2009年佛山市中考数学试题及答案(word版)

合集下载

佛山市2009年中考科研测试数学试卷

佛山市2009年中考科研测试数学试卷

佛山市2009年中考科研测试数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的). 1. 计算2009)1(-的结果是( ).A . -1B . 1C . -2008D . 2008 2. 下列等式中正确的是( ).A .1-=)1(2-+-B .3-=9C .)1(0--=1-D .)1(--=|1|- 3. 已知分式22x x +-的值是零,那么x 的值是( ). A . 2 B . -2 C . 2± D . 04. 如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是().A .内含B .相交C .相切D .外离 5. 根据如图所示的程序计算,若输入x 的值为2,则输出y 的值为( ).A .2B .-2C .4D .-46. 如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球 最终到达H 点的概率是( ).A .81 B .61 C .41 D .21 7. 有15人参加学校举办的歌咏比赛,小明要想知道自己是否进入前8名,只需要了解 自己的成绩以及全部成绩的( ).A . 平均数B . 众数C . 中位数D . 方差 8.如图,AOB ∠放置在正方形网格中,则cos AOB ∠的值为( ).A .55 B .255 C .12D .2 9. 均匀地向下面左图所示的容器中注水,最后把容器注满,在注水过程中水面高度h 随 时间t 变化的函数图象大致是( ).10.如图,点A 是函数4(0)y x x=>图象上的一个动点,点B 为线段OA 的中点,则过点A 的⊙B 的面积不可能是( ).A .4πB .3πC .2πD .π第Ⅱ卷(非选择题 共100分)BC EF DGHAO t h A . O t h B . O t h C . O t h D .OA By 乘输第5减输平二、填空题(本大题共5小题,每小题3分,共15分.把答案填在答题卡中). 11.计算:22()a b ab ab -÷= .12.如图,AB ∥CD ,直线l 平分∠BOE ,∠1 = 40°,则∠2 = _________. 13.下面是某校30名学生上学路上所花的时间(单位:分钟): 30,20,15,20,20,25,30,5,25,20,10,15,20,45,10,20,12,30,20, 15,20,20,10,5,8,20,20,5,20,15.若随机地问一个学生上学路上要用多少时间,你认为最可能得到的回答是 分钟. 14.已知△ABC 在直角坐标系中的位置如图所示,如果△C B A '''与△ABC 关于y 轴对称,那么点A 的对应点A '的坐标为( ,15.老师在黑板上写出了一个二次函数,小张、 小赵、小王、小马四位同学各指出了这个 函数的一个正确的性质:小张:函数图象不经过第三象限;小赵:函数图象经过第一象限; 小王:当2x <时,y 随x 的增大而减小;小马:当2>x 时,0y >.请你写出满足上述所有性质的一个函数解析式 .三、解答题(在答题卡上作答,写出必要的解题步骤.16~20题每小题6分,21~23题每小题8分,24题10分,25题11分,共75分).16.解不等式组:⎩⎨⎧<+>-.512,123x x17.化简:12)131(2-+÷-+x x x .18.某班同学分三组分别对七年级400名同学喜欢喝的饮料情况、八年级300名同学零花钱的主要用途情况、九年级300名同学完成家庭作业时间情况进行了全面调查,并分 别用扇形图、频数分布直方图、表格来描述整理得到的数据如下:lABC DO 1 2 E第14题图第12题图七年级同学最喜欢喝的 八年级同学零花钱 饮料种类情况统计图 最主要用途情况统计图九年级同学完成家庭作业时间情况统计表(1) 七年级同学中喜欢喝“冰红茶”的人数是多少人?(2) 补全八年级同学中零花钱的主要用途情况频数分布直方图;(3) 九年级同学中完成家庭作业的平均时间大约是多少小时(结果保留一位小数)?19.已知二次函数x x y 22-=,请在坐标系中画出函数的大致图象,指出函数的顶点位置并说明何时函数的值是正的. 注:图中网格的边长为1.学习资料零食文具它20.若方程062=--bx ax 与方程01522=-+bx ax 有一个公共根是3,求a 、b 的值,并求这两个方程的另一根.21.为了测量学校旗杆AB 的高度,数学实践小组做了如下实验:在阳光的照射下,旗杆AB 的影子恰好落在水平地面BC 和斜坡坡面CD 上,测得BC = 20 m ,CD = 18 m ,太阳光线AD 与水平面夹角为30°且与斜坡CD 垂直.根据以上数据,请你求出旗杆AB 的高度(结果精确到0.1 m ).参考数据:2≈ 1.41,3 ≈ 1.73.22.顺次连接四个点A 、B 、C 、D 得到四边形ABCD ,且AB = DC ,AC = BD .(1) 试判断四边形ABCD 可能是什么形状的四边形?提示:请先在草稿纸上画一画再判断.(2) 对(1)的判断给出你的证明(若形状不唯一,只选择其中一个结论进行证明).提示:证明时在答题卷上的网格里画一个符合条件的图形.D第21题图第22题图23.下表为北京奥运会官方票务网站公布的2008年北京奥运会的几种球类比赛门票的公众预订价格.某球迷准备用8500元预订10张上表中三种球类门票,其中男篮门票数与足球门票数 相同,且乒乓球门票的费用不超过男篮门票的费用,求他预订三种球类门票有几种方 案,三种球类门票各多少张?24.如图1,在△ABC 中,∠C = 90°,AC = 4,BC = 3,四边形DEFG 为△ABC 的内接正方形,若设正方形的边长为x ,容易算出x 的长为6037. (1) 若三角形内分别有并排的两个全等的正方形(如图2)、三个全等的正方形(图略),它们组成的矩形内接于△ABC ,则正方形的边长分别为 、 ;(2) 如图3,若三角形内有并排的n 个全等的正方形,它们组成的矩形内接于△ABC ,请你猜想正方形的边长是多少?并对你的猜想进行证明.25.如图所示的平面直角坐标系中,四边形OABC 是等腰梯形,BC ∥OA ,OA = 7,AB = 4,第24题图1 C G F AD E B 第24题图2 C G FA D EB 第24题图3CG F A D E B∠COA =60°.点P 为x 轴上的一个动点(点P 与点O 、A 不重合),连结CP ,过点P 作PD 交AB 于点D . (1) 求点B 的坐标;(2) 当点P 运动到什么位置时,△OCP 为等腰三角形? (3) 若AB BD =85,则点P 运动到什么位置时,使得∠CPD =∠OAB ?第25题图。

2009年广东中山中考数学试卷及答案(word)

2009年广东中山中考数学试卷及答案(word)

2009年广东省中山市初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.4的算术平方根是( ) A .2±B .2C.D2.计算32()a 结果是( ) A .6aB .9aC .5aD .8a3.如图所示几何体的主(正)视图是( )C .4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A . 107.2610⨯元 B .972.610⨯元 C .110.72610⨯元 D .117.2610⨯元5.方程组223010x y x y +=⎧⎨+=⎩的解是( ) A .1113x y =⎧⎨=⎩2213x y =-⎧⎨=-⎩ B .12123311x x y y ==-⎧⎧⎨⎨=-=⎩⎩ C . 12123311x x y y ==-⎧⎧⎨⎨==-⎩⎩ D.12121133x x y y ==-⎧⎧⎨⎨=-=⎩⎩ 二、填空题:(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.分解因式2233x y x y --- .7.已知O ⊙的直径8cm AB C =,为O ⊙上的一点,30BAC ∠=°,则BC = cm .8.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 元.9.在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n =_____________.10.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n 个图形中需要黑色瓷砖________块(用含n 的代数式表示).……(1) (2) (3)三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算:1sin 30π+32-+0°+(). 12.(本题满分6分)解方程22111x x =--- 13.(本题满分6分)如图所示,ABC △是等边三角形, D 点是AC 的中点,延长BC 到E ,使CE CD =,(1)用尺规作图的方法,过D 点作DM BE ⊥,垂足是M (不写作法,保留作图痕迹); (2)求证:BM EM =.14.(本题满分6分)已知:关于x 的方程2210x kx +-=(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是1-,求另一个根及k 值.15.(本题满分6分)如图所示,A 、B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护第7题图B第10题图 AD第13题图30° A BFE P45°第15题图1.732 1.414)四、解答题(二)(本大题4小题,每小题7分,共28分) 16.(本题满分7分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? 17.(本题满分7分)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度? (3)补全频数分布折线统计图.18.(本题满分7分)在ABCD 中,10AB =,AD m =,60D ∠=°,以AB 为直径作O ⊙, (1)求圆心O 到CD 的距离(用含m 的代数式来表示); (2)当m 取何值时,CD 与O ⊙相切.19.(本题满分7分)如图所示,在矩形ABCD 中,12AB AC =,=20,两条对角线相交于点O .以OB 、OC 为邻边作第1个平行四边形1OBB C ,对角线相交于点1A ,再以11A B 、图2乒乓球 20% 足球排球 篮球40%图1 第17题图 第18题图1A C 为邻边作第2个平行四边形111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第3个平行四边形1121O B B C ……依次类推. (1)求矩形ABCD 的面积;(2)求第1个平行四边形1OBB C 、第2个平行四边形111A B C C 和第6个平行四边形的面积.五、解答题(三)(本大题3小题,每小题9分,共27分) 20、(本题满分9分)(1)如图1,圆心接ABC △中,AB BC CA ==,OD 、OE 为O ⊙的半径,OD BC ⊥于点F ,OE AC ⊥于点G ,求证:阴影部分四边形OFCG 的面积是ABC △的面积的13.(2)如图2,若DOE ∠保持120°角度不变, 求证:当DOE ∠绕着O 点旋转时,由两条半径和ABC △的两条边围成的图形(图中阴影部分)面积始终是ABC △的面积的13.21.(本题满分9分)小明用下面的方法求出方程30=的解,请你仿照他的方法求A 1O 1A 2B 2 B 1C 1 B C 2A OD第19题图 C 第20题图D 图1 图222.(本题满分9分)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.广东省中山市2009年初中毕业生学业考试数学试题参考答案及评分建议一、选择题(本大题5小题,每小题3分,共15分) 1.B 2.A 3.B 4.A 5.D二、填空题(本大题5小题,每小题4分,共20分)6.()(3)x y x y +-- 7.4 8.96 9.8 10.10,31n + 三、解答题(一)(本大题5小题,每题6分,共30分) 11.解:原式=113122+-+ ··················································································· 4分 =4. ······························································································· 6分12.解:方程两边同时乘以(1)(1)x x +-, ······························································· 2分 2(1)x =-+, ···································································································· 4分 3x =-, ··········································································································· 5分 经检验:3x =-是方程的解. ················································································ 6分 13.解:(1)作图见答案13题图,··························································· 2分NDA CB M第22题图答案13题图AC BDE M(2)ABC △是等边三角形,D 是AC 的中点,BD ∴平分ABC ∠(三线合一), 2ABC DBE ∴∠=∠. ························································································· 4分 CE CD =,CED CDE ∴∠=∠.又ACB CED CDE ∠=∠+∠,2ACB E ∴∠=∠. ····························································································· 5分 又ABC ACB ∠=∠, 22DBC E ∴∠=∠, DBC E ∴∠=∠, BD DE ∴=. 又DM BE ⊥,BM EM ∴=. ·································································································· 6分 14.解:(1)2210x kx +-=,2242(1)8k k ∆=-⨯⨯-=+, ·············································································· 2分无论k 取何值,2k ≥0,所以280k +>,即0∆>,∴方程2210x kx +-=有两个不相等的实数根. ························································ 3分(2)设2210x kx +-=的另一个根为x ,则12k x -=-,1(1)2x -=-,·············································································· 4分 解得:12x =,1k =,∴2210x kx +-=的另一个根为12,k 的值为1. ····················································· 6分15.解:过点P 作PC AB ⊥,C 是垂足,则30APC ∠=°,45BPC ∠=°, ····································· 2分tan30AC PC =°,tan 45BC PC =°,AC BC AB +=, ························································ 4分 tan30tan 45100PC PC ∴+=°°,1100PC ⎫∴+=⎪⎪⎝⎭, ···················································5分 50(350(3 1.732)63.450PC ∴=⨯->≈≈,答:森林保护区的中心与直线AB 的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.································································································ 6分 四、解答题(二)(本大题4小题,每小题7分,共28分) 16.解:设每轮感染中平均每一台电脑会感染x 台电脑, ············································ 1分 依题意得:1(1)81x x x +++=, ··········································································· 3分答案15题图A BF E P C2(1)81x +=,19x +=或19x +=-,12810x x ==-,(舍去),··················································································· 5分 33(1)(18)729700x +=+=>. ············································································ 6分答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台. ························································································································ 7分 17.解:(1)2020%100÷=(人). ····································································· 1分(2)30100%30%100⨯=, ··················································································· 2分 120%40%30%10%---=,36010%36⨯=°°. ···························································································· 3分 (3)喜欢篮球的人数:40%10040⨯=(人), ························································ 4分 喜欢排球的人数:10%10010⨯=(人). ································································ 5分······················· 7分18.解:(1)分别过A O ,两点作AE CD OF CD ⊥⊥,,垂足分别为点E ,点F , AE OF OF ∴∥,就是圆心O 到CD 的距离. 四边形ABCD 是平行四边形,AB CD AE OF ∴∴=∥,. ·················································································· 2分在Rt ADE △中,60sin sin 60AE AED D AD AD∠=∠==°,,°, 答案17题图答案18题图(1)答案18题图(2)222AE AE m OF AE m m ====,,, ························································ 4分 圆心到CD 的距离OF为2m . ··········································································· 5分 (2)32OF m =, 为O ⊙的直径,且10AB =,当5OF =时,CD 与O ⊙相切于F 点,即523m m ==, ··················································································· 6分当m =时,CD 与O ⊙相切. ······································································· 7分 19.解:(1)在Rt ABC △中,16BC =,1216192ABCD S AB BC ==⨯=矩形. ······································································ 2分(2)矩形ABCD ,对角线相交于点O ,4ABCD OBC S S ∴=△. ···························································································· 3分四边形1OBB C 是平行四边形,11OB CB OC BB ∴∥,∥,11OBC B CB OCB B BC ∴∠=∠∠=∠,.又BC CB =,1OBC B CB ∴△≌△,112962OBB C OBC ABCD S S S ∴===△, ······································································· 5分 同理,111111148222A B C C OBB C ABCD S S S ==⨯⨯=, ························································ 6分第6个平行四边形的面积为6132ABCD S =. ······························································· 7分五、解答题(三)(本大题3小题,每小题9分,共27分) 20.证明:(1)如图1,连结OA OC ,, 因为点O 是等边三角形ABC 的外心,所以Rt Rt Rt OFC OGC OGA △≌△≌△. ····························· 2分AE O G2OFCG OFC OAC S S S ==△△,因为13OAC ABC S S =△△, 所以13OFCGABC S S =△. ························································································ 4分 (2)解法一: 连结OA OB ,和OC ,则AOC COB BOA △≌△≌△,12∠=∠, ··························· 5分 不妨设OD 交BC 于点F ,OE 交AC 于点G , 3412054120AOC DOE ∠=∠+∠=∠=∠+∠=°,°,35∴∠=∠. ······································································· 7分 在OAG △和OCF △中,1235OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,OAG OCF ∴△≌△, ························································································· 8分 13OFCG AOC ABC S S S ∴==△△. ··············································································· 9分 解法二: 不妨设OD 交BC 于点F ,OE 交AC 于点G , 作OH BC OK AC ⊥⊥,,垂足分别为H K 、, ·················· 5分 在四边形HOKC 中,9060OHC OKC C ∠=∠=∠=°,°, 360909060120HOK ∴∠=-︒-︒=︒°-?, ························ 6分 即12120∠+∠=°.又23120GOF ∠=∠+∠=°,13∴∠=∠. ····································································································· 7分 AC BC =, OH OK ∴=,OGK OFH ∴△≌△, ························································································ 8分 13OFCG OHCK ABC S S S ∴==△. ················································································ 9分答案20题图(2)A E O GFB C D 1 2 3 45 答案第20题图(3) A EOGF B C D 1 3 2H K。

2009佛山市中考数学试题

2009佛山市中考数学试题

x
D.
y xy
x
8.假设你班有男生 24名,女生 26名,班主任要从班里任选..一名红十字会的志愿者,则你被
选中的概率是 (
)
A. 12 25
B . 13 25
C .1 2
D. 1 50
9.将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着
其边缘滚动一周,这时滚动的硬币滚动了 (
)
A. 1圈
B. 1.5 圈
C. 2圈
D. 2.5 圈
10.在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面
朝上的概率是 1 ”,小明做了下列三个模拟实验来验证. 2
①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值
②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶
数,转动转盘,计算指针落在奇数区域的次数与总次数的比值
1
14.画出一次函数 y 2 x 4 的图象,并回答:当函数值为正值范围是

15.已知 △ ABC 的三边分别是 a, b, c ,两圆的半径 r1 a, r2 b ,
第 14 题图
圆心距 d c ,则这两个圆的位置关系是
三、解答题(在答题卡上作答,写出必要的解题步骤. 题 8分, 24题10分, 25题 11分,共 75分).
2009佛山市中考数学试题
数学试卷
说 明 :本试卷分为第 Ι 卷( 选择题 ) 和第Ⅱ卷(非选择题)两部分,共 6页,满分 120分,考
试时间 100分钟.
注意事项:
1. 试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上
.
2. 要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签字

2009年广东省广州市中考数学试卷

2009年广东省广州市中考数学试卷

2009年广东省广州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2009•广州)将图所示的图案通过平移后可以得到的图案是()A.B.C.D.2.(3分)(2009•广州)如图,AB∥CD,直线l分别与AB,CD相交,若∠1=130°,则∠2=()A.40°B.50°C.130°D.140°3.(3分)(2009•广州)实数a、b在数轴上的位置如图所示,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不能判断4.(3分)(2009•广州)二次函数y=(x﹣1)2+2的最小值是()A.﹣2 B.2C.﹣1 D.15.(3分)(2009•广州)如图是广州市某一天内的气温变化图,根据图,下列说法中错误的是()A.这一天中最高气温是24℃B.这一天中最高气温与最低气温的差为16℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低6.(3分)(2009•广州)下列运算正确的是()A.(m﹣n)2=m2﹣n2B.m﹣2=(m≠0)C.m2n2=(mn)4D.(m2)4=m6 7.(3分)(2009•广州)下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y=C.y=x﹣3 D.y =8.(3分)(2009•广州)只用下列正多边形地砖中的一种,能够铺满地面的是()A.正十边形B.正八边形C.正六边形D.正五边形9.(3分)(2009•广州)已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ,如图所示,则sinθ的值为()A.B.C.D.10.(3分)(2009•广州)如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8B.9.5 C.10 D.11.5二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2009•广州)已知函数y=,当x=1时,y的值是_________ .12.(3分)(2009•广州)在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是_________ .13.(3分)(2009•广州)绝对值是6的数是_________ .14.(3分)(2009•广州)如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是_________ ,第n个“广”字中的棋子个数是_________ .15.(3分)(2009•广州)如图是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由_________块长方体的积木搭成.16.(3分)(2009•广州)已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:_________ .三、解答题(共9小题,满分102分)17.(8分)(2009•广州)如图,在△ABC中,D、E、F分别为边AB、BC、CA的中点.证明:四边形DECF是平行四边形.18.(10分)(2009•广州)解方程:19.(10分)(2009•广州)先化简,再求值:,其中.20.(10分)(2009•广州)如图,在⊙O中,∠ACB=∠BDC=60°,AC=2cm.(1)求∠BAC的度数;(2)求⊙O的周长.21.(12分)(2009•广州)有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其它任何区别.现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个,且只能放一个小球.(1)请用树状图或其它适当的形式列举出3个小球放入盒子的所有可能情况;(2)求红球恰好被放入②号盒子的概率.22.(12分)(2009•广州)如图,在方格纸上建立平面直角坐标系,线段AB的两个端点都在格点上,直线MN经过坐标原点,且点M的坐标是(1,2).(1)写出点A、B的坐标;(2)求直线MN所对应的函数关系式;(3)利用尺规作出线段AB关于直线MN的对称图形.(保留作图痕迹,不写作法)23.(12分)(2009•广州)为了拉动内需,广东启动“家电下乡”活动.某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台.(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?(2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999元,根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴了多少元(结果保留2个有效数字)?24.(14分)(2009•广州)如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P.(1)若AG=AE,证明:AF=AH;(2)若∠FAH=45°,证明:AG+AE=FH;(3)若Rt△GBF的周长为1,求矩形EPHD的面积.25.(14分)(2009•广州)如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,﹣1),△ABC的面积为.(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.2009年广东省广州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2009•广州)将图所示的图案通过平移后可以得到的图案是()A.B.C.D.考点:利用平移设计图案.分析:根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.解答:解:根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选A.点评:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移与旋转或翻转,而误选B、C、D.2.(3分)(2009•广州)如图,AB∥CD,直线l分别与AB,CD相交,若∠1=130°,则∠2=()A.40°B.50°C.130°D.140°考点:平行线的性质.专题:计算题.分析:由题意AB∥CD直接根据两直线平行同位角相等即可求出∠2.解答:解:∵AB∥CD,∴∠2=∠1=130°.故选C.点评:本题主要考查平行线的性质,比较简单.3.(3分)(2009•广州)实数a、b在数轴上的位置如图所示,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不能判断考点:有理数大小比较.分析:在数轴上越靠右的点表示的数就越大,观察数轴就可以得出a和b的大小关系.解答:解:观察数轴,根据在数轴上右边的数总比左边的数大,可知a<b.故选C.点评:有理数的大小比较是中考的常考知识点,应该熟练掌握,与数轴结合起来考查是常见的考查形式.在数轴上越靠右的点表示的数越大,这是有理数大小比较的原则.4.(3分)(2009•广州)二次函数y=(x﹣1)2+2的最小值是()A.﹣2 B.2C.﹣1 D.1考点:二次函数的最值.分析:考查对二次函数顶点式的理解.抛物线y=(x﹣1)2+2开口向上,有最小值,顶点坐标为(1,2),顶点的纵坐标2即为函数的最小值.解答:解:根据二次函数的性质,当x=1时,二次函数y=(x﹣1)2+2的最小值是2.故选B.点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.5.(3分)(2009•广州)如图是广州市某一天内的气温变化图,根据图,下列说法中错误的是()A.这一天中最高气温是24℃B.这一天中最高气温与最低气温的差为16℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低考点:函数的图象.分析:根据广州市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.解答:解:0时至2时之间和14时至24时之间的气温在逐渐降低,剩下时段气温逐渐上升,所以其中A、B、C的说法都是正确的,故选D.点评:本题考查的是统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.6.(3分)(2009•广州)下列运算正确的是()A.(m﹣n)2=m2﹣n2B.m﹣2=(m≠0)C.m2n2=(mn)4D.(m2)4=m6考点:负整数指数幂;幂的乘方与积的乘方;完全平方公式.专题:计算题;压轴题.分析:分别根据完全平方公式、负整数指数幂、积的乘方与幂的乘方逐一进行计算即可.解答:解:A、(m﹣n)2=m2﹣2mn+n2,错误;B、正确;C、m2•n2=(mn)2,错误;D、(m2)4=m8,错误;故选B.点评:解决此类题目的关键是熟练掌握负整数指数幂、完全平方公式、积的乘方与幂的乘方等考点的运算.7.(3分)(2009•广州)下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y=C.y=x﹣3 D.y=考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.分析:分式有意义,分母不等于0;二次根式有意义:被开方数是非负数就可以求出x的范围.解答:解:A、分式有意义,x﹣3≠0,解得:x≠3;B、二次根式有意义,x﹣3>0,解得x>3;C、函数式为整式,x是任意实数;D、二次根式有意义,x﹣3≥0,解得x≥3.故选D.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.(3分)(2009•广州)只用下列正多边形地砖中的一种,能够铺满地面的是()A.正十边形B.正八边形C.正六边形D.正五边形。

2009年广东省中考数学试卷(Word版)(含解析)

2009年广东省中考数学试卷(Word版)(含解析)

★机密·启用前2009年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2009•广东•1•3′)4的算术平方根是()A.±2 B.2 C.±2D.22.(2009•广东•2•3′)计算(a3)2的结果是()A.a5B.a6C.a8D.a-13.(2009•广东•3•3′)如图所示,几何体的主(正)视图是()A.B.C.D.4.(2009•广东•4•3′)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是()A.7.26×1010元B.72.6×109元C.0.726×1011元D.7.26×1011元5.(2009•广东•5•3′)如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个()A.B.C.D.二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(2009•广东•6•4′)分解因式2x3﹣8x= .7.(2009•广东•7•4′)已知⊙O的直径AB=8cm,C为⊙O上的一点,∠BAC=30°,则BC= cm.8.(2009•广东•8•4′)一种商品原价120元,按八折(即原价的80%)出售,则现售价应为元.9.(2009•广东•9•4′)在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是,则n= .10.(2009•广东•10•4′)用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖块,第n个图形中需要黑色瓷砖块(用含n的代数式表示).三、解答题(一)(本大题5小题,每小题6分,共30分)11.(2009•广东•11•6′)计算:|﹣|+﹣sin30°+(π+3)0.12.(2009•广东•12•6′)解方程13.(2009•广东•13•6′)如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.14.(2009•广东•14•6′)如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.(1)用尺规作图的方法,过D点作DM⊥BE,垂足是M(不写作法,保留作图痕迹);(2)求证:BM=EM.15.(2009•广东•15•6′)如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:≈1.732,≈1.414)四、解答题(二)(本大题4小题,每小题7分,共28分)16.(2009•广东•16•7′)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?17.(2009•广东•17•7′)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?(3)补全频数分布折线统计图.18.(2009•广东•18•7′)在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=6.过D点作DE∥AC交BC的延长线于点E.(1)求△BDE的周长;(2)点P为线段BC上的点,连接PO并延长交AD于点Q.求证:BP=DQ.19.(2009•广东•19•7′)如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1、O1C1为邻边作第3个平行四边形O1B1B2C1…依此类推.(1)求矩形ABCD的面积;(2)求第1个平行四边形OBB1C,第2个平行四边形A1 B1 C1 C和第6个平行四边形的面积.五、解答题(三)(本大题3小题,每小题9分,共27分)20.(2009•广东•20•9′)(1)如图1,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影部分四边形OFCG的面积是△ABC的面积的.(2)如图2,若∠DOE保持120°角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC的面积的.21.(2009•广东•21•9′)小明用下面的方法求出方程2﹣3=0的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.,,22.(2009•广东•22•9′)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.★机密·启用前2009年广东省初中毕业生学业考试数学(时间:100分钟满分:120分)参考答案与试题解析一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2009•广东•1•3′)4的算术平方根是()A.±2 B.2 C.±2D.2考点:算术平方根。

罗村二中模拟题

罗村二中模拟题

D EFBDEFCDEFADE F图1D E F图2dabcABCDOl佛山市2009年中考数学模拟试题( 命题人:罗村二中)一、选择题(本大题共10小题,每小题3分,共30分) 1.把地球绕太阳每小时转动通过的路程约为110000。

用秒记数法表示地球一天(24小时计)转动通过的路程为( ) A .11×104 km B .1.1105 km C .26.4×105 km D .2.64×106 km2.把分式yxxy+中的x 、y 都扩大3倍,则分式值( )A .不变B .扩大3倍C .缩小3倍D .不能确定 3.小红家装修,到瓷砖店去买一种漂亮的瓷砖来铺地面,要铺满地面,下面哪一种形状不属于小红家买的范围( ) A .正三角形B .正四边形C .正五边形D .正六边形 4.已知,点P,(a -1,5)和P2(2,b -1)关于x 轴对称,则(a+b)2003的值为( )A .0B .1C .-1D .220035.用配方法解关于x 2+px+q=0时,此方程可变为( ) A .44)2(22q pp x -=+B .44)2(22pq p x -=+C .44)2(22q pp x -=-D .44)2(22pq p x -=-6.部队准备从新兵中组建一个升旗部队,抽查了一批新兵的身高,在这次实验中,部队最关心的是新兵身高数据的( ) A .平均数B .加权平均数C .中位数D .众数7.一块三角形木板ABC 在水平线上滚动,其中初始位置如图(1)所示,向右滚动1次后,顶点A 、B 、C 的位置如图(2)则向右滚动20次后三角形的顶点A 、B 、C 的位置( )8.如图,在矩形ABCD 中,横向阴影是矩形,另一阴影是平行四边形则图中的阴影部分面积为( )A .ac+bcB .ab -bc -ac+c2C .ac+bc -c2 9.若x ≤2,化简xx -+-3)2(2的结果为( )A .-1B .1C .2x -5D .5-2 x10.如图,向高为h 的圆柱形杯中注水,已知杯底面半径为2,那么注水量y 与水深x 的点数关系的图像为( )二、填空:(本大题共5小题,每小题3分共15分,把答案填在题中横线上)11.a 2-7a 的相反数是12,则a= ;12.函数2xy -=与函数xy 2=的图像有 个交点。

09年广东省初中毕业生中考数学题含答案

09年广东省初中毕业生中考数学题含答案

2009年广州市初中毕业生九年级数学学业考试满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 将图1所示的图案通过平移后可以得到的图案是( A )2. 如图2,AB ∥CD ,直线l 分别与AB 、CD 相交,若∠1=130°,则∠2=( C )(A )40° (B )50° (C )130° (D )140°3. 实数a 、b 在数轴上的位置如图3所示,则a 与b 的大小关系是( C )(A )b a < (B )b a =(C )b a > (D )无法确定4. 二次函数2)1(2+-=x y 的最小值是( A )(A )2 (B )1 (C )-1 (D )-25. 图4是广州市某一天内的气温变化图,根据图4,下列说法中错误..的是( D ) (A )这一天中最高气温是24℃(B )这一天中最高气温与最低气温的差为16℃(C )这一天中2时至14时之间的气温在逐渐升高(D )这一天中只有14时至24时之间的气温在逐渐降低6. 下列运算正确的是( B )(A )222)(n m n m -=- (B ))0(122≠=-m mm (C )422)(mn n m =⋅ (D )642)(m m =7. 下列函数中,自变量x 的取值范围是x ≥3的是( D )(A )31-=x y (B )31-=x y(C )3-=x y (D )3-=x y8. 只用下列正多边形地砖中的一种,能够铺满地面的是( C )(A )正十边形 (B )正八边形(C )正六边形 (D )正五边形9. 已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5)所示),则sin θ的值为( B )(A )125 (B )135 (C )1310 (D )131210. 如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,则ΔCEF 的周长为( A )(A )8 (B )9.5 (C )10 (D )11.5二、填空题(本大题共6小题,每小题3分,满分18分)11. 已知函数xy 2=,当x =1时,y 的值是________2 12. 在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________9.313. 绝对值是6的数是________+6,-614. 已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:________________________________略15. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________2n+516. 如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成4三、解答题(本大题共9小题,满分102分。

2009年中考答案中考数学试卷真题(附答案解析)

2009年中考答案中考数学试卷真题(附答案解析)

G (第23题图(1))
∴CD=20-x …………………………………5 分
A
∵ tan ACD AD ,即 tan 30 x
…6 分
M
DC
20 x
B
D
C

x
20 1
tan tan
30 30
20 10 3 1
3 1 7.3 (米) …7 分
N G
(第23题图(2))
答:路灯 A 离地面的高度 AD 约是 7.3 米.
∴∠OCD=90° ………………………3 分
∴∠OCB+∠DCF=90°
∵∠D+∠DCF=90°
∴∠OCB=∠D ………………………4 分
∵OB=OC
D
∴∠OCB=∠B
∵∠B=∠AEC
∴∠D=∠AEC ………………………5 分
(3)在 Rt△OCF 中,OC=5,CF=4
A C
O F E
B (第25题图 )
…………………………2 分
所以,抛物线的关系式为 y=(x-2)2-1=x2-4 x+3 ……3 分
(2)∵点 M(x,y1),N(x+1,y2)都在该抛物线上 ∴y1-y2=(x2-4 x+3)-[(x+1)2-4(x+1)+3]=3-2 x …………4 分

3-2
x>0,即
x
3 2
时,y1>y2
F
E (第22题图 )
C B
23.解:(1)见参考图 ……………………………3 分
A
(不用尺规作图,一律不给分。对图(1)画出弧 EF 给 1 分,
画出交点 G 给 1 分,连 AG 给 1 分;对图(2),画出弧 AMG
D
给 1 分,画出弧 ANG 给 1 分,连 AG 给 1 分)

2009年广东省初中毕业生学业考试数学试卷

2009年广东省初中毕业生学业考试数学试卷
C 第 14 题图
15. (本题满分 6 分)如图所示, A 、 B 两城市相距 100km.现计划在这两座城市间修筑一 ,经测量,森林保护中心 P 在 A 城市的北偏东 30° B 城市的北 和 条高速公路(即线段 AB ) 偏西 45° 的方向上. 已知森林保护区的范围在以 P 点为圆心, 50km 为半径的圆形区域内. 请 问计划修筑的这条高速公路会不会穿越保护区.为什么? (参考数据: 3 ≈ 1.732,2 ≈ 1.414 ) E 30° A P
Q O
D
B
P
C
E
第 18 题图
19. (本题满分 7 分)如图所示,在矩形 ABCD 中, AB = 12,AC = 20 ,两条对角线相交 于点 O . OB 、OC 为邻边作第 1 个平行四边形 OBB1C ; 以 对角线相交于点 A1 ; 再以 A1 B1 、
A1C 为邻边作第 2 个平行四边形 A1 B1C1C ,对角线相交于点 O1 ;再以 O1 B1 、 O1C1 为邻边

彰显数学魅力!演绎网站传奇! 彰显数学魅力!演绎网站传奇! 学魅力 网站传奇
小题, 二、填空题(本大题 5 小题,每小题 4 分,共 20 分)请将下列各题的正确答案填写在答题 填空题( 卡相应的位置上. 卡相应的位置上. C 3 6.分解因式 2 x 8 x =__________. 7.已知 ⊙O 的直径 AB = 8 cm, C 为 ⊙O 上的一点, ∠BAC = 30° BC = __________cm. , 则 8.一种商品原价 120 元,按八折(即原价的 80%)出售, 则现售价应为 __________元. 9.在一个不透明的布袋中装有 2 个白球和 n 个黄球, A B O
17. (本题满分 7 分)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的 方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的 结果绘制成如下的两幅不完整的统计图(如图 1,图 2,要求每位同学只能选择一种自己喜 欢的球类; 图中用乒乓球、 足球、 排球、 篮球代表喜欢这四种球类的某一种球类的学生人数) ,

佛山市2009年高中阶段学校招生考试答案doc

佛山市2009年高中阶段学校招生考试答案doc

佛山市2009年高中阶段学校招生考试语文试卷参考答案及评分标准第Ⅰ卷一、基础知识(每小题2分,共10分)1. D2. A3. C4. A5. B二、文言文阅读(每小题2分,共10分)6. B7. C8. D9. B 10. A第Ⅱ卷说明:凡主观题,文字不求一致,言之成理即可。

题号分值参考答案及评分意见三、积累与综合性学习(共15分)11.10分(1)千里共婵娟(2)春蚕到死丝方尽(3)病树前头万木春(4)黑云压城城欲摧(5)受任于败军之际,奉命于危难之间。

(以上每小题2分,各题错、漏、多一字扣1分,扣完为止。

)12.5分示例:我方认为,这种做法弊大于利。

首先这种做法影响了孩子正常的休息娱乐,不利于身心健康发展;其次,孩子不能自主支配时间,不利于培养自主学习的好习惯。

(陈述观点1分。

能够围绕观点阐述正确的理由,言之成理即可。

每条理由2分。

)四、现代文及名著阅读(共35分)(一)13. 2分指的是“几束凶狠、敌意的目光”(1分),“几缕失望、忧伤、悲凉的目光”(1 分)。

14. 3分A圣人的目光是高质量的,如水和雪般清澈纯洁(1分);如星和月般明亮,指引方向(1分)。

语言表达1分。

(答成“圣人的目光是高质量的,如水般清澈,如雪般纯洁,如星般闪烁,指引方向;如月般明亮,抚慰人心。

”亦可。

)B圣人的目光是高质量的,如穿过长夜又消融于长夜的闪电,照亮世间的黑暗,惊醒蒙昧的人们(1分);然后又谦卑地消逝,还世人一片自由宁静的天空(1分)。

语言表达1分。

15. 3分第⑺段在文章的结构中起到承上启下(过渡)的作用(1分)。

既承接了上文提出的“圣人的目光是高质量的”(1分),又引出了下文“我该存放收藏样的目光”,“我该向生活、向历史、向自然、向人群投去怎样的目光”(1分)。

16. 4分我会向凝视我的神圣的星星们,投去感恩和敬畏的目光(2分)。

因为它们告诉我,宇宙无限宽广,不要汲汲营营,耽于一己私利,生命的意义值得用一辈子去追寻(2分)。

2009年佛山市中考数学试题及答案(word版)

2009年佛山市中考数学试题及答案(word版)

佛山市2009 年高中阶段学校招生考试数学试卷说 明:本试卷分为第Ι卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分120分,考试时间100分钟.注意事项:1.试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上.2.要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签字笔描黑.3.其余注意事项,见答题卡.第Ⅰ卷(选择题 共30 分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.答案选项填涂在答题卡上).1化简的结果是( ) A.2 B.D .±2.数学上一般把n aa a a a个···…·记为(A .na B .n a + D .an3.30°角的余角是( )A .30°角 B .60°角 C .90°角 D .150°角4.在水平的讲台上放置圆柱形水杯和长方体形粉笔盒(右图),则它的主视图是( )A .图①B .图②C .图③D .图④5.据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤6.方程121x x=-的解是( )A .0 B .1 C .2 D .37.下列关于数与式的等式中,正确的是( )实物图图④图③图②图①A .22(2)2-=-B .5840101010⨯= C .235x y xy += D .2x yx y x+=+8.假设你班有男生24名,女生26名,班主任要从班里任选一名红十字会的志愿者,则你被选中的概率是( )A .1225 B .1325 C .12 D .1509.将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了( )A .1圈B .1.5圈C .2圈D .2.5圈10.在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是12”,小明做了下列三个模拟实验来验证.①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如右图),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值上面的实验中,不科学的有( )A .0个B .1个C .2个D .3个第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.把答案填在答题卡中).11.黄金分割比是0.61803398=…,将这个分割比用四舍五入法精确到0.001的近似数是 .12.正方形有 条对称轴.13.已知一组数据:11,15,13,12,15,15,16,15.令这组数据的众数为a ,中位数为b ,则a b (填“>”、“<”或“=”).14.画出一次函数24y x =-+的图象,并回答:当函数值为正时,x 的取值范围是 .15.已知ABC △的三边分别是a b c ,,,两圆的半径12r a r b ==,,圆心距d c =,则这两个圆的位置关系是 .第9题图第14题图三、解答题(在答题卡上作答,写出必要的解题步骤.16~20题每小题6分,21~23题每小题8分,24题10分,25题11分,共75分).16.化简:2211xyx y x y x y ⎛⎫+÷⎪-+-⎝⎭.17.某文具店销售供学生使用的甲、乙、丙三种品牌的科学计算器,共销售180台,其中甲种品牌科学计算器销售45台.请根据相关信息,补全各品牌科学计算器销售台数的条形图和扇形图.18.如图,在正方形ABCD 中,CE DF ⊥.若10cm CE =,求DF的长.丙各品牌科学计算器销售台数所占的百分比甲乙丙DFCBE A第18题图19.(1)请在坐标系中画出二次函数22y x x =-+的大致图象;(2)在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象;(3)直接写出平移后的图象的解析式.注:图中小正方形网格的边长为1.20.(1与下列哪些数相乘,结果是有理数?A.B.2CDE .0问题的答案是(只需填字母):;(2相乘的结果是有理数,则这个数的一般形式是什么(用代数式表示).第19题图21.(1)列式:x与20的差不小于0;(2)若(1)中的x(单位:cm)是一个正方形的边长,现将正方形的边长增加2cm,则正方形的面积至少增加多少?22.已知,一个圆形电动砂轮的半径是20cm,转轴OA长是40cm.砂轮未工作时停靠在竖直的档板OM上,边缘与档板相切于点B.现在要用砂轮切割水平放置的薄铁片(铁片厚度忽略不计,ON是切痕所在的直线).(1)在图②的坐标系中,求点A与点1A的坐标;(2)求砂轮工作前后,转轴OA旋转的角度和圆心A转过的弧长.注:图①是未工作时的示意图,图②是工作前后的示意图.23.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从第22题图①第22题图②柜角A 处沿着木柜表面爬到柜角1C 处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当1445AB BC CC ===,,时,求蚂蚁爬过的最短路径的长;(3)求点1B 到最短路径的距离.24.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法. 配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:22(1)3(2)2x x x -+-+、、2213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项——见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方;(2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.25.一般地,学习几何要从作图开始,再观察图形,根据图形的某一类共同特征对图形进第23题备用图第23题图行分类(即给一类图形下定义——定义概念便于归类、交流与表达),然后继续研究图形的其它特征、判定方法以及图形的组合、图形之间的关系、图形的计算等问题. 课本里对四边形的研究即遵循着上面的思路.当然,在学习几何的不同阶段,可能研究的是几何的部分问题.比如有下面的问题,请你研究.已知:四边形ABCD 中,AB DC =,且ACB DBC ∠=∠.(1)借助网格画出四边形ABCD 所有可能的形状;(2)简要说明在什么情况下四边形ABCD 具有所画的形状.佛山市2009 年高中阶段学校招生考试数学试卷参考答案与评分标准一、选择题.题号12345678910答案BC BB DC ADC A二、填空题.题号1112131415答案0.6184=图略,2x <相交注:14题,作图正确给2分,范围正确给1分.三、解答题.16.解:2222112()()xy x y x y x y x y x y x yx y x y xy y ⎛⎫++--+÷== ⎪-+--+⎝⎭·.注:通分2分、合并1分、化乘1分、约分2分.其它作法参照给分.17.注:每处满分2 分18.解(略).注:证明BCE CDF △≌△,给5分;根据三角形全等得10DF =,给1分.19.(1)画图(略)注:基本反映图形的特征(如顶点、对称性、变化趋势、平滑)给2分,满足其中的两至三项给1分,满足一项以下给0分;(2)画图、写解析式(略)注:画图满分2分,同(1)的标准;写解析式2分(无过程不扣分).20.(1)A D E 、、;注:每填对一个得1分,每填错一个扣1分,但本小题总分最少0分.(2)设这个数为x,则x a =·(a为有理数),所以x =(a 为有理数).注:无“a 为有理数”扣1分;写x =视同x =.21.(1)20x -≥0;(化为20x ≥扣1分)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分(2)面积增加222(2)4484(cm )x x x +-=+≥.(列式2分,整理1分,不等关系1分)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分答:面积至少增加284cm .22.(1)连结AB ,易得30AOB ∠=°,OB =∙∙∙∙2分点A 与点1A的坐标分别是(20,与20);∙∙∙∙∙∙∙∙∙∙4分(2)根据题意,130A ON ∠=°.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分丙各品牌科学计算器销售台数所占的百分比甲25%乙25%丙45%第22题图②DF CBE A 第18题图旋转角度是130AOA ∠=°.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分圆心A 转过的弧1AA 的长为3020π2π40(cm)3603⨯⨯=.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分23.(1)如图,木柜的表面展开图是两个矩形11ABC D '和11ACC A .蚂蚁能够最快到达目的地的可能路径有如图的11A C '和1AC .………………………………………………………… 2分(2)蚂蚁沿着木柜表面经线段11A B 到1C ,爬过的路径的长是1l ==.……………………………………3分蚂蚁沿着木柜表面经线段1BB 到1C,爬过的路径的长是2l ==∙∙∙∙∙∙4分12l l >,最短路径的长是2l =.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分(3)作11B E AC ⊥于E ,则1111B C B E AC =·1AA =5=为所求.∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分注:作垂线、相似(或等面积)、计算各1分.24.(1)242x x -+的配方(略).∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分(2)2222213()24a ab b a b ab a b b ⎛⎫++=+-=++ ⎪⎝⎭.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分(3)222324a b c ab b c ++---+=22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分从而1020102a b b c -=-=-=,,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分即1a =,2b =,1c =.所以4a b c ++=∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分25.(1)四边形可能的形状有三类:图①“矩形”、图②“等腰梯形”、图③的“四边形1ABCD ”.注1:画出“矩形”或“等腰梯形”,各给1分;画出另一类图形(后两种可以看作一类),给2分;CAE A 1B 1C 1D 11C 'B等腰梯形不单独画而在后两种图中反映的,不扣分;画图顺序不同但答案正确不扣分.注2:如果在类似图③或图④的图中画出凹四边形,同样给分(两种都画,只给一种的分).(2) (i )若BAC ∠是直角(图②),则四边形为等腰梯形;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 6分(ii )若BAC ∠是锐角(图③),存在两个点D 和1D ,得到等腰梯形ABCD 和符合条件但不是梯形的四边形1ABCD ;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分其中,若BAC ∠是直角(图①),则四边形为矩形.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 9分(iii )若BAC ∠是钝角(图④),存在两个点D 和1D ,得到等腰梯形ABCD 和符合条件但不是梯形的四边形1ABCD ;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 11分注:可用AC 与BD 或者BAC ∠与CDB ∠是否相等分类;只画矩形和等腰梯形并进行说明可给4分.。

DA广东省佛山市中考真题

DA广东省佛山市中考真题
2
1 3 (2) a ab b (a b) ab a b b2 .·················· ··········· ······· ·················5分 2 4
2 2 2
2
(3) a b c ab 3b 2c 4
(2)面积增加 ( x 2)2 x2 4x 4 ≥ 84(cm2 ) .(列式2分,整理1分,不等关系1分) ··········· ··········· ·········· ··········· ······ ··········· ·········· ··········· ··········· ······ ················································7分 答:面积至少增加 84cm . 22.(1)连结 AB ,易得 AOB 30° , OB 20 3 . · 2分 · · 点 A 与点 A 的坐标分别是 (20, 3) 与 (20 3, ;···· ··· 20 20) ··· 4分 1 (2)根据题意, A 1ON 30°. ·············· ··········· ··· ············· 5分 旋转角度是 AOA 1 30° . ················ 6分 ··········· ····· ·········· ······
2
30 20π 2π 40 (cm) . ·················8分 圆心 A 转过的弧 AA1 的长为 ··········· ······ ·········· ······· 360 3 C1 23.(1)如图,木柜的表面展开图是两个矩形 ABCD 和 ACC A D .

2009广州市九年级数学中考答案

2009广州市九年级数学中考答案

2009年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上面用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的清洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将图1所示的图案通过平移后可以得到的图案是( )2.如图2,,直线分别与相交,若则( )A .40°B .50°C .130°D .140°3.实数在数轴上的位置如图3所示,则与的大小关系是( ) A . B . C . D .无法确定 4.二次函数的最小值是( )A .B .C .D . 图1 A BC D 图2 120 b a 图3A .2B .1C .D .5.图4是广州市某一天内的气温变化图,根据图4 下列说法中错误..的是( ) A .这一天中最高气温是24℃B .这一天中最高气温与最低气温的差为16℃C .这一天中2时至14时之间的气温在逐渐升高D .这一天中只有14时至24时之间的气温在逐渐降低 6.下列运算正确的是( ) A . B .C .D .7.下列函数中,自变量的取值范围是的是( ) A .B .C .D .8.只用下列正多边形地砖中的一种,能够铺满地面的是( )A .正十边形B .正八边形C .正六边形D .正五边形 9.已知圆锥的底面半径为5cm ,侧面积为cm 2,设圆锥的母线与高的夹角为(如图5所示),则的值为( ) A .B .C .D .10.如图6,在中,,的平分线交于点,交的延长线于点,,垂足为,若,则的周长为( )A .8B .9.5C .10D .11.5第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11.已知函数,当时,的值是 .12.在某校举行的“艺术节”的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是 . 13.绝对值是6的数是 .图5 ADGBCFE 图6温度T (℃)时间t(时) 图4 26 24 22 20 18 16 14 12 10 8 6 4 22 4 6 8 10 12 14 16 18 20 22 24 O14.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题: .15.如图7-①,7-②,7-③,7-④,……是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是 ,第个“广”字中的棋子个数是 .16.如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由 块长方体的积木块搭成.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分9分) 如图9,在中,分别为边的中点.证明:四边形是平行四边形.18.(本小题满分9分) 解方程:.图7-① 图7-② 图7-③ 图7-④ …… 正 视 图 左视图俯视图图8 AF C ED B图9先化简,再求值:,其中.20.(本小题满分10分) 如图10,在中,,.(1)求的度数; (2)求的周长.21.(本小题满分12分)有红、白、蓝三种颜色的小球各一个,它们除颜色外没有任何其他区别.现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个且只能放一个小球. (1)请用树状图或其它适当的形式列举出3个小球放入盒子的所有可能情况; (2)求红球恰好被放入②号盒子的概率. 22.(本小题满分12分)如图11,在方格纸上建立平面直角坐标系,线段的两个端点都在格点上,直线经过坐标原点,且点的坐标是(1,2). (1)写出点的坐标;(2)求直线所对应的函数关系式; (3)利用尺规作出线段关于直线的对称图形(保留作图痕迹,不写作法).A O DCB 图10 1 1 yA B M O x N 图11为了拉动内需,广东启动“家电下乡”活动.某家电公司销售给农户的I 型冰箱和II 型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的I 型冰箱和II 型冰箱的销售量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台. (1)在启动活动前一个月,销售给农户的I 型冰箱和II 型冰箱分别为多少台?(2)若I 型冰箱每台价格是2298元,II 型冰箱每台价格是1999元.根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问启动活动后的第一个月销售给农户的1228台I 型和II 型冰箱,政府共补贴了多少元?(结果保留2个有效数字) 24.(本小题满分14分) 如图12,边长为1的正方形被两条与边平行的线段分割成四个小矩形,与交于点. (1)若,证明:; (2)若,证明:; (3)若的周长为1,求矩形的面积.25.(本小题满分14分) 如图13,二次函数()的图象与轴交于两点,与轴交于点,的面积为.(1)求该二次函数的关系式; (2)过轴上的一点作轴的垂线,若该垂线与的外接圆有公共点,求的取值范围;(3)在该二次函数的图象上是否存在点,使四边形为直角梯形?若存在,求出点的坐标;若不存在,请说明理由.A E DH G P BF C图12图13yxBA C O2009年广州市初中毕业生学业考试数学试题参考答案一、选择题:本题考查基础知识和基本运算,每小题 3 分,满分30 分.题号 1 2 3 4 5 6 7 8 9 10答案 A C C A D B D C B A二、填空题:本题考查基础知识和基本运算,每小题 3 分,满分18 分.11.2 12.9.3 13.14.如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直15.15;16.4三、解答题:本大题考查基础知识和基本运算,及数学能力,满分102 分.17.本小题主要考查平行四边形的判定、中位线等基础知识,考查几何推理能力和空间观念.满分9分.证法1:∵分别是边的中点,∴.同理.∴四边形是平行四边形.证法2:∵分别是边的中点,∴.∵E为的中点,∴.∴.∴四边形是平行四边形.18.本小题主要考查分式方程等基本运算技能,考查基本的代数计算能力.满分9 分.解:由原方程得,即,即,∴.检验:当时,∴是原方程的根.19.本小题主要考查整式的运算、平方差公式等基础知识,考查基本的代数计算能力.满分10分.解:.将代入,得.20.本小题主要考查圆、等边三角形等基础知识,考查计算能力、推理能力和空间观念.满分 10 分. 解:(1)∵, ∴. (2)∵, ∴. ∴是等边三角形.求的半径给出以下四种方法: 方法1:连结并延长交于点(如图1).∵是等边三角形,∴圆心既是的外心又是重心,还是垂心.在中,∴. ∴,即O 的半径为2cm . 方法 2:连结,作交于点(如图 2)∵,,∴. ∴.∵,∴中,.在中,,∴即.∴,即的半径为2cm . 方法3:连结,作交于点(如图 2). ∵O 是等边三角形的外心,也是的角平分线的交点,∴.在中,即.O A D C B E20题(2)图1O AD CBE20题(2)图2E∴.∴,即O 的半径为2cm . 方法 4:连结,作交于点(如图2). ∵O 是等边三角形的外心,也是的角平分线的交点,∴. 在中,设,则,∵, ∴.解得. ∴,即O 的半径为2cm . ∴ O 的周长为,即.21.本小题主要考查概率等基本的概念,考查.满分12 分. (1)解法1:可画树状图如下:共6种情况.解法2:3个小球分别放入编号为①、②、③的三个盒子的所有可能情况为:红白蓝、红蓝 白、白红蓝、白蓝红、蓝红白、蓝白红共6 种.(2)解:从(1)可知,红球恰好放入 2 号盒子的可能结果有白红蓝、蓝红白共 2种, 所以红球恰好放入2号盒子的概率.22.本小题主要考查图形的坐标、轴对称图形、尺规作图、一次函数等基础知识,考查用 待定系数法求函数解析式的基本方法,以及从平面直角坐标系中读图获取有效信息的能 力,满分12分. 解:(1),;(2)解法1:∵直线经过坐标原点,∴设所求函数的关系式是,又点的坐标为(1,2), ∴.∴直线所对应的函数关系式是.蓝 白 白 蓝 红 蓝 红 红 蓝 白 白 红 红 白 蓝 ①号盒子 ②号盒子 ③号盒子解法2:设所求函数的关系式是则由题意得:解这个方程组,得∴直线所对应的函数关系式是.(3)利用直尺和圆规,作线段关于直线的对称图形,如图所示.23.本小题主要考查建立二元一次方程组模型解决简单实际问题的能力,考查基本的代数计算推理能力.满分12分.解:(1)设启动活动前的一个月销售给农户的I型冰箱和II型冰箱分别为台.根据题意得解得∴启动活动前的一个月销售给农户的I型冰箱和II型冰箱分别为560台和400台.(2)I型冰箱政府补贴金额:元,II 型冰箱政府补贴金额:元.∴启动活动后第一个月两种型号的冰箱政府一共补贴金额:元.答:启动活动后第一个月两种型号的冰箱政府一共约补贴农户元.24.本小题主要考查正方形、矩形、三角形全等等基础知识,考查计算能力、推理能力和空间观念.满分14分.(1)证明1:在与中,∵,∴.∴.证明2:在中,.在中,∵, ∴. (2)证明1:将绕点顺时针旋转到的位置.在与中,∵,∴. ∴. ∵, ∴. 证明2:延长至点,使,连结.在与中, ∵, ∴. ∴. ∵, ∴.∴.∴. ∴. ∵,∴. (3)设,则,.()在中,.∵的周长为1,∴.即.即. 整理得. (*)求矩形的面积给出以下两种方法:方法1:由(*)得. ①∴矩形的面积②将①代入②得E D HCFB MGA P24题(2)图.∴矩形的面积是.方法2:由(*)得,∴矩形的面积∴矩形的面积是.25. 本小题主要考查二次函数、解直角三角形等基础知识,考查运算能力、推理能力和空间观念.满分14分.解:(1)设点,,其中.∵抛物线过点,∴.∴.∴.∵抛物线与轴交于两点,∴是方程的两个实根.求的值给出以下两种方法:方法1:由韦达定理得:.∵的面积为,∴,即.∴.∴.∵,∴.∴.解得.∵,∴.∴所求二次函数的关系式为.方法2:由求根公式得,..∵的面积为,∴,即.∴.∴.解得.∵,∴.∴所求二次函数的关系式为.(2)令,解得.∴,.在中,,在中,,∵,∴.∴.∴是直角三角形.∴的外接圆的圆心是斜边的中点. ∴的外接圆的半径.∵垂线与的外接圆有公共点, ∴.(3)假设在二次函数的图象上存在点,使得四边形是直角梯形.①若,设点的坐标为,,过作轴,垂足为,如图1所示.求点的坐标给出以下两种方法: 方法1:在中,,在中,,∵,∴.∴..25题(2)图yx BA CO 25题(3)图1yxBA CO E D解得或.∵,∴,此时点的坐标为.而,因此当时在抛物线上存在点,使得四边形是直角梯形.方法2:在与中,,∴.∴.∴.以下同方法1.②若,设点的坐标为,,过作轴,垂足为,如图2所示.在中,,在中,,∵,∴.∴..解得或.∵,25题(3)图2yxBACODF∴,此时点的坐标为.此时,因此当时,在抛物线上存在点,使得四边形是直角梯形.综上所述,在抛物线上存在点,使得四边形是直角梯形,并且点的坐标为或.。

2009年广东省广州市中考数学试题及答案

2009年广东省广州市中考数学试题及答案

页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。

——培根2009年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将图1所示的图案通过平移后可以得到的图案是( )2.如图2,AB CD ∥,直线l 分别与AB CD 、相交,若1130∠=°,则2∠=( ) A .40° B .50° C .130° D .140°3.实数a b 、在数轴上的位置如图3所示,则a 与b 的大小关系是( )A .a b <B .a b =C .a b > D.无法确定4.二次函数2(1)2y x =-+的最小值是( )A .2B .1C .1-D .2-5.图4是广州市某一天内的气温变化图,根据图4下列说法中错误的是( ) A .这一天中最高气温是24℃ B .这一天中最高气温与最低气温的差为C .这一天中2时至14D .这一天中只有14时至246.下列运算正确的是( )A .222()m n m n -=-B .221(m m -=C .224()m n mn =D .24()m 7.下列函数中,自变量x 的取值范围是3x ≥A .13y x =- B .y = C .3y x =- A . B . C . D .图1 A B C D 图21 2 图3 t )A .正十边形B .正八边形C .正六边形D .正五边形9.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5所示),则sin θ的值为( )A .512B .513C .1013D .121310.如图6,在A B C D 中,69AB AD ==,,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,BG AE ⊥,垂足为G,若BG =CEF △的周长为( )A .8B .9.5C .10D .11.5第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知函数2y x=,当1x =时,y 的值是 . 12.在某校举行的“艺术节”的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是 .13.绝对值是6的数是 .14.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题: .15.如图7-①,7-②,7-③,7-④,……是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是 ,第n 个“广”字中的棋子个数是 .16.如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由 块长方体的积木块搭成.θ图5A D G BC F E 图6 图7-① 图7-② 图7-③ 图7-④……正 视 图 左 视 图 俯 视 图三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分9分)如图9,在ABC △中,D E F 、、分别为边AB BC CA 、、的中点.证明:四边形DECF 是平行四边形.18.(本小题满分9分) 解方程:321x x =-.19.(本小题满分10分)先化简,再求值:((6)a a a a +--,其中12a =.20.(本小题满分10分)如图10,在O ⊙中,60ACB BDC ∠=∠=°,AC =.(1)求BAC ∠的度数;(2)求O ⊙的周长.A F C E DB 图9 D 图10有红、白、蓝三种颜色的小球各一个,它们除颜色外没有任何其他区别.现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个且只能放一个小球.(1)请用树状图或其它适当的形式列举出3个小球放入盒子的所有可能情况;(2)求红球恰好被放入②号盒子的概率.22.(本小题满分12分)如图11,在方格纸上建立平面直角坐标系,线段AB 的两个端点都在格点上,直线MN 经过坐标原点,且点M 的坐标是(1,2).(1)写出点A B 、的坐标;(2)求直线MN 所对应的函数关系式;(3)利用尺规作出线段AB 关于直线MN 的对称图形(保留作 图痕迹,不写作法).23.(本小题满分12分)为了拉动内需,广东启动“家电下乡”活动.某家电公司销售给农户的I 型冰箱和II 型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的I 型冰箱和II 型冰箱的销售量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台.(1)在启动活动前一个月,销售给农户的I 型冰箱和II 型冰箱分别为多少台?(2)若I 型冰箱每台价格是2298元,II 型冰箱每台价格是1999元.根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问启动活动后的第一个月销售给农户的1228台I 型和II型冰箱,政府共补贴了多少元?(结果保留2个有效数字)图11如图12,边长为1的正方形ABCD 被两条与边平行的线段EF GH 、分割成四个小矩形,EF 与GH交于点P .(1)若AG AE =,证明:AF AH =; (2)若45FAH ∠=°,证明:AG AE FH +=;(3)若Rt GBF △的周长为1,求矩形EPHD 的面积.25.(本小题满分14分)如图13,二次函数2y x px q =++(0p <)的图象与x 轴交于A B 、两点,与y 轴交于点(01)C -,,ABC △的面积为54. (1)求该二次函数的关系式;(2)过y 轴上的一点(0)M m ,作y 轴的垂线,若该垂线与ABC △的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ACBD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.A E D H G PB FC 图12 x2009年广州市初中毕业生学业考试数学试题参考答案 分.分.11.2 12.9.3 13.6±14.如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直15.15;25n + 16.4三、解答题:本大题考查基础知识和基本运算,及数学能力,满分 102 分.17.本小题主要考查平行四边形的判定、中位线等基础知识,考查几何推理能力和空间观念.满分9分.证法 1:∵D F 、分别是边AB AC 、的中点,∴DF BC ∥.同理DE AC ∥.∴四边形DECF 是平行四边形.证法 2: ∵D F 、分别是边AB AC 、的中点,∴12DF BC ∥. ∵E 为BC 的中点,∴12EC BC =. ∴DF EC∥. ∴四边形DECF 是平行四边形.18.本小题主要考查分式方程等基本运算技能,考查基本的代数计算能力.满分 9 分.解:由原方程得3(1)2x x -=,即332x x -=,即323x x -=,∴ 3x =.检验:当 3x =时,120x -=≠∴ 3x =是原方程的根.19.本小题主要考查整式的运算、平方差公式等基础知识,考查基本的代数计算能力.满分10分.解:((6)a a a a +--23(6)a a a =---2236a a a =--+63a =-.将12a =代入63a -,得 163)3a -=-=.20.本小题主要考查圆、等边三角形等基础知识,考查计算能力、推理能力和空间观念.满分 10 分.解:(1)∵BC BC =,∴60BAC BDC ∠=∠=°.(2)∵60BAC ACB ∠=∠=°,∴60ABC ∠=°.∴ABC △是等边三角形.求O方法1:连结AO 并延长交BC 于点E ∵ABC △是等边三角形,∴圆心O 既是ABC △在Rt AEC△中 AC CE =,∴3cm AE ==. ∴22cm 3AO AE ==,,即O 的半径为2cm . 方法 2:连结OC OA 、,作OE AC ⊥交AC 于点E (如图 2)∵OA OC =,OE AC ⊥,∴CE EA =.∴1122AE AC ==⨯=. ∵2120AOC ABC ∠=∠=°,∴Rt AOE △中,AOE ∠=在Rt AOE △中,sin AOE ∠=∴sin 60AE OA=°,=. ∴2cm OA =,即O 的半径为2cm .方法3:连结OC OA 、,作OE AC ⊥交AC 于点E (如图 2).∵O 是等边三角形ABC 的外心,也是ABC △的角平分线的交点,∴113022OAE AE AC ∠===⨯=°,. 在Rt AEO △中,cos AE OAE OA ∠=,即cos30=°. =. ∴2cm OA =,即O 的半径为2cm .方法 4:连结OC OA 、,作OE AC ⊥交AC 于点E (如图2).∵O 是等边三角形的外心,也是ABC △的角平分线的交点,∴1130OAE AE AC ∠===⨯=°,. 20题(2)图1 20题(2)图2在Rt AEO △中,设cm OE x =,则2cm OA x =,∵222AE OE OA +=,∴222(2)x x +=. 解得1x =.∴2cm OA =,即O 的半径为2cm .∴ O 的周长为2πr ,即4πcm .21.本小题主要考查概率等基本的概念,考查.满分12 分.(1)解法1:可画树状图如下:共6种情况.解法2:3个小球分别放入编号为①、②、③的三个盒子的所有可能情况为:红白蓝、红蓝白、白红蓝、白蓝红、蓝红白、蓝白红共6 种.(2)解:从(1)可知,红球恰好放入 2 号盒子的可能结果有白红蓝、蓝红白共 2种,所以红球恰好放入2号盒子的概率2163P ==. 22.本小题主要考查图形的坐标、轴对称图形、尺规作图、一次函数等基础知识,考查用待定系数法求函数解析式的基本方法,以及从平面直角坐标系中读图获取有效信息的能力,满分12分.解:(1)(13)A -,,(42)B -,;(2)解法1:∵直线MN 经过坐标原点,∴设所求函数的关系式是y kx =,又点M 的坐标为(1,2),∴2k =.∴直线MN 所对应的函数关系式是2y x =.解法 2:设所求函数的关系式是y kx b =+则由题意得:0 2.b k b =⎧⎨+=⎩, 解这个方程组,得20.k b =⎧⎨=⎩, 蓝 白 白 蓝 红 蓝 红 红 蓝 白 白 红红 白蓝 ①号盒子 ②号盒子 ③号盒子∴直线MN 所对应的函数关系式是2y x =.(3)利用直尺和圆规,作线段AB 关于直线MN 的对称图形A B '',如图所示.23.本小题主要考查建立二元一次方程组模型解决简单实际问题的能力,考查基本的代数计算推理能力.满分12分.解:(1)设启动活动前的一个月销售给农户的 I 型冰箱和 II 型冰箱分别为x y ,台.根据题意得960(130%)(125%)1228.x y x y +=⎧⎨+++=⎩, 解得560400.x y =⎧⎨=⎩, ∴启动活动前的一个月销售给农户的 I 型冰箱和 II 型冰箱分别为560台和400台.(2)I 型冰箱政府补贴金额:2298560(130%)13%217482.72⨯⨯+⨯=元,II 型冰箱政府补贴金额:1999400(125%)13%129935⨯⨯+⨯=元.∴启动活动后第一个月两种型号的冰箱政府一共补贴金额:5217482.72129935347417.72 3.510+=⨯≈元.答:启动活动后第一个月两种型号的冰箱政府一共约补贴农户53.510⨯元.24.本小题主要考查正方形、矩形、三角形全等等基础知识,考查计算能力、推理能力和空间观念.满分14分.(1)证明1:在Rt ADH △与Rt ABF △中,∵AD AB DH AG AE BF ====,,∴Rt ADH △≌Rt ABF △.∴AF AH =.证明2:在Rt AEF △中,222AF AE EF =+.在Rt AGH △中,222AH AG GH =+∵AG AE GH EF ==,,∴AF AH =.(2)证明1:将ADH △绕点A 顺时针旋转90°到ABM △的位置.在AMF △与AHF △中,∵ AM AH AF AF ==,, 904545MAF MAH FAH FAH ∠=∠-∠=-==∠°°°,∴AMF AHF △≌△.∴MF HF =. ∵MF MB BF HD BF AG AE =+=+=+, ∴AG AE FH +=.证明2:延长CB 至点M ,使BM DH =,连结AM .EDH G A P∵AB AD BM DH ==,,∴Rt Rt ABM ADH △≌△.∴AM AH MAB HAD =∠=∠,.∵45FAH ∠=°,∴904545BAF DAH BAD FAH ∠+∠=∠-∠=-=°°°.∴45MAF MAB BAF HAD BAF FAH ∠=∠+∠=∠+∠==∠°.∴AMF AHF △≌△.∴MF FH =.∵MF MB BF HD BF AG AE =+=+=+,∴AG AE FH +=.(3)设BF x GB y ==,,则1FC x =-,1AG y =-.(0101x y <<<<,)在Rt GBF △中,22222GF BF BG x y =+=+.∵Rt GBF △的周长为1,∴1BF BG GF x y ++=+=.1()x y =-+.即22212()()x y x y x y +=-+++.整理得22210xy x y --+=. (*)求矩形EPHD 的面积给出以下两种方法:方法1:由(*)得212(1)x y x -=-. ① ∴矩形EPHD 的面积(1)(1)S PH EP FC AG x y ===--·· ②将①代入②得(1)(1)S x y =--21(1)12(1)x x x ⎡⎤-=--⎢⎥-⎣⎦1(1)2(1)x x -=-- 12=. ∴矩形EPHD 的面积是12. 方法2:由(*)得1()2x y xy +-=, ∴矩形EPHD 的面积(1)(1)S PHEP FC AG x y ===--··1()x y xy =-++112=-12=∴矩形EPHD 的面积是12. 25. 本小题主要考查二次函数、解直角三角形等基础知识,考查运算能力、推理能力和空间观念.满分14分.解:(1)设点1(0)A x ,,2(0)B x ,,其中12x x <. ∵抛物线2y x px q =++过点(01)C -,,∴2100P q -=+⨯+.∴1q =-.∴21y x px =+-.∵抛物线2y x px q =++与x 轴交于A B 、两点,∴12x x ,是方程210x px +-=的两个实根.求p 的值给出以下两种方法:方法1:由韦达定理得:12121x x p x x +=-=-,.∵ABC △的面积为54, ∴1524OC AB =·,即21151()24x x ⨯⨯-=. ∴2152x x -=. ∴22125()4x x -=. ∵22212112()()4x x x x x x -=+-,∴2211225()44x x x x +-=. ∴225()44p -+=. 解得32p =±. ∵0p <,∴32p =-. ∴所求二次函数的关系式为2312y x x =--. 方法2:由求根公式得1x =2x =21AB x x =-== ∵ABC △的面积为54, ∴1524OC AB =·,即21151()24x x ⨯⨯-=.∴15124⨯=. ∴22544p +=. 解得32p =±. ∵0p <,∴32p =-. ∴所求二次函数的关系式为2312y x x =--. (2)令23102x x --=,解得12122x x =-=,. ∴102A ⎛⎫- ⎪⎝⎭,,(20)B ,. 在Rt AOC △中,2222215AC AO OC ⎛⎫=+= ⎝在Rt BOC △中,222BC BO OC =+=∵15222AB ⎛⎫=--= ⎪⎝⎭, ∴22525544AC BC +=+==∴90ACB ∠=°.∴ABC △是直角三角形.∴Rt ABC △的外接圆的圆心是斜边AB 的中点.∴Rt ABC △的外接圆的半径524AB r ==.∵垂线与ABC △的外接圆有公共点, ∴5544m -≤≤. (3)假设在二次函数2312y x x =--的图象上存在点D ,使得四边形ACBD 是直角梯形. ①若AD BC ∥,设点D 的坐标为2000312x x x ⎛⎫-- ⎪⎝⎭,,00x >, 过D 作DE x ⊥轴,垂足为E ,如图1所示.求点D方法1:在Rttan DE DAE AE ∠==在Rt BOC △中,tan ∵DAE ∠=∴tan tan DAE CBO ∠=∠.∴20003112122x x x --=⎛⎫-- ⎪⎝⎭. 2004850x x --=.解得052x =或012x =-. ∵00x >,∴052x =,此时点D 的坐标为5322⎛⎫ ⎪⎝⎭,. 而2222454AD AE ED BC =+=≠,因此当AD BC ∥时在抛物线231y x x =--上存在点532D ⎛⎫ ⎪⎭,,使得四边形DACB 是直角梯形. 方法2:在Rt AED △与Rt BOC △中,DAE ∠∴Rt Rt AED BOC △∽△.∴DE OC AE OB=. x x∴20003112122x x x --=⎛⎫-- ⎪⎝⎭. 以下同方法1.②若AC BD ∥,设点D 的坐标为2000312x x x ⎛⎫-- ⎪⎝⎭,,00x <, 过D 作DF x ⊥轴,垂足为F ,如图2所示.在Rt DFB △中,2000312tan 2x x DE DBF FB x --∠==-, 在Rt COA △中,1tan 212OC CAO OA ∠===, ∵DBF CAO ∠=∠,∴tan tan DBF CAO ∠=∠. ∴200031222x x x --=-. 2002100x x +-=. 解得052x =-或02x =. ∵00x <, ∴052x =-,此时D 点的坐标为592⎛⎫- ⎪⎝⎭,. 此时BD AC ≠,因此当AC BD ∥时,在抛物线2312y x x =--上存在点592D ⎛⎫- ⎪⎝⎭,,使得四边形DACB 是直角梯形. 综上所述,在抛物线2312y x x =--上存在点D ,使得四边形DACB 是直角梯形,并且点D 的坐标为5322⎛⎫ ⎪⎝⎭,或592⎛⎫- ⎪⎝⎭,.卖炭翁白居易(唐) 字乐天号香山居士卖炭翁,伐薪烧炭南山中。

2009年佛山市禅城区中考科研测试数学试题

2009年佛山市禅城区中考科研测试数学试题
2
B.外切 D.内切 B
B
A
A
7.如图, ACB ≌ ACB , ACB 30 , AC B 110 , D.40°
C 第 7 题图
8.用配方法解方程 x 2 x 5 0 时,原方程应变形为 A. x 1 6
2
B. x 1 6
① A O 4
② 8

④ 12 16 x
第 20 题图
21.为节约用电,某学校在本学期初制定了详细的用电计划.如果实际每天比计划多用2度 电,那么本学期的用电量将会超过2990度;如果实际每天比计划节约2度电,那么本学 期的用电量将不超过2600度.若本学期的在校时间按130天计算,那么学校原计划每天 用电量应控制在什么范围内?
5.三(5)班有 50 名学生,统计其体育测试成绩,结果如下表。三(5)班学生体育测试成
A.26 分 B.27 分 C.28 分 D.29 分 6.两圆的半径分别为 3cm 和 8cm,圆心距为 5cm,则该两圆的位置关系是 A.外离 C.相交 则 ACA 的度数是 A.20° B.30° C.35°
23.如图,在正方形 ABCD 中, CE DF 于O点,假设正方形的边长1, CF x . (1)试求四边形 ADOE 的面积; A (2)当 F 是 BC 的中点时,求四边形 ADOE 的面积的值. D
E O B F 第 23 题图 C
数学模拟试题第 5 页共 6 页
24.分类是一种重要的数学思想。请解答下列问题: (1)两个圆相切有哪几种情况? (2)三个圆两两相切有哪几种情况?请画出相应的图形(只需要画草图)。 (3)四个圆两两相切有哪几种情况?试画出各种可能出现的情形(只需要画草图)。
第Ⅰ卷(选择题共30 分)

佛山市2009年高中阶段学校招生考试

佛山市2009年高中阶段学校招生考试

佛山市2009年高中阶段学校招生考试化 学 试 卷本试卷分选择题和非选择题两部分,共8页,满分100分。

考试时间90分钟。

注意事项:1. 试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上。

2. 如要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签字笔描黑。

3. 其余注意事项,见答题卡。

可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 S 32 Cl 35.5 Cu 64第Ⅰ卷(选择题 共30分)一、选择题(本题包括15小题,每小题2分,共30分。

每小题只有一个选项符合题意) 1.(09年佛山)下列物质属于碱的是A .CO 2B .HClC .NH 3·H 2OD .K 2SO 4 2.(09年佛山)下列属于化学变化的是A .研碎胆矾B .铜表面产生铜绿C .过滤D .制取蒸馏水 3.(09年佛山)下列不属于...使用新燃料或开发新能源的事实是 A .禁止超市为顾客无偿提供塑料袋 B .开发大西北的“西气东输”工程 C .鼓励使用太阳能电池 D .推广使用车用乙醇汽油 4.(09年佛山)下列实验设计与对应的实验目的表述不一致...的是A .比较火焰B .检验氢气的纯度C .验证CO 2的密度D .探究空气的组成 各层温度 比空气大 成分5.(09年佛山)我国曾发生过多次将工业用盐如亚硝酸钠(NaNO 2)误作食盐用于烹调而引起的中毒事件。

下列有关NaNO 2的说法正确的是 A .NaNO 2是一种氧化物浓酚酞氨水溶液品红加入水中后, 用扫描隧道显微镜获得的苯分子的图像B .NaNO 2由三种元素组成C .NaNO 2中氮元素的化合价为 3价D .NaNO 2中Na 、N 、O 三种元素的质量比为1∶1∶2 6.(09年佛山)对下列实验现象进行的解释错误..的是分子的质量和体积都很小7.(09年佛山)常见金属的活动性顺序如下:根据金属活动性顺序进行分析,下列描述或判断错误..的是 A .常温下,金属镁在空气中要比铁容易氧化 B .在氧气中灼烧时,铁丝要比铜丝反应剧烈 C .在同一盐酸中反应时,锌片比铁片反应剧烈D .铜活动性不强,故铜不能与硝酸银溶液反应得到金属银 8.(09年佛山)“归纳与比较”是化学学习的重要方法,下列有关CO 2与CO 的知识归纳错误..的是 9.(09年佛山)最近,不少媒体报道,某些凉茶原料中有一味中药材叫夏枯草,长期饮用可能患胃溃疡等疾病。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

佛山市2009 年高中阶段学校招生考试数学试卷说 明:本试卷分为第Ι卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分120分,考试时间100分钟. 注意事项:1.试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上.2.要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签字 笔描黑.3.其余注意事项,见答题卡.第Ⅰ卷(选择题 共30 分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.答案选项填涂在答题卡上). 1( )A.2B. C.- D.±2.数学上一般把n aa a a a 个···…·记为( )A .naB .n a +C .na D .an 3.30°角的余角是( )A .30°角B .60°角C .90°角D .150°角 4.在水平的讲台上放置圆柱形水杯和长方体形粉笔盒(右图),则它的主视图是( )A .图①B .图②C .图③D .图④5.据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤ 6.方程121x x=-的解是( ) A .0 B .1 C .2 D .3 7.下列关于数与式的等式中,正确的是( )A .22(2)2-=- B .5840101010⨯= C .235x y xy += D .2x yx y x+=+ 8.假设你班有男生24名,女生26名,班主任要从班里任选..一名红十字会的志愿者,则你被实物图图④图③图②图①选中的概率是( ) A .1225 B .1325 C .12 D .1509.将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了( )A .1圈B .1.5圈C .2圈D .2.5圈10.在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是12”,小明做了下列三个模拟实验来验证. ①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值 ②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如右图),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值上面的实验中,不.科学的有( ) A .0个 B .1个 C .2个 D .3个第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.把答案填在答题卡中). 11.黄金分割比是=10.618033982=…,将这个分割比用四舍五入法精确到0.001的 近似数是 .12.正方形有 条对称轴.13.已知一组数据:11,15,13,12,15,15,16,15.令这组数据的众数为a ,中位数为b ,则a b (填“>”、“<”或“=”). 14.画出一次函数24y x =-+的图象,并回答:当函数值为正时,x 的取值范围是 .15.已知ABC △的三边分别是a b c ,,,两圆的半径12r ar b ==,,圆心距d c =,则这两个圆的位置关系是 .三、解答题(在答题卡上作答,写出必要的解题步骤.16~20题每小题6分,21~23题每小题8分,24题10分,25题11分,共75分). 16.化简:2211xyx y x y x y⎛⎫+÷ ⎪-+-⎝⎭.第9题图第14题图17.某文具店销售供学生使用的甲、乙、丙三种品牌的科学计算器,共销售180台,其中 甲种品牌科学计算器销售45台.请根据相关信息,补全各品牌科学计算器销售台数的条形图和扇形图.18.如图,在正方形ABCD 中,CE DF ⊥.若10cm CE =,求DF 的长.丙各品牌科学计算器销售台数所占的百分比甲25% 乙30% 丙DF CBE A第18题图19.(1)请在坐标系中画出二次函数22y x x =-+的大致图象;(2)在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象; (3)直接写出平移后的图象的解析式. 注:图中小正方形网格的边长为1.20.(1A. B.2 CDE .0 问题的答案是(只需填字母): ;(2表示).21.(1)列式:x 与20的差不小于0;(2)若(1)中的x (单位:cm )是一个正方形的边长,现将正方形的边长增加2cm , 则正方形的面积至少增加多少?第19题图22.已知,一个圆形电动砂轮的半径是20cm ,转轴OA 长是40cm .砂轮未工作时停靠在竖直的档板OM 上,边缘与档板相切于点B .现在要用砂轮切割水平放置的薄铁片(铁片厚度忽略不计,ON 是切痕所在的直线). (1)在图②的坐标系中,求点A 与点1A 的坐标;(2)求砂轮工作前后,转轴OA 旋转的角度和圆心A 转过的弧长. 注:图①是未工作时的示意图,图②是工作前后的示意图.23.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A 处沿着木柜表面爬到柜角1C 处.(1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当1445AB BC CC ===,,时,求蚂蚁爬过的最短路径的长; (3)求点1B 到最短路径的距离.第22题图① 第22题图②第23题备用图第23题图24.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法. 配方法的基本形式是完全平方公式的逆写,即2222()a ab b a b ±+=±.例如:22(1)3(2)2x x x -+-+、、2213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项——见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出242x x -+三种不同形式的配方; (2)将22a ab b ++配方(至少两种形式);(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.25.一般地,学习几何要从作图开始,再观察图形,根据图形的某一类共同特征对图形进行分类(即给一类图形下定义——定义概念便于归类、交流与表达),然后继续研究图形的其它特征、判定方法以及图形的组合、图形之间的关系、图形的计算等问题. 课本里对四边形的研究即遵循着上面的思路.当然,在学习几何的不同阶段,可能研究的是几何的部分问题.比如有下面的问题,请你研究.已知:四边形ABCD 中,AB DC =,且ACB DBC ∠=∠. (1)借助网格画出四边形ABCD 所有可能的形状;(2)简要说明在什么情况下四边形ABCD 具有所画的形状.佛山市2009 年高中阶段学校招生考试数学试卷参考答案与评分标准注:14题,作图正确给2分,范围正确给1分. 三、解答题.16.解:2222112()()xy x y x y x y x y x y x y x y x yxy y ⎛⎫++--+÷== ⎪-+--+⎝⎭·. 注:通分2分、合并1分、化乘1分、约分2分.其它作法参照给分.17.注:每处满分2 分 18.解(略).注:证明BCE CDF △≌△,给5分;根据三角形全等得10DF =,给1分. 19.(1)画图(略)注:基本反映图形的特征(如顶点、对称性、变化趋势、平滑)给2分,满足其中的两至三项给1分,满足一项以下给0分; (2)画图、写解析式(略)注:画图满分2分,同(1)的标准;写解析式2分(无过程不扣分). 20.(1)A D E 、、;注:每填对一个得1分,每填错一个扣1分,但本小题总分最少0分.(2)设这个数为x ,则xa =(a 为有理数),所以x =(a 为有理数). 注:无“a 为有理数”扣1分;写x =视同x =. 21.(1)20x -≥0;(化为20x ≥扣1分) ···································································· 3分丙 各品牌科学计算器销售台数所占的百分比甲25% 乙25% 丙 45%D F C BE A 第18题图(2)面积增加222(2)4484(cm )x x x +-=+≥.(列式2分,整理1分,不等关系1分) ·················································································································································· 7分 答:面积至少增加284cm .22.(1)连结AB ,易得30AOB ∠=°,OB = ··· 2分 点A 与点1A的坐标分别是(20,与; ·········· 4分 (2)根据题意,130A ON ∠=°. ········································· 5分 旋转角度是130AOA ∠=°. ················································ 6分圆心A 转过的弧1AA 的长为3020π2π40(cm)3603⨯⨯=. ··················································· 8分 23.(1)如图,木柜的表面展开图是两个矩形11ABC D '和11ACC A .蚂蚁能够最快到达目的地的可能路径有如图的11AC '和1AC .………………………………………………………… 2分(2)蚂蚁沿着木柜表面经线段11A B 到1C ,爬过的路径的长是1l ==3分蚂蚁沿着木柜表面经线段1BB 到1C ,爬过的路径的长是2l == ····· 4分12l l >,最短路径的长是2l = ····················································································· 5分 (3)作11B E AC ⊥于E ,则1111B C B E AC =·1AA =·5= ············· 8分 注:作垂线、相似(或等面积)、计算各1分.24.(1)242x x -+的配方(略). ·················································································· 3分(2)2222213()24a ab b a b ab a b b ⎛⎫++=+-=++ ⎪⎝⎭. ····················································· 5分(3)222324a b c ab b c ++---+=22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭. ·············································································· 8分第22题图②CA EA 1B 1C 1D 11C ' B从而1020102a b b c -=-=-=,,. ··············································································· 9分 即1a =,2b =,1c =. 所以4a b c ++= ·················································································································· 10分25.(1)四边形可能的形状有三类:图①“矩形”、图②“等腰梯形”、图③的“四边形1ABCD ”.注1:画出“矩形”或“等腰梯形”,各给1分;画出另一类图形(后两种可以看作一类),给2分;等腰梯形不单独画而在后两种图中反映的,不扣分;画图顺序不同但答案正确不扣分.注2:如果在类似图③或图④的图中画出凹四边形,同样给分(两种都画,只给一种的分). (2) (i )若BAC ∠是直角(图②),则四边形为等腰梯形; ·········································· 6分 (ii )若BAC ∠是锐角(图③),存在两个点D 和1D ,得到等腰梯形ABCD 和符合条件但不是梯形的四边形1ABCD ; ······························································································ 8分 其中,若BAC ∠是直角(图①),则四边形为矩形. ····················································· 9分 (iii )若BAC ∠是钝角(图④),存在两个点D 和1D ,得到等腰梯形ABCD 和符合条件但不是梯形的四边形1ABCD ; ·························································································· 11分 注:可用AC 与BD 或者BAC ∠与CDB ∠是否相等分类;只画矩形和等腰梯形并进行说明可给4分.。

相关文档
最新文档