数据结构课程设计报告---几种排序算法的演示(附源代码)
内部排序比较 (实验报告+源程序)C++
实验报告3实验名称:数据结构与软件设计实习题目:内部排序算法比较专业:生物信息学班级:01 姓名:学号:实验日期:2010.07.24一、实验目的:比较冒泡排序、直接插入排序、简单选择排序、快速排序、希尔排序;二、实验要求:待排序长度不小于100,数据可有随机函数产生,用五组不同输入数据做比较,比较的指标为关键字参加比较的次数和关键字移动的次数;对结果做简单的分析,包括各组数据得出结果的解释;设计程序用顺序存储。
三、实验内容对各种内部排序算法的时间复杂度有一个比较直观的感受,包括关键字比较次数和关键字移动次数。
将排序算法进行合编在一起,可考虑用顺序执行各种排序算法来执行,最后输出所有结果。
四、实验编程结果或过程:1. 数据定义typedef struct { KeyType key; }RedType; typedef struct { RedType r[MAXSIZE+1]; int length;}SqList;2. 函数如下,代码详见文件“排序比较.cpp”int Create_Sq(SqList &L)void Bubble_sort(SqList &L)//冒泡排序void InsertSort(SqList &L)//插入排序void SelectSort(SqList &L) //简单选择排序int Partition(SqList &L,int low,int high) void QSort(SqList &L,int low,int high)//递归形式的快速排序算法void QuickSort(SqList &L)void ShellInsert(SqList &L,int dk)//希尔排序void ShellSort(SqList &L,int dlta[ ])3. 运行测试结果,运行结果无误,如下图语速个数为20元素个数为100错误调试无。
源代码--数据结构与算法(Python版)chap10 排序
交换类
(2)快速排序 快速排序采用分而治之(Divide and Conquer)
的策略将问题分解成若干个较小的子问题,采用 相同的方法一一解决后,再将子问题的结果整合 成最终答案。快速排序的每一轮处理其实就是将 这一的基准数定位,直到所有的数都排序完成 为止。
21
快速排序的基本步骤:
1. 选定一个基准值(通常可选第一个元素); 2. 将比基准值小的数值移到基准值左边,形
14
• 交换类
交换类排序的基本思想是:通过交换无序序列 中的记录得到其中关键字最小或最大的记录,并将 其加入到有序子序列中,最终形成有序序列。交换 类排序可分为冒泡排序和快速排序等。
15
交换类
(1)冒泡排序 两两比较待排序记录的关键字,发现两
个记录的次序相反时即进行交换,直到没有 反序的记录为止。因为元素会经由交换慢慢 浮到序列顶端,故称之为冒泡排序。
3. 最后对这个组进行插入排序。步长的选法 一般为 d1 约为 n/2,d2 为 d1 /2, d3 为 d2/2 ,…, di = 1。
11
【例】给定序列(11,9,84,32,92,26,58,91,35, 27,46,28,75,29,37,12 ),步长设为d1 =5、d2 =3、 d3 =1,希尔排序过程如下:
for i in range(1,len(alist)):
#外循环n-1
for j in range(i,0,-1):
#内循环
if alist[j]<alist[j-1]:
alist[j],alist[j-1]=alist[j-1],alist[j] #交换
li=[59,12,77,64,72,69,46,89,31,9] print('before: ',li) insert_sort(li) print('after: ',li)
数据结构实验报告-排序
本章共8道实验题目。
一、直接插入排序1. 定义顺序表的存储结构2. 初始化顺序表为空表3. 输入10个元素创建含有10个元素的顺序表4. 输出顺序表5. 对顺序表进行直接插入排序(InsertSort)6. 输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;//此处定义直接插入排序函数int a[20];int main(){int InsertSort;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort(a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}二、折半插入排序1. 定义顺序表的存储结构2. 初始化顺序表为空表3. 输入10个元素创建含有10个元素的顺序表4. 输出顺序表5. 对顺序表进行折半插入排序(BInsertSort)6. 输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;//此处定义折半插入排序函数int a[20];int main(){int BInsertSort ;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort(a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}三、希尔排序1. 定义顺序表的存储结构2. 初始化顺序表为空表3. 输入10个元素创建含有10个元素的顺序表4. 输出顺序表5. 对顺序表进行希尔排序(ShellSort)6. 输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 602 11 938 669 507 117 261 708 343 300 602 11 117 261 300 343 507 602 669 708 938 程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;int a[20];int main(){int ShellSort;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort(a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}四、冒泡排序1.定义顺序表的存储结构2.初始化顺序表为空表3.输入10个元素创建含有10个元素的顺序表4.输出顺序表5.对顺序表进行冒泡排序(BubbleSort)6.输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;int a[20];int main(){int BubbleSort;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort(a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}五、快速排序1.定义顺序表的存储结构2.初始化顺序表为空表3.输入10个元素创建含有10个元素的顺序表4.输出顺序表5.对顺序表进行快速排序(QuickSort)6.输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;int a[20];int main(){int QuickSort;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort (a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}六、简单选择排序1.定义顺序表的存储结构2.初始化顺序表为空表3.输入10个元素创建含有10个元素的顺序表4.输出顺序表5.对顺序表进行简单选择排序(SelectSort)6.输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 602 11 117 261 300 343 507 602 669 708 938 程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;int a[20];int main(){int SelectSort;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort(a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}七、堆排序1.定义顺序表的存储结构2.初始化顺序表为空表3.输入10个元素创建含有10个元素的顺序表4.输出顺序表5.对顺序表进行堆排序(HeapSort)6.输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;Status InitList(SqList &L){L.length=0;return 0;}Status CreateList(SqList &L,int n){if(!L.r||n<1||n>MAXSIZE) return ERROR;//cout<<"\n请输入"<<n<<"个元素(用空格隔开):";for(int i=1;i<=n;i++)cin>>L.r[i].key;L.length=n;return OK;}void ListTraverse(SqList L){//cout<<"L=(";for(int i=1;i<=L.length;i++)cout<<L.r[i].key<<' ';//if(L.length) cout<<'\b';//cout<<")";cout<<endl;}void HeapSort(SqList &L){int value = 0;for(int i = 0;i<L.length;i++)for(int j = 0;j<L.length-i;j++){if(L.r[j].key>L.r[j+1].key){value = L.r[j].key;L.r[j].key= L.r[j+1].key;L.r[j+1].key = value;}}int main(){SqList L;InitList(L);CreateList(L,10);ListTraverse(L);HeapSort(L);ListTraverse(L);return 0;}八、归并排序1.定义顺序表的存储结构2.初始化顺序表为空表3.输入10个元素创建含有10个元素的顺序表4.输出顺序表5.对顺序表进行二路归并排序(MergeSort)6.输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef structKeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;Status InitList(SqList &L){L.length=0;return 0;}Status CreateList(SqList &L,int n){if(!L.r||n<1||n>MAXSIZE) return ERROR;//cout<<"\n请输入"<<n<<"个元素(用空格隔开):";for(int i=1;i<=n;i++)cin>>L.r[i].key;L.length=n;return OK;}void ListTraverse(SqList L){//cout<<"L=(";for(int i=1;i<=L.length;i++)cout<<L.r[i].key<<' ';//if(L.length) cout<<'\b';//cout<<")";cout<<endl;}void MSort(){}void Merge(){}void MergeSort(SqList &L){int value = 0;for(int i = 0;i<L.length;i++)for(int j = 0;j<L.length-i;j++){if(L.r[j].key>L.r[j+1].key){value = L.r[j].key;L.r[j].key= L.r[j+1].key;L.r[j+1].key = value;}}}int main(){SqList L;InitList(L);CreateList(L,10);ListTraverse(L);MergeSort(L);ListTraverse(L);return 0;}。
数据结构课程设计—内部排序算法比较
数据结构课程设计—内部排序算法比较在计算机科学领域中,数据的排序是一项非常基础且重要的操作。
内部排序算法作为其中的关键部分,对于提高程序的运行效率和数据处理能力起着至关重要的作用。
本次课程设计将对几种常见的内部排序算法进行比较和分析,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。
冒泡排序是一种简单直观的排序算法。
它通过重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。
这种算法的优点是易于理解和实现,但其效率较低,在处理大规模数据时性能不佳。
因为它在最坏情况下的时间复杂度为 O(n²),平均时间复杂度也为O(n²)。
插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个序列有序。
插入排序在数据量较小时表现较好,其平均时间复杂度和最坏情况时间复杂度也都是 O(n²),但在某些情况下,它的性能可能会优于冒泡排序。
选择排序则是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。
以此类推,直到全部待排序的数据元素排完。
选择排序的时间复杂度同样为O(n²),但它在某些情况下的交换操作次数可能会少于冒泡排序和插入排序。
快速排序是一种分治的排序算法。
它首先选择一个基准元素,将数列分成两部分,一部分的元素都比基准小,另一部分的元素都比基准大,然后对这两部分分别进行快速排序。
快速排序在平均情况下的时间复杂度为 O(nlogn),最坏情况下的时间复杂度为 O(n²)。
然而,在实际应用中,快速排序通常表现出色,是一种非常高效的排序算法。
归并排序也是一种分治算法,它将待排序序列分成若干个子序列,每个子序列有序,然后将子序列合并成一个有序序列。
十大经典排序算法(动图演示)
⼗⼤经典排序算法(动图演⽰)0、算法概述0.1 算法分类⼗种常见排序算法可以分为两⼤类:⽐较类排序:通过⽐较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为⾮线性时间⽐较类排序。
⾮⽐较类排序:不通过⽐较来决定元素间的相对次序,它可以突破基于⽐较排序的时间下界,以线性时间运⾏,因此也称为线性时间⾮⽐较类排序。
0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前⾯,⽽a=b,排序之后a仍然在b的前⾯。
不稳定:如果a原本在b的前⾯,⽽a=b,排序之后 a 可能会出现在 b 的后⾯。
时间复杂度:对排序数据的总的操作次数。
反映当n变化时,操作次数呈现什么规律。
空间复杂度:是指算法在计算机内执⾏时所需存储空间的度量,它也是数据规模n的函数。
1、冒泡排序(Bubble Sort)冒泡排序是⼀种简单的排序算法。
它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。
⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端。
1.1 算法描述⽐较相邻的元素。
如果第⼀个⽐第⼆个⼤,就交换它们两个;对每⼀对相邻元素作同样的⼯作,从开始第⼀对到结尾的最后⼀对,这样在最后的元素应该会是最⼤的数;针对所有的元素重复以上的步骤,除了最后⼀个;重复步骤1~3,直到排序完成。
1.2 动图演⽰1.3 代码实现function bubbleSort(arr) {var len = arr.length;for (var i = 0; i < len - 1; i++) {for (var j = 0; j < len - 1 - i; j++) {if (arr[j] > arr[j+1]) { // 相邻元素两两对⽐var temp = arr[j+1]; // 元素交换arr[j+1] = arr[j];arr[j] = temp;}}}return arr;}2、选择排序(Selection Sort)选择排序(Selection-sort)是⼀种简单直观的排序算法。
《数据结构》上机实验报告—常用排序算法的实现
}
int InsertSort(Form &F)
{//对顺序表F作直接插入排序
int i,j;
int comp=0;//比较次数
int move=0;//移动次数
for(i=2;i<=F.length;i++)
{
comp++;
if(F.r[i].key<F.r[i-1].key)
{
high--;
move++;
}
F.r[low]=F.r[high];
if(low<high&&F.r[low].key<=p)
{
low++;
move++;
}
F.r[high]=F.r[low];
}
F.r[low]=F.r[0];
return low;
}
void main()
{
Form F;
Init_Form(F);
{
F.r[0]=F.r[i]; //F.r[0]是监视哨
F.r[i]=F.r[i-1];
j=i-2;
comp++;
if(F.r[0].key<F.r[j].key)
{//进行元素移动,以腾出位置插入F.r[i]
F.r[j+1]=F.r[j];// 记录后移
j--;
move++;
}
F.r[j+1]=F.r[0]; //在j+1处插入F.r[i]
2.实现快速排序算法。
3.实现折半插入排序。
4.采用几组不同数据测试各个排序算法的性能(比较次数和移动次数)。
排序算法实验报告
数据结构实验报告八种排序算法实验报告一、实验内容编写关于八种排序算法的C语言程序,要求包含直接插入排序、希尔排序、简单项选择择排序、堆排序、冒泡排序、快速排序、归并排序和基数排序。
二、实验步骤各种内部排序算法的比较:1.八种排序算法的复杂度分析〔时间与空间〕。
2.八种排序算法的C语言编程实现。
3.八种排序算法的比较,包括比较次数、移动次数。
三、稳定性,时间复杂度和空间复杂度分析比较时间复杂度函数的情况:时间复杂度函数O(n)的增长情况所以对n较大的排序记录。
一般的选择都是时间复杂度为O(nlog2n)的排序方法。
时间复杂度来说:(1)平方阶(O(n2))排序各类简单排序:直接插入、直接选择和冒泡排序;(2)线性对数阶(O(nlog2n))排序快速排序、堆排序和归并排序;(3)O(n1+§))排序,§是介于0和1之间的常数。
希尔排序(4)线性阶(O(n))排序基数排序,此外还有桶、箱排序。
说明:当原表有序或基本有序时,直接插入排序和冒泡排序将大大减少比较次数和移动记录的次数,时间复杂度可降至O〔n〕;而快速排序则相反,当原表基本有序时,将蜕化为冒泡排序,时间复杂度提高为O〔n2〕;原表是否有序,对简单项选择择排序、堆排序、归并排序和基数排序的时间复杂度影响不大。
稳定性:排序算法的稳定性:假设待排序的序列中,存在多个具有相同关键字的记录,经过排序,这些记录的相对次序保持不变,则称该算法是稳定的;假设经排序后,记录的相对次序发生了改变,则称该算法是不稳定的。
稳定性的好处:排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。
基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。
另外,如果排序算法稳定,可以防止多余的比较;稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序四、设计细节排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。
北邮数据结构实验报告-排序
北邮数据结构实验报告-排序北邮数据结构实验报告-排序一、实验目的本实验旨在掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序、归并排序等,并通过实际编程实现对数字序列的排序。
二、实验内容1.冒泡排序冒泡排序是一种简单的排序算法,其基本思想是依次比较相邻的两个元素,并按照从小到大或从大到小的顺序交换。
具体步骤如下:- 从待排序序列的第一个元素开始,依次比较相邻的两个元素;- 如果前面的元素大于后面的元素,则交换这两个元素的位置;- 重复上述步骤,直到整个序列有序。
2.插入排序插入排序是一种简单且直观的排序算法,其基本思想是将待排序序列分为已排序和未排序两部分,每次从未排序部分中选择一个元素插入到已排序部分的合适位置。
具体步骤如下:- 从待排序序列中选择一个元素作为已排序部分的第一个元素;- 依次将未排序部分的元素插入到已排序部分的合适位置,使得已排序部分保持有序;- 重复上述步骤,直到整个序列有序。
3.选择排序选择排序是一种简单且直观的排序算法,其基本思想是每次选择未排序部分中的最小(或最大)元素,并将其放在已排序部分的末尾。
具体步骤如下:- 在未排序部分中选择最小(或最大)的元素;- 将选择的最小(或最大)元素与未排序部分的第一个元素交换位置;- 重复上述步骤,直到整个序列有序。
4.快速排序快速排序是一种高效的排序算法,其基本思想是通过一趟排序将待排序序列分割成两部分,其中一部分的元素都比另一部分的元素小。
具体步骤如下:- 选择一个枢轴元素(一般选择第一个元素);- 将待排序序列中小于枢轴元素的元素放在枢轴元素的左侧,大于枢轴元素的元素放在枢轴元素的右侧;- 对枢轴元素左右两侧的子序列分别进行递归快速排序;- 重复上述步骤,直到整个序列有序。
5.归并排序归并排序是一种高效的排序算法,其基本思想是将待排序序列划分成足够小的子序列,然后对这些子序列进行两两合并,最终形成有序的序列。
具体步骤如下:- 将待排序序列递归地划分成足够小的子序列;- 对每个子序列进行归并排序;- 合并相邻的子序列,直到整个序列有序。
数据结构排序算法实验报告
移动次数 735219 247071 2997 7296 22836 4233
乱序 2 比较次数 496238 255211 499500 12927 14868 3788
移动次数 762636 256210 2997 7449 22 242989 499500 12951 14845 3818
希尔排序:void ShellSort(Element *list,int n) 记录移动和比较次数的变量:int countlm=0,countlc=0 希尔排序是将文件分组,然后进行插入排序,因此 countlm,countlc 的增量方式与直 接插入排序相同。
堆排序:void HeapSort(Element *list,const int n) 记录移动和比较次数的变量:int countrm=0,countrc=0 首先进行初始建堆 void Restore(Element *tree,const int root,const int n),将待排序文 件保存在完全二叉树中,从最后一个非叶节点开始,将其孩子结点与其进行比较, 每比较一次 countrc 加 1,若孩子结点比其大,二者交换 countrm 加 3,直到任意结 点的关键词大于等于它的两个孩子结点。在进行堆排序,将根节点与最后一个叶节 点交换,countrm 加 3,再进行初始建堆,直至完全排好序。
数据结构课程设计
数据结构课程设计报告几种排序算法的演示班级:姓名:学号:完成日期:一需求分析1.运行环境Microsoft Visual Studio 20082.程序所实现的功能对直接插入排序、折半插入排序、冒泡排序、简单选择排序、快速排序、堆排序、归并排序算法的演示,并且输出每一趟的排序情况。
3.程序的输入(包含输入的数据格式和说明)<1>排序种类三输入<2>排序数的个数的输入<3>所需排序的所有数的输入4.程序的输出(程序输出的形式)<1>主菜单的输出<2>每一趟排序的输出,即排序过程的输出5.测试数据,如果程序输入的数据量比较大,需要给出测试数据。
二设计说明1.算法设计思想<1>交换排序(冒泡排序、快速排序)交换排序的基本思想是:对排序表中的数据元素按关键字进行两两比较,如果发生逆序(即排列顺序与排序后的次序正好相反),则两者交换位置,直到所有数据元素都排好序为止。
<2>插入排序(直接插入排序、折半插入排序)插入排序的基本思想是:每一次设法把一个数据元素插入到已经排序的部分序列的合适位置,使得插入后的序列仍然是有序的。
开始时建立一个初始的有序序列,它只包含一个数据元素。
然后,从这个初始序列出发不断插入数据元素,直到最后一个数据元素插到有序序列后,整个排序工作就完成了。
<3>选择排序(简单选择排序、堆排序)选择排序的基本思想是:第一趟在有n个数据元素的排序表中选出关键字最小的数据元素,然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素,依次重复,每一趟(例如第i趟,i=1,…,n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素,作为有序数据元素序列的第i个数据元素。
等到第n-1趟选择结束,待排序数据元素仅剩下一个时就不用再选了,按选出的先后次序所得到的数据元素序列即为有序序列,排序即告完成。
数据结构课程设计报告
《数据结构》课程设计实验报告题目内部排序算法的的性能分析学院数理与信息工程学院专业计算机科学与技术班级计科学122班学号201259225236学生姓名黄文财同组成员金坚扬李嘉良指导教师朱蓉编写日期2014.06.291 问题描述设计一个测试程序比较起泡排序、直接排序、简单选择排序、快速排序、希尔排序、堆排序算法的关键字比较次数和移动次数以取得直观感受。
待排序表的表长不小于100,表中数据随机产生,至少用5组不同数据作比较,比较指标有:关键字参加比较次数和关键字的移动次数(关键字交换记为3次移动)。
最后输出比较结果。
2 问题分析(1)用数组S来存放系统随机产生的100个数据,并放到R数组中,数据由程序随机产生,用户只需查看结果。
(2)利用全局变量times和changes来分别统计起泡排序、直接排序、简单选择排序、快速排序、希尔排序、堆排序算法的比较次数和移动次数,然后输出结果,并在每一次统计之后,将times和changes都赋值为0。
(3)在主函数中调用用户自定义函数,输出比较结果。
(4)本程序是对几种内部排序算法的关键字进行性能分析的程序,它分为以下几个部分:a、建立数组;b、调用函数求比较和移动次数;c、输出结果。
3 数据结构描述3.1抽象数据类型定义Insertsort();初始条件:数组已经存在。
基本思想:将一个记录插入到已经排好序的有序列表中,从而得到了一个新的、记录新增1的有序表。
Shellsort();初始条件:数组已经存在。
基本思想:先取定一个正整数d1<n,把全部记录分成d1个组,所有距离为d1倍数的记录放在一组中,在各组内进行插入排序,然后取d2<d1重复上述分组和排序工作,直至取di=1,即所有记录放在一个组中排序为止。
Bubblesort();初始条件:数组已经存在。
基本思想:两两比较待排序记录的键值,并交换不满足顺序要求的那些偶对,直到全部满足顺序要求为止。
实现排序算法的实验报告
一、实验目的1. 理解排序算法的基本原理和特点。
2. 掌握几种常用的排序算法(冒泡排序、选择排序、插入排序、快速排序、归并排序等)的实现方法。
3. 分析不同排序算法的时间复杂度和空间复杂度。
4. 通过实际编程实现排序算法,提高编程能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 开发工具:PyCharm三、实验内容1. 冒泡排序2. 选择排序3. 插入排序4. 快速排序5. 归并排序四、实验步骤1. 冒泡排序(1)编写冒泡排序函数:def bubble_sort(arr)。
(2)输入测试数据:arr = [5, 3, 8, 4, 1]。
(3)调用冒泡排序函数:bubble_sort(arr)。
(4)输出排序后的结果:print(arr)。
2. 选择排序(1)编写选择排序函数:def selection_sort(arr)。
(2)输入测试数据:arr = [5, 3, 8, 4, 1]。
(3)调用选择排序函数:selection_sort(arr)。
(4)输出排序后的结果:print(arr)。
3. 插入排序(1)编写插入排序函数:def insertion_sort(arr)。
(2)输入测试数据:arr = [5, 3, 8, 4, 1]。
(3)调用插入排序函数:insertion_sort(arr)。
(4)输出排序后的结果:print(arr)。
4. 快速排序(1)编写快速排序函数:def quick_sort(arr)。
(2)输入测试数据:arr = [5, 3, 8, 4, 1]。
(3)调用快速排序函数:quick_sort(arr)。
(4)输出排序后的结果:print(arr)。
5. 归并排序(1)编写归并排序函数:def merge_sort(arr)。
(2)输入测试数据:arr = [5, 3, 8, 4, 1]。
(3)调用归并排序函数:merge_sort(arr)。
数据结构课程设计(附代码)
上海应用技术学院课程设计报告课程名称《数据结构课程设计》设计题目猴子选大王;建立二叉树;各种排序;有序表的合并;成绩管理系统;院系计算机科学与信息工程专业计算机科学与技术班级姓名学号指导教师日期一.目的与要求1. 巩固和加深对常见数据结构的理解和掌握2. 掌握基于数据结构进行算法设计的基本方法3. 掌握用高级语言实现算法的基本技能4. 掌握书写程序设计说明文档的能力5. 提高运用数据结构知识及高级语言解决非数值实际问题的能力二.课程设计内容说明1. 项目一(1) 对设计任务内容的概述学生成绩管理**任务:要求实现对学生资料的录入、浏览、插入和删除等功能。
输入:设学生成绩以记录形式存储,每个学生记录包含的信息有:学号和各门课程的成绩,设学生成绩至少3门以上。
存储结构:采用线性链式结构。
(2) 详细设计LinkList *create():输入学生成绩记录函数;void print(LinkList *head):显示全部记录函数LinkList *Delete(LinkList *head):删除记录函数LinkList *Insert(LinkList *head):插入记录函数void menu_select():菜单选择void ScoreManage():函数界面(3) 程序流程图(4) 程序模块及其接口描述该程序可以分为以下几个模块:1、菜单选择:void menu_select();提供五种可以选择的操作,在main函数中通过switch语句调用菜单menu_select()函数,进入不同的功能函数中完成相关操作。
2、输入功能:LinkList *create();通过一个for循环语句的控制,可以一次完成无数条记录的输入。
并将其存入链表。
3、输出功能:void print(LinkList *head);通过一个while的循环控制语句,在指针p!=NULL时,完成全部学生记录的显示。
数据结构课程设计(排序)
数据结构课程设计[排序综合]学生姓名:学生学号:院(系):计算机科学与信息技术学院年级专业:指导教师:付丹丹二〇一一年十二月2- 3 - 3摘要数据结构是由数据元素依据某种逻辑联系组织起来的。
对数据元素间逻辑关系的描述称为数据的逻辑结构;数据必须在计算机内存储,数据的存储结构是数据结构的实现形式,是其在计算机内的表示;此外讨论一个数据结构必须同时讨论在该类数据上执行的运算才有意义。
在许多类型的程序的设计中,数据结构的选择是一个基本的设计考虑因素。
许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。
许多时候,确定了数据结构后,算法就容易得到了。
有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。
不论哪种情况,选择合适的数据结构都是非常重要的。
排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,其中包含冒泡排序,直接插入排序,简单选择排序,希尔排序,快速排序,堆排序等,各有其特点。
对排序算法比较的分析可以遵循若干种不同的准则,通常以排序过程所需要的算法步数作为度量,有时也以排序过程中所作的键比较次数作为度量。
特别是当作一次键比较需要较长时间,例如,当键是较长的字符串时,常以键比较次数作为排序算法计算时间复杂性的度量。
当排序时需要移动记录,且记录都很大时,还应该考虑记录的移动次数。
究竟采用哪种度量方法比较合适要根据具体情况而定。
在下面的讨论中我们主要考虑用比较的次数作为复杂性的度量。
41概要1.1设计目的数据结构与算法课程主要是研究非数值计算的程序设计问题中所出现的计算机操作对象以及它们之间的关系和操作的学科。
数据结构是介于数学、计算机软件和计算机硬件之间的一门计算机专业的核心课程,它是计算机程序设计、数据库、操作系统、编译原理及人工智能等的重要基础,广泛的应用于信息学、系统工程等各种领域。
学习数据结构与算法是为了将实际问题中涉及的对象在计算机中表示出来并对它们进行处理。
数据结构-排序PPT课件
O(nlogn),归并排序的平均时间复杂度为O(nlogn)。其中,n为待排序序列的长度。
06
基数排序
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。
分配和收集
基数排序是一种稳定的排序算法,即相同的元素在排序后仍保持原有的顺序。
文件系统需要对文件和目录进行排序,以便用户可以更方便地浏览和管理文件。
数据挖掘和分析中需要对数据进行排序,以便发现数据中的模式和趋势。
计算机图形学中需要对图形数据进行排序,以便进行高效的渲染和操作。
数据库系统
文件系统
数据挖掘和分析
计算机图形学
02
插入排序
将待排序的元素按其排序码的大小,逐个插入到已经排好序的有序序列中,直到所有元素插入完毕。
简单选择排序
基本思想:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。 时间复杂度:堆排序的时间复杂度为O(nlogn),其中n为待排序元素的个数。 稳定性:堆排序是不稳定的排序算法。 优点:堆排序在最坏的情况下也能保证时间复杂度为O(nlogn),并且其空间复杂度为O(1),是一种效率较高的排序算法。
基数排序的实现过程
空间复杂度
基数排序的空间复杂度为O(n+k),其中n为待排序数组的长度,k为计数数组的长度。
时间复杂度
基数排序的时间复杂度为O(d(n+k)),其中d为最大位数,n为待排序数组的长度,k为计数数组的长度。
适用场景
当待排序数组的元素位数较少且范围较小时,基数排序具有较高的效率。然而,当元素位数较多或范围较大时,基数排序可能不是最优选择。
数据结构课程设计
课程设计说明书课程名称:数据结构和算法设计题目:多种排序院系:计算机科学与信息工程学院学生姓名:学号:专业班级:计科嵌入式(12-1)指导教师:年月日课程设计任务书多种排序摘要:排序是算法中最基础的问题之一,经典的排序算法是前人不断总结得到的,基于比较的方法是比较直观的方式,主要存在插入法排序、堆排序、希尔排序、归并排序、快速排序,每一种排序算法都有自己的优缺点,比如插入法排序适用于那些长度短的排序,要是长的话,有些爱莫能助啦,堆排序主要是依据了二叉堆的特性,但是创建堆的过程也是一个复杂的问题,希尔排序的过程是一个不断精确的过程,但是目前也只是一个经验方式。
归并排序是一个递归的问题,采用分治的思想实现,但是这种算法需要额外的存储空间,快速排序虽然是实践中比较常用的算法,但是对于有序的数组采用快速排序就是灾难。
比较型算法的时间复杂度最优也只能到达O(NlogN)。
关键词:归并排序快排排序选择排序冒泡排序插入排序堆排序希尔排序内部排序目录1. 设计背景 (3)1.1问题描述 (4)1.2 问题分析 (4)2.设计方案 (4)2.1 算法设计 (4)2.2 功能模块分析 (6)3.主要算法流程图 (15)4. 结果与结论 (16)4.1正确结果 (16)4.2错误信息 (18)5. 算法复杂度以及稳定性分析 (18)6. 收获与致谢 (19)7. 参考文献 (19)8. 附件 (20)1. 设计背景1.1问题描述利用随机函数产生N个随机整数(10000以上),对这些数进行多种方法进行排序。
包括:插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序。
1.2 问题分析经典的排序算法是前人不断总结得到的,基于比较的方法是比较直观的方式,主要存在插入法排序、堆排序、希尔排序、归并排序、快速排序,每一种排序算法都有自己的优缺点。
2.设计方案2.1 算法设计(1)选择排序在待排序的一组数据元素中,选出最小的一个数据元素与第一个位置的数据元素交换;然后在剩下的数据元素当中再找最小的与第二个位置的数据元素交换,循环到只剩下最后一个数据元素为止。
数据结构课程设计排序实验报告
《数据结构》课程设计报告专业班级姓名学号指导教师起止时间课程设计:排序综合一、任务描述利用随机函数产生n个随机整数(20000以上),对这些数进行多种方法进行排序。
(1)至少采用三种方法实现上述问题求解(提示,可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序)。
并把排序后的结果保存在不同的文件中。
(2)统计每一种排序方法的性能(以上机运行程序所花费的时间为准进行对比),找出其中两种较快的方法。
要求:根据以上任务说明,设计程序完成功能。
二、问题分析1、功能分析分析设计课题的要求,要求编程实现以下功能:(1)随机生成N个整数,存放到线性表中;(2)起泡排序并计算所需时间;(3)简单选择排序并计算时间;(4)希尔排序并计算时间;(5)直接插入排序并计算所需时间;(6)时间效率比较。
2、数据对象分析存储数据的线性表应为顺序存储。
三、数据结构设计使用顺序表实现,有关定义如下:typedef int Status;typedef int KeyType ; //设排序码为整型量typedef int InfoType;typedef struct { //定义被排序记录结构类型KeyType key ; //排序码I nfoType otherinfo; //其它数据项} RedType ;typedef struct {RedType * r; //存储带排序记录的顺序表//r[0]作哨兵或缓冲区int length ; //顺序表的长度} SqList ; //定义顺序表类型四、功能设计(一)主控菜单设计为实现通各种排序的功能,首先设计一个含有多个菜单项的主控菜单程序,然后再为这些菜单项配上相应的功能。
程序运行后,给出5个菜单项的内容和输入提示,如下:1.起泡排序2.简单选择排序3.希尔排序4. 直接插入排序0. 退出系统(二)程序模块结构由课题要求可将程序划分为以下几个模块(即实现程序功能所需的函数):●主控菜单项选择函数menu()●创建排序表函数InitList_Sq()●起泡排序函数Bubble_sort()●简单选择排序函数SelectSort()●希尔排序函数ShellSort();●对顺序表L进行直接插入排序函数Insertsort()(三)函数调用关系程序的主要结构(函数调用关系)如下图所示。
数据结构之——八大排序算法
数据结构之——⼋⼤排序算法排序算法⼩汇总 冒泡排序⼀般将前⾯作为有序区(初始⽆元素),后⾯作为⽆序区(初始元素都在⽆序区⾥),在遍历过程中把当前⽆序区最⼩的数像泡泡⼀样,让其往上飘,然后在⽆序区继续执⾏此操作,直到⽆序区不再有元素。
这块是对⽼式冒泡排序的⼀种优化,因为当某次冒泡结束后,可能数组已经变得有序,继续进⾏冒泡排序会增加很多⽆⽤的⽐较次数,提⾼时间复杂度。
所以我们增加了⼀个标识变量flag,将其初始化为1,外层循环还是和⽼式的⼀样从0到末尾,内存循环我们改为从最后⾯向前⾯i(外层循环所处的位置)处遍历找最⼩的,如果在内存没有出现交换,说明⽆序区的元素已经变得有序,所以不需要交换,即整个数组已经变得有序。
(感谢@站在远处看童年在评论区的指正)#include<iostream>using namespace std;void sort(int k[] ,int n){int flag = 1;int temp;for(int i = 0; i < n-1 && flag; i++){flag = 0;for(int j = n-1; j > i; j--){/*下⾯这⾥和i没关系,注意看这块,从下往上travel,两两⽐较,如果不合适就调换,如果上来后⼀次都没调换,说明下⾯已经按顺序拍好了,上⾯也是按顺序排好的,所以完美!*/if(k[j-1] > k[j]){temp = k[j-1];k[j-1] = k[j];k[j] = temp;flag = 1;}}}}int main(){int k[3] = {0,9,6};sort(k,3);for(int i =0; i < 3; i++)printf("%d ",k[i]);}快速排序(Quicksort),基于分治算法思想,是对冒泡排序的⼀种改进。
快速排序由C. A. R. Hoare在1960年提出。
数据结构课程设计排序算法总结
排序算法:(1) 直接插入排序 (2) 折半插入排序(3) 冒泡排序 (4) 简单选择排序 (5) 快速排序(6) 堆排序 (7) 归并排序【算法分析】(1)直接插入排序;它是一种最简单的排序方法,它的基本操作是将一个记录插入到已排好的序的有序表中,从而得到一个新的、记录数增加1的有序表。
(2)折半插入排序:插入排序的基本操作是在一个有序表中进行查找和插入,我们知道这个查找操作可以利用折半查找来实现,由此进行的插入排序称之为折半插入排序。
折半插入排序所需附加存储空间和直接插入相同,从时间上比较,折半插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。
(3)冒泡排序:比较相邻关键字,若为逆序(非递增),则交换,最终将最大的记录放到最后一个记录的位置上,此为第一趟冒泡排序;对前n-1记录重复上操作,确定倒数第二个位置记录;……以此类推,直至的到一个递增的表。
(4)简单选择排序:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。
(5)快速排序:它是对冒泡排序的一种改进,基本思想是,通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
(6)堆排序: 使记录序列按关键字非递减有序排列,在堆排序的算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1记录进行筛选,重新将它调整为一个“大顶堆”,如此反复直至排序结束。
(7)归并排序:归并的含义是将两个或两个以上的有序表组合成一个新的有序表。
假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止,这种排序称为2-路归并排序。
新课程设计(迷宫求解和拓扑排序)[1]
在掌握理论知识的同时,加强上机实践。本课程设计的目的就是要达到理论与实
际应用相结合,使同学们能够根据数据对象的特性,学会数据组织的方法,能把
现实世界中的实际问题在计算机内部表示出来,并培养基本的、良好的程序设计
技能。
二、设计要求
到end 的通道则求得一条存放在栈中;并返回TRUE,否则返回FALSE
PosType NextPos(PosType CurPos, int Dir) //进入下一位置寻找可通路径
Status MazePath(int maze[22][22],SqStack &S, PosType start, PosType end) //若迷宫maze 中从入
口start 到出口end 的通道,则求得一条存放在栈中
3.主程序包含三个模块:
1)void main() {//主函数
输出开始界面;
由switch()语句调用各函数;
输出测试结果;}
2)栈模块---实现栈抽象数据类型
中原工学院信息商务学院《数据结构》课程设计报告
10/9/2010 - 6 -
3)迷宫模块---实现迷宫抽象数据类型
各模块调用关系如下:
主程序模块
迷宫模块
栈模块
四. 详细设计
1. 主程序中的需要全程量
#define STACK_INIT_SIZE 100//存储空间初始分配量
#define STACKINCREMENT 10//存储空间分配增量
2. 迷宫类型:
题目一迷宫求解………………………………………………… ………………………………………………… ………………………………………………….3 .3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构课程设计报告—几种排序算法的演示时间:2010-1-14一需求分析运行环境Microsoft Visual Studio 2005程序所实现的功能对直接插入排序、折半插入排序、冒泡排序、简单选择排序、快速排序、堆排序、归并排序算法的演示,并且输出每一趟的排序情况。
程序的输入(包含输入的数据格式和说明)<1>排序种类三输入<2>排序数的个数的输入<3>所需排序的所有数的输入程序的输出(程序输出的形式)<1>主菜单的输出<2>每一趟排序的输出,即排序过程的输出二设计说明算法设计思想<1>交换排序(冒泡排序、快速排序)交换排序的基本思想是:对排序表中的数据元素按关键字进行两两比较,如果发生逆序(即排列顺序与排序后的次序正好相反),则两者交换位置,直到所有数据元素都排好序为止。
<2>插入排序(直接插入排序、折半插入排序)插入排序的基本思想是:每一次设法把一个数据元素插入到已经排序的部分序列的合适位置,使得插入后的序列仍然是有序的。
开始时建立一个初始的有序序列,它只包含一个数据元素。
然后,从这个初始序列出发不断插入数据元素,直到最后一个数据元素插到有序序列后,整个排序工作就完成了。
<3>选择排序(简单选择排序、堆排序)选择排序的基本思想是:第一趟在有n个数据元素的排序表中选出关键字最小的数据元素,然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素,依次重复,每一趟(例如第i趟,i=1,…,n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素,作为有序数据元素序列的第i个数据元素。
等到第n-1趟选择结束,待排序数据元素仅剩下一个时就不用再选了,按选出的先后次序所得到的数据元素序列即为有序序列,排序即告完成。
<4>归并排序(两路归并排序)两路归并排序的基本思想是:假设初始排序表有n个数据元素,首先把它看成是长度为1的首尾相接的n个有序子表(以后称它们为归并项),先做两两归并,得n/2上取整个长度为2的归并项(如果n为奇数,则最后一个归并项的长度为1);再做两两归并,……,如此重复,最后得到一个长度为n的有序序列。
程序的主要流程图程序的主要模块(要求对主要流程图中出现的模块进行说明)程序的主要模块主要分为主菜单模块和排序算法演示模块。
<1>主菜单主要功能:程序运行时,可使运行者根据提醒输入相关操作,从而进入不同的排序方法或者退出。
<2>排序方法及输出根据运行者对排序的不同选择,进入排序过程a.直接插入排序:根据直接排序的算法,输出排序过程b.折半插入排序:根据折半插入的算法,输出排序过程c.冒泡排序:根据冒泡排序算法,输出排序过程d.简单选择排序:根据简单选择排序的算法,输出排序过程e.快速排序:根据快速排序的算法,输出排序过程f.堆排序:根据堆排序的算法,输出排序过程g.归并排序:根据归并排序的算法,输出排序过程程序的主要函数及其伪代码说明<1>模板类主要说明程序中用到的类的定义template<class type>class sortlist{private:int currentsize;//数据表中数据元素的个数public:type *arr;//存储数据元素的向量(排序表)sortlist():currentsize(0){arr=new type[maxsize];}//构造函数sortlist(int n){arr=new type[maxsize];currentsize=n;}void insert(int i,type x){arr[i]=x;}~sortlist(){delete []arr;}//析构函数void swap(type &x,type &y)//数据元素x和y交换位置{type temp=x;x=y;y=temp;}void bubblesort();//冒泡排序void quicksort(int low,int high);//快速排序void insertionsort();//直接插入排序void binaryinsertsort();//折半插入排序void selectsort();//简单选择排序void heapsort();//堆排序void mergesort(sortlist<type> &table);//归并排序void filterdown(const int start);//建立最大堆void mergepass(sortlist<type>&sourcetable,sortlist<type>&mergedtable,const int len);//一趟归并void merge(sortlist<type>&sourcetable,sortlist<type>&mergedtable,const int left,const int mid,const int right);//两路归并算法};<2>直接插入排序直接插入排序的基本思想:开始时把第一个数据元素作为初始的有序序列,然后从第二个数据元素开始依次把数据元素按关键字大小插入到已排序的部分排序表的适当位置。
当插入第i(1<i<=n)个数据元素时,前面的i-1个数据元素已经排好序,这时,用第i个数据元素的关键字与前面的i-1个数据元素的关键字顺序进行比较,找到插入位置后就将第i个数据元素插入。
如此进行n-1次插入,就完成了排序。
以下是在顺序表上实现的直接插入排序在顺序表上进行直接插入排序时,当插入第i(1<i<=n)个数据元素时,前面的arr[0]、arr[1]、…、arr[i-2]已经排好序,这时,用arr[i-1]的关键字依次与arr[i-2],arr[i-3],…的关键字顺序进行比较,如果这些数据元素的关键字大于arr[i-1]的关键字,则将数据元素向后移一个位置,当找到插入位置后就将arr[i-1]插入,就完成了arr[0],arr[1],…,arr[n-1]的排序。
伪代码如下template <class type>//直接插入排序void sortlist<type>::insertionsort(){type temp;int j;for(int i=1;i<=currentsize-1;i++){temp=arr[i];j=i-1;while(j>=0&&temp<arr[j]){arr[j+1]=arr[j];j--;}arr[j+1]=temp;cout<<"第"<<++num<<"趟排序结果为:";for(int t=0;t<currentsize;t++)cout<<arr[t]<<" ";cout<<endl;}num=0;}<3>折半插入排序折半插入排序的基本思想:设在排序表中有n个数据元素arr[0],arr[1],…,arr[n-1]。
其中,arr[0],arr[1],…,arr[n-1]是已经排好序的部分数据元素序列,在插入arr[i]时,利用折半查找方法寻找arr[i]的插入位置。
折半插入排序方法只能在顺序表存储结构实现。
伪代码如下:template <class type>//折半插入排序void sortlist<type>::binaryinsertsort(){type temp;int left,right;for(int i=1;i<currentsize;i++){left=0;right=i-1;temp=arr[i];while(left<=right)//找插入位置{int mid=(left+right)/2;if(temp<arr[mid])right=mid-1;else left=mid+1;}for(int k=i-1;k>=left;k--)//向后移动arr[k+1]=arr[k];arr[left]=temp;cout<<"第"<<++num<<"趟排序结果为:";for(int t=0;t<currentsize;t++)cout<<arr[t]<<" ";cout<<endl;}num=0;}<4>冒泡排序冒泡排序的基本思想是:设排序表中有n个数据元素。
首先对排序表中第一,二个数据元素的关键字arr[0]和arr[1]进行比较。
如果前者大于后者,则进行交换;然后对第二,三个数据做同样的处理;重复此过程直到处理完最后两个相邻的数据元素。
我们称之为一趟冒泡,它将关键字最大的元素移到排序表的最后一个位置,其他数据元素一般也都向排序的最终位置移动。
然后进行第二趟排序,对排序表中前n-1个元素进行与上述同样的操作,其结果使整个排序表中关键字次大的数据元素被移到arr[n-2]的位置。
如此最多做n-1趟冒泡就能把所有数据元素排好序。
伪代码如下:template <class type>//冒泡排序void sortlist<type>:: bubblesort(){int i=1;int finish=0;//0表示还没有排好序while(i<currentsize &&!finish){finish=1;//排序结束标志置为,假定已经排好序for(int j=0;j<currentsize-i;j++)if(arr[j]>arr[j+1])//逆序{swap(arr[j],arr[j+1]);//相邻元素交换位置finish=0;}//排序结束标志置为,表示本趟发生了交换,说明还没有排好序i++;cout<<"第"<<++num<<"趟排序结果为:";for(int t=0;t<currentsize;t++)cout<<arr[t]<<" ";cout<<endl;}num=0;}<5>简单选择排序(直接选择排序)直接选择排序的算法基本思想是:a)开始时设i的初始值为0。