固体电介质的绝缘特性

合集下载

液体和固体介质的电气特性

液体和固体介质的电气特性

杂质中εr大
油中电场强度 增高 油分解出气体 气泡扩大
气泡因电 离或发热而 不断扩大, 排列成气体 小桥贯穿两 极,液体最 终在气体通 道中击穿
引起油电离
6/90
高电压技术
第三章 液体和固体介质的电气特性
第二节 液体电介质的击穿 二.影响液体电介质击穿电压的因素
1. 液体介质本身品质的影响
① 含水量 液态水在油中的两种状态: 以分子状态溶解于油中, 对击穿电压影响不大 以乳化状态悬浮在油中, 易形成“小桥”使击穿电 压明显下降 含0.1%的水分,油的击穿电 压降到干燥时的15%~30%

10/90
高电压技术
第三章 液体和固体介质的电气特性
第二节 液体电介质的击穿
2. 温度
干燥的油(曲线1):随油温升 高,电子碰撞电离过程加剧,击 穿电压下降 潮湿的油(曲线2) 温度由0℃开始 上升:一部分水 分从悬浮状态转为害处较小的溶 解状态,使击穿电压上升; 超过80 ℃后:水开始汽化,产生 气泡,引起击穿电压下降,在60 ℃~80℃间出现最大值
5/90
高电压技术
第三章 液体和固体介质的电气特性
3. 工程液体电解质的击穿(变压器油)
工程液体的特点:含有杂质、纤维等, εr很大(变压器油εr=2.2)
由于水和纤维的εr很大,易沿电场方向发生极化,并排列成杂质小桥。
杂质中电导大 小桥 击穿 理论 水分汽化
泄漏电流增加 ,导致发热
气泡扩大
3/90
高电压技术
第三章 液体和固体介质的电气特性
2. 纯净液体电介质的气泡击穿理论
击穿过程 液体中出现气泡 交流电压下串联介质中电场强度 的分布与介质的εr成反比 气泡εr 最小,将承担高场强,且 电气强度比液体介质低很多 气泡电离后温度 上升、体积膨胀 、密度减小 气泡先发 生电离

高压试验-第二章 电气绝缘基础知识

高压试验-第二章 电气绝缘基础知识

电弧放电
放电电流密度大,温度高,具有亮而细长放电 弧道,弧道电阻小,似短路 放电回路阻抗大,放电时断时续
500千伏线路进行短路试验
火花放电
20
外电路阻抗大,压降大,间隙多次被击穿
电气绝缘基础知识
第一节 气体介质的绝缘特性
八、气体放电的不同形式
极不均匀电场环境中
电晕放电
空气间隙电场极不均匀,在电极附近强电场处 出现的局部空气游离发光现象,电流小,整个 空气间隙并未击穿,仍能耐受电压作用 电晕放电后压力增大,产生刷状放电
26
电气绝缘基础知识
第二节 液体介质的绝缘特性 电气设备对液体介质的要求 电气性能好:如绝缘强度高、电阻率 高、介质损耗及介电常数小(电容器则要 求介电常数高); 散热及流动性能好:即粘度低、导热 好、物理及化学性质稳定、不易燃、无毒 等。
27
电气绝缘基础知识
第二节 液体介质的绝缘特性
一、液体绝缘介质的种类
矿物油
29
电气绝缘基础知识
第二节 液体介质的绝缘特性
一、液体绝缘介质的种类
有些纯净的植物油也具有良好的电气绝缘性能。 例如蓖麻油,由于其绝缘性能好,介电系数 ε 较 高,因此也可用作电力电容器的浸渍剂,此外, 如广泛使用的绝缘漆,也是由植物液体加工制成, 在变压器等电气设备中普遍使用。 由人工合成的液体绝缘材料。由于矿物绝缘油是 多种碳氢化合物的混合物,难以除净降低绝缘性 能的成分,且制取工艺复杂,易燃烧,耐热性低, 因而人们研究、开发了多种性能优良的合成油。 如有机硅油和十二烷基苯等。
流注理论:
前部电场加强Leabharlann 碰撞游离 反击发 复合电子崩
中部电场减弱 尾部电场加强
两侧
崩尾 产生光子

介质和电介质的特性和应用有哪些

介质和电介质的特性和应用有哪些

介质和电介质的特性和应用有哪些一、介质的概念介质,又称传播介质,是指电磁波传播的媒介。

介质可以是固体、液体、气体,甚至是真空。

不同的介质对电磁波的传播有不同的影响。

介质中电磁波的传播速度与介质的性质有关,如介质的折射率、介电常数等。

二、电介质的特性电介质是指在电场作用下,其内部会产生极化现象,从而影响电场分布的物质。

电介质的主要特性有:1.极化:电介质在外加电场的作用下,内部会产生极化现象,即正负电荷分别向电场方向和相反方向移动,形成局部电荷分布。

2.介电常数:电介质的介电常数(ε)是描述电介质极化程度的物理量,反映了电介质对电场的响应能力。

介电常数越大,电介质的极化程度越高。

3.绝缘性:电介质具有良好的绝缘性能,可以阻止电流的流动。

绝缘材料广泛应用于电力系统和电子设备中,以防止漏电和短路。

4.存储电荷:电介质在去除电场后,仍能保留一定量的电荷,称为电容。

电容是电介质储存电能的能力,广泛应用于电容器中。

三、电介质的应用1.电容器:电容器是利用电介质的储存电荷能力,实现电能存储和释放的元件。

电容器广泛应用于电子设备、电力系统、通讯等领域。

2.绝缘材料:电介质具有良好的绝缘性能,可以阻止电流的流动。

绝缘材料广泛应用于电力系统和电子设备中,以防止漏电和短路。

3.屏蔽材料:电介质可以用于屏蔽电磁干扰,保护电子设备免受外部干扰。

4.介质波导:电介质波导是一种用于传输电磁波的介质管道,广泛应用于光纤通信、微波传输等领域。

四、介质的分类及应用1.固体介质:如陶瓷、玻璃、塑料等。

固体介质在电子元件和微波器件中有广泛应用,如微波谐振器、滤波器等。

2.液体介质:如水、油、酸碱盐溶液等。

液体介质在电力系统中作为绝缘材料和冷却剂,以及化学实验室中的试剂。

3.气体介质:如空气、氮气、氧气等。

气体介质在电力系统中作为绝缘气体,以及灯泡中的填充气体。

4.真空介质:真空是一种特殊的介质,具有极低的介电常数。

在某些高频电路和微波器件中,真空介质可以作为优良的传播介质。

高电压技术_自考复习重点总结

高电压技术_自考复习重点总结

第二章液体和固体电介质的绝缘特性电子式极化:电介质中的带电质点在电场作用下沿电场方向作有限位移。

夹层式极化:由两层或多层不同材料组成的不均匀电介质,叫做夹层电介质。

电介质的电导:介质在电场作用下,使其内部联系较弱的带电粒子作有规律的运动形成电流,即泄漏电流.这种物理现象称为电导。

“吸收现象”:固体电介质在直流电压作用下,观察到电路中的电流从大到小随时间衰减,最终稳定于某一数值,称为“吸收现象”。

吸收电流:有损极化所对应的电流,即夹层极化和偶极子极化时的电流,它随时间而衰减。

泄漏电流:绝缘介质中少量离子定向移动所形成的电导电流,它不随时间而变化.绝缘电阻:介质的电阻R=U/I是随时间而变化的。

通常以到达稳定的泄漏电流的电阻作为介质的绝缘电阻。

介质损耗角正切tgδ衡量材料本身在电场损耗能量并转变为热能的一个宏观的物理参数称之为介质损耗角正切。

绝缘的老化:固体和液体介质在长期运行过程中会发生一些物理和化学变化,导致其机械和电气性能的劣化。

1、提高液体电介质击穿电压的措施(1)过滤(2)防潮(3)脱气(4)覆盖层(5)绝缘层(6)屏障2、2.固体电介质的击穿影响因素(1).电压作用时间(2).电场均匀程度与介质厚度(3).电压种类(4).电压作用的累积效应(5).受潮3、提高固体电介质击穿电压的措施(1).改进制造工艺:尽可能清除介质中的杂质,可以通过精选材料、改善工艺、真空干燥、加强浸渍等方法。

(2).改进绝缘设计:尽可能使电场均匀(3).改善运行条件:注意防潮、尘污,加强散热冷却4、电介质绝缘老化的原因(1)局部放电老化 (2)热老化 (3)机械力的作用 (4)环境的影响5、为什么用介质损耗角的正切tgδ来表示介损答:由于:(1).P值与试验电压U的高低等因素有关;(2).tgδ是与电压、频率、绝缘尺寸无关的量,而仅取决于电介质的损耗特性。

(3)tgδ可以用高压电桥等仪器直接测量.所以表征介损用介质损失角的正切tgδ来表示,而不是用有功损耗P来表示.第3章电气设备绝缘试验耐压试验(破坏性试验):试验所加电压等价于或高于设备运行中可能受到的各种电压.1、西林电桥测量时的两种接线正接线适用:体积小,重量轻反接线适用:体积大,重量大,外壳接地2、西林电桥测量时防止外界电磁场对电桥的干扰措施有哪些?(1)加设屏蔽(消除电容的影响) (2)采用移相电源(3)倒相法3、西林电桥测量时注意事项有哪些(1)电桥本体必须加以屏蔽(2)被试品和标准无损电容器连到电桥本体的引线也要使用屏蔽导线(3)电桥本体接地良好(4)反接法时,三根引线处于高压,必须悬空(5)能分开测的试品尽量分开测(6)应保持试品表面干燥(7)试品设备有绕阻时,应首尾短接起来试验变压器得特点电压等级比电力变压器更高、容量不大,仅单相;工作在电容性负荷下;允许发生短时短路;工作时间短;漏磁通较大;温度比较低、无散热要求;绝缘裕度小工频高电压的测试方法有哪些用静电电压表测量工频电压的有效值用球隙进行测量工频电压的幅值用电容分压器配用低压仪表用电压互感器测量.直流高压的获得有:半波整流回路,倍压整流回路,串接直流发生器。

液体、固体电介质特性

液体、固体电介质特性
不同电介常数的电介质组合在一起构成组合绝缘,当各 层绝缘所承受的电场强度与电气强度成正比时,整个组 合绝缘的电气强度最高。
直流电压下,绝缘等效为绝缘电阻,各层绝缘承受的电 压与其绝缘电阻成正比;【电气强度高、电导率小的材 料用在电场最强处】
交流和冲击电压下,绝缘等效为电容,各层绝缘承受的 电压与其电容成反比;【电气强度高、介电常数小的材 料用在电场最强处】
U
r1 r2
r0
12
E2
r
2
[
1
1
ln
U r1 r0
1
2
ln
r2 r1
]
优点:绝缘材料的利用率高
实现:电缆绝缘中用不同的绝缘纸。电缆纸的介电常数与密 度有关 ,密度大的纸(高)与低密度纸搭配使用多层分阶27。
2.5 电介质的老化
绝缘老化的成因
➢ 电老化——局部放电 ➢ 热老化——热作用下的氧化 ➢ 环境老化——污染性化学老化
U
(R1
R2
... Rn )I
(1
1
d1 S
1
2
d2 S
...
1
n
dn )I S
1 S
( d1
1
d2
2
...
dn )I
n
RI
I U R
U1
R1I
1
1
d1 S
I
d1
1S
U R
1
(
d1
1
Ud1 d2 ...
2
dn
n
)
E1
U1 d1
1
(
d1
1
U d2 ...
2
dn )
n
1

固体绝缘材料 介电和电阻特性 介电特性(AC方法)相对介电常数和介质损耗因数-最新国标

固体绝缘材料 介电和电阻特性 介电特性(AC方法)相对介电常数和介质损耗因数-最新国标

目次1范围 (1)2规范性引用文件 (1)3术语和定义 (1)4试验方法 (2)5试验程序...........................................................................96 报告 . (9)图2 等效电路图 ....................................................................... 4 图3 带有试样和引线设备的等效并联电路 ................................................. 5 图4 两电极系统中存在的剩余阻抗和杂散电容 ............................................. 7 图A.1 串联电路补偿方法 .............................................................. 11 图B.1 带屏蔽环的并联电极装置 ........................................................ 12 图C.1 并联T 网络的主电路图 .......................................................... 13 图C.2 并联T 网络的实际电路图 ........................................................ 13 图C.3 谐振法原理和电路图 ............................................................ 15 图C.4 自动平衡电路 .................................................................. 16 图D.1 非接触电极方法 ................................................................ 7重复性和再现性.. (10)附录A (资料性)串联电路补偿方法 (11)附录B (资料性)带屏蔽环的平行电极 (12)附录C (资料性)仪器 (13)附录D (资料性)空气中微米控制平行电极的非接触电极法 (17)17表1 使用仪器的频率范围 (8)固体绝缘材料介电和电阻特性第8部分:介电特性(AC方法)相对介电常数和介质损耗因数(频率1 MHz~300 MHz)1 范围本文件描述了1 MHz至300 MHz频率范围内测定固体绝缘材料介电常数和损耗因数特性的试验方法(AC方法)。

固体电介质的原理及应用

固体电介质的原理及应用

固体电介质的原理及应用1. 引言固体电介质是一种非导电材料,通过其内部电荷分布实现电场传导和电容储存的功能。

固体电介质在电子器件、电力系统、光学设备等领域有着广泛的应用。

本文将介绍固体电介质的原理及其应用。

2. 固体电介质的原理•电介质的定义:电介质是指当外加电场作用下,其中的电子比较紧密地绑定在原子核附近,不能自由运动的材料。

•电介质的极化:当在电介质中施加电场时,其分子或晶体的正负电荷将被分开,产生电偶极矩,即电介质发生了极化现象。

•电介质的介电常数:介电常数是固体电介质导电能力的衡量指标,介电常数越大,电介质的绝缘性能越好。

•电介质的损耗角正切:电介质的损耗角正切是指电介质的能量损耗程度,损耗角正切越小,电介质的能量损失越小。

•电介质的击穿强度:电介质的击穿强度是指在一定条件下,电介质能承受的最大电场强度,击穿强度越高,电介质的耐受能力越强。

3. 固体电介质的应用3.1 电子器件中的应用•电容器:固体电介质常被用作电容器的介质,用于储存电荷和调节电压。

•绝缘子:固体电介质在电源、变压器等电力设备中被用作绝缘材料,能有效隔离电流的传导。

•场效应管:固体电介质可用作场效应管的绝缘层,控制电子在导体和绝缘体之间的传输。

3.2 电力系统中的应用•绝缘材料:固体电介质的高绝缘性能使其成为电力系统中的重要绝缘材料,用于保护电力设备和线路,防止电流泄漏和电弧击穿。

•电力传输:固体电介质的低能量损耗和高击穿强度使其成为高压输电线路的绝缘材料,能够有效减少能量损失和提高电力传输效率。

3.3 光学领域中的应用•光纤通信:固体电介质在光纤通信领域中被用作光纤的绝缘层和保护层,能够有效提高光信号传输质量和速率。

•光学传感器:固体电介质能够响应外界光场的变化,因此被广泛应用于光学传感器中,如温度、压力等参数的检测。

3.4 其他应用领域•医疗领域:固体电介质在医疗设备中被用作医用电容器的介质,用于存储和释放电荷,如心脏起搏器。

电气绝缘基础知识

电气绝缘基础知识

输电线路以气体作为绝缘材料
变压器相间绝缘以气体作 为绝缘材料
3、非自持放电和自持放电 (1)依靠外界电离因素维持的是非自持放电 (2)仅靠电场本身作用的是自持放电 4、空气间隙在电场作用下出现自持放电是否 一定会发生击穿? 答:在均匀电场中,气体间隙一旦出现自持 放电,同时即被击穿。在极不均匀电场中, 气体局部达到自持放电时,会出现电晕放 电,间隙并不击穿。 5、流注:空气间隙中往两极发展的充满正负 带点质点的混合等离子通道。
UF=f(PS)
三、电场是否均匀对空气间隙击穿电压影响 在标准大气压下,温度为20℃时,均匀电场中空气间隙的 击穿场强大约是30kv/cm。 极不均匀电场间隙大于50cm时,负极性的直流击穿电压 平均击穿场强约为10kv/cm,而正极性的直流击穿场强约 为4.5kv/cm,与均匀电场的击穿场强相比下降很多。 1、均匀电场气隙在稳态电压下的击穿特性 均匀电场中一旦出现自持放电,间隙即被击穿,形成电弧放 电或火花放电,无电晕放电。 2、稍不均匀电场气隙在稳态电压下的击穿特性 不均匀电场分类依据:能否维持稳定的电晕放电 极不均匀电场 稍不均匀电场
3、电场的均匀程度: 改善电场均匀度可提高击穿电压。 4、电压作用时间的影响: 短时间内随加压时间的延长击穿电压下降,达到一 定时间不再明显下降。工频耐压时间为1min. 5、冲击电压作用下变压器油间隙的击穿场强 6、油间隙宽度对击穿场强的影响
一、固体电介质的种类及其特性
1、固体电介质的种类 2、电介质的极化和相对介电常数 电介质的极化: 在外加电场的作用下,电介质中的正负电荷沿电场 的方向作有限的位移或转向,形成偶极矩。 3、固体电介质的物理化学性能
流注分类 (1)阳极(正)流注:从阳极向阴极发展 (2)阴极(负)流注:从阴极向阳极发展 二、均匀电场中气体间隙击穿电压与气体密度的关系 1、除去气体过于稀薄外,气体密度越大,击穿电压 越高。 2、巴申定律: 当气体种类和电极材料一定时,均匀电场中气隙的 放电电压UF是气体压力P和间隙极间距离S乘积的 函数。

第二章 液体和固体的介质的电气特性

第二章 液体和固体的介质的电气特性

第一节
液体和固体介质的极化、电导和损耗
一切电介质在电场的作用下都会出现极化、电导和损耗等 电气物理现象。不过气体介质的极化、电导和损耗都很微弱, 一般均可忽略不计。所以真正需要注意的只有液体和固体介质 在这方面的特性。
一、电介质的极化
电介质的极化是电介质在电场作用下,起束缚电荷相应于 电场方向产生弹性位移现象和偶极子的取向现象。这时电荷的 偏移大都是在原子或分子的范围内作微观位移,并产生电矩( 即偶极矩)。 电介质极化的强弱可用介电常数ε的大小来表示,它与该 电介质分子的极性强弱有关,还受温度外加电场频率等因素的 影响。
I I R IC
U I R I3 I 2R R I C I1 I 2C UCP
U
IR
R
CP
IC
介质损耗角正切 tgδ 等于有功电流和无功电流的比值,即
IR U / R 1 tg I C UC P CP R
此时电路的功率损耗为
(3-8)
U 2 P U CP tg R
在液体介质中,还存在一种电泳电导,其载流子为带电的 分子团,通常是乳化状态的胶体粒子或小水珠,它们吸附电荷 后变成了带电粒子。 工程上使用的液体电介质通常只具有工业纯度,其中仍含 有一些固体杂质(纤维、灰尘等),液体杂质(水分)等和气 体杂质(氮气、氧气等),它们往往是弱电场下液体杂质中载 流子的主要来源。 温度升高时,分子离解度增大、液体粘度减小,所以液体 介质中的离子数增多、迁移率增大,可见其电导将随温度的上 升而急剧增大。
i
I15 i i2 i1 i3
I60
15
60
t(s)
上述三支路等值电路可进一步简化为电阻、电容的的并联 等值电路或串联等值电路。若介质损耗主要由电导所引起,常 采用并联等值电路;如果介质损耗主要由极化所引起,则常采 用串联等值电路。现分述如下:

液体和固体电介质的绝缘性能

液体和固体电介质的绝缘性能
由于吸收现象的存在,在对电介质进行高压试验时,电介质 表面会有吸收电荷存在,这些电荷在没有外因作用时需很长时 间才能泄放掉,可能对人构成危险,所以高压试验结束时必须 对试品进行放电。
四、气体电介质的电导是由气体分子本身及气体中杂质离解出来 的带电粒子形成的,其值很小。
液体电介质的电导一种是由液体本身的分子和杂质的分子离解 的带电粒子形成的离子电导,另一种是由液体中胶体质点吸附电 荷后变成带电质点构成的电泳电导。
为10-6—10-2Ω·m
一、试验电路
二、等值电路
§2.2电介质的电导
1、由电源对电介质等效电容 充电建立电场及快速无损极化 形成的电流ic称为几何电容电 流。由于其是纯容性的,所以 可以用一个电容C0来等值。
2、由慢速有损极化形成的电流ia 称为吸收电流。由于是由极化形 成的,可以等值出电容Ca,1电介质的极化
• 在两电极间加入厚度与极间距
相同的固体电介质重新完成试
验。发现极板上的电量增加了
-+
Q’,Q=Q0+Q’。问Q’这些电量
-+
是如何来的呢?
解释:来源于固体电介质的极化。 固体介质内部形成一个极性与外 加电压方向相反的附加电场,为 保持两极板间电压不变,电源需 要再提供Q’这些电量来平衡附加 电场。在电场的作用下,电介质 相对电极两面呈现电性的现象称 为极化。
特点: 1)速度慢; 2)非弹性的; 3)消耗能量。
§2.1电介质的极化
• 极化可以归纳为空间电荷的弹性位移或转向及电荷的重新分配; 也可以归纳为快速的无损极化和慢速的有损极化。
• 研究极化的意义: • 1、选择制造电容的绝缘材料时,一方面注意材料的绝缘强度,另
一方面希望介电常数要大; • 2、在交流及冲击电压作用下,多层串联电介质中的场强分布与介

液体和固体介质的绝缘强度

液体和固体介质的绝缘强度
非弹性极化;
频率的影响:频率↑→偶极子来不及转向→极化↓;
温度影响:T↑→转向容易→极化↑
T↑↑→热运动加剧阻碍转向→极化↓
(a)无外电场 (b)有外电场
(4)夹层介质界面极化
合闸瞬间,t=0时,电压
按电容分配:
U 10
C2

U
C1 C 2
U
C1

U
C1 C 2
20
U 10
U 20
tgδ与温度的关系中还给出了
频率f 对tgδ的影响,可见:
f
( f 2>f1)
tgδ=f(f) 曲线的形状不变,
但曲线向右 移动了一定距离。
这是因为频率增加时,偶极子不易充分转向,为使其充分转向
所存在的缺陷。(规程规定
U=10kV)
(2)温度
液体介质损耗主要由电
导引起,极性液体介质
的 损 耗 tgδ 与 温 度 的 关
系如图所示。
在低温时,极化损耗和电
导损耗都较小, t 液体的
粘度 ,偶极子转向极化 ,
电导损耗
并 在 t = t1 时 达 到 极
大值;
在 t1<t<t2 的范围内,由于分子
不必再引入介质损耗这个概念了。
交变电场,电介质能量损耗包括:
电导损耗
通过电介质的贯穿性泄漏电流所引起的能量损
耗。
极化损耗
在交流电压下,由周期性极化所引起的能量损
耗。
因此,电介质在交流电压作用下,产生的有功功率损耗,
称为介质损耗,它包括电导损耗、极化损耗。
IC 代表流过介质总的无功
交流时,流过电介质的电流:
当极间为真空时:
A

液体与固体电介质

液体与固体电介质

§4.2 液体电介质的击穿
一. 常用的液体介质 天原矿物油和人工合成油
目前常用的主要有变压器油、电容器油、
电缆油等矿物油 二. 液体电介质的击穿理论 电击穿:认为在电场作用下,阴极上由于强场发射 或热发射出来的电子产生碰撞电离形成电子崩,最 后导致液体击穿
气泡击穿:认为液体分子由电子碰撞而产生气 泡,或在电场作用下因其它原因产生气泡,由气泡 内的气体放 电而引起液体击穿。
4. 固体电介质的体积电阻和表面电阻 体积电阻-电介质内部绝缘状态的真实反映 表面电阻-受介质表面吸附的水分和污秽影响 水分起着特别重要作用。 亲水性介质(玻璃、陶瓷)表面电导大 憎水性介质(石蜡、四氟乙烯、聚苯乙烯)表面电导小
讨论电介质电导的意义
(1)电导是绝缘预防性试验的依据
(2)直流电压作用于分层绝缘时,各层电压分 布与电阻
温度很敏感;金属中主要由外加电压决定,杂质、温度不是
电导电流影响因素:电介质中由离子数目决定,对所含杂质、
主要因素
液体和固体电介质的γ与温度的关系:
Ae
B /T
温度↑ a.热运动加剧→离子迁移率↑→γ↑ b.介质分子或杂质热离解↑→γ↑ 电介质的电阻率具有负的温度系数;金属的电阻率具有正的温 度系数。
稍不均匀电场和极不均匀电场之间的划分及其典型电场形式50冲击放电电压u50加强气体间隙去游离的措施chapter4液体和固体电介质的绝缘特性电介质电导的概念特征电导率固体电介质的体积绝缘电阻和表面绝缘电阻介质损耗的形式介质的三支路等值电路直流电压作用下的吸收现象交流电压作用下电介质的并联串联等值电路介质损耗角tg的意义影响tg的各种因素液体电介质的击穿击穿理论击穿电压的影响因素及其提高措施固体电介质的击穿三种击穿形式击穿电压的影响因素及其提高措施绝缘的老化

高电压技术实验指导书(学生用)

高电压技术实验指导书(学生用)

实验一.电介质绝缘特性及电击穿实验一.实验目的:观察气隙击穿、液体击穿以及固体沿面放电等现象及其特点,认识其发展过程及影响击穿电压的各主要因素,加深对有关放电理论的理解。

二.预习要点:概念:绝缘;游离;电晕;电子崩;流注;先导放电;自持放电;滑闪放电;沿面放电;小桥;电击穿;热击穿。

判断:空气是绝缘介质;纯净液体的击穿是电击穿,非纯净液体的击穿是热击穿,绝缘油的击穿电压受油品、电压作用时间、电场分布情况及温度的影响较大,电弧会使油分解并产生炭粒;沿面放电是特殊的气体放电,分三个阶段,沿面闪络电压小于气隙击穿电压。

推理:变压器油怕受潮;油断路器有动作次数的限制;相关知识点:电场、介质极化、偶极子、介电常数、Paschen定律、Townsend理论、流注理论、伏秒特性、大气过电压、内部过电压。

三.实验项目:1.气体绝缘介质绝缘特性及电击穿实验⑴.电极形状对放电的影响①.球球间隙②.针板间隙③.针针间隙⑵.电场性质对放电的影响①.工频交流电场②.直流电场⑶.极性效应①.正针负板②.负针正板2.液体绝缘介质绝缘特性及电击穿实验⑴.导电小桥的观察⑵.抗电强度的测试3.固体绝缘介质绝缘特性及电击穿实验⑴.刷状放电的观察⑵.滑闪放电的观察⑶.沿面闪络的观察四.实验说明:1.气体绝缘特性:⑴.气体在正常情况下绝缘性能良好(带电粒子很少);⑵.气体质点获得足够的能量(大于其游离能)后,将会产生游离,生成正离子和电子;⑶.气体质点获得能量的途径有:粒子撞击、光子激励、分子热碰撞;⑷.气隙中除了有气体质点游离产生的带电粒子外,还存在金属电极表面的逸出电子;⑸.气隙加上电场,气隙中的带电粒子将顺电场方向加速运动,造成大量的粒子碰撞,但产生气体质点游离的撞源粒子是电子;⑹.气隙上的电场足够强时,撞击游离产生的电子又会成为撞源粒子,从而形成电子崩;⑺.气隙之间存在的大量带电粒子会形成空间电荷区,空间电荷的存在会改变气隙间的电场分布;⑻.气隙在强电场作用下,产生强烈游离,并发展到自持放电,气隙就被击穿。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

固体电介质的绝缘特性固体介质广泛用作电气设备的内绝缘,多见的有绝缘纸、纸板、云母、塑料等。

高压导体老是需求用固体绝缘资料来支撑或悬挂,这种固体绝缘称为绝缘子,而用于制作绝缘子的固体介质有电瓷、玻璃、硅橡胶等。

高压绝缘子从构造上能够分为以下三类。

1.(狭义)绝缘子
用作带电体和接地体之间的绝缘和固定联接,如悬式绝缘子、支柱绝缘子、横担绝缘子等。

电工陶瓷绝缘子在绝缘子的翻开前史中占有了主导方位,钢化玻璃如今仅用于盘形悬式绝缘子,由环氧引拨棒和硅像胶伞裙护套构成的构成绝缘子是新一代的绝缘子,具有强度高、重量轻、耐污闪才调强等显着利益。

2.套筒
用作电器内绝缘的容器,大都由电工陶瓷制成,如互感器瓷套、避雷器瓷套及断路器瓷套等。

3.套管
用作导电体穿过接地隔板、电器外壳和墙面的绝缘件,如穿越墙面的穿墙套管,变压器、电容量的呈现套管等。

与气体、液体介质比照,固体介质的击穿场强较高,对错自康复绝缘,不像气体、液体介质那样能自行康复绝缘功用。

每次冲击
电压下固体介质发作有些损害,留下有不能康复的痕迹,如烧焦或熔化的通道、裂缝等,屡次效果下有些损害会拓宽而致使击穿。

这种景象即为固体介质的累积效应。

固体介质击穿的特征是击穿场强与电压效果时刻有很大的联络。

随电压效果时刻的纷歧样,固体电介质的击穿有热击穿、电击穿和电化学击穿三种办法。

1.电击穿
电击穿的首要特征是:击穿场强高(大致在5-15MV/CM计划),有用绝缘体系是不或许到达的。

均匀电场中电击穿场强反映了固体介质耐受电场效果才调的最大极限,所以,通常称之为耐电强度或电气强度。

2.热击穿
假定介质中发作的热量老是大于散热,则温度不断上升,构成资料的热损坏而致使击穿。

热击穿所需时刻较长,常需求及个小时,即便在行进实验电压时也常需求好几分钟。

电介质的热击穿与资料的功用、绝缘构造及电压品种、环境安稳等有关。

如在直流电压下,正常未受潮的绝缘很少发作热击穿。

沟通电压的频率行进时,热击穿的或许性比工频时大得多,如中频感应加热设备的电容器,通常需求在夹层中通冷却水加以冷却。

3.电化学击穿
对绝缘施加电压几个月乃至几年后,击穿场强仍鄙人降,这是因为介质长时刻加电压致使介质劣化。

介质劣化的首要要素通常是介质内气隙的有些放电构成的。

介质中可长时刻存在有些放电而并不击穿。

有些放电发作的活性气体,如O3,N0等,对介质将发作氧化和腐蚀效果,此外因为带电粒子对介质外表的碰击,也会使介质遭到机械的损害和有些的过热,致使介质的劣化。

然后或快或慢地随时刻翻开至固体介质劣化损害逐渐拓宽,之时介质击穿。

因而,在计划时,应使绝缘在作业电压下不发作有些放电,一是尽量消除气隙的规范,二是设法行进空穴的击穿场强。

如钢管油压电缆顶用高压油来消除电缆绝缘层中或许呈现的气隙,便是一个运用实例。

相关文档
最新文档