二数形结合在函数中的应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二) 数形结合在函数中的应用

1. 利用数形结合解决与方程的根有关的问题

方程的解的问题可以转化为曲线的交点问题,从而把代数与几何有机地结合起来,使问题的解决得到简化.

【例5】已知方程︱x2-4x+3︱=m有4个根,则实数m的取值范围.

【分析】此题并不涉及方程根的具体值,只求根的个数,而求方程的根的个数问题可以转化为求两条曲线的交点的个数问题来解决.

解:方程x2-4x+3=m根的个数问题就是函数y=︱x2-4x+3︱与函数y=m图象的交点的个数.

作出抛物线y=x2-4x+3=(x-2)2-1的图象,将x轴下方的图象沿x轴翻折上去,得到y=x2-4x+3的图象,再作直线y=m,如图所示:由图象可以看出,当0

数形结合可用于解决方程的解的问题,准确合理地作出满足题意的图象

是解决这类问题的前提.

2. 利用数形结合解决函数的单调性问题

函数的单调性是函数的一条重要性质,也是高考中的热点问题之一.在解决

有关问题时,我们常需要先确定函数的单调性及单调区间,数形结合是确定函数单调性常用的数学思想,函数的单调区间形象直观地反映在函数的图象中.

【例6】确定函数y=的单调区间.

画出函数的草图,由图象可知,函数的单调递增区间为(-∞,0],[1,+∞),函数的单调递减区间为[0,1].

3. 利用数形结合解决比较数值大小的问题

【例7】已知定义在R上的函数y=f(x)满足下列三个条件:①对任意的x∈R都有f(x+4)=f(x);②对任意的0≤x1

解:由①:T=4;由②:f(x)在[0,2]上是增函数;由③:f(-x-2)=f(x+2),所以f(x)的图象关于直线x=2对称.由此,画出示意图便可比较大小.

显然,f(4.5)

4. 利用数形结合解决抽象函数问题

抽象函数问题是近几年高考中经常出现的问题,是高考中的难点.利用数形结合常能使我们找到解决此类问题的捷径.

【例8】设f(x),g(x)分别是定义在R上的奇函数和偶函数,在区间[a,b](a0,且f(x)·g(x)有最小值-5.则函数y=f(x)·g(x)在区间[-b,-a]上().

A. 是增函数且有最小值-5

B. 是减函数且有最小值-5

C. 是增函数且有最大值5

D. 是减函数且有最大值5

【解析】f′(x)g(x)+f(x)g′(x)=[f(x)·g(x)]′>0.

∴y=f(x)·g(x)在区间[a,b](a

又∵f(x),g(x)分别是定义在R上的奇函数和偶函数.

∴y=f(x)·g(x)是奇函数.

因此它的图象关于原点对称,作出示意图,易知函数y=f(x)·g(x)在区间[-b,-a]上是增函数且有最大值5,因此选C.

(三)运用数形结合思想解不等式

1. 求参数的取值范围

【例9】若不等式>ax的解集是{x|0

A. [0,+∞)B. (-∞,4]

C. (-∞,0)D. (-∞,0]

解:令f(x)=,g(x)=ax,则f(x)=的图象是以(2,0)为圆心,以2为半径的圆的上半部分,包括点(4,0),不包括点(0,0);g(x)=ax的图象是通过原点、斜率为a的直线,由已知>ax的解集是{x|0

【点评】本题很好的体现了数形结合思想在解题中的妙用.

【例10】若x∈(1,2)时,不等式(x-1)2

A. (0,1)B. (1,2)

C. (1,2]D. [1,2]

解:设y1=(x-1)2(1

由图可知若y11.

y1=(x-1)2过(2,1)点,当y2=logax也过(2,1)点,即a=2时,恰有y1

∴1

【点评】例1、例2两题的求解实际上综合运用了函数与方程以及数形结合的思想方法.

2. 解不等式

【例11】已知f(x)是R上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a>0),那么不等式xf(x)<0的解集是().

A. {x|0a}

C. {x|-a

解:依题意得f(x)是R上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a>0),可得到f(x)图象,又由已知xf(x)<0,可知x与f(x)异号,从图象可知,当x∈(-a,0)∪(a,+∞)时满足题意,故选B.

【例12】设函数f(x)=2,求使f(x)≥2的取值范围.

【解法1】由f(x)≥2得2≥2=2.

易求出g(x)和h(x)的图象的交点立时,x的取值范围为[,+∞).

【解法3】由的几何意义可设F1(-1,0),F2(1,0),M(x,y),则,可知M的轨迹是以F1、F2为焦点的双曲

线的右支,其中右顶点为(,0),由双曲线的图象和x+1-x-1≥知x≥.

【点评】本题的三种解法都是从不同角度构造函数或不等式的几何意义,让不等式的解集直观地表现出来,体现出数形结合的思想,给我们以“柳暗花明”的解题情境.

相关文档
最新文档