初中九年级数学竞赛培优讲义全套专题27 数形结合[精品]

合集下载

初中数学竞赛辅导讲义及习题解答 含答案 共30讲 改好278页

初中数学竞赛辅导讲义及习题解答  含答案  共30讲  改好278页

初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手第一讲 走进追问求根公式形如()的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足的整数n 有 个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设、是二次方程的两个根,那么的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出、的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如,。

【例3】 解关于的方程。

思路点拨:因不知晓原方程的类型,故需分及两种情况讨论。

重点高中自招必备 九年级 专题27 数形结合

重点高中自招必备 九年级 专题27 数形结合

专题27 数形结合阅读与思考数学研究的对象是现实世界中的数量关系与空间形式,简单地说就是“数”与“形”,对现实世界的事物,我们既可以从“数”的角度来研究,也可以从“形”的角度来探讨,我们在研究“数”的性质时,离不开“形”;而在探讨“形”的性质时,也可以借助于“数”.我们把这种由数量关系来研究图形性质,或由图形的性质来探讨数量关系,即这种“数”与“形”的相互转化的解决数学问题的思想叫作数形结合思想.数形结合有下列若干途径:1.借助于平面直角坐标系解代数问题; 2.借助于图形、图表解代数问题;3.借助于方程(组)或不等式(组)解几何问题; 4.借助于函数解几何问题.现代心理学表明:人脑左半球主要具有言语的、分析的、逻辑的、抽象思维的功能;右半球主要具有非言语的、综合的、直观的、音乐的、几何图形识别的形象思维的功能.要有效地获得知识,则需要两个半球的协同工作,数形结合分析问题有利于发挥左、右大脑半球的协作功能.代数表达及其运算,全面、精确、入微,克服了几何直观的许多局限性,正因为如此,笛卡尔创立了解析几何,用代数方法统一处理几何问题.从而成为现代数学的先驱.几何问题代数化乃是数学的一大进步.例题与求解【例l 】设1342222+-+++=x x x x y ,则y 的最小值为___________.(罗马尼亚竞赛试题)解题思路:若想求出被开方式的最小值,则顾此失彼.()()921122+-+++=x x y =()()()()2222302101-+-+-++x x ,于是问题转化为:在x 轴上求一点C (x ,0),使它到两点A (-1,1)和B (2,3)的距离之和(即CA +CB )最小.【例2】直角三角形的两条直角边之长为整数,它的周长是x 厘米,面积是x 平方厘米,这样的直角三角形 ( )A .不存在B .至多1个C .有4个D .有2个(黄冈市竞赛试题) 解题思路:由题意可得若干关系式,若此关系式无解,则可推知满足题设要求的直角三角形不存在;若此关系式有解,则可推知这样的直角三角形存在,且根据解的个数,可确定此直角三角形的个数.【例3】如图,在△ABC 中,∠A =090,∠B =2∠C ,∠B 的平分线交AC 于D ,AE ⊥BC 于E ,DF ⊥BC 于F . 求证:BEAE BF AE DF BD ⋅+⋅=⋅111. (湖北省竞赛试题)解题思路:图形中含多个重要的基本图形,待证结论中的代数迹象十分明显.可依据题设条件,分别计算出各个线段,利用代数法证明.FEDBAC【例4】 当a 在什么范围内取值时,方程a x x =-52有且只有相异的两实数根? (四川省联赛试题) 解题思路:从函数的观点看,问题可转化为函数x x y 52-=与函数a y =(a ≥0)图象有且只有相异两个交点.作出函数图象,由图象可直观地得a 的取值范围.【例5】 设△ABC 三边上的三个内接正方形(有两个顶点在三角形的一边上,另两个顶点分别在三角形另两边上)的面积都相等,证明:△ABC 为正三角形. (江苏省竞赛试题) 解题思路:设△ABC 三边长分别为a ,b ,c ,对应边上的高分别为a h ,b h ,c h ,△ABC 的面积为S ,则易得三个内接正方形边长分别为a h a S +2,b h b S +2,ch c S+2,由题意得c b a h c h b h a +=+=+,即L cSc b S b a S a =+=+=+222.则a ,b ,c 适合方程L x S x =+2.【例6】设正数x ,y ,z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++1693253222222x zx z z y y xy x ,求zx yz xy 32++的值. (俄罗斯中学生数学竞赛试题)能力训练1. 不查表可求得tan 015的值为__________.2. 如图,点A ,C 都在函数xy 33=(0>x )的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为______________. (全国初中数学联赛试题) 3.平面直角坐标系上有点P (-1,-2)和点Q (4,2),取点R (1,m ),当=m ________时,PR +RQ 有最小值.4.若0>a ,0<b ,要使b a b x a x -=-+-成立,x 的取值范围是__________.5.已知AB 是半径为1的⊙O 的弦,AB 的长为方程012=-+x x 的正根,则∠AOB 的度数是______________. (太原市竞赛试题) 6. 如图,所在正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依 次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A . (13,13)B .(-13,-13) C.(14,14) D. (-14,一14)yxDBOACyxOA 2A 1A 3A 4A 6A 5A 8A 7A 10A 9A 12A 117.在△ABC 中,∠C =090,AC =3,BC =4.在△ABD 中,∠A =090,AD =12.点C 和点D 分居AB 两侧,过点D 且平行于AC 的直线交CB 的延长线于E .如果nmDB DE =,其中,m ,n 是互质的正整数,那么n m += ( )A. 25B.128C.153D.243E.256 (美国数学统一考试题) 8.设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A ,∠B 的关系是( ) A .∠B >2∠A B .∠B=2∠A C .∠B <2∠A D .不确定 9.如图,a S AFG 5=∆,a S ACG 4=∆,a S BFG 7=∆,则=∆AEG S ( ) A .a 1127 B .a 1128 C .a 1129 D .a 113010. 满足两条直角边边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( ) A. 1个 B .2个 C .3个 D .无穷多个11.如图,关于x 的二次函数m mx x y --=22的图象与x 轴交于A (1x ,0),B (2x ,0)两点(2x >0>1x ),与y 轴交于C 点,且∠BAC =∠BCO . (1) 求这个二次函数的解析式;(2) 以点D (2,0)为圆心⊙D ,与y 轴相切于点O ,过=抛物线上一点E (3x ,t )(t >0,3x <0)作x 轴的平行线与⊙D 交于F ,G 两点,与抛物线交于另一点H .问是否存在实数t ,使得EF +GH =CF ?如果存在,求出t 的值;如果不存在,请说明理由. (武汉市中考题)y xA HG F BCDO E12.已知正数a ,b ,c ,A ,B ,C 满足a +A =b +B =c +C =k . 求证:a B 十b C +c A <2k .13.如图,一个圆与一个正三角形的三边交于六点,已知AG =2,GF =13,FC =1,HI =7,求DE . (美国数学邀请赛试题)第13题图F E DGHA OI BC14.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC //QN ,AM =MB = 2cm ,QM = 4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上).请写出t 可以取的一切值:_______________(单位:秒).第14题图NMBA CQ15. 如图,已知D 是△ABC 边AC 上的一点,AD :DC =2:1,∠C =045,∠ADB =060. 求证:AB 是△BCD 的外接圆的切线.(全国初中数学联赛试题)16.如图,在△ABC 中,作一条直线l ∥BC ,且与AB 、AC 分别相交于D ,E 两点,记△ABC ,△BED 的面积分别为S ,K .求证:K ≤S 41. (长春市竞赛试题)l第16题图DBCA E17.如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2). 在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标. (江苏省竞赛试题)y x第17题图y =2x O BA专题27数形结合例1 5提示:作出B 点关于x 轴的对称点B '(2,-3),连结AB '交x 轴于C ,则AB '=AC 十CB ' 为所要求的最小值.例2 D 提示:设两直角边长为a ,b ,斜边长为c ,由题意得a +b +c =x ,x ab =21,又222c b a =+,得().424b b a --=.因a ,h 为边长且是整数.故当⎩⎨⎧>->-,04,02b b 得b<2,取34,1==a b 不是整数;当⎩⎨⎧<-<-,04,02b b 得b>4,要使a ,b 为整数,只有两种取法:若b =5时,a =12(或b = 12,a =5);若b =8时,a =6(或b =6,a =8). 例3设AB =x ,则BC =2x ,AC =x 3, BE =x 21,DF =DA=.32,31x BD x =.在Rt △AEB 中求得AE=,,23x BF x =代入证明即可. 例4如图,作出函数x x y 52-=图象,由图象可以看出:当a =0时,y =0与x x y 52-=有且只有相异二个交点;当4250<<a 时,y =a 与x x y 52-=图象有四个不同交点;当425=a 时,y =a 与x x y 52-=图象有三个不同交点,当425>a 时,y =a 与x x y 52-=图象有且只有相异二个交点. 例5由L c s cb s b a s a =+=+=+222 ①,知正数c b a ,,适合方程.2L xsx =+当0≠x 时,有022=+-s Lx x ②,故c b a ,,是方程②的根.但任何二次方程至多只有两个相异的根,所以c b a ,,中的某两数必相同.设b a =,若a c ≠,由①得()()c a ac sa c s c a -=⎪⎭⎫⎝⎛-=-2112,则ac =2s =a a h ,这样△ABC 就是以∠B 为直角的直角三角形,b >a ,矛盾,故a =c ,得证. 例6,ABC AOC BOC AOB S S S S ∆∆∆∆=++,3421120sin 21321150sin 321⨯⨯=+∙+∙∙∴ xz y z y x 即,6232132121321=∙+∙+⨯∙xz y z y x 化简得.32432=++zx yz xy 能力训练1.32- 提示:构造含 15的Rt △ABC .2.()062,提示:如图,分别过点A ,C 作x 轴的垂线,垂足分别为E , F .设OE =a , BF =b ,则AE =a 3, CF =b 3,所以点A ,C 的坐标为()().3,2,3,b b a a a +()⎩⎨⎧=+=∴,3323,3332b a b a 解得⎩⎨⎧-==.36,3b a ∴点D 坐标为()0,62. 3.52- 提示:当R ,P ,Q 三点在一条直线上时,PR +RQ 有最小值. 4.a x b ≤≤5. 36提示:由012=-+x x 得21x x -=<1,则有AB <OB .在OB 上截取OC =AB =x ,又由012=-+x x 得x x x 11=-,即ABOABC AB =,则OAB ∆∽△ABC ,AB =AC =OC . 6. C 提示:由题所给的数据结合坐标系可得,55A 是第14个正方形上的第三个顶点,位于第一象限,所以55A 的横纵坐标都是14. 7. A8. B 提示:由条件,22b ab ac ab a +=++即()bca abc a a b +=∴+=,2,延长CB 至D ,使BD =AB ,易证△ABC ∽△DAC ,得∠ABC =∠D +∠BAD =2∠D =2∠BAC .9. D10. C 提示:设直角三角形的两条直角边长为(),,b a b a ≤则ab k b a b a 2122∙=+++ (k b a ,,均为正整数),化简得()()⎩⎨⎧=-=-⎩⎨⎧=-=-∴=--44,2484,14,844kb ka kb ka kb ka 或解得 ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===8,6,14,3,212,5,1b a k b a k b a k 或或即有3组解.11. (1)122--=x x y (2)过D 作DM ⊥ EH 于M ,连结DG ,2,===DO DG t DM ,.2222t MG FG -==若EF +GH =FG 成立,则EH = 2FG .由EF //x 轴,设H 为()t x ,4,又∵E ,H 为抛物线上的两个点,,12323t x x =--∴,12424t x x =--即43,x x 是方程t x x =--122的两个不相等的实数根,()t x x x x +-==+∴1,24343,()2432433422222,224t t t x x x x x x EH -∙=+∴+=-+=-=,解得8197,819711+-=-=t t (舍去). 12.a 十A =b +B =c 十C =k ,可看作边长为k 的正三角形,而从2k 联想到边长为k 的正方形的面积.如图,将aB +bC +cA 看作边长分别为a 与B ,b 与C ,c 与A 的三个小矩形面积之和,将三个小矩形不重叠地嵌入到边长为k 的正方形中,显然aB +bC +cA <k 2.13. AC =AG +GF +FC =16,由AH ·AI =AG ·AF ,得AH(AH +7)=2×(2+13),解得AH =3,从而HI =7,BI =6.设BD =x ,CE =y ,则由圆幂定理得⎩⎨⎧CE •CD =CF •CG BD •BE =BI •BH ,即⎩⎨⎧y (16-x )=1×14x (16-y )=6×13.解得⎩⎪⎨⎪⎧x =10-22y =6-22 .故DE =16-(x +y )=222. 14. t =2或3≤t ≤7或t =8. 提示:本题通过点的移动及直线与圆相切,考查分类讨论思想.由题意知∠AMQ =60°,MN =2.当t =2时,圆P 与AB 相切;当3≤t ≤7时,点P 到AC 的距离为3,圆P 与AC 相切;当t =8时,圆P 与BC 相切.15.设AD =2,DC =1,作BE ⊥AC ,交AC 于E .又设ED =x ,则BE =3x ,BE =EC =3x .又1+x =3x ,∴x =3+12,BE =3+32,AE =AD -ED =2-x =3-32,AB 2 =AE 2+BE 2=(3-32)2+(3+32)2=6,而AD •AC =6.∴AB 2 =AD •AC .故由切割线定理逆定理知,AB 是△BCD 的外接圆的切线. 16.设AD AB =AE AC =m (0≤m ≤1).∵S △ABE S △ABC =AE AC =m ,∴S △ABE =m S △ABC .又∵S △BDE S △ABE =BD AB=AB -ADAB =1-m ,∴S △BDE =(1-m )• S △ABE =m (1-m )• S △ABC .即K =(1-m )•mS ,整理得Sm 2-Sm +K =0,由△≥0得K ≤14S .17.分以下几种情况:①若此等腰三角形以OA 为一腰,且∠BAC 为顶角,则AO =AG =2.设C 1(―x ,2x ), 则x 2+(2x -2)2=22,解得x =85,得C 1(85,165).②若此等腰三角形以OA 为一腰,且O 为顶角顶点,则OC 2=OC 3=OA =2.设C 2(x ′,2x ′), 则x ′2+(2x ′)2=22,解得x ′=255,得C 2(255,455). 又由点C 2与C 3关于原点对称,得C 3(―255,―455).③若等腰三角形以OA 为底边,则C 4的纵坐标为1,其横坐标为12,得C 4 (12,1).所以,满足题意的点C 有4个,坐标分别为:(85,165),(255,455),(―255,―455),(12,1).。

初三数学培优之数形结合

初三数学培优之数形结合

初三数学培优之数形结合阅读与思考数学研究的对象是现实世界中的数量关系与空间形式,简单地说就是“数”与“形”,对现实世界的事物,我们既可以从“数”的角度来研究,也可以从“形”的角度来探讨,我们在研究“数”的性质时,离不开“形”;而在探讨“形”的性质时,也可以借助于“数”.我们把这种由数量关系来研究图形性质,或由图形的性质来探讨数量关系,即这种“数”与“形”的相互转化的解决数学问题的思想叫作数形结合思想.数形结合有下列若干途径:1.借助于平面直角坐标系解代数问题; 2.借助于图形、图表解代数问题;3.借助于方程(组)或不等式(组)解几何问题; 4.借助于函数解几何问题.现代心理学表明:人脑左半球主要具有言语的、分析的、逻辑的、抽象思维的功能;右半球主要具有非言语的、综合的、直观的、音乐的、几何图形识别的形象思维的功能.要有效地获得知识,则需要两个半球的协同工作,数形结合分析问题有利于发挥左、右大脑半球的协作功能.代数表达及其运算,全面、精确、入微,克服了几何直观的许多局限性,正因为如此,笛卡尔创立了解析几何,用代数方法统一处理几何问题.从而成为现代数学的先驱.几何问题代数化乃是数学的一大进步.例题与求解【例l 】设1342222+-+++=x x x x y ,则y 的最小值为___________.(罗马尼亚竞赛试题)解题思路:若想求出被开方式的最小值,则顾此失彼.()()921122+-+++=x x y =()()()()2222302101-+-+-++x x ,于是问题转化为:在x 轴上求一点C (x ,0),使它到两点A (-1,1)和B (2,3)的距离之和(即CA +CB )最小.【例2】直角三角形的两条直角边之长为整数,它的周长是x 厘米,面积是x 平方厘米,这样的直角三角形 ( )A .不存在B .至多1个C .有4个D .有2个(黄冈市竞赛试题) 解题思路:由题意可得若干关系式,若此关系式无解,则可推知满足题设要求的直角三角形不存在;若此关系式有解,则可推知这样的直角三角形存在,且根据解的个数,可确定此直角三角形的个数.【例3】如图,在△ABC 中,∠A =090,∠B =2∠C ,∠B 的平分线交AC 于D ,AE ⊥BC 于E ,DF ⊥BC 于F . 求证:BEAE BF AE DF BD ⋅+⋅=⋅111. (湖北省竞赛试题)解题思路:图形中含多个重要的基本图形,待证结论中的代数迹象十分明显.可依据题设条件,分别计算出各个线段,利用代数法证明.DAC【例4】 当a 在什么范围内取值时,方程a x x =-52有且只有相异的两实数根? (四川省联赛试题) 解题思路:从函数的观点看,问题可转化为函数x x y 52-=与函数a y =(a ≥0)图象有且只有相异两个交点.作出函数图象,由图象可直观地得a 的取值范围.【例5】 设△ABC 三边上的三个内接正方形(有两个顶点在三角形的一边上,另两个顶点分别在三角形另两边上)的面积都相等,证明:△ABC 为正三角形. (江苏省竞赛试题) 解题思路:设△ABC 三边长分别为a ,b ,c ,对应边上的高分别为a h ,b h ,c h ,△ABC 的面积为S ,则易得三个内接正方形边长分别为a h a S +2,b h b S +2,ch c S+2,由题意得c b a h c h b h a +=+=+,即L cSc b S b a S a =+=+=+222.则a ,b ,c 适合方程L x S x =+2.【例6】设正数x ,y ,z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++1693253222222x zx z z y y xy x ,求zx yz xy 32++的值. (俄罗斯中学生数学竞赛试题)能力训练1. 不查表可求得tan 015的值为__________.2. 如图,点A ,C 都在函数xy 33=(0>x )的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为______________. (全国初中数学联赛试题) 3.平面直角坐标系上有点P (-1,-2)和点Q (4,2),取点R (1,m ),当=m ________时,PR +RQ 有最小值.4.若0>a ,0<b ,要使b a b x a x -=-+-成立,x 的取值范围是__________.5.已知AB 是半径为1的⊙O 的弦,AB 的长为方程012=-+x x 的正根,则∠AOB 的度数是______________. (太原市竞赛试题) 6. 如图,所在正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依 次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A . (13,13)B .(-13,-13) C.(14,14) D. (-14,一14)第2题图 第6题图7.在△ABC 中,∠C =090,AC =3,BC =4.在△ABD 中,∠A =090,AD =12.点C 和点D 分居AB 两侧,过点D 且平行于AC 的直线交CB 的延长线于E .如果nmDB DE =,其中,m ,n 是互质的正整数,那么n m += ( )A. 25B.128C.153D.243E.256 (美国数学统一考试题) 8.设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A ,∠B 的关系是( ) A .∠B >2∠A B .∠B=2∠A C .∠B <2∠A D .不确定 9.如图,a S AFG 5=∆,a S ACG 4=∆,a S BFG 7=∆,则=∆AEG S ( ) A .a 1127 B .a 1128 C .a 1129 D .a 113010. 满足两条直角边边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( ) A. 1个 B .2个 C .3个 D .无穷多个11.如图,关于x 的二次函数m mx x y --=22的图象与x 轴交于A (1x ,0),B (2x ,0)两点(2x >0>1x ),与y 轴交于C 点,且∠BAC =∠BCO . (1) 求这个二次函数的解析式;(2) 以点D (2,0)为圆心⊙D ,与y 轴相切于点O ,过=抛物线上一点E (3x ,t )(t >0,3x <0)作x 轴的平行线与⊙D 交于F ,G 两点,与抛物线交于另一点H .问是否存在实数t ,使得EF +GH =CF ?如果存在,求出t 的值;如果不存在,请说明理由. (武汉市中考题)y xA HG F BCDO E12.已知正数a ,b ,c ,A ,B ,C 满足a +A =b +B =c +C =k . 求证:a B 十b C +c A <2k .13.如图,一个圆与一个正三角形的三边交于六点,已知AG =2,GF =13,FC =1,HI =7,求DE . (美国数学邀请赛试题)第13题图BC14.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC //QN ,AM =MB = 2cm ,QM = 4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上).请写出t 可以取的一切值:_______________(单位:秒).第14题图15. 如图,已知D 是△ABC 边AC 上的一点,AD :DC =2:1,∠C =045,∠ADB =060. 求证:AB 是△BCD 的外接圆的切线.(全国初中数学联赛试题)16.如图,在△ABC 中,作一条直线l ∥BC ,且与AB 、AC 分别相交于D ,E 两点,记△ABC ,△BED 的面积分别为S ,K .求证:K ≤S 41. (长春市竞赛试题)l第16题图DBCE17.如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2). 在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标. (江苏省竞赛试题)y x第17题图=2x O BA。

初三数学知识点专题讲解与训练27---数形结合(培优版)

初三数学知识点专题讲解与训练27---数形结合(培优版)

, C.(14 14)
- ,一 D. ( 14 14)
y
y A
C
x
O
BD
第 2 题图
A10 A6 A2
O A1 A5 A9
A11 A7 A3
x
A4 A8 A12
第 6 题图
3 / 10
7.在△ABC 中,∠C=900 ,AC=3,BC=4.在△ABD 中,∠A=900 ,AD=12.点 C 和点 D 分居 AB
得a =
4(2 − b)..因
a,h
2 − b > 0,
为边长且是整数.故当

b<2,取 b = 1, a =
4 不是整数;当
4−b
4 − b > 0,
3
2 − b < 0, 得 b>4,要使 a,b 为整数,只有两种取法:若 b=5 时,a=12(或 b= 12,a=5);若 b=8 4 − b < 0,
三角【形另例两5】边上设)△的A面BC积三都边相上等的,三证个明内:接△正AB方C形为(正有三两角个形顶.点在三角形的一(边江上苏,省另竞两赛个试顶题点)分别在 解题思路:设△ABC 三边长分别为a ,b ,c ,对应边上的高分别为ha ,hb , hc ,△ABC 的面积
为 S ,则易得三个内接正方形边长分别为 2S , 2S , 2S ,由题意得 , a + ha = b + hb = c + hc a + ha b + hb c + hc
专题 27 数形结合答案
例 1 5 提示:作出 B 点关于 x 轴的对称点 B'(2,-3),连结 AB'交 x 轴于 C,则 AB'=AC 十 CB' 为

数学中考复习:数形结合思想PPT课件

数学中考复习:数形结合思想PPT课件

距水平面的高度是4米,离柱子OP的距离为1米。 (1)求这条抛物线的解析式; y
(2)若不计其它因素,水池
A
的半径至少要多少米,才能
使喷出的水流不至于落在池 外?
P 3
4
O 1B 水平面 x
5. 已知一次函数y=3x/2+m和 y=-x/2+n的图象都经过点A(﹣2,0),且与 y轴分别交于B、C两点,试求△ABC的面积。
∴S△ABC=1/2×BC×AO=4
6.某机动车出发前油箱内有42升油,行驶若干小时
后,途中在加油站加油若干升。油箱中余油量Q(升)
与行驶时间t(小时)之间的函数关系如图所示,根
据下图回答问题:
(1)机动车行驶几小时后加油?答:_5_小时
(2)加油前余油量Q与行驶时间t的函数关系式
是:_Q=__42_-_6_t Q(升)
中考复习
数形结合思想
2024/9/19
1
谈到“数形结合”,大多与函数问 题有关。
函数的解析式和函数的图象分别从
“数”和“形”两方面反应了函数的性 质,
函数的解析式是从数量关系上反应 量与量之间的联系;
函数图象则直观地反应了函数的各
种性质,使抽象的函数关系得到了形象 的显示。
“数形结合思想”就是通过数量与
B、M = 0
C、M < 0
D、不能确定
运用数形结合的方法,将 -1 0 1
x
函数的解析式、图象和性
质三者有机地结合起来
1.二次函数y=ax2+bx+c的图象如图所
示.下列关于a,b,c的条件中,
不正确的是 ( D ) y
(A)a<0,b>0,c<0
(B)b2-4ac<0
(C)a+b+c<0

人教版 初三数学 竞赛专题:数形结合思想(含答案)

人教版 初三数学 竞赛专题:数形结合思想(含答案)

人教版 初三数学 竞赛专题:数形结合思想(含答案)【例l 】设1342222+-+++=x x x x y ,则y 的最小值为___________.【例2】直角三角形的两条直角边之长为整数,它的周长是x 厘米,面积是x 平方厘米,这样的直角三角形 ( )A .不存在B .至多1个C .有4个D .有2个【例3】如图,在△ABC 中,∠A =090,∠B =2∠C ,∠B 的平分线交AC 于D ,AE ⊥BC 于E ,DF ⊥BC 于F . 求证:BEAE BF AE DF BD ⋅+⋅=⋅111.【例4】 当a 在什么范围内取值时,方程a x x =-52有且只有相异的两实数根?【例5】 设△ABC 三边上的三个内接正方形(有两个顶点在三角形的一边上,另两个顶点分别在三角形另两边上)的面积都相等,证明:△ABC 为正三角形.【例6】设正数x ,y ,z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++1693253222222x zx z z y y xy x ,求zx yz xy 32++的值.能力训练1. 不查表可求得tan 015的值为__________. 2. 如图,点A ,C 都在函数xy 33=(0>x )的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为______________.3.平面直角坐标系上有点P (-1,-2)和点Q (4,2),取点R (1,m ),当=m ________时,PR +RQ 有最小值.4.若0>a ,0<b ,要使b a b x a x -=-+-成立,x 的取值范围是__________.5.已知AB 是半径为1的⊙O 的弦,AB 的长为方程012=-+x x 的正根,则∠AOB 的度数是______________.6. 如图,所在正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依 次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A . (13,13)B .(-13,-13) C.(14,14) D. (-14,一14)第2题图 第6题图7.在△ABC 中,∠C =090,AC =3,BC =4.在△ABD 中,∠A =090,AD =12.点C 和点D 分居AB 两侧,过点D 且平行于AC 的直线交CB 的延长线于E .如果nmDB DE =,其中,m ,n 是互质的正整数,那么n m += ( )A. 25B.128C.153D.243E.256 8.设a ,b ,c 分别是△ABC 的三边的长,且cb a b a b a +++=,则它的内角∠A ,∠B 的关系是( ) A .∠B >2∠A B .∠B=2∠A C .∠B <2∠A D .不确定 9.如图,a S AFG 5=∆,a S ACG 4=∆,a S BFG 7=∆,则=∆AEG S ( )A .a 1127 B .a 1128 C .a 1129 D .a 113010. 满足两条直角边边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( ) A. 1个 B .2个 C .3个 D .无穷多个11.如图,关于x 的二次函数m mx x y --=22的图象与x 轴交于A (1x ,0),B (2x ,0)两点(2x >0>1x ),与y 轴交于C 点,且∠BAC =∠BCO . (1) 求这个二次函数的解析式;(2) 以点D (2,0)为圆心⊙D ,与y 轴相切于点O ,过=抛物线上一点E (3x ,t )(t >0,3x <0)作x 轴的平行线与⊙D 交于F ,G 两点,与抛物线交于另一点H .问是否存在实数t ,使得EF +GH =CF ?如果存在,求出t 的值;如果不存在,请说明理由.12.已知正数a ,b ,c ,A ,B ,C 满足a +A =b +B =c +C =k . 求证:a B 十b C +c A <2k .13.如图,一个圆与一个正三角形的三边交于六点,已知AG =2,GF =13,FC =1,HI =7,求DE .14.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC //QN ,AM =MB = 2cm ,QM = 4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上).请写出t 可以取的一切值:_______________(单位:秒).15. 如图,已知D 是△ABC 边AC 上的一点,AD :DC =2:1,∠C =045,∠ADB =060.求证:AB 是△BCD 的外接圆的切线.16.如图,在△ABC 中,作一条直线l ∥BC ,且与AB 、AC 分别相交于D ,E 两点,记△ABC ,△BED 的面积分别为S ,K .求证:K ≤S 41.17.如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2). 在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标.参考答案例1 5提示:作出B 点关于x 轴的对称点B '(2,-3),连结AB '交x 轴于C ,则AB '=AC 十CB ' 为所要求的最小值.例2 D 提示:设两直角边长为a ,b ,斜边长为c ,由题意得a +b +c =x ,x ab =21,又222c b a =+,得().424b b a --=.因a ,h 为边长且是整数.故当⎩⎨⎧>->-,04,02b b 得b<2,取34,1==a b 不是整数;当⎩⎨⎧<-<-,04,02b b 得b>4,要使a ,b 为整数,只有两种取法:若b =5时,a =12(或b = 12,a =5);若b =8时,a =6(或b =6,a =8). 例3设AB =x ,则BC =2x ,AC =x 3 , BE =x 21,DF =DA=.32,31x BD x = .在Rt △AEB 中求得AE=,,23x BF x =代入证明即可. 例4如图,作出函数x x y 52-=图象,由图象可以看出:当a =0时,y =0与x x y 52-=有且只有相异二个交点;当4250<<a 时,y =a 与x x y 52-=图象有四个不同交点;当425=a 时,y =a 与x x y 52-=图象有三个不同交点,当425>a 时,y =a 与x x y 52-=图象有且只有相异二个交点. 例5由L c s cb s b a s a =+=+=+222 ①,知正数c b a ,,适合方程.2L xsx =+当0≠x 时,有022=+-s Lx x ②,故c b a ,,是方程②的根.但任何二次方程至多只有两个相异的根,所以c b a ,,中的某两数必相同.设b a =,若a c ≠,由①得()()c a acsa c s c a -=⎪⎭⎫⎝⎛-=-2112,则ac =2s =a a h ,这样△ABC 就是以∠B 为直角的直角三角形,b >a ,矛盾,故a =c ,得证. 例6,ABC AOC BOC AOB S S S S ∆∆∆∆=++,3421120sin 21321150sin 321⨯⨯=+•+••∴ xz y z y x 即,6232132121321=•+•+⨯•xz y z y x 化简得.32432=++zx yz xy 能力训练1.32- 提示:构造含 15的Rt △ABC .2.()062,提示:如图,分别过点A ,C 作x 轴的垂线,垂足分别为E , F .设OE =a , BF =b ,则AE =a 3, CF =b 3,所以点A ,C 的坐标为()().3,2,3,b b a a a +()⎩⎨⎧=+=∴,3323,3332b a b a 解得⎩⎨⎧-==.36,3b a ∴点D 坐标为()0,62. 3.52- 提示:当R ,P ,Q 三点在一条直线上时,PR +RQ 有最小值. 4.a x b ≤≤5. 36提示:由012=-+x x 得21x x -=<1,则有AB <OB .在OB 上截取OC =AB =x ,又由012=-+x x 得x x x 11=-,即ABOABC AB =,则OAB ∆∽△ABC ,AB =AC =OC . 6. C 提示:由题所给的数据结合坐标系可得,55A 是第14个正方形上的第三个顶点,位于第一象限,所以55A 的横纵坐标都是14. 7. A8. B 提示:由条件,22b ab ac ab a +=++即()bca abc a a b +=∴+=,2,延长CB 至D ,使BD =AB ,易证△ABC ∽△DAC ,得∠ABC =∠D +∠BAD =2∠D =2∠BAC .9. D10. C 提示:设直角三角形的两条直角边长为(),,b a b a ≤则ab k b a b a 2122•=+++ (k b a ,,均为正整数),化简得()()⎩⎨⎧=-=-⎩⎨⎧=-=-∴=--44,2484,14,844kb ka kb ka kb ka 或解得 ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===8,6,14,3,212,5,1b a k b a k b a k 或或即有3组解. 11. (1)122--=x x y (2)过D 作DM ⊥ EH 于M ,连结DG , 2,===DO DG t DM ,.2222t MG FG -==若EF +GH =FG 成立,则EH = 2FG .由EF //x 轴,设H 为()t x ,4,又∵E ,H 为抛物线上的两个点,,12323t x x =--∴,12424t x x =--即43,x x 是方程t x x =--122的两个不相等的实数根,()t x x x x +-==+∴1,24343,()2432433422222,224t t t x x x x x x EH -•=+∴+=-+=-=,解得8197,819711+-=-=t t (舍去). 12.a 十A =b +B =c 十C =k ,可看作边长为k 的正三角形,而从2k 联想到边长为k 的正方形的面积.如图,将aB +bC +cA 看作边长分别为a 与B ,b 与C ,c 与A 的三个小矩形面积之和,将三个小矩形不重叠地嵌入到边长为k 的正方形中,显然aB +bC +cA <k 2.13. AC =AG +GF +FC =16,由AH ·AI =AG ·AF ,得AH(AH +7)=2×(2+13),解得AH =3,从而HI =7,BI =6.设BD =x ,CE =y ,则由圆幂定理得⎩⎨⎧CE •CD =CF •CG BD •BE =BI •BH ,即⎩⎨⎧y (16-x )=1×14x (16-y )=6×13.解得.故DE =16-(x +y )=222. 14. t =2或3≤t ≤7或t =8. 提示:本题通过点的移动及直线与圆相切,考查分类讨论思想.由题意知∠AMQ =60°,MN =2.当t =2时,圆P 与AB 相切;当3≤t ≤7时,点P 到AC 的距离为3,圆P 与AC 相切;当t =8时,圆P 与BC 相切.15.设AD =2,DC =1,作BE ⊥AC ,交AC 于E .又设ED =x ,则BE =3x ,BE =EC =3x .又1+x =3x ,∴x =,BE =,AE =AD -ED =2-x =,AB 2 =AE 2+BE 2=()2+()2=6,而AD •AC =6.∴AB 2 =AD •AC .故由切割线定理逆定理知,AB 是△BCD 的外接圆的切线.16.设AD AB =AEAC =m (0≤m ≤1).∵S △ABE S △ABC =AE AC =m ,∴S △ABE =m S △ABC .又∵S △BDE S △ABE =BD AB =AB -AD AB =1-m ,∴S △BDE =(1-m )• S △ABE =m (1-m )• S △ABC .即K =(1-m )•mS ,整理得Sm 2-Sm +K =0,由△≥0得K ≤14S .17.分以下几种情况:①若此等腰三角形以OA 为一腰,且∠BAC 为顶角,则AO =AG =2.设C 1(―x ,2x ), 则x 2+(2x -2)2=22,解得x =85,得C 1(85,165).②若此等腰三角形以OA 为一腰,且O 为顶角顶点,则OC 2=OC 3=OA =2.设C 2(x ′,2x ′), 则x ′2+(2x ′)2=22,解得x ′=255,得C 2(255,455). 又由点C 2与C 3关于原点对称,得C 3(―255,―455).③若等腰三角形以OA 为底边,则C 4的纵坐标为1,其横坐标为12,得C 4 (12,1).所以,满足题意的点C 有4个,坐标分别为:(85,165),(255,455),(―255,―455),(12,1).。

初三数学培训讲义第9讲 整体、数形结合思想专题

初三数学培训讲义第9讲 整体、数形结合思想专题

第九讲 整体、数形结合思想专题一、主要知识点回顾1.整体思想(1)整体思想就是把所研究的对象作为一个________看待,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的思维策略。

(2)解题策略:解题时要善于用“整体”的眼光把某些式子或图形看成一个“整体”,把握部分和整体的关系,运用恰当的方法进行转化,达到“化繁为简”的目的。

2.数形结合思想(1)数形结合思想就是把________与________结合起来进行分析、研究、解决问题的思维策略。

(2)解题策略:解题时,常利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形),使问题化难为易,达到解决问题的目的。

二、感悟与实践例题1:已知关于x 的一元二次方程220x bx c +-=有两个相等的实数根。

(1)试确定c 的符号(2)求()222416b cc b ++-的值。

变式练习1:(2011南京)设函数2y x=与1y x =-的图象的交点坐标为(a ,b ),则11a b -的值为__________。

图1A .B .C .D .图2 例题2:如图1,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程s (千米)和行驶时间t (小时)之间的关系,根据所给图象,解答下列问题: (1)写出甲的行驶路程s 和行驶时间()0≥t t 之间的函数关系式。

(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度;在哪一段时间内,甲的行驶速度大于乙的行驶速度。

(3变式练习2:(2011贵州六盘水)如图2,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图像描述大致是( )x图3 图4例题3:二次函数2(0)y ax bx c a =++≠的图象如图3所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根。

初中数学竞赛辅导讲义

初中数学竞赛辅导讲义

页脚下载后可删除,如有侵权请告知删除!初中数学竞赛辅导讲义〔初三〕第一讲 分式的运算[知识点击]1、 分局部式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进展。

2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进展。

3、 分式运算:实质就是分式的通分与约分。

[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x 例2. z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

页脚下载后可删除,如有侵权请告知删除!解:易知:z y x + = y z x + = x z y + =k 那么⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x 〔1〕+〔2〕+〔3〕得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 假设k=2那么原式= k 3 = 8 假设 x+y+z=0,那么原式= k 3=-1 例3.设 12+-mx x x =1,求 12242+-x m x x 的值。

解:显然X 0≠,由x m x x 12+- =1 ,那么 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x- m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m 例4.多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。

解:页脚下载后可删除,如有侵权请告知删除! 13313232+++++x ax x X ax1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21 证:左边=21〔1 - 31 + 31 - 51 + …… + 121-n - 121+n 〕 aaax ax xO x -++++1133223页脚下载后可删除,如有侵权请告知删除! =21〔1- 121+n 〕 ∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21[小结归纳]1、局部分式的通用公式:)(1k x x + = k 1 〔x 1 - k x +1〕 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为假设干个等式,把各字母页脚下载后可删除,如有侵权请告知删除!用同一字母的解析式表示,从而给解题带来方便。

初中七年级数学竞赛培优讲义全套专题27 以形借数——借助图形思考[精品]

初中七年级数学竞赛培优讲义全套专题27 以形借数——借助图形思考[精品]

专题27 以形借数——借助图形思考阅读与思考数学是研究数量关系与空间形式的科学,数与形以及数和形的关联与转化,这是数学研究的永恒主题,就解题而言,数与形的恰当结合,常常有助于问题的解决,美国数学家斯蒂恩说:“如果一个特定的问题可以被转化为一个图形,那么思维就整体地把握了问题,并且能创造性地思考问题的解法”.将问题转化为一个图形,把问题中的条件与结论直观地、整体地表示出来,是一个十分重要的解题方法,现阶段借助图形思考是指以下两个方面:1.从给定的图形获取解题信息数学问题的表述方法很多,既有用文字叙述的,也有通过图形(如数轴、图表、平面图形等)来呈现的,善于从给定的图形获取解题信息是一个重要技能.2.有意地画图辅助解题图形能直观、形象地表示数量及关系,解题中有意地画图(如画直线图、列表、构造图形等)能帮助分析理顺复杂数量关系,使问题获得简解.阅读与思考【例1】如图,圆周上均匀地钉了9枚钉子,钉尖朝上,用橡皮筋套住其中的3枚,可套得一个三角形,所有可以套出来的三角形中,不同形状的共有____________种。

(“五羊杯”竞赛试题)x y z则解题思路:圆周长保持不变,设圆周长为9,套成的三角形三边所对应的弧长分别为,,,++=。

不妨设x y z≤≤,借助图形分析,找出满足条件的整数解即可。

x y z9【例2】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系。

根据图像进行一下探究:........信息读取(1)甲、乙两地之间的距离为___________km。

(2)请解释图中点B的实际意义。

图像理解(3)求慢车和快车的速度。

(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围。

问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同。

在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇。

九年级数学培优满分讲义内容(23专题23个word文档150多页)

九年级数学培优满分讲义内容(23专题23个word文档150多页)
12直角三角形中的比例线… 13圆的对称性 14与圆有关的角
15直线与圆的位置关系一 16直线与圆的位置关系二 17与圆相关的比例线段
18圆与圆的位置关系 19平面几何的定值问题 20平面几何的最值问题
21分而治之 22数形结合 23顺思逆想
内容截图:
15直线与圆的位置关系一16直线与圆的位置关系二17与圆相关的比例线段
九年级数学培优满分讲义内容(23专题23个word文档150多页)
1、转化与化归一般
5、最优化 6、是偶然还是必然 7、三角函数 8、旋转变换
9、平行线分线段成比例 10、从全等到相似 11、相似三角形的性质

(完整版)数学培优竞赛新方法(九年级)第26讲抛物线与直线形由动点生特殊斯四边行问题

(完整版)数学培优竞赛新方法(九年级)第26讲抛物线与直线形由动点生特殊斯四边行问题

§26抛物线与直线形(2)——由动点生成的特别四边形问题科学家的好奇心是永久知足不了的,由于跟着每一个进展,正如巴普洛夫所说:“我们打到了更高的水平,看到了更广阔的的天地,见到了原来在视线以外的东西。

”——贝弗里奇知识纵横抛物线与直线形的联合另一表现形式是以抛物线为载体,商讨能否存在一些点,使其能够成某些特别四边形,有以下常有的基本形式:(1 )抛物线上的点可否构成平行四边形;(2 )抛物线上的点可否构成矩形、菱形、正方形;(3 )抛物线上的点可否构成梯形;特别四边形的性质与判断是解这种问题的基础,而待定系数法、数形联合、分类议论是解这种问题的重点。

例题求解【例 1 】如图,抛物线y x22x 3 与x轴交 A, B 两点(A点在B点左边),直线l与抛物线交于 A,C 两点,此中C点的横坐标为2.(1)求 A, B 两点的坐标及直线AC 的函数表达式;(2) P 是线段 AC 上的一个动点,过 P 点作y轴的平行线交抛物线于 E 点,求线段 PE 长度的最大值;(3)点 G 抛物线上的动点,在x 轴上能否存在点 F ,使A,C , F ,G这样的四个点为极点的四边形是平行四边形?假如存在,求出全部知足条件的 F 点坐标;假如不存在,请说明理由.(义乌市中考题)思路点拨对于( 3 ),AF可能为平行四边形的边或对角线,故四个点能构成四边形的情况由多种,需全面议论。

7【例 2 】如图,对称轴为直线x的抛物线经过点 A 6,0 和 B 0,4 .2(1 )求抛物线分析式及极点坐标;(2 )设点 E x, y是抛物线上一动点,且位于第四象限,四边形OEAF是以 OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与 x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为②能否存在点 E ,使平行四边形24 时,请判断平行四边形OEAFOEAF 为正方形?若存在,求出点能否为菱形?E 的坐标;若不存在,请说明原因.(河南省中考题)思路点拨对于( 2 ),若OE AE ,则平行四边形OEAF 为菱形;若OA EF 且OA EF ,则平行四边形OEAF 为正方形。

【精华篇】初中数学九年级培优教程整理(全)

【精华篇】初中数学九年级培优教程整理(全)

初中数学九年级培优目录第1讲二次根式的性质和运算(P2----7)第2讲二次根式的化简与求值(P7----12)第3讲一元二次方程的解法(P13----16)第4讲根的判别式及根与系数的关系(P16----22)第5讲一元二次方程的应用(P23----26)第6讲一元二次方程的整数根(P27----30)第7讲旋转和旋转变换(一)(P30----38)第8讲旋转和旋转变换(二)(P38----46)第9讲圆的基本性质(P47----51)第10讲圆心角和圆周角(P52----61)第11讲直线与圆的位置关系(P62----69)第12讲圆内等积证明及变换((P70----76)第13讲弧长和扇形面积(P76----78)第14讲概率初步(P78----85)第15讲二次函数的图像和性质(P85----91)第16讲二次函数的解析式和综合应用(P92----98) 第17讲二次函数的应用(P99----108)第18讲相似三角形的性质(P109----117)第19讲相似三角形的判定(P118-----124)第20讲相似三角形的综合应用(P124-----130)每天进步一点点!坚持就是胜利!第1讲 二次根式的性质和运算考点·方法·破译1.了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析; 2.掌握二次根式有关性质,并能熟练运用性质进行化简;3.会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏析【例1】 (荆州)下列根式中属最简二次根式的是( )A.B 【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B中含分母,C 、D 含开方数4、9,故选A .【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是( )A.BA.①,②ﻩB.③,④ﻩC.①,③D.①,④【例2】(黔东南)方程480x -=,当y >0时,m 的取值范围是( )A.0<m<1 B .m ≥2ﻩ C .m <2 ﻩD.m ≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0的结论.由题意得4x -8=0,x -y-m =0.化为y =2-m,则2-m >0,故选C.【变式题组】2.(宁波)若实数x、y 2(0y -=,则xy 的值是__________.3.(荆门)2()x y =+,则x -y 的值为( )A .- 1ﻩB .1ﻩC .2 ﻩD .34.(鄂州)使代数式4x -有意义的x 的取值范围是( ) A .x >3 B.x≥3ﻩﻩC.x>4 ﻩD.x≥3且x ≠45.(怀化)22(4)0a c --=,则a-b -c =________.【例3是同类二次根式的是( )B C ﻩ【解法指导】判断几个二次根式是否为同类二次根式应先把它们都化为最简二次根式,再看被开方数是否一样. A=; B不能化简;=D=,=故本题应选D.【变式题组】6.,则a=________. 7.在下列各组根式中,是同类二次根式的是( )CD8.已知最简二次根式ba =_______,b =______. 【例4】下列计算正确的是( )=4=ﻩC= D.(11+=【解法指导】正确运用二次根式的性质①2(0)a a =≥;②(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><;③0,0)a b =≥≥;0,0)b a =≥> 进行化简计算,并能运用乘法公式进行计算.A 、B 中的项不能合并.D. 2(111+=-=-.故本题应选C.【变式题组】9. (聊城)下列计算正确的是( )A.= B=C3=ﻩ3=-10.计算:200720074)(4⋅=_____________ 11.22-=_____________12.(济宁)已知a 为实数,( ) A.a B.-a ﻩ C.-1 D .0 13.已知a >b >0,a +b =的值为( )A.2B.2ﻩCﻩD .12【例5】已知xy >0,化简二次根式的正确结果为( )A Bﻩ C .ﻩ D .【解法指导】先要判断出y <0,再根据xy >0知x<0. 故原式= D. 【变式题组】14.已知a 、b 、c 为△AB C 三边的长,则化简a b c --_______.15.===,算果中找出规律,并利用这一规律计算:1)2006++⋅=_________.16.已知,则0<x<1,=_________.【例6】(辽宁)⑴先化简吗,再求值:11()ba b b a a b ++++,其中12a =,12b =.⑵已知x =,y =值为________. 【解法指导】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x +y 的值,再代入求值.【解】⑴原式=22()()()()ab a a b b a b a b ab a b ab a b ab +++++==++,当12a =,12b =时,ab =1,a+b⑵由题意得:xy =1,x +y =10, 原式10199=-. 【变式题组】17.(威海)先化简,再求值:(a +b )2+(a -b)(2a+b )-3a 2,其中2a =--2b =.18.(黄石)已知a 是4的小数部分,那么代数式22224()()442a a a a a a a a a+-+⋅-+++的值为________.【例7】已知实数x 、y满足(2008x y =,则3x 2-2y 2+3x -3y -2007的值为( )A.-2008ﻩﻩB.2008C.-1ﻩﻩD.1【解法指导】对条件等式作类似于因式分解的变形,找出a 、b 的关系,再代入求值.解:∵(2008x y =,∴(x =y =(y =x =,由以上两式可得x =y .∴(2008x =, 解得x2=2008,所以3x2-2y 2+3x-3y-2007=3x 2-2x 2+3x -3x -2007=x2-2007=1,故选D .【变式题组】19.若a >0,b>0=的值.演练巩固·反馈提高01.若4m =,则估计m的值所在的范围是( )A .1<m <2B .2<m <3ﻩC .3<m <4 ﻩD .4<m <502.(绵阳)n的最大值为( )A .12 ﻩB.11C.8 ﻩD .303.(黄石)下列根式中,不是..最简二次根式的是( )A.04.(贺州)下列根式中,不是最简二次根式的是( )A.C 05.下列二次根式中,是最简二次根式的是( )A.C06.(常德)设a=20, b=(-3)2, c =11()2d -=, 则a 、b、c、d 、按由小到大的顺序排列正确的是( )A.c<a<d <b ﻩ B.b <d<a<c ﻩﻩC.a <c<d<bD .b <c <a <d07.(十堰)下列运算正确的是( )A+=ﻩ B =C.21)31=-ﻩﻩ 53=-08.如果把式子(1a -根号外的因式移入根号内,化简的结果为( )A .C.ﻩD .09.(徐州)2x -化简的结果为2x -3,则x的取值范围是( )A.x ≤1 ﻩB .x ≥2ﻩ C .1≤x ≤2ﻩ D.x>010.(怀化)函数y =中自变量的取值范围是________.11.(湘西)对于任意不相等的两个数a,b ,定义一种运算a※b =那么12※4=________.12.(荆州)先化简,再求值:22321121a a a a a a -+÷-+-,其中a =13.(广州)先化简,再求值:((6)a a a a --,其中12a =. 培优升级01.(凉山州)已知一个正数的平方根是3x -2和5x +6,则这个数是________.02.已知a、b 是正整数,且满足是整数,则这样的有序数对(a ,b)共有________对.03.(全国)设12a =,则5432322a a a a a a a+---+=-________. 04.(全国)设x =a 是x的小数部分,b 是x 的小数部,则a 3+b 3+3a b=________.05.(重庆)已知2y =,则x 2+y 2=________.06.(全国)已知1a =,a =2a =,那么a、b 、c 的大小关系是( )A.a <b <c ﻩﻩB.b <a<c ﻩﻩC.c<b <a ﻩ D .c <a <b07.(武汉)已知y =(x,y均为实数),则y的最大值与最小值的差为( )A 3ﻩB .3ﻩ3ﻩ D08.(全国)已知非零实数a 、b满足24242a b a -+++=,则a+b 等于( ) A .-1ﻩ B.0ﻩﻩC .1D.209.(全国) )A.5-ﻩB .1ﻩﻩC.5ﻩﻩD .110.已知0(0,0)x y x y -=>>的值为( )A.13ﻩﻩB .12 ﻩC. 23ﻩ D .3411.已知152a b c +-=-,求a +b +c 的值.12.已知9+9a 和b ,求ab -3a+4b +8的值.第2讲 二次根式的化简与求值考点·方法·破译1.会灵活运用二次根式的运算性质化简求值.2.会进行二次根式的有理化计算,会整体代入求值及变形求值. 3.会化简复合二次根式,会在根式范围内分解因式.经典·考题·赏析【例1】(河北)2=的值等于__________ 【解法指导】通过平方或运用分式性质,把已知条件和待求式的被开方数都用1x x+表示或化简变形. 解:两边平方得,124x x ++=,12x x+= ,两边同乘以x 得,212x x += ,∵2315x x x ++=,29111x x x ++=,∴原式511-1.若14a a +=(0<a<1),=________ 2=-( ) A .1a a -ﻩ B .1a a -ﻩﻩC .1a a+ﻩﻩD .不能确定 【例2】(全国)满足等式=2003的正整数对(x ,y )的个数是( )A .1ﻩ ﻩB.2ﻩﻩ C.3 D .4【解法指导】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.0=,∴0=0>,0=,则xy =2003,且2003是质数,∴正整数对(x ,y )的个数有2对,应选B. 【变式题组】3.若a >0,b >0=的值.【例3】(四川)1)a =<<,求代数式22632x x x x x x +-+÷-. 【解法指导】视x -2,x 2-4x为整体,=移项用含a 的代数式表示x -2,x2-4x ,注意0<a <1的制约.解:平方得,12x a a =++,∴12x a a -=+,2221442x x a a -+=++, 222142x x a a-=+-,∴化简原式=(3)(2)(2)3x x x x x x +---+ =2211()1()211()a a a a a a a a a a a++-+-=++--4.(武汉)已知32x x +=+,求代数式35(2)242x x x x -÷----的值.5.(五羊杯)已知1m =+1n =-且22(714)(367)8m m a n n -+--=,则a的值等于( ) A .-5ﻩB .5ﻩ ﻩC .-9ﻩD .9【例4】(全国)如图,点A、C都在函数0)y x =>的图像上,点B、D都在x 轴上,且使得△OAB 、△BC D都是等边三角形,则点D的坐标为________.【解法指导】解:如图,分别过点A 、C 作x 轴的垂线,垂足分别为E 、F .设OE=a,BF=b ,则,CFb ,所以,点A、C 的坐标为(aa )、(2a+b),所以2(2)a b =+=解得a b ⎧=⎪⎨=⎪⎩因此,点D的坐标为(,0) 【变式题组】6.(邵阳)阅读下列材料,然后回答问题. 在进行二次根式化简时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简: 335333535=⨯⨯=; (一) 36333232=⨯⨯=; (二) ()()()131313132132-=-+-⨯=+; (三) 以上这种化简的步骤叫做分母有理化,132+还可以用以下方法化简:()()()13131313131313131322-=+-+=+-=+-=+; (四)(1)请你用不同的方法化简352+;①参照(三)试得:352+=_____________________________;(要有简化过程)②参照(四)试得:352+=_____________________________;(要有简化过程)(2)2n +++【例5】(五羊杯)设a 、b 、c 、d 为正实数,a <b,c <d ,bc >ad ,,,求此三角形的面积.【解法指导】虽然不能用面积公式求三角形面积(为什么a、c 为直角边的直角三角形的斜边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.解:如图,作长方形AB CD ,使AB =b -a ,AD =c ,延长DA 至E ,使DE =d ,延长D C至F ,使D F=b,连结EF 、FB 、EB ,则BFEF=,BE =,从而知△BEF 就是题设的三角形,而S△BEF=S 长方形ABCD +S △BCF+S △ABE -S △DEF =(b -a )c +12(d -c )(b -a)-12bd =12(bc -a d)【变式题组】7.(北京)已知a、b 均为正数,且a+b=2,求U演练巩固·反馈提高01.已知x =,y =值为__________ 02.设1a =-,则32312612a a a +--=( )A.ﻩ24ﻩB .25ﻩﻩC.10ﻩﻩD.1203.(天津)计算2001200019991)1)1)2001--+=__________04.(北京)若有理数x 、y 、z 1()2x y z =++,则2()x yz -=__________05.(北京)正数m、n 满足430m n +-=,=__________06.(河南)若1x =,则32(2(15x x x -++的值是( )A .2 ﻩB .4ﻩﻩC .6ﻩﻩﻩD .807.已知实数a 满足2000a a -=,那么22000a -的值是( ) A .1999ﻩB.2000 C .2001 ﻩ D .200208.设a =b =c =则a 、b 、c 之间的大小关系是( ) A .a <b <c ﻩﻩB .c <b <a ﻩC.c<a <bﻩD.a<c <b09.已知1x =培优升级01.(信利)已知1x =+那么2111242x x x +-=+--__________02.5=,=__________03.(江苏)已知(2002x y =,则2234x xy y --6658x y --+=__________04.(7x =,则x=__________05.已知x =,y =,那么22y x x y +=__________06.(武汉)如果a b +=,a b -=,3333b c b c +=-,那么333a b c -的值为( )A .ﻩB.2001ﻩﻩﻩC .1 ﻩﻩD .007.(绍兴)当12x +=时,代数式32003(420052001)x x --的值是( ) A.0ﻩ ﻩ B .-1 ﻩC.1ﻩﻩ D .20032-08.(全国)设a、b 、c 为有理数,且等式a +=,则29991001a b c ++的值是( )A.1999ﻩ B .2000 ﻩ C .2001ﻩﻩ D .不能确定09.计算:((24947++(10.已知实数a 、b 满足条件1b a b a -=<,化简代数式11()(1)a b a b---,将结果表示成不含b 的形式.11.已知21(0)a x aa +=>,化简12.已知自然数x 、y 、z 0=,求x+y +z 的值.第3讲一元二次方程的解法考点·方法·破译1.掌握一元二次方程根的定义并能应用根的定义解题;2.掌握一元二次方程的四种解法,并能灵活应用各种解法解方程;3.会应用一元二次方程解实际应用题。

人教版九年级数学上下册培优讲义机构辅导资料(共30讲)

人教版九年级数学上下册培优讲义机构辅导资料(共30讲)

九年级讲义目录专题01 二次根式的化简与求值阅读与思考二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧.有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是:1、直接代入直接将已知条件代入待化简求值的式子. 2、变形代入适当地变条件、适当地变结论,同时变条件与结论,再代入求值.数学思想:数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展.=x , y , n 都是正整数)例题与求解【例1】 当x =时,代数式32003(420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、20032-(绍兴市竞赛试题)【例2】 化简(1(ba b ab b -÷-- (黄冈市中考试题)(2(五城市联赛试题)(3(北京市竞赛试题)(4(陕西省竞赛试题)解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解.思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度.【例3】比6大的最小整数是多少?(西安交大少年班入学试题)解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y==想一想:设x=求432326218237515x x x xx x x--++-++的值. (“祖冲之杯”邀请赛试题)的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.【例4】 设实数x ,y 满足(1x y =,求x +y 的值.(“宗泸杯”竞赛试题)解题思路:从化简条件等式入手,而化简的基本方法是有理化.【例5】 (1的最小值.(2的最小值.(“希望杯”邀请赛试题)解题思路:对于(1)的几何意义是直角边为a ,b 的直角三角形的斜边长,从构造几何图形入手,对于(2),设y =,设A (x ,0),B (4,5),C (2,3)相当于求AB +AC 的最小值,以下可用对称分析法解决.方法精髓:解决根式问题的基本思路是有理化,有理化的主要途径是乘方、配方、换元和乘有理化因式.【例6】 设2)m a =≤≤,求1098747m m m m m +++++-的值.解题思路:配方法是化简复合二次根式的常用方法,配方后再考虑用换元法求对应式子的值.能力训练A级1.化简:7()3“希望杯”邀请赛试题)2.若x y x y+=-=,则xy=_____(北京市竞赛试题)3.+(“希望杯”邀请赛试题)4.若满足0<x<y=x,y)是_______(上海市竞赛试题)5.2x-3,则x的取值范围是()A.x≤1B. x≥2C. 1≤x≤2D. x>06)A.1B C. D. 5(全国初中数学联赛试题)7.a,b,c为有理数,且等式a+=成立,则2a+999b+1001c的值是()A.1999 B. 2000 C. 2001D. 不能确定(全国初中数学联赛试题)8、有下列三个命题甲:若α,β是不相等的无理数,则αβαβ+-是无理数;乙:若α,β是不相等的无理数,则αβαβ-+是无理数;丙:若α,β其中正确命题的个数是()A.0个B.1个C.2个D.3个(全国初中数学联赛试题)9、化简:(1(2(3(4(天津市竞赛试题)(5(“希望杯”邀请赛试题)10、设52x=,求代数式(1)(2)(3)(4)x x x x++++的值.(“希望杯”邀请赛试题)117x=,求x的值.12、设x x ==(n 为自然数),当n 为何值,代数式221912319x xy y ++的 值为1985?B 级1.已知3312________________x y x xy y ==++=则. (四川省竞赛试题)2.已知实数x ,y 满足(2008x y =,则2232332007x y x y -+--=____(全国初中数学联赛试题)3.已知42______1x x x ==++2x 那么. (重庆市竞赛试题)4.a =那么23331a a a ++=_____. (全国初中数学联赛试题)5. a ,b 为有理数,且满足等式14a +=++则a +b =( )A .2B . 4C . 6D . 8(全国初中数学联赛试题)6. 已知1,2a b c ===,那么a ,b ,c 的大小关系是( ).Aa b c << B . b <a <c C . c <b <c D . c <a <b(全国初中数学联赛试题)7.=) A . 1a a -B .1a a - C . 1a a+ D . 不能确定 8. 若[a ]表示实数a 的整数部分,则等于( )A .1B .2C .3D . 4(陕西省竞赛试题)9. 把(1)a - )A .B C. D .(武汉市调考题)10、化简:(1 (“希望杯”邀请赛试题)(210099++(新加坡中学生竞赛试题)(3(山东省竞赛试题)(4 (太原市竞赛试题)11、设01,x << 1≤<.(“五羊杯”竞赛试题)12的最大值.13、已知a , b , c为有理数,证明:222a b c a b c ++++为整数.专题02 从求根公式谈起阅读与思考一元二次方程是解数学问题的重要工具,在因式分解、代数式的化简与求值,应用题,各种代数方程,几何问题、二次函数等方面有广泛的应用.初学一元二次方程,需要注意的是: 1、熟练求解解一般形式的一元二次方程,因式分解法是基础,它体现了“降次求解”的基本设想,公式法具有一般性,是解一元二次方程的主要方法,对于各项系数较大的一元二次方程,可以先从分析方程的各项系数特征入手,通过探求方程的特殊根来求解,常用的两个结论是:① 若0=++c b a ,则方程20(0)ax bx c a ++=≠必有一根为1. ② 若0=+-c b a ,则方程20(0)ax bx c a ++=≠必有一根为1-.2、善于变形解有些与一元二次方程相关的问题时,直接求解常给解题带来诸多不便,若运用整体思想,构造零值多项式,降次变形等相关思想方法,则能使问题获得简解.思想精髓一元二次方程的求根公式为1,22b x a-±=这个公式形式优美,内涵丰富:① 公式展示了数学的抽象性,一般性与简洁美; ② 公式包含了初中阶段所学过的全部六种代数运算;③ 公式本身回答了解一元二次方程的全部的三个问题,方程有没有实数根?有实根时共有几个?如何求出实根?例题与求解例1 阅读下列的例题解方程: 2||20x x --=解:①当x ≥0时,原方程化为220x x --=,解得122,1x x ==-(舍)① 当0<x 时,原方程化为220x x +-=,解得11=x (舍),22-=x 请参照例题解方程:2|3|30x x ---=,则方程的根是____(晋江市中考试题)解题思路:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解.例2 方程2|1|(42)x x -=-+的解的个数为( )A 、1个B 、2个C 、3个D 、4个(全国初中数学联赛试题)解题思路:通过去绝对值,将绝对值方程转化为一元二次方程求解.例3 已知m ,n 是二次方程2199970x x ++=的两个根,求22+19986)(20008)m m n n +++(的值.(“祖冲之杯”邀请赛试题)解题思路:若求出m ,n 值或展开待求式,则计算繁难,由方程根的定义可得关于m ,n 的等式,不妨从变形等式入手.反思:一元二次方程常见的变形方法有:①把20(0)ax bx c a ++=≠变形为2ax bx c =--②把20(0)ax bx c a ++=≠变形为2ax bx c +=-③把20(0)ax bx c a ++=≠变形为cax b x+=- 其中①②体现了“降次”代换的思想;③则是构造倒数关系作等值代换. 例4 解关于x 的方程:2(1)(21)30m x m x m -+-+-=解题思路:因未指明关于x 的方程的类型,故首先分01=-m 及1-m ≠0两种情况,当1-m ≠0时,还考虑就24b ac -的值的三种情况加以讨论.例5 已知三个不同的实数a ,b ,c 满足3=+-c b a ,方程012=++ax x 和02=++c bx x ,有一个相同的实根,方程02=++a x x 和02=++b cx x 也有一个相同的实根,求a ,b ,c 的值.解题思路:这是一个一元二次方程有公共根的问题,可从求公共根入手.方法指导:公共根问题是一元二次方程常见问题,解这类问题的基本方法是: ①若方程便于求出简单形式的根,则利用公共根相等求解. ②设出公共根,设而不求,消去二次项.例6 已知a 是正整数,如果关于x 的方程32(17)(38)560x a x a x +++--=的根都是整数,求a 的值及方程的整数根.(全国初中数学联赛试题) 解题思路:本题有两种解法,由方程系数特点发现1为隐含的根,从而将试题进行降次处理,或变更主元,将原方程整理为关于a 的较低次数的方程.能力训练 A 级1、已知方程062=+-q x x 可以配成()72=-p x 的形式,那么262=+-q x x 可以配成______________的形式.(杭州市中考试题)2、若分式22221x x x x --++的值为0,则x 的值等于____.(天津市中考试题)3、设方程2199319940,x x +-=和2(1994)1993199510x x -⋅-=的较小的根分别为α,β,则βα⋅=___.4、方程2|45|62x x x +-=-的解应是____(上海市竞赛试题) 5、方程23(1)1x x x ++-=的整数解的个数是____.A 、2个B 、3个C 、4个D 、5个(山东省选拔赛试题)6、若关于x 的一元二次方程22(1)5320m x x m m -++-+=的常数项为0,则m 的值等于( ) A 、1 B 、2 C 、1或2 D 、0(德州市中考试题)7、已知a , b 都是负实数,且1110a b a b+-=-,那么ba 的值是( )A 、12+ B 、12- C 、12- D 、12+- (江苏省竞赛试题)8、方程2||10x x --=的解是( )A 、12± B 、12- C 、12±或12- D 、12-± 9、已知a 是方程2199910x x -+=的一个根,求22199919981a a a -++的值.10、已知2410a a ++=且42321322a ma a ma a--=++,求m 的值. (荆州市竞赛试题)11、是否存在某个实数m ,使得方程220x mx ++=和220x x m ++=有且只有一个公共根?如果存在,求出这个实数m 及两方程的公共实根;如果不存在,请说明理由.12、已知关于x 的方程2(4)(8)(8012)320k k x k x ----+=的解都是整数,求整数k 的值.B 级1、已知α、β是方程2(2)10x m x +-+=的两根,则22(1)(1m )m ααββ++++的值为___ 2、若关于x 的方程20x px q ++=与20x qx p ++=只有一个公共根,则1999(p q)+=___3、设a , b 是整数,方程20x ax b ++=,则b a +=_________(全国通讯赛试题)4、用[]x 表示不大于x 的最大整数,则方程22[]30x x --=解的个数为( )A 、1个B 、2个C 、3个D 、4个 5、已知1||1a a-=,那么代数式1||a a +=( )A 、2 B 、2- C 、 D 6、方程||3||20x x x -+=的实根的个数为( )A 、1个B 、2个C 、3个D 、4个7、已知2519910x x --=,则代数式42(2)(1)1(1)(2)x x x x -+----的值为( )A 、1996B 、1997C 、1998D 、19998、已知三个关于x 的一元二次方程2220,0,0ax bx c bx cx a cx ax b ++=++=++=恰有一个公共实根,则222a b c bc ca ab++的值为( ) A 、0 B 、1 C 、2 D 、3(全国初中数学联赛试题)9、已知x =,求4322621823815x x x x x x --++-+的值. (“祖冲之杯”邀请赛试题)10、设方程2|21|40x x ---=,求满足该方程的所有根之和.(重庆市竞赛试题)11、首项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++= ①及222(1)(2)(2)0b x b x b b --+++= ②(其中a , b 为正整数)有一个公共根,求b ab aa b a b --++的值.(全国初中数学联赛试题)12、小明用下面的方法求出方程30=的解,请你仿照他的方法求出下面另外两个方程的解,专题04 根与系数关系阅读与思考根与系数的关系称为韦达定理,其逆定理也成立,是由16世纪的法国数学家韦达所发现的.韦达定 理形式简单而内涵丰富,在数学解题中有着广泛的应用,主要体现在: 1.求方程中字母系数的值或取值范围; 2.求代数式的值;3.结合根的判别式,判断根的符号特征; 4.构造一元二次方程; 5.证明代数等式、不等式.当所要求的或所要证明的代数式中的字母是某个一元二次方程的根时,可先利用根与系数的关系找 到这些字母间的关系,然后再结合已知条件进行求解或求证,这是利用根与系数的关系解题的基本思路,需要注意的是,应用根与系数的关系的前提条件是一元二次方程有两个实数根,所以,应用根与系数的关系解题时,必须满足判别式△≥0.例题与求解【例1】设关于x 的二次方程22(4)(21)10m x m x -+-+=(其中m 为实数)的两个实数根的倒数和为s ,则s 的取值范围是_________.【例2】 如果方程2(1)(2)0x x x m --+=的三个根可以作为一个三角形的三边长,那么,实数m 的取值范围是_________.A .01m ≤≤B .34m ≥C .314m <≤D .314m ≤≤【例3】已知α,β是方程2780x x -+=的两根,且αβ>.不解方程,求223βα+的值.【例4】 设实数,s t 分别满足22199910,99190s s t t ++=++=并且1st ≠,求41st s t++的值.【例5】(1)若实数,a b 满足258a a +=,258b b +=,求代数式1111b a a b --+--的值; (2)关于,,x y z 的方程组32236x y z axy yz zx ++=⎧⎨++=⎩有实数解(,,)x y z ,求正实数a 的最小值;(3)已知,x y 均为实数,且满足17xy x y ++=,2266x y xy +=,求432234x x y x y xy y ++++的值.【例6】 ,,a b c 为实数,0ac <0++=,证明一元二次方程20ax bx c ++=有大于1的根.能力训练A 级1.已知m ,n 为有理数,且方程20x mx n ++=有一个根是52-,那么m n += .2.已知关于x 的方程230x x m -+=的一个根是另一个根的2倍,则m 的值为 . 3.当m = 时,关于x 的方程228(26)210x m m x m -+-+-=的两根互为相反数; 当 时,关于x 的方程22240x mx m -+-=的两根都是正数;当 时,关于m 的方程23280x x m ++-=有两个大于2-的根.4.对于一切不小于2的自然数n .关于x 的一元二次方程22(2)20x n x n -+-=的两根记为,n n a b (2)n ≥则223320072007111(2)(2)(2)(2)(2)(2)a b a b a b +++=------ .5.设12,x x 是方程222(1)(2)0x k x k -+++=的两个实根,且12(1)(1)8x x ++=,则k 的值为( )A .31-或B .3-C .1D .12k ≥的一切实数 6.设12,x x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且1210,30x x x <-<,则 ( ) A .12m n >⎧⎨>⎩ B .12m n >⎧⎨<⎩ C .12m n <⎧⎨>⎩ D .12m n <⎧⎨<⎩7.设12,x x 是方程220x x k +-=的两个不等的实数根,则22122x x +-是( )A .正数B .零C .负数D .不大于零的数8.如图,菱形ABCD 的边长是5,两对角线交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的根,那么m 的值是( )A .3-B .5C .53-或D .53-或9.已知关于x 的方程:22(2)04m x m x --=. (1)求证:无论m 取什么实数值,方程总有两个不相等的实数根;(2)若这个方程的两个根是12,x x ,且满足212,x x =+求m 的值及相应的12,x x .10.已知12,x x 是关于x 的一元二次方程2430kx x +-=的两个不相等的实数根. (1)求k 的取值范围;(2)是否存在这样的实数k ,使12123222x x x x +-=成立?若存在,求k 的值;若不存在,说明理由.11.如图,已知在△ABC 中,∠ACB =90°,过C 点作CD ⊥AB 于D ,设AD =m ,BD =n ,且AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.DBAC12.已知,m n 是正整数,关于x 的方程2()0x mnx m n -++=有正整数解,求,m n 的值.B 级1.设1x ,2x 是二次方程032=-+x x 的两根,则3212419x x -+= .2.已知1ab ≠,且有25199580a a ++=及28199550b b ++=则ab= . 3.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12,x x ,且221224x x +=,则k = .4.已知12,x x 是关于x 的一元二次方程22x ax a ++=的两个实数根,则1221(2)(2)x x x x --的最大值为 .5.如果方程210x px ++=(p >0)的两根之差为1,那么p 等于( )A .2B .4CD 6.已知关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12,x x ,且22127x x +=,则212()x x -的值是 ( )A .1B .12C .13D .257.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是 ( ) A .23 B .25C .5D .2 8.设213a a +=,213b b +=且a b ≠,则代数式2211a b+的值为( ) A .5 B .7 C .9 D .119.已知,a b 为整数,a b >,且方程233()40x a b x ab +++=的两个根,αβ满足关系式(1)(1)(1)(1)ααββαβ+++=++.试求所有整数点对(,)a b .10.若方程2310x x ++=的两根,αβ也是方程620x px q -+=的两根,其中,p q 均为整数,求,p q 的值.11.设,a b 是方程2310x x -+=的两根,c ,d 是方程2420x x -+=的两根,已知a b c dM b c d c d a d a b a b c+++=++++++++.求证:(1)222277a b c d M b c d c d a d a b a b c +++=-++++++++; (2)33334968a b c d M b c d c d a d a b a b c+++=-++++++++.12.设m 是不小于1-的实数,使得关于x 的一元二次方程222(2)310x m x m m +-+-+=有两个不相等实数根12,x x .(1)若22126x x +=,求m 的值;(2)求22121211mx mx x x +--的最大值.13.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.专题06 转化与化归----特殊方程、方程组阅读与思考特殊方程、方程组通常是指高次方程(组)(次数高于两次)、结构巧妙而富有规律性的方程、方程组.降次与消元是解特殊方程、方程组的基本策略,而降次与消元的常用方法是: 1、因式分解; 2、换元; 3、平方; 4、巧取倒数;5、整体叠加、叠乘等.转化是解各类特殊方程、方程组的基本思想,而化归的途径是降次与消元,而化归的方向是一元二次方程,这也可以说是“九九归宗”.例题与求解【例1】已知方程组⎩⎨⎧=+=+233522y x y x 的两组解是),(11y x 与),(22y x ,则1221y x y x +的值是_______ (北京市竞赛题)解题思路:通过消元,将待求式用同一字母的代数式表示,运用根与系数的关系求值.【例2】方程组⎩⎨⎧=+=+2363yz xz yz xy 的正整数解的组数是( )A .1组B .2组C .3组D .4组解题思路:原方程组是三元二次,不易消元降次,不妨从分析常数的特征入手.【例3】 解下列方程:(1) 42)113(1132=+-++-x xx x x x ; (“祖冲之杯”邀请赛试题) (2)121193482232222=+-++-++x x x x x x x x ; (河南省竞赛试题) (3) 1)1998()1999(33=-+-x x ; (山东省竞赛试题) (4) 222222)243()672()43(+-=+-+-+x x x x x x (“祖冲之杯”邀请赛试题) 解题思路:注意到方程左边或右边项与项的结构特点、内在联系,利用换元法求解.【例4】 解下列方程组:(1) ⎪⎪⎩⎪⎪⎨⎧=++=-+-+;612,331y y x y x y x (山东省竞赛试题)(2) ⎩⎨⎧=++=++;2454,144)53)(1(2y x x y x x x (西安市竞赛试题)(3) ⎩⎨⎧+-=+-=.23,23232232y y y x x x x y (全苏数学奥林匹克试题) 解题思路:观察发现方程组中两个方程的特点和联系,用换元法求解或整体处理.【例5】 若关于x 的方程xkx x x x x k 1122+=---只有一个解(相等的解也算一个).试求k 的值与方程的解.(江苏省竞赛试题)【例6】 方程02006322=+++-y x xy x 的正整数解有多少对?解题思路:确定主元,综合利用整除及分解因式等知识进行解题.能力训练A 级1.方程1)1(3)1(222=+-+xx x x 的实数根是_____________. 2.()()()22222224367243+-=+-+-+x xx x x x ,这个方程的解为x =_________________.3.实数z y x ,,满足⎩⎨⎧=+-+-=,0223,362z xy y x y x 则zy x +2的值为_______________.(上海市竞赛题) 4. 设方程组⎪⎩⎪⎨⎧=++=++=++0,0,01222b ax x a x bx bx ax 有实数解,则.________1=++b a(武汉市选拔赛试题)5.使得()()()()7823142222+-++=--x x x x x x 成立的x 的值得个数为( )A .4个B .3个C .2个D .1个(“五羊杯”竞赛试题)6.已知方程组⎩⎨⎧=-=+1,22z xy y x 有实数根,那么它有( )A .一组解B .二组解C .三组解D .无数组解(“祖冲之杯”邀请赛试题) 7.设a a 312=+,b b 312=+且b a ≠,则代数式2211b a +的值为( )A .5B .7C .9D .11 8.已知实数y x ,满足20,922=+=++xy y x y x xy ,则22y x +的值为( )A .6B .17C .1D .6或179.已知关于y x ,的方程组⎩⎨⎧=-+=-222)(3,p y x p xy p y x 有整数解()y x ,,求满足条件的质数p .10.已知方程组⎩⎨⎧=+-=++-01,022y x a y x 的两个解为⎩⎨⎧==,,11y y x x ⎩⎨⎧==,,22y y x x 且21,x x 是两个不等的正数.(1)求a 的取值范围;(2)若116832212221--=-+a a x x x x ,试求a 的值.(南通市中考试题)11.已知b a ,是方程012=--t t 的两个实根,解方程组⎪⎩⎪⎨⎧+=++=+.1,1y ayb x x b ya x(“祖冲之杯”邀请赛试题)12.已知某二次项系数为1的一元二次方程的两个实数根为q p ,,且满足关系式()⎩⎨⎧=+=++,6,5122pq q p p q p 试求这个一元二次方程.(杭州市中考试题)B 级1.方程组⎪⎩⎪⎨⎧==++++=++43251z y x z y x z y x 的解是___________________.2.已知x x x x x 71357139722=+-+++,则x 的值为______________.(全国初中数学联赛试题)3.已知实数00,y x 是方程组⎪⎩⎪⎨⎧+==11x y xy 的解,则._________00=+y x (全国初中数学联赛试题)4.方程组⎪⎩⎪⎨⎧=+=3411,9y xxy 的解是_________________. (“希望杯”邀请赛试题)5.若二元二次方程组()⎩⎨⎧+-==-12,122x k y y x 有唯一解,则k 的所有可能取值为______________. (《学习报》公开赛试题)6.正数654321,,,,,x x x x x x 同时满足1165432=x x x x x x ,2265431=x x x x x x ,3365421=x xx x x x ,4465321=x x x x x x ,6564321=x x x x x x ,9654321=x xx x x x . 则654321x x x x x x +++++的值为________.(上海市竞赛试题)7.方程06623=+--x x x 的所有根的积是()A .3B .-3C .4D .-6E .以上全不对(美国犹他州竞赛试题)8.设y x ,为实数,且满足()()()()⎩⎨⎧=-+--=-+-,1119991,111999133y y x x 则=+y x ( ) A .1 B .-1 C .2 D .-2(武汉市选拔赛试题)9.已知⎪⎩⎪⎨⎧=++=++=,3,2,1222z y x z y x xyz 则111111-++-++-+y zx x yz z xy 的值为( )A .1B .21-C .2D .32-10.对于实数a ,只有一个实数值x 满足等式012211112=-++++-+-+x a x x x x x ,试求所有这样的实数a 的和.(江苏省竞赛试题)11.解方程a x x x x =--+-+1212,其中0>a ,并就正数a 的取值,讨论此方程解的情况.(陕西省竞赛试题)12.已知c b a ,,三数满足方程组⎩⎨⎧=+-=+,4828,82c c ab b a 试求方程02=-+a cx bx 的根. (全国初中数学联赛试题)13.解下列方程(组):(1)()1639322=-+x x x ; (武汉市竞赛试题)(2)()()()6143762=+++x x x ;(湖北省竞赛试题)(3)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+,414,414,414222222x z z z y y y x x (加拿大数学奥林匹克竞赛试题)专题08 二次函数阅读与思考二次函数是初中代数的重要内容,既有着应用非常广泛的丰富性质,又是进一步学习的基础,主要知识与方法有:1.二次函数解析式c bx ax y ++=2的系数符号,确定图象的大致位置.2.二次函数的图象是一条抛物线,抛物线的形状仅仅与a 有关,a b 2-与(ab2-,a b ac 442-)决定抛物线对称轴与顶点的位置.3.二次函数的解析式通常有下列三种形式: ①一般式:c bx ax y ++=2; ②顶点式n m x a y +-=2)(:;③交点式:))((21x x x x a y --=,其中1x ,2x 为方程02=++c bx ax 的两个实根. 用待定系数法求二次函数解析式,根据不同条件采用不同的设法,可使解题过程简捷.例题与求解【例1】 二次函数c bx ax y ++=2的图象如图所示,现有以下结论:①0>abc ;②c a b +<;③024>++c b a ;④b c 32<;⑤()()1≠+>+m b am m b a .其中正确的结论有( )A . 1个B . 2个C . 3个D . 4个 (天津市中考试题)解题思路:由抛物线的位置确定a ,b ,c 的符号,解题关键是对相关代数式的意义从函数角度理解并能综合推理.【例2】 若二次函数c bx ax y ++=2(a ≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),则c b a S ++=的值的变化范围是( )A .0<S <1B . 0<S <2C . 1<S <2D . -1<S <1 (陕西省竞赛试题) 解题思路:设法将S 表示为只含一个字母的代数式,求出相应字母的取值范围,进而确定S 的值的变化范围.【例3】 某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件). 在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面3210米,入水处距池边的距离为4米,同时,运动员在距水面高度5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为533米.此次跳水会不会失误?并通过计算说明理由. (河北省中考试题) 解题思路:对于(2),判断此次跳水会不会失误,关键时求出距池边的水平距离为533米时,该运动员与跳台的垂直距离.【例4】 如图,在直角坐标xOy 中,二次函数图象的顶点坐标为C (4,3-),且在x 轴上截得的线段AB 的长为6.(1)求二次函数的解析式;(2)在y 轴上求作一点P (不写作法),使PA +PC 最小,并求P 点坐标;(3)在x 轴的上方的抛物线上,是否存在点Q ,使得以Q ,A ,B 三点为顶点的三角形与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由. (泰州市中考试题) 解题思路:对于(1)、(2),运用对称方法求出A ,B ,P 点坐标;对于(3),由于未指明对应关系,需分类讨论.【例5】 如图,已知边长为4的正方形截去一个角后成为五边形ABCDE ,其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积. (辽宁省中考试题) 解题思路:设DN =PM =x ,矩形PNDM 的面积为y ,建立y 与x 的函数关系式. 解题的关键是:最值点不一定是抛物线的顶点,应注意自变量的取值范围.PMF E DNCBA【例6】 将抛物线33:211+-=x y c 沿x 轴翻折,得抛物线2c ,如图所示.(1)请直接写出抛物线2c 的表达式.(2)现将抛物线1c 向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线2c 向右也平移移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴的交点从左到右依次为D ,E .①当B ,D 是线段AE 的三等分点时,求m 的值;②在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由. (江西省中考试题) 解题思路:把相应点的坐标用m 的代数式表示,由图形性质建立m 的方程. 因m 值不确定,故解题的关键是分类讨论.能力训练A 级1.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,则a 的值为__________.2.已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴正半轴交于B ,C 两点,且BC =2,ABC S ∆=3,则b =____________. (四川省中考试题)3.已知二次函数c bx ax y ++=2的图象如图所示. (1)这个二次函数的解析式是y =_________; (2)当x =________时,3=y ;(3)根据图象回答,当x _______时,0>y . (常州市中考试题) 4.已知二次函数的图象经过原点及点(21-,41-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为_______________. (安徽省中考试题) 5.二次函数c bx ax y ++=2与一次函数c ax y +=在同一坐标系中的图象大致是( )A B C D6.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数c bx x y ++=2的图象过点(1,0)……求证:这个二次函数的图象关于直线2=x 对称,根据现有信息,题中的二次函数图象不具有的性质是( )A .过点(3,0)B .顶点是(2,-2)C .在x 轴上截得的线段长度是2D .与y 轴的交点是(0,3) (盐城市中考试题) 7.如图,抛物线c bx ax y ++=2与两坐标轴的交点分别是A ,B ,E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系式不能总成立的是( ) (大连市中考试题)A .0=bB . 2c S ABE =∆ C .1-=ac D .0=+c a第7题图 第8题图 8.如图,某中学的校门是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地面4米处高各有一个挂校名横匾用的铁环,两铁环的水平距离为6米,则校门的高为(精确到0.1米,水泥建筑物厚度忽略不计)( )A .9.2米B .9.1米C .9米D .5.1米 (吉林省中考试题)9.如图,是某防空部队进行射击训练时在平面直角坐标系中的示意图. 在地面O ,A 两个观测点测得空中固定目标C 的仰角分别为α和β,OA =1千米,tan α=289, tan β=83,位于O 点正上方35千米D点处的直升机向目标C 发射防空导弹,该导弹运行到达距地面最大高度3千米时,相应的水平距离为4千米(即图中E 点).(1)若导弹运行为一抛物线,求抛物线的解析式;(2)说明按(1)中轨道运行的导弹能否击中目标的理由.(河北省中考试题)10.如图,已知△ABC 为正三角形,D ,E 分别是边AC 、BC 上的点(不在顶点),∠BDE =60°. (1)求证:△DEC ∽△BDA ;(2)若正三角形ABC 的边长为6,并设DC =x ,BE =y ,试求出y 与x 的函数关系式,并求BE 最短时,△BDE 的面积.CEDBA11.如图,在平面直角坐标系中,OB ⊥OA 且OB =2OA ,点A 的坐标是(-1,2). (1)求点B 的坐标;(2)求过点A ,O ,B 的抛物线的解析式;(3)连结AB ,在(2)中的抛物线上求出点P ,使ABO ABP S S ∆∆=.(陕西省中考试题)12.如图,在平面直角坐标系中,抛物线n mx x y ++=2经过点A (3,0),B (0,-3)两点,点P 是直线AB 上一动点,过点P 作x 轴的垂线交抛物线于点M .设点P 的横坐标为t ;(1)分别求直线AB 和这条抛物线的解析式;(2)若点P 在第四象限,连结BM ,AM ,当线段PM 最长时,求△ABM 的面积;(3)是否存在这样的点P ,使得以点P ,M ,B ,O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由. (南宁市中考试题)B 级1.已知二次函数c x x y +-=62的图象顶点与坐标原点的距离为5,则c =________.2.如图,四边形ABCD 是矩形,A ,B 两点在x 的正半轴上,C ,D 两点在抛物线x x y 62+-=上.设OA 的长为m (0<m <3).矩形ABCD 的周长为l ,则l 与m 的函数解析式为__________________.(昆明市中考试题)第2题图 第3题图 第4题图3.如图,在⊙O 的内接△ABC 中,AB +AC =12,AD ⊥BC ,垂足为D (点D 在边BC 上),且AD =3,当AB 的长等于________时, ⊙O 的面积最大,最大面积为___________.4.如图,已知二次函数)0(21≠++=a c bx ax y 与一次函数)0(2≠+=k m kx y 的图象相交于点A (-2,4),B (8,2),则能使21y y >成立的x 的取值范围时______________. (杭州市中考试题) 5.已知函数c bx ax y ++=2的图象如下图所示,则函数c ax y +=的图象只可能是( )(重庆市中考试题)A B C D6.已知二次函数c bx ax y ++=2的图象如图所示,则下列6个代数式:ab ,ac ,c b a ++,c b a +-,b a +2,b a -2中,其值为正的式子个数为 ( )A .2个B .3个C .4个D .4个以上 (全国初中数学联赛试题)7.已知抛物线c bx ax y ++=2(a ≠0)的对称轴是2=x ,且经过点P (3,0)则c b a ++的值为( ) A .-1 B .0 C .1 D .2 8.已知二次函数c bx ax y ++=2(0>a )的对称轴是2=x ,且当0,,2321===x x x π时,二次函数y 的值分别时321,,y y y ,那么321,,y y y 的大小关系是( )A . 321y y y >>B . 321y y y <<C . 312y y y <<D . 312y y y >>9.已知抛物线4)343(2++-=x m mx y 与x 轴交于两点A ,B ,与y 轴交于C 点,若△ABC 是等腰三角形,求抛物线的解析式. (“新世纪杯”初中数学竞赛试题) 10.如图,已知点M ,N 的坐标分别为(0,1),(0,-1),点P 是抛物线241x y =上的一个动点. (1)判断以点P 为圆心,PM 为半径的圆与直线1-=y 的位置关系; (2)设直线PM 与抛物线241x y =的另一个交点为Q ,连结NP ,NQ ,求证:∠PNM =∠QNM . (全国初中数学竞赛试题)11.已知函数122--=x x y 的图象与x 轴相交于相异两点A ,B ,另一抛物线c bx ax y ++=2过点A ,B ,顶点为P ,且△APB 是等腰直角三角形,求a ,b ,c 的值. (天津市竞赛试题)12.如图1,点P 是直线22:--=x y l 上的点,过点P 的另一条直线m 交抛物线2x y =于A ,B 两点.(1)若直线m 的解析式为2321+-=x y ,求A ,B 两点的坐标; (2)如图2,①若点P 的坐标为(-2,t ),当PA =AB 时,请直接写出点A 的坐标;②试证明:对于。

中考数学专题讲座 数形结合思想

中考数学专题讲座 数形结合思想

中考数学专题讲座数形结合思想概述:数形结合思想是教学中的一种重要思想,在解题过程中,•能画出图形的要尽量画出图形,图形能帮助你理解题意,有利于着手解题. 典型例题精析例.以x 为自变量的二次函数y=-x 2+2x+m ,它的图象与y 轴交于点C (0,3),与x 轴交于点A 、B ,点A 在点B 的左边,点O 为坐标原点.(1)求这个二次函数的解析式及点A ,点B 的坐标,画出二次函数的图象;(2)在x 轴上是否存在点Q ,在位于x 轴上方部分的抛物线上是否存在点P ,•使得以A 、P 、Q 三点为顶点的三角形与△AOC 相似(不包含全等),若存在,请求出点P 、点Q 的坐标;若不存在,请说明理由.分析:(1)∵y=-x 2+2x+m 与y 轴交于C (0,3), ∴3=m ,代入y=-x 2+2x+m 得y=-x 2+2x+3, 令-x 2+2x+3=0,x 2-2x-3=0,x 1=-1,x 2=3. ∴A (-1,0),B (3,0),由y=-x 2+2x-1+4, y=-(x-1)2+4,得顶点M (1,4).(2)若存在这样的P 、Q 点,一定是∠PAQ=∠ACO .∵若∠PAQ=∠CAO ,则△ACO ∽△AQP 不合题意, 若∠PAB=90°=∠AOC ,显然P•点不在抛物线上. ∴分∠AQP=90°和∠APQ=90°两种情况考虑.①当∠AOC=∠PQA ,∠ACO=∠PAQ 时,有△AOC ∽△PQA (如图1) 设Q (x 1,0),P (x 1,y 2)由AQ QPOC AO=得 11131x y +=,而y 1=-x 12+2x 1+3, ∴x 1+1=3(-x 12+2x 1+3), 3x 12-5x 1-8=0,x 1=83或x 1=-1(不合题意,舍去)把x 1=83代入y 1=-x 12+2x 1+3=119,∴Q (83,0),P (83,119).∴存在这样的P 、Q 点使得△AOC ∽△PQA .②∠APQ=∠COA=90°,且∠ACO=∠QAP 时,有△AOC ∽△APQM OBCAy xQ P过P作PN⊥x轴于N,设Q(x,0),P(,)由△AOC∽△APQ得AC COAQ AP=2=解得83 27,∴Q(8327,0),P(83,119).∴存在这样的P、Q点使得△AOC∽△APQ说明:(1)在考虑三角形相似时,应考虑不同情况,这是这道题的难点.(2)第二种情况的P点可以认为和第一种情况是同一点.(3)能够求出Q、P点坐标为存在,不能求出P、Q点坐标(即方程无解)为不存在.中考样题看台1.已知四边形ABCD中,AB∥CD,且AB、CD•的长是关于x•的方程x2-2mx+(m-12)+74=0的两个根.(1)当m=2和m>2时,四边形ABCD分别是哪种四边形?并说明理由.(2)若M、N分别是AD、BC中点,线段MN分别交AC、BD于点P、Q,PQ=1,且AB<CD,求AB、CD的长;(3)在(2)的条件下,AD=BC=2,求一个一元二次方程,使它的两个根分别是tan•∠BDC 和tan∠BCD.2.已知,如图,⊙O1与⊙O2外切于点A,BC是⊙1和⊙2的公切线,B、C为切点.(1)求证:AB⊥AC;(2)若r1、r2分别为⊙O1、⊙O2的半径,且r1=2r2,求ABAC的值.3.在平面直角坐标系中,给定五点:A(-2,0),B(1,0),C(4,0)•,D(-2,92),E(0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y轴的直线为对称轴,我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB(如图所示).(1)问符合条件的抛物线还有哪几条?不求解析式,•请用约定的方法一一表示出来;(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线与直线的解析式;如果不存在,请说明理由.4.某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,讨论如下:甲同学:这种多边形不一定是正多边形,如圆内接矩形;乙同学:我发现边数是6,它也不一定是正多边形.如图一,△ABC是正三角形,AD=BE=CF,可以证明六边形ADBECF的各角相等,但它未必是正六边形;丙同学:我能证明,边数是5时,它是正多边形.我想,边数是7时,它可能是正多边形,……(1)请你说明乙同学构造的六边形各角相等;(2)请你证明,各角都相等的圆内接七边形ABCDEFG(如图二)是正七边形(不必写已知、求证);(3)根据以上探索过程,提出你的猜想(不必证明);5.高致病性禽流感是比SARS 病毒传染速度更快的传染病.(1)某养殖场有8万只鸡,假设有1只鸡得了禽流感,如果不采取任何防治措施,那么,到第2天将新增病鸡10只,第3天又将新增病鸡100只,以后每天新增病鸡数依次类推,请问:到第4天,共有多少只鸡得了禽流感?到第几天,该养殖场所有鸡都会被感染.(2)为防止禽流感蔓延,政府规定:离疫点3千米X 围内为扑杀区,•所有禽类全部捕杀;离疫点3千米至5千米X 围内为免疫区,所有的禽类强制免疫;同时,对扑杀区和免疫区的村庄、道路实行全封闭管理,现有一条笔直的公路AB 通过禽流感病区,如图,O 为疫点,在扑杀区内的公路CD 长为4千米,问这条公路在该免疫区内有多少千米.免疫区扑杀区CBOAD考前热身训练1.已知,在半径为r的半圆O中,半径OA⊥直径BC,点E与点F分别在弦AB、AC•上滑动并保持AE=CF,但点F不与A、C重合,点E不与B、A重合.(1)求证:S四边形AEDF=12r2;(2)设AE=x,S△OEF=y,写出y与x之间的函数解析式,并求出自变量x的取值X围;(3)当S△OEF=518S△ABC时,求点E、F分别在AB、AC上的位置及E、F之间的距离.2.已知二次函数y=x2-(m2-4m+52)x-2(m2-4m+92)的图象与x轴的交点为A、B(点B•在点A的右边),与y轴的交点为C.(1)若△ABC为直角三角形,求m的值;(2)在△ABC中,若AC=BC,求∠ACB的正弦值;(3)设△ABC的面积为S,求当m为何值时,S有最小值,并求这个最小值.3.已知抛物线y=ax2+bx+c(a<0)与x轴交于A、B两点,点A在x轴的负半轴上,点B在x 轴的正半轴上,又此抛物线交y轴于点C,连接AC、BC,且满足△OAC的面积与△OBC的面积之差等于两线段OA与OB的积.(1)求b的值;(2)若tan∠CAB=12,抛物线的顶点为点P,是否存在这样的抛物线,使得△PAB•的外接圆半径为134?若存在,求出这样的抛物线的解析式;若不存在,请说明理由.答案中考样题看台1.(1)当m=2时,x2-4x+4=0,∴△=0,∴AB=CD,∵AB∥CD,∴四边形ABCD是平行四边形.当m>2时,△=(-2m)2-4[(m-12)2+74]=m-2>0.又AB+CD=2m>0,AB·CD=(m-12)2+74>0,∴AB≠CD,•∵AB∥CD,∴四边形ABCD是梯形.(2)∵AM=MD,BN=NC,AB∥CD,∴MN∥AB,MN∥CD,∴AP=PC,BQ=QD,∴QD=12DC,PN=12AB,∵AB<CD,PQ=1,∴12DC-12AB=1,∴DC-AB=2,由已知得AB+CD=2m,AB·CD=(m-12)2+74=m2-m+2,∵(DC-AB)2=(DC+AB)2-4DC·AB,∴22=(2m)2-4(m2-m+2),∴m=3,当m=3时,x2-6x+8=0,•∴x1=2,x2=4,∵AB<CD,∴AB=2,CD=4.(3)由(1)知,四边形ABCD是梯形,∵AD=BC,∴四边形ABCD是等腰梯形,•过点B•作BE∥AD,交DC于点E,∴ED=AB=2,∴CE=2,∴BC=BE=CE=2,∴△BEC为等边三角形,•∴∠BCD=60°,∠BDC=30°,∴tan∠,tan∠BDC=3.∴所求方程为y 2-433y+1=0.2.(1)过点A 作两圆的内公切线交BC 于点O ,∴OA=OB ,同理OA=OC ,∴OA=OB=OC ,•于是△BAC 是直角三角形,∠BAC=90°,所以AB ⊥AC . (2)连结OO ,OO ,与AB 、AC 分别交于点E 、F ,∴O 1O ⊥AB . 同理OO 2⊥AC ,根据(1)•的结论AB ⊥AC , 可知四边形OEAF 是矩形,有∠EOF=90°, 连结O 1O 2,有OA ⊥O 1O 2,在Rt △O 1OO 2中,有Rt △O 1AD ∽Rt △OAO 2, 于是OA 2=OA·O 2A=r 1·r 2=2r 22,∴2r 2, 又∵∠ACB 是⊙O 2的弦切角,∴∠ACB=∠AO 2O , 在Rt △OAO 2中,tan ∠AO 2O=2OAO A2, ∴ABAC=tan ∠ACB=tan ∠AO 22. 3.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC ;②抛物线CBE ;•③△DEB ;④抛物线DEC ;⑤抛物线DBC . (2)在(1)中存在抛物线DBC ,它与直线AE 不相交, 设抛物线DBC 的解析式为y=ax 2+bx+c , 将D (-2,92),B (1,0),C (4,0)三点坐标分别代入, 得:942201640a b c a b c a b c ⎧-+=⎪⎪++=⎨⎪++=⎪⎩解这个方程组,得:a=14,b=54,c=1. ∴抛物线DBC 的解析式为y=14x 2-54x+1.另法:设抛物线为y=a (x-1)(x-4),代入D (-2,92),得a=14也可.又设直线AE 的解析式为y=mx+n .将A (-2,0),E (0,-6)两点坐标分别代入,得:206m n n -+=⎧⎨=-⎩解这个方程组,得m=-3,n=-6,∴直线AE 的解析式为y=-3x-6.4.解:(1)由图知∠AFC 对ABC ,因为AD=CF ,而∠DAF 对的DEF=DBC+CF=AD+DBC=ABC , 所以∠AFC=∠DAF .同理可证,其余各角都等于∠AFC . 所以,图1中六边形各内角相等. (2)因为∠A 对BEG ,∠B 对CEA ,又因为∠A=∠B ,所以∠BEG=∠CEA .所以BC=AG ,• 同理AB=CD=EF=AG=BC=DE=FG . 所以,七边ABCDEFG 是七边形.(3)猜想:当边数是奇数时(即当边数是3,5,7,9,……时),• 各内角相等的圆内接多边形是正多边形.5.解:(1)由题意可知,到第4天得禽流感病鸡数为1+10+100+1000=1111.到第5天得禽流感病鸡数为1000+111=11111. 到6天得禽流感病鸡数为100000+11111>800000. 所以,到第6天所有鸡都会被感染.(2)过点O 作OE ⊥CD 交CD 于点E ,连结OC 、OA . ∵OA=5,OC=3,CD=4,∴CE=2, 在Rt•△OCE 中,OE 2=32-22=5.在Rt △OAE 中,22OA OE -5 ∴5-2, ∵AC=BC ,∴5.答:这条公路在该免疫区内有(5)千米. 考前热身训练1.(1)先证△BOE ≌△AOF .∴S 四边形AEOF =S △AOB =12OB ·12OA=r 2.(2)由∠EAF=90°且, ∵y=S △OEF =S 四边形AEOF -S △AEF ,∴y=12x 2rx+12r 2(r ). (3)当S △OEF =518S △ABC 时,即y=518(12·2r ·r )=518r 2∴12x 2-2rx+12r 2=518r 2.即12x 2-2rx+29r 2=0.解之得x 1=3r ,x 2=3r . ∴S △OEF =518S △ABC 时,AE AB =13,AF AC =23或AE AB =23,AF AC =13.当r 时,r ,;当AE=3r 时,AF=3r ,EF=3r . 2.A (-2,0),B (m 2-4m+92,0),C[0,-2(m 2-4m+92)]. (1)m=2.(2)过A 作AD ⊥BC 于D ,sin ∠ACB=AD AC =45. (3)m=2时,S 最小值=54. 3.解:(1)设A (x 1,0),B (x 2,0),由题设可求得C 点的坐标为(0,c ),且x 1<0,x 2>0word11 / 11 ∵a<0,∴c>0由S △AOC -S △BOC =OA ×OB 得:-12x 1c-12x 2c=-x 1x 2 得:12c (-b a )=c a,得:b=-2. (2)设抛物线的对称轴与x 轴交于点M ,与△PAB 的外接圆交于点N . ∵tan ∠CAB=12,∴OA=2·OC=2c , ∴A 点的坐标为(-2c ,0),∵A 点在抛物线上. ∴x=-2c ,y=0,代入y=ax 2-2x+c 得a=-54c . 又∵x 1、x 2为方程ax 2-2x+c=0的两根,∴x 1+x 2=2a 即:-2c+x 2=2a =-85c . ∴x=25c . ∴B 点的坐标为(25c ,0). ∴顶点P 的坐标为(-45c ,95c ). 由相交弦定理得:AM ·BM=PM ·MN .又∵AB=125c ,∴AM=BM=65c ,PM=95c , ∴c=52,a=-12. ∴所求抛物线的函数解析式是:y=-12x 2-2x+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题
27 数形结合
阅读与思考
数学研究的对象是现实世界中的数量关系与空间形式,简单地说就是“数”与“形”,对现实世界的事物,我们既可以从“数”的角度研究,也可以从“形”的角度探讨,我们在研究“数”的性质时,离不开“形”;而在探讨“形”的性质时,也可以借助于“数”.我们把这种由数量关系研究图形性质,或由图形的性质探讨数量关系,即这种“数”与“形”的相互转化的解决数学问题的思想叫作数形结合思想. 数形结合有下列若干途径:
1.借助于平面直角坐标系解代数问题; 2.借助于图形、图表解代数问题;
3.借助于方程(组)或不等式(组)解几何问题; 4.借助于函数解几何问题.
现代心理学表明:人脑左半球主要具有言语的、分析的、逻辑的、抽象思维的功能;右半球主要具有非言语的、综合的、直观的、音乐的、几何图形识别的形象思维的功能.要有效地获得知识,则需要两个半球的协同工作,数形结合分析问题有利于发挥左、右大脑半球的协作功能.
代数表达及其运算,全面、精确、入微,克服了几何直观的许多局限性,正因为如此,笛卡尔创立了解析几何,用代数方法统一处理几何问题.从而成为现代数学的先驱.几何问题代数化乃是数学的一大进步.
例题与求解
【例l 】设1342222+-+++=
x x x x y ,则y 的最小值为___________.(罗马尼亚竞赛试题)
解题思路:若想求出被开方式的最小值,则顾此失彼.()()921122+-+++=
x x y =
()()()()2222302101-+-+-++x x ,于是问题转化为:在x 轴上求一点C (x ,0),使它到两点
A (-1,1)和
B (2,3)的距离之和(即CA +CB )最小.
【例2】直角三角形的两条直角边之长为整数,它的周长是x 厘米,面积是x 平方厘米,这样的直角三角
形 ( )
A .不存在
B .至多1个
C .有4个
D .有2个
(黄冈市竞赛试题) 解题思路:由题意可得若干关系式,若此关系式无解,则可推知满足题设要求的直角三角形不存在;若此关系式有解,则可推知这样的直角三角形存在,且根据解的个数,可确定此直角三角形的个数.
【例3】如图,在△ABC 中,∠A =0
90,∠B =2∠C ,∠B 的平分线交AC 于D ,AE ⊥BC 于E ,DF ⊥BC 于F . 求证:
BE
AE BF AE DF BD ⋅+
⋅=⋅1
11. (湖北省竞赛试题)
解题思路:图形中含多个重要的基本图形,待证结论中的代数迹象十分明显.可依据题设条件,分别计算出各个线段,利用代数法证明.
D
A
C
【例4】 当a 在什么范围内取值时,方程a x x =-52
有且只有相异的两实数根? (四川省联赛试题) 解题思路:从函数的观点看,问题可转化为函数x x y 52
-=与函数a y =(a ≥0)图象有且只有相异两个交点.作出函数图象,由图象可直观地得a 的取值范围.
【例5】 设△ABC 三边上的三个内接正方形(有两个顶点在三角形的一边上,另两个顶点分别在三角
形另两边上)的面积都相等,证明:△ABC 为正三角形. (江苏省竞赛试题)
解题思路:设△ABC 三边长分别为a ,b ,c ,对应边上的高分别为a h ,b h ,c h ,△ABC 的面积为S ,则易得三个内接正方形边长分别为
a h a S +2,
b h b S +2,c
h c S
+2,由题意得c b a h c h b h a +=+=+,即L c
S
c b S b a S a =+=+=+
222.则a ,b ,c 适合方程L x S x =+2.
【例6】设正数x ,y ,z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++16
9
32532
2
22
2
2x zx z z y y xy x ,求zx yz xy 32++的值. (俄罗斯中学生数学竞赛试题)
能力训练
1. 不查表可求得tan 0
15的值为__________.
2. 如图,点A ,C 都在函数x
y 3
3=
(0>x )的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为______________. (全国初中数学联赛试题) 3.平面直角坐标系上有点P (-1,-2)和点Q (4,2),取点R (1,m ),当=m ________时,PR +RQ 有最小值.
4.若0>a ,0<b ,要使b a b x a x -=-+-成立,x 的取值范围是__________.
5.已知AB 是半径为1的⊙O 的弦,AB 的长为方程012
=-+x x 的正根,则∠AOB 的度数是______________. (太原市竞赛试题)
6. 如图,所在正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依 次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )
A . (13,13)
B .(-13,-13) C.(14,14) D. (-14,一14)
y
x
D
B O
A
C
y
x
O
A 2
A 1A 3
A 4
A 6
A 5A 8
A 7
A 10
A 9
A 12
A 11
第2题图 第6题图
7.在△ABC 中,∠C =0
90,AC =3,BC =4.在△ABD 中,∠A =0
90,AD =12.点C 和点D 分居AB 两侧,过点D 且平行于AC 的直线交CB 的延长线于E .如果n
m
DB DE =,其中,m ,
n 是互质的正整数,那么n m += ( )
A. 25
B.128
C.153
D.243
E.256 (美国数学统一考试题) 8.设a ,b ,c 分别是△ABC 的三边的长,且
c
b a b a b a +++=,则它的内角∠A ,∠B 的关系是( ) A .∠B >2∠A B .∠B=2∠A C .∠B <2∠A D .不确定 9.如图,a S AFG 5=∆,a S ACG 4=∆,a S BFG 7=∆,则=∆AEG S ( ) A .
a 1127 B .a 1128 C .a 1129 D .a 11
30
10. 满足两条直角边边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( ) A. 1个 B .2个 C .3个 D .无穷多个
11.如图,关于x 的二次函数m mx x y --=22
的图象与x 轴交于A (1x ,0),B (2x ,0)两点(2x >0>1x ),与y 轴交于C 点,且∠BAC =∠BCO . (1) 求这个二次函数的解析式;
(2) 以点D (2,0)为圆心⊙D ,与y 轴相切于点O ,过=抛物线上一点E (3x ,t )(t >0,3x <0)作x 轴的平行线与⊙D 交于F ,G 两点,与抛物线交于另一点H .问是否存在实数t ,使得EF +GH =CF ?如
果存在,求出t 的值;如果不存在,请说明理由. (武汉市中考题)
12.已知正数a ,b ,c ,A ,B ,C 满足a +A =b +B =c +C =k . 求证:a B 十b C +c A <2
k .
13.如图,一个圆与一个正三角形的三边交于六点,已知AG =2,GF =13,FC =1,HI =7,求DE . (美国数学邀请赛试题)
第13题图
B
14.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC //QN ,AM =MB = 2cm ,QM = 4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△
ABC 的边相切(切点在边上).请写出t 可以取的一切值:_______________(单位:秒).
第14题图
15. 如图,已知D 是△ABC 边AC 上的一点,AD :DC =2:1,∠C =045,∠ADB =0
60. 求证:AB 是△BCD 的外接圆的切线.
(全国初中数学联赛试题)
16.如图,在△ABC 中,作一条直线l ∥BC ,且与AB 、AC 分别相交于D ,E 两点,记△ABC ,△BED 的面积分别为S ,.求证:≤
S 4
1
. (长春市竞赛试题)
l
第16题图
D
B
C
A E
17.如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2). 在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标. (江苏省竞赛试题)
y x
第17题图
=2x O B
A。

相关文档
最新文档