1 热力学第一定律
热力学第一定律
![热力学第一定律](https://img.taocdn.com/s3/m/e1810741804d2b160b4ec0cd.png)
热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫ ⎝⎛∂∂+dp p H T⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=V T p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T VT S ⎪⎭⎫⎝⎛∂∂ C p =T p T S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
热力学第一定律1
![热力学第一定律1](https://img.taocdn.com/s3/m/5a689410a76e58fafab0039b.png)
e2 p2v2 u2 ek 2 e p 2 p2v2 h2 gz2
e1 p1v1 u1 ek1 e p1 p1v1 h1 gz1
q (h2 h1) (c c ) g(z2 z1) W
2 2 2 1
Qnet=Wnet
qnet=wnet
系统吸热为正,对外做功为正, 正负号规定: 热力学能增大为正;反之为负。
[例1] 一定量气体在气缸内体积由0.9 m3可逆地膨胀到 1.4m3,过程中气体压力保持定值,且p=0.2MPa。若 在此过程中气体热力学能增加12000J,试求: (1)此过程中气体吸入或放出的热量。 (2)若活塞质量为20kg,且初始时活塞静止,求终 态时活塞的速度。已知环境压力p0 = 0.1MPa。
开、出口处工质的状态不随时间而变; (2)进、出口处工质流量相等且不随时间而 变,满足质量守恒条件; (3)系统和外界交换的热和功等一切能量不 随时间而变,满足能量守恒条件。
热力系统在任何截面上 工质的一切参数都不随 时间而变的流动。
稳定工作的电热水器:进口质量m1与出口质 量m2相同,热水器向外界散失热量为Q,电 热元件的电功为W. 根据热力学第一定律最基本表达式:
解:(1)取气缸内的气体为系统。是闭口系,其能量方程为
Q U W
由题意,U=12000 J。由于过程可逆,且压力为常数,故
W pdV p(V2 V1) 100000 J
1
2
故
Q =12000+100000 =112000 J
因此,过程中气体从外界吸热 112000 J。
闭口系统的热力学第一定律表达式
一般式 Q = U + W dQ = dU + dW
热力学第一定律
![热力学第一定律](https://img.taocdn.com/s3/m/3e12e4c34028915f804dc22f.png)
= PdV
A=
∫
V2
V1
pdV
7
A =
∫ dA = ∫
V2
V1
pdV
dV > 0, dA > 0, 系统对外作正功;
dV < 0,dA < 0, 系统对外作负功;
dV = 0,dA = 0, 系统不作功。
A = ∫ pdV
V1
V2
由积分意义可知,功的大小等于p—V 图上过程 曲线p(V)下的面积。功的数值不仅与初态和末 态有关,而且还依赖于所经历的中间状态,功 8 与过程的路径有关.
QT 热源 Q V
等容过程
热源 QP
等压过程
T 恒温大 V
6
三、功 热量 内能 dx 1功 如图示的热力学系统: P S 若过程为无摩擦的准静 态过程 活塞迎着气体一侧的面积为S气体膨胀推动活塞对 外作功:
dA =
当系统体积从 V1→ V2,系统对外界作功:
F Fdx = S Sdx
在等温过程中,理想气体吸热全部用于对外作 功,或外界对气体作功全转换为气体放出的热。 22
四、绝热过程
系统在状态变化过程中始终与外界没有热交换。
绝热膨胀过程中,系统对外作的功,是靠内能减少实 现的,故温度降低;绝热压缩过程中,外界对气体作 功全部用于增加气体内能,故温度上升。 绝热过程方程: 气体绝热自由膨胀 Q=0, A=0,△E=0
14
Q=∫
V2
V1
i pdV + νR(T2 − T1 ) 2
Q = ( E 2 − E 1) + A = ∆ E + A
热力学第一定律,是包含热量在内的能量守恒定律。
Q>0 Q<0
热力学第一定律
![热力学第一定律](https://img.taocdn.com/s3/m/4bb8e7601ed9ad51f01df290.png)
1.热力学第一定律热力学第一定律的主要内容,就是能量守恒原理。
能量可以在一物体与其他物体之间传递,可以从一种形式转化成另一种形式,但是不能无中生有,也不能自行消失。
而不同形式的能量在相互转化时永远是数量相当的。
这一原理,在现在看来似乎是顺理成章的,但他的建立却经历了许多失败和教训。
一百多年前西方工业革命,发明了蒸汽机,人们对改进蒸汽机产生了浓厚的兴趣。
总想造成不供能量或者少供能量而多做功的机器,曾兴起过制造“第一类永动机”的热潮。
所谓第一类永动机就是不需供给热量,不需消耗燃料而能不断循环做工的机器。
设计方案之多,但是成千上万份的设计中,没有一个能实现的。
人们从这类经验中逐渐认识到,能量是不能无中生有的,自生自灭的。
第一类永动机是不可能制成的,这就是能量守恒原理。
到了1840年,由焦耳和迈尔作了大量试验,测量了热和功转换过程中,消耗多少功会得到多少热,证明了热和机械功的转换具有严格的不变的当量关系。
想得到1J的机械功,一定要消耗0.239卡热,得到1卡热,一定要消耗4.184J的功,这就是著名的热功当量。
1cal = 4.1840J热功当量的测定试验,给能量守恒原理提供了科学依据,使这一原理得到了更为普遍的承认,牢牢的确立起来。
至今,无论是微观世界中物质的运动,还是宏观世界中的物质变化都无一例外的符合能量守恒原理。
把这一原理运用到宏观的热力学体系,就形成了热力学第一定律。
2.热力学第二定律能量守恒和转化定律就是热力学第一定律,或者说热力学第一定律是能量守恒和转化定律在热力学上的表现。
它指明热是物质运动的一种形式,物质系统从外界吸收的热量等于这个能的增加量和它对外所作的功的总和。
也就是说想制造一种不消耗任何能量就能永远作功的机器,即“第一种永动机”,是不可能的。
人们继续研究热机效率问题,试图从单一热源吸取能量去制作会永远作功的机器,这种机器并不违背能量守恒定律,只需将热源降温而利用其能量推动机器不断运转。
什么是热力学第一定律
![什么是热力学第一定律](https://img.taocdn.com/s3/m/ed250b74842458fb770bf78a6529647d2628347d.png)
什么是热力学第一定律?热力学第一定律是热力学的基本原理之一,也被称为能量守恒定律。
它描述了能量在物质系统中的转化和守恒。
热力学第一定律可以通过以下几个方面来解释:1. 能量守恒:热力学第一定律表明,在一个封闭的系统中,能量不能被创建或破坏,只能从一种形式转化为另一种形式。
系统的总能量保持不变。
2. 内能:内能是物质系统中分子和原子的热运动能量的总和。
热力学第一定律描述了内能的转化和守恒。
当一个物质系统发生能量转移时,其内能会发生相应的变化。
3. 热量和功:热力学第一定律将能量转移分为两种方式:热量和功。
热量是由于温度差异而传递的能量,而功是通过外界对系统施加的力来进行的能量转移。
4. 系统的能量平衡方程:热力学第一定律可以用一个能量平衡方程来表示。
根据这个方程,系统的内能变化等于系统所接收的热量减去系统所做的功。
热力学第一定律的应用:热力学第一定律在许多领域有广泛的应用,包括工程、化学、天文学等。
以下是一些应用示例:1. 热效率:热力学第一定律可用于计算热机的热效率。
热机是将热能转化为机械能的设备,如汽车发动机和蒸汽轮机。
根据第一定律,热机的热效率定义为所产生的功与所吸收的热量之比。
2. 化学反应:热力学第一定律可以用于研究化学反应的能量变化。
化学反应中的能量变化可以通过测量反应的热效应来获得,例如焓变。
3. 热力学循环:热力学第一定律对于分析和设计热力学循环非常重要。
热力学循环是一种将热能转化为功的过程,如蒸汽动力循环和制冷循环。
根据第一定律,循环过程中的能量转移必须满足能量守恒。
4. 天体物理学:热力学第一定律在天体物理学中也有重要的应用。
它可以用于研究星体的能量转移和恒星的能量产生。
通过分析恒星的内部能量转化过程,我们可以了解恒星的演化和能量平衡。
总结起来,热力学第一定律是能量守恒的基本原理。
它描述了能量在物质系统中的转化和守恒。
热力学第一定律在能量转移、热效率、化学反应、热力学循环和天体物理学等领域具有重要的应用价值。
热力学第一定律
![热力学第一定律](https://img.taocdn.com/s3/m/9e19608bec3a87c24028c427.png)
热力学第一定律科技名词定义中文名称:热力学第一定律英文名称:first law of thermodynamics其他名称:能量守恒和转换定律定义:热力系内物质的能量可以传递,其形式可以转换,在转换和传递过程中各种形式能源的总量保持不变。
概述热力学第一定律热力学第一定律:△U=Q+W。
系统在过程中能量的变化关系英文翻译:the first law of thermodynamics简单解释在热力学中,系统发生变化时,设与环境之间交换的热为Q(吸热为正,放热为负),与环境交换的功为W(对外做功为负,外界对物体做功为正),可得热力学能(亦称内能)的变化为ΔU = Q+ W或ΔU=Q-W物理中普遍使用第一种,而化学中通常是说系统对外做功,故会用后一种。
定义自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。
英文翻译:The first explicit statement of the first law of thermodynamics, byRudolf Clausiusin 1850, referred to cyclic thermodynamic processes "In all cases in which work is produced by the agency of heat, a quantity of heat is consumed which is proportional to the work done; and conversely, by the expenditure of an equal quantity of work an equal quantity of heat is produced."基本内容能量是永恒的,不会被制造出来,也不会被消灭。
热力学第一定律能量守恒定律
![热力学第一定律能量守恒定律](https://img.taocdn.com/s3/m/06a986003868011ca300a6c30c2259010202f39a.png)
热力学第一定律能量守恒定律1热力学第一定律的基本概念热力学第一定律是热力学中最基本的定律之一,它也被称为能量守恒定律。
这个定律表达了宇宙中能量守恒的基本规律:在任何系统中,能量总是守恒的。
也就是说,能量不能被创造或破坏,只能转换成其他形式。
这个定律用简单的数学公式表达为:ΔE=Q-W其中,ΔE代表能量的变化量,Q代表系统吸收的热量,W代表系统对外做功的量。
这个公式表明,系统所吸收的热量和对外做的功之和等于能量的变化量。
它也可以用下面的形式表达:∆U=Q-W其中,∆U代表系统内部能量的变化量。
这个公式表明,系统内部能量的变化量取决于吸收的热量和对外做的功的差异。
2能量的转换和守恒热力学第一定律的本质是能量守恒定律。
能量是一个宇宙中最基本的物理量之一,它包括热能、机械能、电能、化学能等各种形式。
在热力学研究中,我们主要关注的是热能和机械能的相互转换。
热能和机械能的转换通常涉及到工作物体和热源之间的能量交换。
例如,将一份热水加热到沸腾所需要的能量就来自于热源的热能。
如果我们将这个热水倒入一个容器中,它们就在容器的底部对容器产生了一个压力。
这个压力实际上就是机械能,它可以用来做功或者产生运动。
在能量的转换过程中,能量总是守恒的。
这意味着,在系统中能量的总量是不变的,只有能量的形式发生了变化。
因此,如果一个系统吸收热量Q,做了W单位的功,那么系统内部能量的变化量就是ΔE=Q-W,这个量可以用来计算系统所获得或失去的能量。
3热力学第一定律在实际生活中的应用热力学第一定律是一项非常基础的物理定律,影响到人类社会的各个领域。
在能源方面,热力学第一定律的应用非常广泛。
例如,在燃煤、核能发电等领域中,我们都需要利用热力学第一定律来分析能量的转换和利用方式。
在化学工程领域,热力学第一定律也是必不可少的工具。
例如,在制造化学反应器时,我们需要利用热力学第一定律确定系统的能量输出和输入,以便计算反应过程中的热量变化和温度变化。
热力学第一定律
![热力学第一定律](https://img.taocdn.com/s3/m/6151b419ff00bed5b9f31d88.png)
W>0 对系统作功
闭口系统的热力学第一定律表达式
一般式 Q = ∆U + W dQ = dU + dW q = ∆u + w dq = du + dw 适用条件: ) 适用条件: 1)任何工质 2) 任何过程 Q
微分形式 单位质量工质
W
闭口系统的热力学第一定律表达式
对于可逆过程 对于可逆过程
δw = pdv
实质:能量转换和守恒定律在热力学系统中的应用。 实质:能量转换和守恒定律在热力学系统中的应用。 可表述为: 可表述为:在孤立系统内能量的总量保持不变
能量守恒与转换定律:能量不可能被创造, 能量守恒与转换定律 能量不可能被创造,也不可能被消 能量不可能被创造 只能相互转换,且在孤立系统中总量保持不变。 灭,只能相互转换,且在孤立系统中总量保持不变。
• 18世纪初,工业革命,热效率只有 。 世纪初, 世纪初 工业革命,热效率只有1%。 • 1842年,J.R.Mayer阐述热力学第一定律, 年 阐述热力学第一定律, 阐述热力学第一定律 但没有引起重视。 但没有引起重视。 • 1840-1849年,Joule用多种实验的一致性证 1840-1849年 Joule用多种实验的一致性证 明热力学第一定律, 明热力学第一定律,于1850年发表并得到公 年发表并得到公 认。
• 第一 什么是热力学第一定律? 什么是热力学第一定律? 热力系内物质的能量可以传递,其形式可以转换,在转 热力系内物质的能量可以传递,其形式可以转换, 换和传递过程中各种形式能源的总量保持不变。 换和传递过程中各种形式能源的总量保持不变。 • 第二 为什么要学习热力学第一定律? 为什么要学习热力学第一定律? 物质和能量既不能被消灭也不能被创造。 物质和能量既不能被消灭也不能被创造。 • 第三 热力学第一定律的应用? 热力学第一定律的应用? 第一类永动机是不可能造成的
热力学第一定律
![热力学第一定律](https://img.taocdn.com/s3/m/9e6a87d75fbfc77da269b190.png)
热 力 学第一章 热力学第一定律§1 热力学第一定律 一.准静态过程系统的状态发生变化时—系统在经历一个过程。
过程进行的任一时刻,系统的状态并非平衡态.热力学中,为能利用平衡态的性质,引入准静态过程的概念。
性质:1.准静态过程:是由无数个平衡态组成的过程即系统的每个中间态都是平衡态。
2.准静态过程是一个理想化的过程,是实际过程的近似。
实际过程仅当进行得无限缓慢时才可看作是准静态过程 。
·拉动活塞,使系统由平衡态1 →状态2,过程中系统内各处的密度(压强、温度)并不完全相同,要过一会儿时间,状态 2才能达到新的平衡。
所以,只有过程进行得无限缓慢,每个中间态才可看作是平衡态。
☆怎样判断“无限缓慢”?弛豫时间τ:系统由非平衡态到平衡态所需时间。
准静态过程条件: ∆t 过程进行 >> τ例如,实际汽缸的压缩过程可看作准静态过程, ∆t 过程进行 = 0.1秒τ = 容器线度/分子速度= 0.1米/100米/秒 = 10-3秒3.过程曲线:准静态过程可用P -V 图上 一条线表示。
状态1状态2二.功、内能、热量1.功 ·通过作功可以改变系统的状态。
·机械功(摩擦功、体积功)2.内能·内能包含系统内:(1)分子热运动的能量;(2)分子间势能和分子内的势能;(3)分子内部、原子内部运动的能量; (4)电场能、磁场能等。
·内能是状态的函数*对于一定质量的某种气体,内能一般是T 、V 或P 的函数; *对于理想气体,内能只是温度的函数 E = E (T )*对于刚性理想气体分子, i :自由度; ν :摩尔数 ·通过作功改变系统内能的实质是:分子的有规则运动能量和分子的无规则运动能量的转化和传递。
3.热量·传热也可改变系统的状态,其条件是系统和外界的温度不同。
·传热的微观本质:是分子的无规则运动能量从高温物体向低温物体传递。
热力学第一定律
![热力学第一定律](https://img.taocdn.com/s3/m/a2fa486f905f804d2b160b4e767f5acfa1c7832e.png)
热力学第一定律热力学第一定律是热力学中最基本的定律之一,也被称为能量守恒定律。
它描述了能量在物质系统中的转化和守恒关系。
在本文中,我们将深入探讨热力学第一定律的原理和应用。
1. 热力学第一定律的原理热力学第一定律表明,一个系统的内能的增量等于吸热与做功之和。
简单来说,即能量的增加等于热量输入和功输入之和。
在一个封闭系统中,内能变化可以表示为ΔU = Q + W,其中ΔU表示内能变化量,Q表示吸热,W表示做功。
根据能量的守恒原理,一个系统的能量不会凭空消失或增加,而是转化成其他形式。
2. 热力学第一定律的应用热力学第一定律在各个领域都有广泛的应用。
以下是其中一些常见的应用场景:2.1. 理想气体的过程分析在理想气体的过程分析中,热力学第一定律被广泛应用于计算气体的工作、吸热和内能变化等参数。
根据热力学第一定律的原理,我们可以通过测量系统吸热和做功的量来计算内能的变化。
2.2. 热机效率的计算热力学第一定律也可用于计算热机的效率。
根据热力学第一定律原理,热机的效率可以表示为η = 1 - Q2/Q1,其中Q1表示热机输入的热量,Q2表示热机输出的热量。
通过计算输入和输出的热量可以确定热机的效率。
2.3. 化学反应的能量变化热力学第一定律也可用于描述化学反应的能量变化。
在化学反应中,热力学第一定律可以帮助我们计算反应的吸热或放热量,从而确定反应是否放热或吸热以及能量变化的大小。
3. 热力学第一定律在能源利用中的应用能源利用是热力学第一定律的一个重要应用领域。
通过研究能源的转化过程和能量损失,我们可以更有效地利用能源资源。
3.1. 热力学循环热力学循环是将热能转化为功的过程,如蒸汽轮机和内燃机。
通过分析热力学循环中各个环节的能量转化和损失,可以优化循环系统的效率,提高能源利用率。
3.2. 可再生能源利用热力学第一定律也可以应用于可再生能源的利用。
通过分析可再生能源的收集、转化和储存过程中的能量转化和守恒关系,可以优化利用这些能源的方式,减少能量的损失和浪费。
热力学第一定律的表达式
![热力学第一定律的表达式](https://img.taocdn.com/s3/m/8d18a7ab112de2bd960590c69ec3d5bbfd0ada24.png)
热力学第一定律的表达式热力学第一定律的表达式:ΔE=W+Q。
在热力学中,热力学第一定律通常表述为:热能和机械能在转化时,总能量保持不变。
其数学表达式为ΔE=W+Q,其中ΔE表示系统内能的改变,W表示系统对外所做的功,Q表示系统从外界吸收的热量。
这个定律表明,能量的转化和守恒定律是自然界的基本定律之一,它适用于任何与外界没有能量交换的孤立系统。
换句话说,在一个封闭系统中,能量的总量是恒定的,改变的只是能量的形式。
因此,热力学第一定律是能量守恒定律在热现象领域中的应用。
另外,对于一个封闭系统,如果系统内部没有发生化学反应或相变等过程,那么系统对外做的功等于系统从外界吸收的热量。
这是因为系统内能的改变量等于系统对外做的功和系统从外界吸收的热量之和。
值得注意的是,热力学第一定律也适用于非平衡态系统。
即使系统处于非平衡态,热力学第一定律仍然适用。
因此,它不仅是热力学的基石之一,也是整个物理学的基石之一。
为了更好地理解热力学第一定律,我们可以考虑一些具体的应用场景。
例如,在汽车发动机中,汽油燃烧产生的热能转化为汽车的动能和废气中的内能。
在这个过程中,系统内能的改变量等于系统对外做的功和系统从外界吸收的热量之和。
因此,根据热力学第一定律,我们可以计算出汽车发动机的效率,从而评估其能源利用效果。
此外,热力学第一定律还可以应用于电学、化学等领域。
例如,在电学中,当电流通过电阻时会产生热量,根据热力学第一定律可以计算出电阻产生的热量。
在化学中,反应热的计算也可以根据热力学第一定律来进行。
以下是一些具体例子,说明热力学第一定律的应用:1. 热电站:在热电站中,燃料燃烧产生的热能转化为蒸汽的机械能,再转化为电能。
根据热力学第一定律,热能被转化为机械能和电能,而总能量保持不变。
通过计算输入和输出的能量,我们可以评估热电站的效率。
2. 制冷机:制冷机是一种将热量从低温处转移到高温处的设备。
在制冷过程中,制冷剂在蒸发器中吸收热量并转化为气态,然后通过压缩机和冷凝器将热量释放到高温处。
第一章热力学第一定律章总结
![第一章热力学第一定律章总结](https://img.taocdn.com/s3/m/f9ab484652d380eb63946d10.png)
第一章热力学第一定律本章主要公式及其使用条件一、热力学第一定律W Q U +∆= W Q dU δδ+=热力学中规定体系吸热为正值,体系放热为负值;体系对环境作功为负值,环境对体系作功为正值。
功分为体积功和非体积功。
二、体积功的计算体积功:在一定的环境压力下,体系的体积发生改变而与环境交换的能量。
体积功公式⎰⋅-=dV p W 外 1 气体向真空膨胀:W =0 2气体在恒压过程:)(12 21V V p dV p W V V --=-=⎰外外3理想气体等温可逆过程:2112ln lnp p nRT V V nRT W -=-= 4理想气体绝热可逆过程:)(12,T T nC W U m V -=∆=理想气体绝热可逆过程中的p ,V ,T 可利用下面两式计算求解1212,ln ln V V R T T C m V -=21,12,ln lnV V C p p C m p m V =三、热的计算热:体系与环境之间由于存在温度差而引起的能量传递形式。
1. 定容热与定压热及两者关系定容热:只做体积功的封闭体系发生定容变化时, U Q V ∆= 定压热:只做体积功的封闭体系定压下发生变化, Q p = ΔH定容反应热Q V 与定压反应热Q p 的关系:V p Q Q V p ∆+= nRT U H ∆+∆=∆n ∆为产物与反应物中气体物质的量之差。
或者∑+=RT g Q Q m V m p )(,,ν ∑+∆=∆RT g U Hm m)(ν式中∑)(g ν为进行1mol 反应进度时,化学反应式中气态物质计量系数的代数和。
2.热容 1.热容的定义式dTQ C δ=dT Q C VV δ=dT Q C pp δ=n CC VmV =,n C C p m p =, C V ,C p 是广度性质的状态函数,C V ,m ,C p,m 是强度性质的状态函数。
2.理想气体的热容对于理想气体 C p ,m - C V ,m =R 单原子理想气体 C V ,m = 23R ;C p ,m = 25R 双原子理想气体 C V ,m =25R ;C p ,m = 27R 多原子理想气体: C V ,m = 3R ;C p ,m = 4R通常温度下,理想气体的C V ,m 和C p,m 均可视为常数。
热力学第一定律精选全文完整版
![热力学第一定律精选全文完整版](https://img.taocdn.com/s3/m/6661327adc36a32d7375a417866fb84ae55cc36b.png)
可编辑修改精选全文完整版热力学第一定律科技名词定义中文名称:热力学第一定律英文名称:first law of thermodynamics其他名称:能量守恒和转换定律定义:热力系内物质的能量可以传递,其形式可以转换,在转换和传递过程中各种形式能源的总量保持不变。
概述热力学第一定律热力学第一定律:△U=Q+W。
系统在过程中能量的变化关系英文翻译:the first law of thermodynamics简单解释在热力学中,系统发生变化时,设与环境之间交换的热为Q(吸热为正,放热为负),与环境交换的功为W(对外做功为负,外界对物体做功为正),可得热力学能(亦称内能)的变化为ΔU = Q+ W或ΔU=Q-W物理中普遍使用第一种,而化学中通常是说系统对外做功,故会用后一种。
定义自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。
英文翻译:The first explicit statement of the first law of thermodynamics, byRudolf Clausiusin 1850, referred to cyclic thermodynamic processes "In all cases in which work is produced by the agency of heat, a quantity of heat is consumed which is proportional to the work done; and conversely,by the expenditure of an equal quantity of work an equal quantity of heat is produced."基本内容能量是永恒的,不会被制造出来,也不会被消灭。
热力第一定律
![热力第一定律](https://img.taocdn.com/s3/m/ae44248f02d276a200292e80.png)
热力学第一定律热力学第一定律是能量守恒原理的一种表达方式。
此定律曰:在一个热力学系统内,能量可转换,即可从一种形式转变成另一种形式,但不能自行产生,也不能毁灭。
一般公式化为:一个系统内能的改变等于供给系统的热量减去系统对外环境所作的功。
热力学第一定律是生物,物理化学等学科的重要定律。
20本词条无基本信息模块, 正文缺少最新信息, 欢迎各位编辑词条,额外获取20个积分。
基本信息∙中文名称热力学第一定律∙外文名称the first law of thermodynamics∙应用学科物理∙提出时间19世纪50年代∙提出者迈耳 J.R.Mayer、焦耳 T.P.Joule∙表达式△U=Q+W目录1 基本介绍1.1 简单解释1.2 定义1.3 基本内容2 发展历史2.1 发展历史2.2 表述展开1 基本介绍1.1 简单解释1.2 定义1.3 基本内容2 发展历史2.1 发展历史2.2 表述+1QQ空间新浪微博腾讯微博百度贴吧人人豆瓣基本介绍编辑本段热力学第一定律:△U=Q+W。
系统在过程中能量的变化关系英文翻译:the first law of thermodynamics简单解释在热力学中,系统发生变化时,设与环境之间交换的热为Q,与环境交换的功为W,可得热力学能(亦称内能)的变化为ΔU = Q+ W或ΔU=Q-W(目前通用这两种说法,以前一种用的多),为了避免混淆,物理中普遍使用第一种,而化学中通常是说系统对外做功,故会用后一种。
定义自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。
英文翻译:The first explicit statement of the first law of thermodynamics, by Rudolf Clausius in 1850, referred to cyclic thermodynamic processes"In all cases in which work is produced by the agency of heat, a quantity of heat is consumed which is proportional to the work done; and conversely, by the expenditure of an equal quantity of work an equal quantity of heat is produced."基本内容热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。
热力学第一定律
![热力学第一定律](https://img.taocdn.com/s3/m/a664b42c854769eae009581b6bd97f192279bf89.png)
二、推动功(或流动功) 除了体积功这类与系统的界面移动有关的功外,还有因工质在开口系统中流动而传递的功,称之为推动功或流动功。对开口系统进行功的计算时需要考虑这种功。
第六章 热力学第一定律
图6-2 工质流动过程中所传递的推动功
解:因为是可逆定压过程,
第六章 热力学第一定律
*
*
3.但由于碳和氧的电负性不同,所以碳氧双键是极性键,π电子向氧偏移;结果氧带部分负电荷(δ-),碳带部分正电荷(δ+);这一点与碳碳双键不同。 碳氧双键中的π键易受到亲核试剂进攻,发生亲核加成反应。
*
4、受羰基的影响,α碳上的氢原子较为活泼,易发生取代反应;还可发生缩合反应。
O
C
C
H
*
5. 羰基也可发生氧化还原反应等。 要注意醛酮的相似性质和不同之处。 要注意结构特别是空间结构对化学性质的影响。
*
3. 加醇
醇作为含氧的亲核试剂,可以与醛发生加成反应,但需要干燥HCl催化。生成的产物称为半缩醛: 半缩醛
*
本章学习要点:
1.掌握醛酮的结构和命名。 2.掌握醛酮的相同化学性质: ⑴亲核加成反应 ⑵α-活泼氢的反应 3.熟悉醛的特殊反应 3.了解醌的结构和性质。
*
醛、酮、醌都是含氧化合物,都含有共同的官能团—羰基(carbonyl group),是重要的有机合成原料。在自然界中广泛存在,例如黄酮类化合物和挥发油、人体内的某些激素、碳水化合物等,都有重要的生物功能。
第六章 热力学第一定律
变质量热力系统开口边界处流入工质与流出工质的质量流量不相同,流动工质做出机械功率或与外界交换的热流量不一定是常数,这时热力系统的总能量往往是时间的函数,但任意时刻系统内的状态仍可做为均匀态处理。 【本章小结】 一、热力学第一定律 热力学第一定律实质上是能量守恒定律在工程热力学领域的应用,具体表现为热能和机械能之间的相互转化和守恒。第一定律说明了热能和机械转化时所遵循的数量平衡规律。 二、功与热量 系统体积变化时所做的功称为体积功(包括膨胀功和压缩功),体积功不是状态参数,而是一个过程量。
热力学基本定律—热力学第一定律
![热力学基本定律—热力学第一定律](https://img.taocdn.com/s3/m/0704e3c970fe910ef12d2af90242a8956becaae9.png)
4. 稳定流动能量方程的应用
1
2
1
2
绝热节流
节流:流体在管道内流动,遇到突然
变窄的断面,由于存在阻力使流体压
力降低的现象称为节流。
节流通过增大阻力,降低工质压力。
p
节流时,工质前后的焓值相等,即:
h
h1=h2
c
p
3)系统和外界交换的热量和功量不随时间而变化。
工程中,加热器、压缩机和锅炉等热工设备处于稳定工作时,工质
在这些设备中的流动均处于稳定流动。根据开口系统稳定流动特点,
我们可以得出:该系统储存能的变化量为“0”
热力学第一定律
3. 开口系统稳定流动能量方程
1
m1
c1
ws
1
m2 2
c2
z1
q
z2
2
热力学第一定律
热力学第一定律
热力学第一定律
1. 热力学第一定律的实质
热力学第一定律即能量守恒定律在热力学中的应用,可以简单表
述为:热能和机械能在传递和转换时,能量的总量必定守恒。
对于任意热力系统:
进入系统的能量-离开系统的能量=系统储存能的变化量
热力学第一定律
2. 闭口系统的能量方程
2
W
对于闭口系统,热力系统与外界仅有热量
3. 开口系统稳定流动能量方程
热力学第一定律
4. 稳定流动能量方程的应用
空气
换热器
工质流经换热器时,无功量交换,仅有
热量交换。
蒸气侧:q=’ - ’
h1
h1
h2
蒸汽
空气侧:q=h2-h1
工质在换热器中交换的热量等于其焓变。
h2
热力学第一定律
热力学第一定律
![热力学第一定律](https://img.taocdn.com/s3/m/090d3b97240c844769eaeea8.png)
H Qp *
等压热
标准相变焓
又称标准相变热。相变前后物质温度相同且均处 于标准状态时的焓差,其常用单位为 kJ/mol。
标准摩尔蒸发焓
vap
H
o m
H
o m
(g)
H
o m
(l)
熔化焓 升华焓
fus
H
o m
H
o m
(l)
H
o m
(s)
sub
H
o m
§1-3 理想气体的绝热过程
绝热过程 Q 0 dU W
这时,若体系对外作功,内能下降,体系温度必 然降低,反之,则体系温度升高。因此绝热压缩, 使体系温度升高,而绝热膨胀,可获得低温。
§1-4 热化学(thermochemistry)
一、基本概念 反应进度、等压、等容热效应、热化学方程式、 标准态
气体1
答:以所有气体为一V1)
容过程。
气体2 (p2V2)
绝热过程:Q = 0; 等容过程:W = 0; ΔU = 0
习题2
已知在1173K 和 101.325Pa下,1 mol CaCO3 分解 为 CaO(s) 和 CO2(g) 时吸热178 kJ。试计算此过 程的Q、W、 ΔU、 ΔH。 解:此过程是在恒温恒压下进行的反应:
二、赫斯定律
三、几种热效应 标准摩尔生成焓、离子摩尔生成焓、燃烧热、 溶解热与稀释热、 由键焓估算焓变
四、反应热与温度的关系——基尔霍夫定律
反应热
例如:298.15 K时
H2 (g, p o ) I2 (g, p o ) 2HI(g, p o ) rHmo (298.15K) -51.8 kJgmol
热力学第一定律
![热力学第一定律](https://img.taocdn.com/s3/m/a5c6d09848649b6648d7c1c708a1284ac85005da.png)
热力学第一定律热力学第一定律,也被称为能量守恒定律,是热力学基本定律之一。
它阐述了能量在物理系统中的守恒原理,即能量不会被创造或消灭,只会在不同形式之间转换或传递。
该定律在许多领域都有广泛的应用,包括工程、物理、化学等。
1. 定律的表述热力学第一定律可从不同的角度进行表述,以下是几种常见的表述方式:1.1 内能变化根据热力学第一定律,一个封闭系统内能的变化等于系统所吸收的热量与系统所做的功的代数和。
数学表达式如下:ΔU = Q + W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统所做的功。
1.2 能量守恒根据能量守恒定律,能量既不能被创造也不能被摧毁,只会在不同形式之间传递或转换。
能量的总量在一个封闭系统中保持不变。
2. 系统内能的变化系统内能的变化是热力学第一定律的核心内容之一。
系统内能的变化是由系统吸收或释放的热量以及系统所做的功决定的。
2.1 系统吸收的热量系统吸收的热量指的是系统从外界获得的热能。
当一个热源与系统接触时,能量会以热量的形式从热源传递到系统中。
系统吸收的热量可以引起系统内能的增加。
2.2 系统所做的功系统所做的功指的是系统对外界做的能量转移。
当系统对外界施加力并移动时,能量会以功的形式从系统传递到外界。
系统所做的功可以引起系统内能的减少。
3. 热力学第一定律的应用3.1 工程应用热力学第一定律在工程领域有着广泛的应用。
例如,在能源系统的设计与优化中,需要根据系统的能量转换过程,计算系统的内能变化和热功效率等参数,以提高能源利用效率。
3.2 物理学应用在物理学研究中,热力学第一定律通常用于分析热力学过程中的能量转化。
例如,在热力学循环中,通过计算各个环节的能量转换情况,可以确定工作物质的热效率,从而评估系统的性能。
3.3 化学反应在化学反应中,热力学第一定律对于研究反应的能量变化和平衡状态具有重要意义。
通过计算反应过程中释放或吸收的热量,可以确定反应的放热性或吸热性,并预测反应的发生与否。
热力学第一定律的表达式为
![热力学第一定律的表达式为](https://img.taocdn.com/s3/m/d176d7c0e109581b6bd97f19227916888486b90d.png)
热力学第一定律的表达式为热力学第一定律,也叫热力学总体定律,是热力学中最基本的定律之一,也是热力学中最重要的定律。
它概括地说明热力学系统的能量是保守的,也就是说,热力学系统的总能量是不变的。
这条定律最早是由德国数学家、物理学家卡尔弗里德里希热平克(Karl Freidrich Zeipel)在1850年提出的,他将热力学第一定律定义为“一个系统里,只有当机械作用之后,系统的总能量才会改变,而在没有机械作用的情况下,总能量不变”。
热力学第一定律的表达式热力学第一定律的表达式有多种,最常用的表达式是:U = Q - W,其中U为能量变化,Q 为热量, W 为功。
根据热力学定律,任何热力学的过程中,所有的热力学性质和能量都是不变的,热力学系统的能量变化只与工作量有关。
因此,热力学第一定律可以用其表达式来描述:U=Q-W 。
事实上,在物理学中,热力学第一定律可以用其他表达式来表示,比如:dU=dQ+dW 。
这两个表达式是等价的,可以互相转化,只是在不同情况下有不同的用法。
热力学第一定律的应用热力学第一定律是物质研究的基础,它提供了一种物质能量守恒的规律。
它既可以解释室温和低温的物理过程,也可以用于解释电能和热能的转化过程。
热力学第一定律可以用来研究物理学热学中的各种热力学过程,比如对热源的熔点和温度的变化,熔融过程的变换,物质在冷却、冷热相变和熔点转变时的行为等等,都可以用热力学第一定律来研究。
此外,热力学第一定律还可以用来解释和研究热电转换和涡轮机等储能机械的运行原理,以及热能学、物质动力学和材料的散热机理。
热力学第一定律是一个重要的物理学原理,它在很多物理学领域有重要的应用,比如能源技术、物质动力学、热力学、材料科学等等,都离不开它的应用。
所以,热力学第一定律是极具重要意义的物理学原理。
结论热力学第一定律是物理学中最基本的定律之一,它表明热力学系统的总能量是不变的,这也是物质能量守恒的基本原理。
它既可以用来研究室温和低温的物理过程,也可以用来研究热电转换的原理,热力学第一定律在很多物理学领域有重要的应用,它具有极具重要意义的物理学原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学第一定律练习题一、是非题,下列各题的叙述是否正确,对的画√错的画×1、已知温度T时反应H2(g) + 12O2(g) == H2O(g) 的∆rH,则∆rH即为温度为T时H2(g)的∆C H。
()2、不同物质在它们相同的对应状态下,具有相同的压缩性,即具有相同的压缩因子Z。
( )。
3、d U = nC V,m d T这个公式对一定量的理想气体的任何p,V,T过程均适用,( )4、物质的量为n的理想气体,由T1,p1绝热膨胀到T2,p2,该过程的焓变化∆H n C TpTT=⎰,m d12。
()5、理想气体的热力学能和焓均只是温度的函数,而与压力或体积无关。
()6、在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的内能和焓也不变。
( )7、25℃∆f H(S ,单斜) = 0 。
()。
8、理想气体在恒定的外压力下绝热膨胀到终态。
因为是恒压,所以∆H = Q;又因为是绝热,Q = 0,故∆H = 0。
( )9、500 K时H2(g)的∆f H= 0 。
()10、在临界点,饱和液体与饱和蒸气的摩尔体积相等。
( )11、∆f H(C ,石墨, 298 K) = 0 。
()12、热力学标准状态的温度指定为25℃。
()13、100℃时,1 mol H2O(l)向真空蒸发变成1mol H2O(g),这个过程的热量即为H2O( l )在100℃的摩尔汽化焓。
()14、处在对应状态的两种不同气体,各自对于理想气体行为的偏离程度相同。
( )15、CO2(g)的∆f H(500 K) = ∆f H(298 K) +C Tp,m2KK(CO)d298500⎰。
()16、在p = p(环) = 定值下电解水制氢气和氧气则Q = ∆H。
()17、系统从同一始态出发,经绝热不可逆到达的终态,若经绝热可逆过程,则一定达不到此状态。
()18、化学反应热Q p其大小只取决于系统始终态;( )19、凡是化学反应的等压热必大于等容热;( )20、理想气体等容过程的焓变为21,md()TVTH nC T V p∆=+∆⎰;( )二、选择题1、对一个化学反应,若知其∑νB C p, m(B) > 0 ,则:()。
(1)∆r H 随温度升高而减小; (2)∆r H 随温度升高而增大; (3)∆r H 不随温度升高而改变; (4)∆r H 随温度变化没有规律;2、理想气体的液化行为是:( )。
(1)不能液化; (2)低温高压下才能液化;(3)低温下能液化; (4)高压下能液化。
3、Q p = ∆H 是指W’= 0,且满足( )时,系统与环境交换的热。
(1)p 2 = p 1 =定值;(2)p (外) =定值;(3)p = p (外);(4)p 2 = p 1 = p (外) =定值。
4、双参数普遍化压缩因子图的建立是基于:( )。
( 1 )范德华方程; ( 2 )理想气体状态方程式;( 3 )对应状态原理; ( 4 )不同物质的特征临界参数。
5、一封闭绝热钢罐内发生爆炸反应,自反应开始至爆炸前瞬间钢罐内物质热力学能变化∆U :( )。
( 1 ) < 0; ( 2 ) > 0; ( 3 ) = 0; ( 4 ) 不能确定。
6、如图,在一具有导热器的容器上部装有一可移动的活塞;当在容器中同时放入锌块及盐酸令其发生化学反应,则以锌块与盐酸为系统时,正确答案为:( )。
( 1 ) Q < 0,W < 0,∆U < 0;( 2 ) Q = 0,W < 0,∆U > 0;( 3 ) Q = 0,W = 0,∆U = 0;( 4 ) Q < 0,W = 0,∆U < 0;7、 在温度一定的抽空容器中,分别加入0.3 mol N 2,0.1 mol O 2及0.1 mol Ar ,容器内总压力为101.325 kPa ,则此时O 2的分压力为:( )。
(1)20.265 kPa ; (2)40.53 kPa ; (3)60.795 kPa ; (4) 33.775 kPa 。
8、物质分子间的引力对临界温度的影响情况是:( )。
( 1 )引力愈大,临界温度愈低;( 2 )引力愈大,临界温度愈高;( 3 )引力的大小对临界温度无关系。
9、 下列说法中正确是:( )。
( 1 )理想气体等温过程,∆T = 0,故Q = 0; ( 2 )理想气体等压过程,T C U V d ⎰=∆;( 3 )理想气体等容过程,d V H C T ∆=⎰; ( 4 )理想气体绝热过程,pV γ = 常数。
10、当计算1 mol 理想气体从始态p 1,V 1,T 1经历可逆的绝热过程至终态p 2,V 2,T 2的体积功时,下列哪一式子是不适用的?( )。
( 1 )C V ,m ( T 2-T 1 ); ( 2 )C p,m ( T 2-T 1 ); ( 3 )( p 2V 2-p 1V 1 ) / ( γ-1 ); (4)R ( T 2-T 1 ) / ( γ-1 )。
11、对于一定量的理想气体,下式中:正确的有:( )。
( 1 )0)(=T pH ∂∂; ( 2 )0)(=V T U ∂∂; ( 3 ) ()0P U V ∂∂=; ( 4 ) 0)(=p T H ∂∂。
12、一定温度下,某物质B 的摩尔蒸发焓为∆vap H m ,摩尔升华焓为∆sub H m 则在此温度下,该物质B 的摩尔凝固焓∆1SH m = ( )。
(∆1SH m 中的l ,s 分别代表液态和固态。
)(1)∆vap H m + ∆sub H m ; (2)-∆vap H m + ∆sub H m ; (3)∆vap H m - ∆sub H m ; (4)-∆vap H m + ∆sub H m 。
13、对于一个封闭系统,下列说法中正确的有:( )。
( 1 ) 等容绝热过程∆U = 0; ( 2 ) 等容过程所作的功等于零;( 3 ) 绝热过程∆U p V =-⎰d ; ( 4 ) 循环过程∆U = 0。
14、等压过程是指:( )。
( 1 )系统的始态和终态压力相同的过程; ( 2 )系统对抗外压力恒定的过程;( 3 )外压力时刻与系统压力相等的过程;( 4 )外压力时刻与系统压力相等且等于常数的过程。
15、1 mol C 2H 5OH(l)在298 K 和100 kPa 压力下完全燃烧,放出的热为1 366.8 kJ,该反应的标准摩尔热力学能变接近于:( )。
(1)1369.3 kJ·mol -1; (2)-1364.3 kJ·mol -1; (3)1364.3 kJ·mol -1; (4)-1369.3 kJ·mol -1。
16、范德华方程中的压力修正项对V m 的关系为:( )。
( 1 )正比于V m 2; ( 2 )正比于V m ; ( 3 )正比于1/ V m 2; ( 4 )正比于1/V m 。
17、1 mol 理想气体从相同的始态(p 1,V 1,T 1)分别经绝热可逆膨胀到达终态(p 2,V 2,T 2),经绝热不可逆膨胀到达(,,)p V T 222'',则T 2' T 2,(1)大于; (2)小于; (3)等于;18、在一定的温度和压力下,已知反应A→2B 反应的标准摩尔焓变为∆r H,1(T )及反应2A→C 的标准摩尔焓变为∆r H, 2(T ), 则反应C→4B 的∆r H , 3(T )是:( )。
(1)2∆r H ,1(T ) + ∆r H , 2(T ); (2)∆r H , 2(T ) - 2∆r H ,1(T ); (3)∆r H , 2(T ) + ∆r H ,1(T ); (4)2∆r H ,1(T )- ∆r H , 2(T )。
19、下列各式中只适用于理想气体的有:( )。
( 1 )∆H = ∆U +p ∆V ( 2 )C p,m -C V ,m = R ( 3 ) pV γ = 常数 ( 4 )W = -p (外)∆V20、某坚固容器容积100 dm 3,于25℃,101.3 kPa 下发生剧烈化学反应,容器内压力、温度分别升至5066 kPa 和1000℃。
数日后,温度、压力降至初态(25℃和101.3 kPa ),则下列说法中正确的为:( )。
( 1 )该过程∆U = 0,∆H = 0 ( 2 )该过程∆H = 0,W ≠0( 3 )该过程∆U = 0,Q ≠0 ( 4 )该过程W = 0,Q ≠021、理想气体等温自由膨胀过程为:( )。
(1)Q > 0; (2)∆U < 0; (3)W < 0; (4)∆H = 0。
22、对于任一气体,在等温下,以pV m 对p 作图可得一直线,其斜率可能是:( )。
( 1 ) < 0, = 0 ,> 0; ( 2 ) > 0 ,= 0; ( 3 ) = 0 ,< 0; ( 4 ) > 0, < 0。
23、一定量的某理想气体等容下由T 1升温到T 2,相同量的该气体等压下也由T 1升温到T 2,则两个过程热量的关系和热力学能变化的关系为:( )。
( 1 ) Q V = Q p ,∆U V = ∆U p ; ( 2 ) Q V < Q p ,∆U V = ∆U p ;( 3 ) Q V > Q p ,∆U V < ∆U p ; ( 4 ) Q V < Q p ,∆U V < ∆U p 。
三、填空题1、热力学系统必须同时实现 平衡、 平衡、 平衡和 平衡,才达到热力学平衡。
2、a ,b 为范德华参数,一般来说愈易液化的气体,a ⎽⎽⎽⎽⎽⎽;分子愈大,b ⎽⎽⎽⎽⎽⎽。
(选填愈大,愈小)3、理想气体微观模型的两个基本特征是 , 。
4、在相同的温度和压力下,反应A —→B 的反应焓是∆r H 1,反应C —→B 的反应焓是∆r H 2 ,则反应A —→ C 的反应焓是∆r H = 。
5、若量热计和产物的热容为C V 且不随温度而变,则温度T 1时苯燃烧反应的等容热效应Q V = 。
(用公式表示)6、对于一定温度下的化学反应,,,p m V m Q Q -= 。
7、在标准摩尔燃烧焓的定义中,指定有机物中的C 变为CO 2(g),H 变 为 。
N 变为 。
8、298 K 下的体积为2dm 3的刚性绝热容器内装了 1 mol 的 O 2(g)和 2 mol 的H 2(g),发生反应生成液态水。
该过程的∆ U = 。
9、若在25℃时, 将32.7 克锌投入过量的稀盐酸内,使反应在开口烧杯和在封闭容器内进行,则上述两种情况下,反应所放出的反应热之差为 。