x +=()27.518.18x +=C .D .7.如图所示,在4×4的正方形网格中,绕某点旋转一定的角度,得到,则其旋转中心是( ).A .点AB .点BC .点CD .点D8.如图,是边长为4的等边三角形,D 是BC 的中点,E 是直线上的一个动点,连接,将线段绕点C 逆时针旋转得到,连接.下列说法中正确的个数是( ).①;②;③;④点E 的运动过程中,的最小值是1.A .1个B .2个C .3个D .4个二、填空题(共16分,每题2分)9.请写出一个图象开口向上,且与y 轴交于点)的二次函数的解析式__________.10.关于x 的一元二次方程有一个根是,则__________.11.若关于x 的方程有两个相等的实数根,则实数a 的值是__________.12.如图,为的直径,点C 是上的一点,,则__________°.13.点,在抛物线上,则__________(填“>”“<”或“=”).14.如图,在平面直角坐标系中,点,,以点B 为旋转中心,把线段顺时针旋转得到线段,则点C 的坐标为__________.()27.518.18x -=+()28.1817.5x -=MNP △111M N P △ABC △AD EC EC 60︒FC DF 2DC =FCD ECA ∠=∠CE CF =DF ()0,1230x x m -+=1x =m =20x x a -+=AB O e O e 70ABC ∠=︒BAC ∠=()13,A y -()22,B y 22y x =1y 2y xOy ()0,2A ()1,0B BA 90︒BC15.如图,将绕顶点C 逆时针旋转得到,且点B 刚好落在上,若,,则等于__________°.16.已知函数,下列结论:①若该函数图象与x 轴只有一个交点,则;②方程至少有一个整数根;③若,则的函数值都是负数;④不存在实数a ,使得对任意实数x 都成立.所有正确结论的序号是__________.三、解答题(共68分,第17题8分,18~25题每题5分,第26题6分,第27、28题每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程:(1);(2).18.如图,在平面直角坐标系中,抛物线的部分图象经过点,.(1)求该抛物线的解析式;(2)结合函数图象,直接写出时,x 的取值范围.19.已知m 是方程的一个根,求代数式的值.20.已知:如图,为锐角三角形,.求作:一点P ,使得.ABC △A B C ''△A B ''25A ∠=︒45BCA =∠'︒A BA '∠()211y ax a x =-++1a =()2110ax a x -++=11x a<<()211y ax a x =-++()2110ax a x -++≤24250x -=2280x x +-=xOy 22y ax x c =++()0,3A -()1,0B 0y <2220x x --=()()()22111m m m -+-+ABC △AB AC =APC BAC ∠=∠作法:①以点A 为圆心,长为半径画圆;②以点B 为圆心,长为半径画弧,交于点C ,D 两点;③连接并延长交于点P .点P 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接,.∵,∴点C 在上.∵,∴∠______=∠______.∴.∵点D ,P 在上,∴.(__________)(填推理的依据)∴.21.如图,是等边三角形,点D 在边上,以为边作等边,连接,.求证:.22.已知关于x 的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程两个根差为1,求此时m 的值.23.学校计划利用一片空地建一个长方形自行车车棚,其中一面靠墙,墙的长度为8米.在与墙平行的一面开一个2米宽的门,已知现有的木板材料可修建的总长为26米,且全部用于除墙外其余三面外墙的修建.(1)长方形车棚与墙垂直的一面至少为__________米;(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路(如图中阴影),若车棚与墙AB BC A e DA A e PC BD AB AC =A e BC BD =12BAC CAD ∠=∠A e 12CPD CAD ∠=∠APC BAC ∠=∠ABC △AC CD CDE △BD AE BD AE =()2320m x x m -+++=垂直的一面长按(1)中的最小长度,则停放电动车的区域面积能否达到54平方米,若能,此时小路的宽度是多少米?若不能,请说明理由.24.如图,是直径,是的一条弦,且于点E ,连接、和.(1)求证:;(2)若,,求的半径.25.有机肥作为一种富含有机质及多样营养元素的优质肥料,对于土壤改良及肥力提升具有显著效果.将其应用于小树施肥,不仅能有效供给必要的养分,还能优化土壤结构,进而促进小树的茁壮成长.在针对金叶女贞和连翘这两种植物的培育过程中,我们统一施用了A 种有机肥,并确保了它们在浇水、松土、除草等抚育管理措施上的一致性.以下表格详细记录了A 种有机肥对这两种植物增长高度的影响:天数t /天1530456090金叶女贞增长的高度 3.3 6.39.612.615.919.3连翘增长的高度 1.14.09.115.636.2(1)通过分析数据,发现与t 之间近似满足正比例函数关系.请在给出的平面直角坐标系中,画出关于t 的函数的图象;(2)观察图象,补全表格(结果保留小数点后一位);(3)实验前,测量金叶女贞的高度为,连翘的高度为,大概在第__________天时,连翘和金叶女贞一样高(结果保留到整数).26.已知关于x 的二次函数上两个不同的点,.(1)求顶点坐标;(2)若且时,总有,求m 的取值范围.27.已知,点D 是直线上一动点(不含B 点),连接,将线段绕点A 逆时针旋转得到线段,连接线段,过点E 作交直线于点F .AB O e CD O e CD AB ⊥AC BD OC ACO D ∠=∠2BE =CD =O e 1cm h 2cmh 1h 2h 43.6cm 31.2cm 221y mx mx m =-+-()11,A x y ()22,B x y 145x <<221x m =-12y y <60ABC ∠=︒BC AD AD 60︒AE ED EF AB ⊥AB图1备用图(1)如图1,点D 在点B 右侧时,①依题意补全图形;②用等式表示与的数量关系,并证明;③用等式表示线段,,之间的数量关系,并证明;(2)当点D 在直线上运动时,请直接写出线段,,之间的数量关系.28.在平面直角坐标系中,点,点为定点,对于点P 作如下变换,将点P 绕点M 逆时针旋转得到点,再将点绕点N 逆时针旋转后得到点Q ,则称点Q 为点P 的“双逆转点”.备用图1 备用图2(1)若点P 为线段上的一点,则在点,,中,点P 的“双逆转点”可能为__________;(2)若点P 的“双逆转点”在x 轴上,请写出一个满足条件的点P 的坐标__________;(3)若点P 坐标为,点Q 为点P 的“双逆转点”,①当长度最短时,求m 的值;②已知半径为2,若存在过点Q 的直线被所截得的弦长为2,则m 的取值范围为__________.EAB ∠EDB ∠BF BD AB BC BF BD AB xOy ()0,2M ()1,0N 90︒1P 1P 90︒MN ()1,1A --()1,0B -()2,1C -(),4m m +PQ N e N e初三第一学期期中练习答案和评分标准数学2024.11一、选择题(本题共6分,每小题2分)题号12345678答案CADACBBD二、填空题(本题共16分,每小题2分)9.(答案不唯一) 10.2 11.12.2013.>14.15.40 16.②④(答对一个给1分,多选或错选不得分)三、解答题(共68分,第17题8分,18~25题每题5分,第26题6分,第27、28题每题7分)17.(1)(一个答案2分,如果只会移项给1分)(2),,.(不限方法,不全对的酌情给分)18.(1)由题意知,(2分)解得,解析式为.(3分)(2).(5分)19.解.原式.(3分)∵,∴,(4分)∴原式.(5分)20.(1)如图所示.(2分)(2),,一条弧所对的圆周角等于它所对圆心角的一半.(5分)21.证明:∵,均为等边三角形,∴,,.21y x =+14()3,152x =±2280x x +-=14x =-22x =3230c a =-⎧⎨+-=⎩31c a =-⎧⎨=⎩223y x x =+-31x -<<()()222212123m m m m m =--++=--2220m m --=222m m -=231=-=-BAC BAD ABC △CDE △AC BC =CD CE =60ACB ACE ∠=∠=︒在与中,,∴≌(SAS ),(4分)∴.(5分)22.(1)∵,∴方程总有两个实数根.(2分)(2)解:∵,∴,∴,.∵方程两个根的差为1,∴或0.∴或.(5分)23.解:(1).(2分)(2)设小路的宽为a 米,根据题意得,.(4分)整理得;,解得:(舍去),.(5分)答:小路的宽为1米.24.(1)证明;∵,∴,∵,∴.(2分)(2)解,设的半轻为r ,则.∵,∴(3分)在中,,解得.( 5分)25.(1)(2分)(2)23~30之间均可.(4分)(3)78~86之间均可.(5分)26.(1)由题意可知:,∵,∴顶点坐标为.(2分)BCD △ACE △60AC BC ACB ACE CD CE =⎧⎪∠=∠=︒⎨⎪=⎩BCD △ACE △BD AE =()()()234210m m m ∆=+-+=+≥()2320x m x m -+++=()()210x m x ---=12x m =+21x =22m +=0m =2-10x ≥()()821054a a --=214130a a -+=13a =1a =OA OC =ACO A ∠=∠A D ∠=∠ACO D ∠=∠O e 2OE r =-CD AB ⊥1122CE DE CD ===⨯=Rt OCE △(()2222r r +-=3r =0m ≠()()2222121111y mx mx m m x x m x =-+-=-+-=--()1,1-法2:对称轴,当时,,∴顶点坐标为.(2分)(2)当时,对称轴是直线,当时,y 随x 的增大而增大;当时,y 随x 的增大而减小.∵,∴点始终在对称轴右侧,若A 、B 在对称轴右侧,,即时,∵,∴,∴,若A 、B 在对称轴异侧,,即时,关于对称轴的对称点是.∵,∴,即,∴(舍) .综上所述:.(4分)当时,对称轴是直线,当时,y 随x 的增大而减小;当时,y 随x 的增大而增大.∵,,∴,,关于对称轴的对称点是 .∵,∴,即,2122b m x a m-=-=-=1x =211y m m m =-+-=-()1,1-0m >1x =1x ≥1x <145x <<()11,A x y 2211x m =->1m >12y y <215m -≥3m ≥2211x m =-<1m <()22,B x y ()222,B x y '-12y y <225x -≥()2215m --≥1m ≤-3m ≥0m <1x =1x ≥1x <221x m =-145x <<2211x m =-<1145x <<<()22,B x y ()222,B x y '-12y y <224x -≤()2214m --≤∴,∴.(6分)综上所述:或.27.(1)①补全图形,如图所示(1分)②,(2分)理由如下:∵线段绕点A 逆时针旋转得到线段,∴,,∴是等边三角形,∴.∵,∴.∵在四边形中,,∴,∴.(3分)③,理由如下:(4分)延长线段至点G 使得,连结,.∵,,∴.∵是等边三角形,∴.在和中,,∴≌(SAS ),(5分),∴.∵,∴.∵,,,∴.(6分)(2)当点D 在点B 右侧时,,当点D 在点B 左侧时,.(7分)12m ≥-102m -≤<102m -≤<3m ≥180EAB BDE ∠+∠=︒AD 60︒AE AE AD =60EAD ∠=︒AED △60AED ∠=︒60ABC ∠=︒180120ABD ABC ∠=︒-∠=︒ABDE 360EAB ABD BDE DEA ∠+∠+∠+∠=︒12060360EAB BDE ∠+︒+∠+︒=︒180EAB BDE ∠+∠=︒2BF AB BD =+BA AG BD =EG EB 180EAG EAB ∠+∠=︒180EAB EDB ∠+∠=︒EAG EDB ∠=∠AED △EA ED =EGA △EBD △EA EDEAG EDB GA BD =⎧⎪∠=∠⎨⎪=⎩EGA △EBD △EG EB =EF BF ⊥GF FB =BG BA GA =+GA BD =2BG BF =2BF BA BD =+2BF AB BD =+2BF AB BD =-28.(1)A ,C .(2分)(2)答案不唯一,纵坐标为1即可.(3分)(3)①(5分)②或(7分)2m =-m≥m ≤。

2020-2021学年北京市海淀区九年级上册期中数学试卷

2020-2021学年北京市海淀区九年级上册期中数学试卷

2020-2021学年北京市海淀区九年级上传期中数学试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.以下四个图案中,既是轴对称图形又是中心对称图形的有()A. 4个B. 3个C. 2个D. 1个2.下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦,其中错误的个数为()A. 2B. 3C. 4D. 53.下列方程中,没有实数根的是()A. −x2−3x+1=0B. 2x2−3x+1=0C. 4x2+5=4√5xD. 2x2=√3x−14.过圆上一点可以作出圆的最长弦的条数为()A. 1条B. 2条C. 3条D. 无数条5.已知M=3x2−x+3,N=2x2+3x−1,则M,N的大小关系是()A. M>NB. M<NC. M≥ND. M≤N6.若点(x1,5)和点(x2,5)(x1≠x2)均在抛物线y=ax2上,当x=x1+x2时,函数的值为()A. 0B. 10C. 5D. −57.如图1,在菱形ABCD中,AB=2,∠BAD=60°,过点D作DE⊥AB点E,DF⊥BC于点F.将∠EDF绕点D顺时针旋转α°(0<α<180),其两边的对应边DE′、DF′分别与直线AB、BC相交于点G、P,如图2.连接GP,当△DGP的面积等于3√3时,则α的大小为()A. 30B. 45C. 60D. 1208.如图,抛物线y=−x2+4x+k与x轴交于点A和B,线段AB的长为2,则k的值是()A. 3B. −3C. −4D. −5二、填空题(本大题共8小题,共24.0分)9.若点M(3,a−2)与N(−3,a)关于原点对称,则a=______.10.如图,已知AB、AD是⊙O的弦,∠ABO=30°,∠ADO=20°,则∠BAD=_____.11.若抛物线y=x2−6x+m与x轴没有交点,则m的取值范围是________.12.如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是______.13.P是半径为5的⊙O内一点,OP=4,⊙O中,过P点所有的弦中,弦长为整数的共有____条.14.三角形的每条边的长都是方程x2−6x+8=0的根,则三角形的周长是______.15.已知☉O的半径为15,弦AB//CD,AB=24,CD=18,则AB、CD之间的距离为________.x2,当水位线在AB位置时,水面16.如图,桥拱是抛物线形,其函数解析式为y=−14的宽为12米,这时水面离桥顶的高度h是________米.三、解答题(本大题共12小题,共94.0分)17.解方程:x2−5x+6=018.如图,将一个直角三角尺ACB(∠C=90°)绕60°角的顶点B顺时针旋转,使点C旋转到AB延长线上的点E处.(1)三角尺旋转了多少度?(2)连接CE,请判断△BCE的形状.(3)求∠ACE的度数.19.已知抛物线y=−2x2+4x−3.(1)求出该抛物线的对称轴和顶点坐标;(2)当y随x的增大而减小时,求x的取值范围.20.已知:如图所示,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.21.若关于x的一元二次方程x2−3x+a−2=0有实数根.(1)求a的取值范围;(2)当a为符合条件的最大整数时,求此时方程的解.22.如图,直线m在坐标系中的图象经过点A(0,4)、C(3,0),直线n经过点A和(−3,1)交x轴于点B.(1)求直线n的解析式.(2)求△ABC的面积.23.如图,二次函数y=ax2+bx−3(a≠0)的图象与x轴相交于A(−1,0),B(3,0)两点,与y轴相交于点C.(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M.请问:当点P的坐标为多少时,线段PM的长最大?并求出这个最大值.24.如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径.25.数学活动课上,老师提出问题:如图,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整:(1)设小正方形的边长为xdm,体积为ydm3,根据长方体的体积公式得到y和x的关系式:______;(2)确定自变量x的取值范围是______;(3)列出y与x的几组对应值.x/dm (1)814381258347819854…y/dm3… 1.3 2.2 2.7 3.0 2.8 2.5 1.50.9…(说明:表格中相关数值保留一位小数)(4)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(5)结合画出的函数图象,解决问题:当小正方形的边长约为______dm时,盒子的体积最大,最大值约为______dm3.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+3a过点A(−1,0).(1)求抛物线的对称轴;(2)直线y=x+4与y轴交于点B,与该抛物线对称轴交于点C.如果该抛物线与线段BC有交点,结合函数的图象,求a的取值范围;(3)在(2)的条件下,抛物线与线段BC的交点记为D,若D为线段BC的三等分点,求出a的值.27.已知正方形ABCD的边长为2,作正方形AEFG(A,E,F,G四个顶点按逆时针方向排列),连接BE、GD,(1)如图①,当点E在正方形ABCD外时,线段BE与线段DG有何关系?直接写出结论;(2)如图②,当点E在线段BD的延长线上,射线BA与线段DG交于点M,且DG=2DM时,求边AG的长;(3)如图③,当点E在正方形ABCD的边CD所在的直线上,直线AB与直线DG交于点M,且DG=4DM时,直接写出边AG的长.x+3与x轴和y轴分别交与A,B两点,另一直线经过点B和点28.已知直线y=34C(6,−5).(1)求A,B两点的坐标;(2)证明:△ABC是直角三角形;(3)在x轴上找一点P,使△BCP是以BC为底边的等腰三角形,求出P点坐标.答案和解析1.【答案】B【解析】【分析】本题考查了轴对称图形和中心对称图形,掌握好中心对称图形与轴对称图形的概念是解题的关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:图1是轴对称图形不是中心对称图形;图2、3、4既是轴对称图形,又是中心对称图形.故选B.2.【答案】C【解析】【试题解析】【分析】此题主要考查了圆的相关概念,熟练掌握其定义是解题关键.利用圆的相关概念逐项进行判断即可.【解答】解:①根据半圆也是弧,故此选项错误,符合题意;②由等圆的定义可知,半径相等的两个圆面积相等、周长相等,所以为等圆,故此选项正确,不符合题意;③过圆心的线段不一定是直径,通过圆心的线段,因为两端不一定在圆上,所以不一定是这个圆的直径,故此选项错误,符合题意;④长度相等的弧不一定是等弧,因为等弧就是能够重合的两个弧,而长度相等的弧不一定是等弧,所以等弧一定是同圆或等圆中的弧,故此选项错误,符合题意;⑤半径不是弦,故此选项错误,符合题意.故选C.3.【答案】D【解析】【分析】本题主要考查了一元二次方程根的判别式,解题关键是熟练掌握根的判别式与方程根的个数的情况:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.分别计算四个方程的根的判别式Δ=b2−4ac,然后判断各方程根的情况.【解答】解:A、∵a=−1,b=−3,c=1,∴Δ=b2−4ac=(−3)2−4×(−1)×1=13>0,所以原方程有两个不相等的实数根,故A选项不符合题意;B、∵a=2,b=−3,c=1,∴Δ=b2−4ac=(−3)2−4×2×1=1>0,所以原方程有两个不相等的实数根,故B选项不符合题意;C、∵a=4,b=−4√5,c=5,∴Δ=b2−4ac=(−4√5)2−4×4×5=0,所以原方程有两个相等的实数根,故C选项不符合题意;D、∵a=2,b=−√3,c=1,∴Δ=b2−4ac=(−√3)2−4×2×1=−5<0,所以原方程没有实数根,故D选项符合题意;.故选D.4.【答案】A【解析】【分析】本题考查了直径和弦的关系,直径是弦,弦不一定是直径,直径是圆内最长的弦.由于直径是圆的最长弦,经过圆心的弦是直径,两点确定一条直线,所以过圆上一点可以作出圆的最长弦的条数为一条.【解答】解:圆的最长的弦是直径,直径经过圆心,过圆上一点和圆心可以确定一条直线,所以过圆上一点可以作出圆的最长弦的条数为一条.故选A.5.【答案】C【解析】【分析】此题主要考查了用作差法比较两个代数式的大小以及非负数的性质,得出M−N的值是解题关键.直接用作差法得出M−N的值再利用配方法得出M,N的大小关系即可.【解答】解:∵M=3x2−x+3,N=2x2+3x−1,∴M−N=(3x2−x+3)−(2x2+3x−1)=x2−4x+4=(x−2)2≥0.∴M≥N.故选C.6.【答案】A【解析】【分析】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.根据抛物线的对称性得到点(x1,5)和点(x2,5)是抛物线上的对称点,而抛物线y=ax2的对称轴为y轴,则x1+x2=0,然后计算自变量为0时的函数值即可.【解答】解:∵抛物线y=ax2的对称轴为y轴,而点(x1,5)和点(x2,5)(x1≠x2)均在抛物线上,∴x1+x2=0,∴当x=0时,y=0.故选A.7.【答案】C【解析】解:∵AB//DC,∠BAD=60°,∴∠ADC=120°,又∠ADE=∠CDF=30°,∴∠EDF=60°,由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,DE=DF=√3,∠DEG=∠DFP=90°,在△DEG和△DFP中,{∠GDE=∠PDF ∠DEG=∠DFP DE=DF,∴△DEG≌△DFP,∴DG=DP,∴△DGP为等边三角形,∴△DGP的面积=√34DG2=3√3,解得,DG=2√3,则cos∠EDG=DEDG =12,∴∠EDG=60°,∴当顺时针旋转60°时,△DGP的面积等于3√3,故选:C.由旋转的性质可知,∠EDG=∠FDP,∠GDP=∠EDF=60°,判定△DEG≌△DFP,即可得出△DGP为等边三角形,求得cos∠EDG=DEDG =12,即可得出∠EDG=60°,进而得到α的大小.本题考查的是菱形的性质和旋转变换,掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等是解题的关键.8.【答案】B【解析】【分析】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.根据二次函数的性质得到抛物线的对称轴为直线x=2,再根据点A、B 关于直线x=2对称得到A(1,0),B(3,0),然后把A点坐标代入y=−x2+4x+k得−1+ 4+k=0,最后解关于k的方程即可.【解答】=2,而AB=2,解:∵抛物线的对称轴为直线x=−42×(−1)∴A(1,0),B(3,0),把A(1,0)代入y=−x2+4x+k得−1+4+k=0,解得k=−3.故选B.9.【答案】1【解析】解:由题意得:a−2+a=0,解得:a=1,故答案为:1.根据两个点关于原点对称时,它们的坐标符号相反可得a−2+a=0,再解即可.此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标关于原点对称的点的坐标特点.10.【答案】50°【解析】【试题解析】【分析】本题考查的是圆的相关概念,根据题意作出辅助线,构造出等腰三角形是解答此题的关键.连接OA,根据等腰三角形的性质求出∠DAO与∠BAO的度数,进而可得出结论.【解答】解:连接OA,∵OA=OD,OB=OA,故答案为:50°.11.【答案】m>9【解析】【分析】本题考查了抛物线与x轴的交点问题,利用根的判别式列出不等式是解题的关键.利用根的判别式△<0列不等式求解即可.【解答】解:∵抛物线y=x2−6x+m与x轴没有交点,∴△=b2−4ac<0,∴(−6)2−4m<0,解得m>9,∴m的取值范围是m>9.故答案为m>9.12.【答案】(2,0)【解析】解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).故答案为:(2,0).根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.本题考查垂径定理的知识,理解本题中圆心在圆的弦的垂直平分线上,是垂直平分线的交点.13.【答案】8【解析】【分析】本题利用了垂径定理和勾股定理求解,注意在最短和最长的弦之间的弦长为某一整数时有两条.过点P最长的弦是10,根据已知条件,可以求出过点P的最短的弦是6,故过点P的弦的长度在6和10之间,所以过点P的弦中长度为整数的弦的条数为8.【解答】解:如图示,作AB⊥OP于P,AP=BP,在Rt△AOP中,OP=4,OA=5,AP=√52−42=3,∴AB=6,故过点P的弦的长度在6和10之间,弦为7,8,9的各有2条,∴所有过点P的所有弦中取整数的有6,7,8,9,10,这五个数,又∵圆是轴对称图形,∴过点P的弦中长度为整数的弦的条数为8.故答案为8.14.【答案】6或12或10【解析】解:由方程x2−6x+8=0,得x=2或4.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去;当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10.综上所述此三角形的周长是6或12或10.首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程x2−6x+8=0的根,进行分情况计算.本题一定要注意判断是否能构成三角形的三边.【解析】【分析】本题考查了勾股定理和垂径定理的应用.运用了分类讨论和数形结合思想的有关知识,分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【解答】解:作EF⊥AB,交AB于点E,CD于点F,∵AB//CD,∴EF⊥CD,①当弦AB和CD在圆心同侧时,如图1,∵AB=24,CD=18,∴AE=12,CF=9,∵OA=OC=15,在△AOE和△COF中,由勾股定理得:EO=9,OF=12,∴EF=12−9=3;②当弦AB和CD在圆心异侧时,如图2,∵AB=24,CD=18,∴AE=12,CF=9,∵OA=OC=15,在△AOE和△COF中,由勾股定理得:EO=9,OF=12,∴EF=OF+OE=21.∴AB与CD之间的距离为3或21.16.【答案】9【解析】【分析】本题考查二次函数的实际应用,难度中等.求水面离桥顶的高度h,由图象可知,实际是求在抛物线解析式中,x=±6时,y的值.【解答】x2,由题知,解:由y=−14当x=±6时,y=9,即水面离桥顶的高度h是9米.17.【答案】解:∵x2−5x+6=0,∴(x−2)(x−3)=0,则x−2=0或x−3=0,解得x1=2,x2=3.【解析】利用因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.【答案】解:(1)∵∠ABC=60°,∴∠CBE=180°−60°=120°,∵直角三角板ACB绕顶点B顺时针旋转得到△DEB,∴∠CBE等于旋转角,∴三角板旋转了120°;(2)∵直角三角板ACB绕顶点B顺时针旋转得到△DEB,∴BC=BE,∴△BCE为等腰三角形;(3)∵∠CBE=120°,△BCE为等腰三角形,∴∠BCE=12(180°−120°)=30°,∴∠ACE=∠ACB+∠BCE=90°+30°=120°.【解析】此题考查了旋转的性质,等腰三角形的判定与性质,三角形内角和定理.(1)先利用邻补角计算出∠CBE=180°−∠ABC=120°,再根据旋转的性质得到∠CBE等于旋转角,所以三角板旋转了120°;(2)根据旋转的性质得BC=BE,即可得到△BCE为等腰三角形;(3)由于∠CBE=120°,△BCE为等腰三角形,根据等腰三角形的性质和三角形内角和定理,即可计算出∠BCE=12(180°−120°)=30°,然后利用∠ACE=∠ACB+∠BCE进行计算即可得到答案.19.【答案】解:(1)∵y=−2x2+4x−3=−2(x−1)2−1,∴对称轴为x=1,顶点坐标为(1,−1);(2)∵抛物线开口向下,且对称轴为x=1,∴当x>1时y随x的增大而减小.【解析】(1)把解析式化为顶点式可求得其对称轴和顶点坐标;(2)由抛物线的开口方向及对称轴,根据抛物线的增减性可求得x的取值范围.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).20.【答案】解:在△ABC中,AB=AD=DC,∵AB=AD,在△ABD中,∠B=∠ADB=(180°−26°)×12=77°,又∵AD=DC,在△ADC中,∴∠C=12∠ADB=77°×12=38.5°.【解析】由题意,在△ABC中,AB=AD=DC,∠BAD=26°根据等腰三角形的性质可以求出底角,再根据三角形内角与外角的关系即可求出内角∠C.本题考查等腰三角形的性质及应用等腰三角形两底角相等,还考查了三角形的内角和定理及内角与外角的关系.利用三角形的内角求角的度数是一种常用的方法,要熟练掌握.21.【答案】解:(1)∵关于x的一元二次方程x2−3x+a−2=0有实数根,∴△≥0,即(−3)2−4(a−2)≥0,解得a≤174;(2)由(1)可知a≤174,∴a的最大整数值为4,此时方程为x2−3x+2=0,解得x=1或x=2.【解析】(1)由方程有实数根,根据根的判别式可得到关于a的不等式,则可求得a的取值范围;(2)由(1)中所求a的取值范围可求得a的最大整数值,代入方程求解即可.本题主要考查根的判别式,由根的判别式得到关于a的不等式是解题的关键.22.【答案】解:(1)设直线n的解析式为y=kx+b(k≠0),∵直线过点A(0,4)和(−3,1),∴{b=4−3k+b=1,解得{k=1 b=4,∴直线n的解析式为:y=x+4;(2)∵直线n的解析式为:y=x+4,∴当y=0时,x=−4,∴B(−4,0),∴BC=7,∴S△ABC=12BC⋅OA=12×7×4=14.【解析】(1)设直线n的解析式为y=kx+b(k≠0),再把A(0,4)和(−3,1)代入求出k、b的值即可;(2)求出B点坐标,利用三角形的面积公式即可得出结论.本题考查的是待定系数法求一次函数的解析式,熟知利用待定系数法求一次函数解析式一般步骤是解答此题的关键.23.【答案】解:(1)由题意得:{a−b−3=09a+3b−3=0,解得{a=1b=−2,∴这个二次函数的解析式为y=x2−2x−3.(2)当x=0时,y=−3,则C为(0,−3),易得直线BC 的函数解析式为:y =x −3,设P 的坐标为(t,t 2−2t −3)(0<t <3),则M 的坐标为(t,t −3),∴PM =t −3−(t 2−2t −3)=−t 2+3t=−(t −32)2+94, ∵−1<0且0<t <3,∴当t =32时,PM 取得最大值,最大值为94,此时P 的坐标为(32,−154).【解析】本题考查了二次函数解析式,也考查了二次函数图象上点的坐标特征和二次函数的性质.(1)利用待定系数法求二次函数解析式;(2)先确定C 点坐标,则可求出直线BC 的解析式,设P 的坐标为(t,t 2−2t −3)(0<t <3),M 的坐标为(t,t −3),所以PM =t −3−(t 2−2t −3)=−t 2+3t ,然后利用二次函数的性质解决问题.24.【答案】解:连接OB ,设OB =OA =R ,则OE =16−R ,∵AD ⊥BC ,BC =16,∴∠OEB =90°,BE =12BC =8,在Rt △OBE 中,由勾股定理得:OB 2=OE 2+BE 2,R 2=(16−R)2+82,解得:R =10,即⊙O 的直径为20.【解析】本题主要考查了垂径定理,勾股定理的应用,能根据垂径定理求出BE 的长是解此题的关键,注意:垂直于弦的直径平分弦.连接OB ,根据垂径定理求出BE ,根据勾股定理得出方程,求出方程的解即可.25.【答案】(1)y =4x 3−14x 2+12x (2) 0<x <32 (3)0.55 3.03(4)根据(1)画出函数图象如图(5)根据图象,当x =0.55dm 时,盒子的体积最大,最大值约为3.03dm 3【解析】解:(1)由已知,y =x(4−2x)(3−2x)=4x 3−14x 2+12x故答案为:y =4x 3−14x 2+12x(2)由已知{x >04−2x >03−2x >0解得:0<x <32(3)根据函数关系式,当x =12时,y =3;x =1时,y =2故答案为:0.55,3.03(4)见答案(5)见答案【分析】根据题意,列出y 与x 的函数关系式,根据盒子长宽高值为正数,求出自变量取值范围;利用图象求出盒子最大体积.本题是动点问题的函数图象探究题,考查列函数关系式以及画函数图象.解答关键是数形结合. 26.【答案】解:(1)把A(−1,0)代入得b =4a 所以对称轴为x =−2;(2)把b =4a 代入解析式得y =a(x +1)(x +3),则抛物线过(−1,0)(−3,0)两点,当a>0时,x=0代入得y=3a>4,所以a>43,当a<0时,x=−2代入得y=−a>2,所以a<−2,综上,a>43或a<−2;(3)B(0,4),C(−2,2),当a>0时,D(−23,103)则a=307,当a<0时,D(−43,83)则a=−245.【解析】本题考查了二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握一元一次不等式,待定系数法求抛物线解析式,此题属于中档题,但实际知识点较多,需要对二次函数足够了解才能快捷的解题.(1)根据坐标轴上点的坐标特征代入点A坐标,得出b=4a,则解析式为y=a(x+1)(x+3),进一步得出对称轴;(2)结合图形,分两种情况:①a>0;②a<0;进行讨论即可求解;(3)求出B(0,4),C(−2,2),分两种情况:①a>0;②a<0;进行讨论即可求解.27.【答案】解:(1)结论:BE=DG,BE⊥DG.理由:如图①中,设BE交DG于点K,AE交DG于点O.∵四边形ABCD,四边形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∴∠AEB=∠AGD,∵∠AOG=∠EOK,∴∠OAG=∠OKE=90°,∴BE⊥DG.(2)如图②中,连接EG,作GH⊥AD交DA的延长线于H.∵∠OAG=∠ODE=90°,∴A,D,E,G四点共圆,∴∠ADO=∠AEG=45°,∵∠DAM=90°,∴∠ADM=∠AMD=45°,∴DM=√2AD=2√2,∵DG]=2DM,∴DG=4√2,∵∠H=90°,∴∠HDG=∠HGD=45°,∴GH=DH=4,∴AH=2,在Rt△AHG中,AG=√22+42=2√5.(3)①如图③中,当点E在CD的延长线上时.作GH⊥DA交DA的延长线于H.易证△AHG≌△EDA,可得GH=AB=2,∵DG=4DM.AM//GH,∴DADH =DMDG=14,∴DH=8,∴AH=DH−AD=6,在Rt△AHG中,AG=√62+22=2√10.②如图3−1中,当点E在DC的延长线上时,易证:△AKE≌△GHA,可得AH=EK= BC=2.∵AD//GH,∴ADGH =DMMG=15,∵AD=2,∴HG=10,在Rt△AGH中,AG=√22+102=2√26.综上所述,满足条件的AG的长为2√10或2√26.【解析】(1)结论:BE=DG,BE⊥DG.只要证明△BAE≌△DAG(SAS),即可解决问题;(2)如图②中,连接EG,作GH⊥AD交DA的延长线于H.由A,D,E,G四点共圆,推出∠ADO=∠AEG=45°,解直角三角形即可解决问题;(3)分两种情形分别画出图形即可解决问题;本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,平行线分线段成比例定理,等腰直角三角形的性质和判定,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.28.【答案】解:(1)对于直线y=34x+3,令x=0,得到y=3;令y=0,得到x=−4,则A(−4,0),B(0,3);(2)由B(0,3),C(6,−5),设直线BC的解析式是y=kx+b,{b=36k+b=−5,解得{k=−43 b=3,∴直线BC的解析式是y=−43x+3,∵34×(−43)=−1,∴两直线互相垂直,∴AB⊥BC,则△ABC是直角三角形;(3)如图所示,作出BC的垂直平分线PQ,与x轴交于点P,与直线BC交于点Q,连接BP,CP,则△BCP是以BC为底边的等腰三角形,∵PQ⊥BC,AB⊥BC,∴PQ//AB,∵B(0,3),C(6,−5),∴线段BC中点Q坐标为(3,−1),∴直线PQ解析式为y+1=34(x−3),即y=34x−134,令y=0,得到x=133,则点P(133,0).【解析】本题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,等腰三角形的性质,熟练掌握一次函数的性质是解本题的关键.(1)由直线解析式求出A与B坐标即可;(2)先求出直线BC的解析式,然后与直线AB的解析式作比较可得AB与BC垂直,即可得证;(3)作出线段BC的垂直平分线,与x轴交于点P,与直线BC交于点Q,利用中点坐标公式求出Q的坐标,根据PQ与AB都与BC垂直,得到PQ与AB平行,求出直线PQ 的解析式,进而求出P坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D2014——2015学年海淀初三数学第一学期期中测试2014.11一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列图形是中心对称图形的是( )A B C D2.将抛物线2y x =向上平移1个单位,得到的抛物线的解析式为( ) A.21y x =+ B.21y x =- C.()21y x =+D.()21y x =-3.袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋子中摸出1个球.下面说法正确的是( ) A.这个球一定是黑球 B.这个球一定是白球C.“摸出黑球”的可能性大D.“摸出黑球”和“摸出白球”的可能性一样大 4.用配方法解方程2230x x --=时,配方后得到的方程为( )A.2(1)=4x - B.2(1)4x -=- C.2(1)=4x + D.2(1)=4x +- 5.如图,O 为正五边形ABCDE 的外接圆,O 的半径为2,则AB 的长为( )A.5πB.25πC.35πD.45π 6.如图,AB 是O 的直径,CD 是O 的弦,59ABD ∠=︒,则C ∠等于( )A.29︒B.31︒C.59︒D.62︒7.已知二次函数24y x x m =-+(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程240x x m -+=的两个实数根是( )A.121,1x x ==-B.121,2x x =-=C.121,0x x =-=D.121,3x x ==8.如图,C 是半圆O 的直径AB 上的一个动点(不与A ,B 重合),过C 作AB 的垂线交半圆于点D ,以点D ,C ,O 为顶点作矩形DCOE . 若AB =10,设AC =x ,矩形DCOE 的面积为y ,则下列图象中能表示y 与x 的函数关系的图象大致是( )A B CD二、填空题(本题共16分,每小题4分)9.如图,PA ,PB 分别与O 相切于点A ,B ,连接AB .60APB ∠=︒,5AB =,则PA 的长是 .10.若关于x 的一元二次方程240x x k -+=有两个相等的实数根,ED C BA PEDCBA则k 的值为_________.11.在平面直角坐标系xOy 中,函数2y x =的图象经过点11(,)M x y ,22(,)N x y 两点,若1 42x -<<-,202x <<,则1y 2y .(用“<”,“=”或“>”号连接)12.如图,正方形ABCD 中,点G 为对角线AC 上一点,AG=AB . ∠CAE =15°且AE=AC ,连接GE .将线段AE 绕点A 逆时针旋转得到 线段AF ,使DF=GE ,则∠CAF 的度数为____________. 三、解答题(本题共30分,每小题5分) 13.解方程:2310x x +-=.14.如图,∠DAB =∠EAC ,AB =AD ,AC =AE .求证:BC =DE .15.已知二次函数的图象经过点(0,1),且顶点坐标为(2,5),求此二次函数的解析式.16.如图,四边形ABCD 内接于⊙O ,∠ABC =130°,求∠OAC 的度数.17.若1x =是关于x 的一元二次方程22420x mx m -+=的根,求代数式()2213+m -的值.18.列方程解应用题:某工厂废气年排放量为450万立方米,为改善空气质量,决定分两期治理,使废气的排放量减少到288万立方米.如果每期治理中废气减少的百分率相同,求每期减少的百分率. 四、解答题(本题共20分,每小题5分)19.下图是某市某月1日至15日的空气质量指数趋势图,空气质量指数不大于100表示空气质量优良,空气质量指数大于200表示空气重度污染.(1)由图可知,该月1日至15日中空气重度污染的有 天; (2)小丁随机选择该月1日至15日中的某一天到达该市,求小丁到达该市当天空气质量优良的概率. 20.已知关于x 的方程2(3)30ax a x +--=(0)a ≠.(1)求证:方程总有两个实数根;(2)若方程有两个不相等的负整数根,求整数a 的值.21.如图,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,点G 在直径DF 的延长线上,∠D =∠G =30.GDCC空气质量指数(1)求证:CG 是⊙O 的切线; (2)若CD =6,求GF 的长. 22.阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:123,,x x x ,称为数列123,,x x x .计算1x ,122x x +,1233x x x ++,将这三个数的最小值称为数列123,,x x x 的价值.例如,对于数列2,1-,3,因为22=,2(1)122=+-,2(1)3433+-+=,所以数列2,1-,3的价值为12. 小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列1-,2,3的价值为12;数列3,1-,2的价值为1;….经过研究,小丁发现,对于“2,1-,3”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为12. 根据以上材料,回答下列问题:(1)数列4-,3-,2的价值为______;(2)将“4-,3-,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值为______ ,取得价值最小值的数列为___________(写出一个即可); (3)将2,9-,a (1)a >这三个数按照不同的顺序排列,可得到若干个数列. 若这些数列的价值的最小值为1,则a 的值为__________.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,抛物线2(1)y x m x m =---(0)m >与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 的坐标;(2)当15ABC S △=时,求该抛物线的表达式;(3)在(2)的条件下,经过点C 的直线l :y kx b =+(0)k <与抛物线的另一个交点为D . 该抛物线在直线l 上方的部分与线段CD 组成一个新函数的图象. 请结合图象回答:若新函数的最小值大于8-,求k 的取值范围.24.将线段AB 绕点A 逆时针旋转60°得到线段AC ,继续旋转α(0120)α<<得到线段AD ,连接CD .(1)连接BD ,①如图1,若α=80°,则∠BDC 的度数为 ;②在第二次旋转过程中,请探究∠BDC 的大小是否改变.若不变,求出∠BDC 的度数;若改变,请说明理由.(2)如图2,以AB 为斜边作直角三角形ABE ,使得∠B =∠ACD ,连接CE ,DE . 若∠CED =90°,求α的值.25.如图,在平面直角坐标系xOy 中,点(,)P a b 在第一象限.以P 为圆心的圆经过原点,与y 轴的另一个交点为A .点Q 是线段OA 上的点(不与O ,A 重合),过点Q 作PQ 的垂线交⊙P 于点(,)B m n ,其中0≥m .(1)若5b =,则点A 坐标是________________; (2)在(1)的条件下,若OQ =8,求线段BQ 的长;(3)若点P 在函数2y x =(0)x >的图象上,且△BQP 是等腰三角形. ①直接写出实数a 的取值范围:__________________;②在12,4PQ 的长度可以为 ,并求出此时点B 的坐标.海淀区九年级第一学期期中练习2014.11数学试卷答案及评分参考阅卷须知:1. 为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2. 若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3. 评分参考中所注分数,表示考生正确做到此步应得的累加分数.9. 5 ; 10. 4 ; 11. > ; 12. 30°或60°.(注:每个答案2分) 三、解答题(本题共30分,每小题5分) 13.(本小题满分5分)解:∵131a ,b ,c ===-, …………………………………………………………………1分∴2341(1)=13>0∆=-⨯⨯-. … ……………………………………………………2分∴x ==∴12x =. ……………………………………………………5分 14.(本小题满分5分)证明:∵∠DAB =∠EAC ,∴∠DAB +∠BAE =∠EAC+∠BAE .∴∠DAE =∠BAC . ………………………………………………………………1分 在△BAC 和△DAE 中,∴△BAC ≌△DAE . ………………………………………………………………4分 ∴BC =DE . ………………………………………………………………………5分 15.(本小题满分5分)解:设二次函数的解析式为()225y a x =-+ (0)a ≠.……………………………1分∵二次函数的图象经过点(0,1).∴()21025a =-+.………………………………………………………………2分 ∴1a =-. …………………………………………………………………………4分 ∴二次函数的解析式为241y x x =-++.………………………………………5分 16. (本小题满分5分)解:∵四边形ABCD 内接于⊙O ,∴∠ADC +∠ABC =180°. …………………………………………………………1分 ∵∠ABC =130°,∴∠ADC =180°-∠ABC =50°. …………………………………………………2分∴∠AOC =2∠ADC =100°. ………………………………………………………3分 ∵OA=OC ,∴∠OAC =∠OCA . ……………………………………………………………4分∴∠OAC =1(180)402AOC -∠=. ……………………………………………… 5分17. (本小题满分5分)解:依题意,得 21420m m -+=. ……………………………………………………2分∴2241m m -=-. ………………………………………………………………3分 ∴()()2222132213245154+=m m m m m --++=-+=-+=. …………5分 18. (本小题满分5分)解:设每期减少的百分率为x .…………………………………………………… ……1分 由题意,得()24501288x -=. ……………………………………………… ………2分 解方程得 115x =,295x =. ………………………………………………… ……3分经检验,915x =>不合题意,舍去;15x = 符合题意. ……………… …………4分 答:每期减少的百分率为20%. ……………………………………………… ………5分四、解答题(本题共20分,每小题5分) 19. (本小题满分5分)解:(1)3. …………………………………………………………………………… 2分(2)小丁随机选择该月1日至15日中的某一天到达该市,则到达该市的 日期有15种不同的选择,在其中任意一天到达的可能性相等. ……………3分 由图可知,其中有9天空气质量优良. ………………………………… ……4分 所以,P (到达当天空气质量优良)93155==. …………………… ………5分 20. (本小题满分5分)解:(1)∵0a ≠,∴原方程为一元二次方程.∴()234(3)a a ∆=--⨯⨯- ………………………………………………1分()23a =+.∵()230≥a +.∴此方程总有两个实数根. …………………………………………………2分 (2)解原方程,得 11x =-,23x a=. ……………………………………………3分 ∵此方程有两个负整数根,且a 为整数,∴1a =-或3-. …………………………………………………………………4分 ∵12x x ≠,∴3a ≠-.∴1a =-. ………………………………………………………………………5分 21. (本小题满分5分) (1)证明:连接OC .∵OC=OD ,∠D =30°, ∴∠OCD =∠D = 30°.…………………………………1分 ∵∠G =30°,∴∠DCG =180°-∠D -∠G =120°. ∴∠GCO =∠DCG -∠OCD =90°. ∴OC ⊥CG .又∵OC 是⊙O 的半径.∴CG 是⊙O 的切线.……………………………………2分(2)解:∵AB 是⊙O 的直径,CD ⊥AB ,∴132CE CD ==. ………………………………………………………3分∵在Rt △OCE 中,∠CEO =90°,∠OC E =30°, ∴12OE OC =,222OC OE CE =+. 设OE x =,则2OC x =. ∴()22223x x =+.解得x =.∴OC = ………………………………………………………………4分 ∴OF =在△OCG 中,∵∠OCG =90°,∠G =30°, ∴2OG OC ==∴GF GO OF =-= ……………………………………………………5分22. (本小题满分5分)答:(1)53. …………………………………………………………………………………1分(2)12, ………………………………………………………………………………2分3,2,4--或2,3,4--.(写出一个即可)…………………………………………3分 (3)11或4.(每个答案各1分) ……………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. (本小题满分7分)解:(1)∵ 抛物线2(1)y x m x m =---(0)m >与x 轴交于A 、B 两点,∴ 令0y =,即 2(1)0x m x m ---=.解得11x =-,2x m =. …………………………………………………1分又∵ 点A 在点B 左侧,且0m >,∴ 点A 的坐标为(1,0)-. …………………………………………………2分(2)由(1)可知点B 的坐标为(0)m ,.∵抛物线与y 轴交于点C ,∴点C 的坐标为(0,)m -. (3)分∵0m >,∴1AB m =+,OC m =. ∵15△ABC S =, ∴1(1)152m m +=. ∴6m =-或5m =. ∵0m >,∴5m =.∴抛物线的表达式为245y x x =--. ………………………4分(3)由(2)可知点C 的坐标为(0,5)-.∵直线l :y kx b =+(0)k <经过点C ,∴5b =-. ………………………………………5分 ∴直线l 的解析式为5y kx =-(0)k <. ∵2245(2)9y x x x =--=--,∴当点D 在抛物线顶点处或对称轴左侧时,新函数的最小值为9-,不符合题意. 当点D 在抛物线对称轴右侧时,新函数的最小值有可能大于8-. 令8y =-,即2458x x --=-.解得 11x =(不合题意,舍去),23x =. ∴抛物线经过点(3,8)-.当直线5y kx =-(0)k <经过点(3,8)-时,可求得1k =-.…………………6分 由图象可知,当10k -<<时新函数的最小值大于8-. ………………………7分24.(本小题满分7分) 解:(1)①30°. …………………………………………………………………………1分②不改变,∠BDC 的度数为30.方法一:由题意知,AB=AC=AD .∴点B 、C 、D 在以A 为圆心,AB 为半径的圆上.…………………………2分 ∴∠BDC=12∠BAC =30.……………………………………………………3分 方法二:由题意知,AB=AC=AD . ∵AC =AD ,∠CAD =α, ∴1801=9022ADC C αα-==-∠∠.…………………………………2分 ∵AB=AD ,∠BAD =60α+,∴()18060120160222ADB B ααα-+-====-∠∠. ∴11(90)(60)3022BDC ADC ADB αα=-=---=∠∠∠.…………3分 (2)过点A 作AM ⊥CD 于点M ,连接EM .∴90AMC ∠=.在△AEB 与△AMC 中,∴△AEB ≌△AMC . ………………………………………………………4分∴AE AM =,BAE CAM ∠=∠.∴60EAM EAC CAM EAC BAE BAC ∠=∠+∠=∠+∠=∠=.∴△AEM 是等边三角形.∴EM AM AE ==. …………………………………………………………5分 ∵AC AD =,AM CD ⊥ , ∴CM DM =. 又90DEC ∠=,∴EM CM DM ==.∴AM CM DM ==. …………………………………………………………6分 ∴点A 、C 、D 在以M 为圆心,MC 为半径的圆上.∴90CAD α=∠=. …………………………………………………………7分 25. (本小题满分8分) 解: (1)(0,10). …………………………………………………………………1分(2)连接BP 、OP ,作PH ⊥OA 于点H .∵5,b =PH ⊥OA , ∴152OH AH OA ===.∵OQ =8,∴3QH OQ OH =-=.B在Rt △QHP 中,22229PQ QH PH PH =+=+.在Rt PHO △中,2222225PO OH PH PH BP =+=+=.在Rt △BQP 中,22222(25)(9)16BQ BP PQ PH PH =-=+-+=. ∴4BQ =.……………………………………………………………………3分(3)①1≥a .……………………………………………………………………………4分……………………………………………………………………………5分 解:∵△BQP是等腰直角三角形,PQ =∴半径BP = 又∵2(,)P a a ,∴2242OP a a =+=.即42200a a +-=.解得2a =±.∵0a >,∴2a =. ……………………………………………………………………………6分 ∴(2,4)P .如图,作BM y ⊥轴于点M ,则△QBM ≌△PQH . ∴2MQ PH ==,MB QH ===∴1B . …………………………………7分若点Q 在OH上,由对称性可得2B . ……………………………8分综上,当PQ =B点坐标为或2-.。

相关文档
最新文档