(完整版)导数各种题型及解法的总结--学生,推荐文档

合集下载

导数大题20种主要题型总结及解题方法

导数大题20种主要题型总结及解题方法

导数大题20种主要题型总结及解题方法导数是微积分中的一个重要概念,用于描述函数在某一点处的变化率。

掌握导数的计算和应用方法对于解决各种实际问题具有重要意义。

下面将对导数的20种主要题型进行总结并给出解题方法。

1.求函数在某点的导数。

对于给定的函数,要求在某一点处的导数,可以使用导数的定义或者基本求导法则。

导数的定义是取极限,计算函数在这一点的变化率。

基本求导法则包括常数、幂函数、指数函数、对数函数、三角函数的求导法则。

2.求函数的导数表达式。

已知函数表达式,要求其导数表达式。

可以使用基本求导法则,并注意链式法则和乘积法则的应用。

3.求高阶导数。

如果已知函数的导数表达式,要求其高阶导数表达式。

可以反复应用求导法则,每次对函数求导一次得到导数表达式。

4.求导数的导函数。

导数的导函数是指对导数再进行求导的过程。

要求导函数时,可以反复应用求导法则,迭代求取导数的导数。

5.利用导数计算函数极值。

当函数的导数为0或不存在时,可能是函数的极值点。

可以利用导数求函数的极值。

6.利用导数判定函数的增减性。

根据函数的导数正负性可以判定函数的增减性。

如果导数大于0,则函数在该区间上递增;如果导数小于0,则函数在该区间上递减。

7.利用导数求函数的最大最小值。

当函数在某一区间内递增时,在区间的左端点处取得最小值;当函数在某一区间内递减时,在区间的右端点处取得最小值。

要求函数全局最大最小值时,可以使用导数判定。

当导数从正数变为负数时,可能是函数取得最大值的点。

8.利用导数求函数的拐点。

如果函数的导数在某一点发生变号,该点可能是函数的拐点。

可以使用导数的二阶导数判定。

9.利用导数求函数的弧长。

曲线的弧长可以通过积分求取,而曲线的弧长元素是由导数表示的。

通过导数求取弧长元素,并积累求和得到曲线的弧长。

10.利用导数求函数的曲率。

曲率表示曲线弯曲程度的大小,可以通过导数求取。

曲率的求取公式是曲线的二阶导数与一阶导数的比值。

11.利用导数求函数的速度和加速度。

(完整版)高中数学导数题型总结,推荐文档

(完整版)高中数学导数题型总结,推荐文档
(2) f ' 1 3 2a 4 0 , a 1 。 f 'x 3x 2 x 4 3x 4x 1
2
令 f 'x 0 ,即 3x 4x 1 0 ,解得 x 1或 x 4 , 则 f x和 f 'x在区间
3
2,2上随 x 的变化情况如下表:
x
2 2,1 1
f 'x

0
A. f (x) (x 1)2 3(x 1)
B. f (x) 2(x 1)
C. f (x) 2(x 1)2 D. f (x) x 1
5. 函数 f (x) x3 ax 2 3x 9 ,已知 f (x) 在 x 3 时取得极值,则 a =( D )
(A)2
(B)3
(C)4
(D)5
例 6. 设函数 f (x) 2x3 3ax2 3bx 8c 在 x 1 及 x 2 时取得极值。 1 求 a、b 的值; 2 若对于任意的 x [0,3],都有 f (x) c2 成立,求 c 的取值范围。
点评:本题考查利用导数求函数的极值。求可导函数 f x的极值步骤:①求导数 f 'x;
解析:
(1)∵ f (x) 为奇函数,∴ f (x) f (x) ,即
ax3 bx c ax3 bx c
∴ c 0 ,∵ f '(x) 3ax2 b 的最小值为12 ,∴ b 12 ,又直线 x 6 y 7 0 的斜率为1 ,因此, f '(1) 3a b 6 ,∴ a 2 , b 12 , c 0 .
6. 函数 f (x) x3 3x2 1是减函数的区间为( D )
(A) (2, ) (B) (, 2) (C) (, 0) (D) (0, 2)
7. 若函数 f x x2 bx c 的图象的顶点在第四象限,则函数 f 'x的图象是( A

(完整版)导数的综合大题及其分类.(可编辑修改word版)

(完整版)导数的综合大题及其分类.(可编辑修改word版)

a - a 2-4 2 a + a 2-42导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用.题型一 利用导数研究函数的单调性、极值与最值题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论.(1) 单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论.(2) 极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点.(3) 最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值.已知函数 f (x )=x 1g (x )=a ln x (a ∈R ).- , x(1) 当 a ≥-2 时,求 F (x )=f (x )-g (x )的单调区间;(2) 设 h (x )=f (x )+g (x ),且 h (x )有两个极值点为 x ,x ,其中 x ∈ 1,求 h (x )-h (x)的最121(0,]1 2 2小值.[审题程序]第一步:在定义域内,依据 F ′(x )=0 根的情况对 F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立 x 1、x 2 及 a 间的关系及取值范围;第四步:通过代换转化为关于 x 1(或 x 2)的函数,求出最小值.[规范解答] (1)由题意得 F (x )=x 1a ln x ,- - xx 2-ax +1其定义域为(0,+∞),则 F ′(x )= ,x 2令 m (x )=x 2-ax +1,则 Δ=a 2-4.①当-2≤a ≤2 时,Δ≤0,从而 F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞);②当 a >2 时,Δ>0,设 F ′(x )=0 的两根为 x 1= ,x 2= ,x∴F (x )的单调递增区间为( a - a 2-4) (a + a 2-4)0, 2和 ,+∞ , 2F (x )(a - a 2-4 a + a 2-4)的单调递减区间为 ,. 2 2综上,当-2≤a ≤2 时,F (x )的单调递增区间为(0,+∞); 当 a >2 时,F (x )的单调递增区间为(a - a 2-4) (a + a 2-4)0, 2和 ,+∞ , 2F (x )(a - a 2-4 a + a 2-4)的单调递减区间为 ,. 2 2(2)对 h (x )=x 1a ln x ,x ∈(0,+∞)- + x1 a x 2+ax +1求导得,h ′(x )=1+ + = ,x 2 x x 2设 h ′(x )=0 的两根分别为 x 1,x 2,则有 x 1·x 2=1,x 1+x 2=-a , 1 1∴x 2= ,从而有 a =-x 1- .x 1 x 1令 H (x )=h (x )-h(1) 111 11=x -x +(-x -x )ln x -[x -x +(-x -x )·ln x ]1 1 =2[(-x -x )ln x +x -x ],1 2(1-x )(1+x )ln x H ′(x )=2(x 2-1)ln x = x 2. 当 x ∈1 时,H ′(x )<0, (0,] 2 ∴H (x )在 1 上单调递减,(0, ]2 又 H (x 1)=h (x 1)-h1 =h (x 1)-h (x 2),(x 1)∴[h (x 1)-h (x 2)]min =H 1=5ln2-3.(2)[解题反思] 本例(1)中求 F (x )的单调区间,需先求出 F (x )的定义域,同时在解不等式 F ′(x )>0 时需根据方程 x 2-ax +1=0 的根的情况求出不等式的解集,故以判别式“Δ”的取值作为分类讨论的依据.在(2)中求出 h (x 1)-h (x 2)的最小值,需先求出其解析式.由题可知 x 1,x 2 是 h ′(x )=0 的两根,可得到 x 1x 2=1,x 1+x 2=-a ,从而将 h (x 1)-h (x 2)只用一个变量 x 1 导出.从而得到 H (x 1)= h (x )-h 1 ,这样将所求问题转化为研究新函数 H (x )=h (x )-h 1 在 1上的最值问题,体现 1 (x 1) (x) (0, )2转为与化归数学思想.[答题模板] 解决这类问题的答题模板如下:- = .- =[题型专练]1.设函数 f (x )=(1+x )2-2ln(1+x ).(1) 求 f (x )的单调区间;(2) 当 0<a <2 时,求函数 g (x )=f (x )-x 2-ax -1 在区间[0,3]上的最小值.[解] (1)f (x )的定义域为(-1,+∞). ∵f (x )=(1+x )2-2ln(1+x ),x ∈(-1,+∞),∴f ′(x )=2(1+x ) 2 2x (x +2)1+x x +1 由 f ′(x )>0,得 x >0;由 f ′(x )<0,得-1<x <0.∴函数 f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0). (2)由题意可知 g (x )=(2-a )x -2ln(1+x )(x >-1), 则 g ′(x )=2-a 2 1+x ∵0<a <2,∴2-a >0,(2-a )x -a=. 1+x 令 g ′(x )=0,得 x a,2-a ∴函数 g (x )在(0, a )上为减函数,在( a,+∞)上为增函数.2-a 2-a①当 0< a,即 0<a <3[0,3]上, 2-a 时,在区间 2 g (x )在(0, a )上为减函数,在( a,3)上为增函数,2-a 2-a ∴g (x ) =g ( a )=a -2ln 2mina ②当 ≥3 2-a 32-aa <2 时,g (x )在区间[0,3]上为减函数, 2-a ,即 ≤2∴g (x )min =g (3)=6-3a -2ln4.<3 .综上所述,当 0<a <3 2时, g (x ) =a -2ln ; min2 2-a3当 ≤a <2 时,g (x )min =6-3a -2ln4. 2北京卷(19)(本小题 13 分)已知函数 f (x )=e x cos x −x .(Ⅰ)求曲线 y = f (x )在点(0,f (0))处的切线方程; (Ⅱ)求函数 f (x )在区间[0, π]上的最大值和最小值.2[0, ] [0, ] 0(19)(共 13 分)解:(Ⅰ)因为 f (x ) = e x cos x - x ,所以 f '(x ) = e x (cos x - sin x ) -1, f '(0) = 0 .又因为 f (0) = 1,所以曲线 y = f (x ) 在点(0, f (0)) 处的切线方程为 y = 1.(Ⅱ)设 h (x ) = e x (cos x - sin x ) -1 ,则 h '(x ) = e x (cos x - sin x - sin x - cos x ) = -2e x sin x .当x ∈ π (0, ) 2时, h '(x ) < 0 , 所以 h (x ) 在区间 π 2上单调递减.所以对任意 x ∈ π (0, ] 2有 h (x ) < h (0) = 0 ,即 f '(x ) < 0 . 所以函数 f (x ) 在区间 π 2上单调递减.因此 f (x ) 在区间[0, π] 上的最大值为 f (0) = 1,最小值为 f ( π) = - π.2 2 221.(12 分)已知函数 f (x ) = ax 3 - ax - x ln x , 且 f (x ) ≥ 0 .(1) 求 a ;(2) 证明: f (x ) 存在唯一的极大值点 x 0 ,且e -2 <f (x ) < 2-3.21.解:(1) f ( x ) 的定义域为(0,+∞)设 g (x ) = ax - a - lnx ,则 f (x ) = xg (x ) , f (x ) ≥ 0 等价于 g (x ) ≥ 0xx0 0因为 g (1) =0,g (x ) ≥ 0, 故g' (1) =0, 而g' (x ) = a - 1 , g' (1) =a - 1, 得a = 1若 a =1,则 g' (x ) = 1 - 1.当 0<x <1 时, g' (x ) <0, g (x ) 单调递减;当 x >1 时, g' (x ) >0, g ( x ) 单调递增.所以 x=1 是g (x ) 的极小值点,故g (x ) ≥ g (1)=0综上,a=1(2)由(1)知f (x ) = x 2 - x - x l n x , f ' ( x ) = 2x - 2 - l n x设h (x )= 2x - 2 - l n x , 则 h ' ( x ) = 2 - 1x当x ∈ ⎛ 0, 1 ⎫ 时, h ' (x ) <0 ;当x ∈ ⎛ 1 , +∞⎫ 时, h ' (x ) >0 ,所以h (x ) 在⎛ 0, 1 ⎫ 单调递减,在⎛ 1 , +∞⎫ 单调递增 2 ⎪ 2 ⎪ 2 ⎪ 2 ⎪⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ 又h (e -2)>⎛ 1 ⎫ <0, h (1) = 0 ,所以h (x ) 在⎛ 0, 1 ⎫ 有唯一零点 x 0,在⎡1 , +∞⎫ 有唯一零点 1,且当x ∈ (0, x ) 时, h (x ) >0 ;当x ∈ (x , 1) 时, 0, h 2 ⎪ 2 ⎪ ⎢ 2 ⎪ 0 0 ⎝ ⎭ ⎝ ⎭ ⎣ ⎭h (x ) <0 ,当x ∈ (1, +∞) 时, h (x ) >0 .因为f ' (x ) = h (x ) ,所以 x=x 0 是 f(x)的唯一极大值点由f ' (x 0 ) = 0得l n x 0 = 2( x 0 - 1) , 故f (x 0 ) =x (0 1 - x 0 )由x ∈ (0, 1) 得f ' (x ) < 14因为 x=x 0 是 f(x)在(0,1)的最大值点,由e -1∈ (0, 1) , f ' (e-1)≠ 0 得f (x ) >f (e-1)= e-2所以e -2<f (x ) <2- 2题型二 利用导数研究方程的根、函数的零点或图象交点题型概览:研究方程根、函数零点或图象交点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.已知函数f(x)=(x+a)e x,其中e 是自然对数的底数,a∈R. (1)求函数f(x)的单调区间;(2)当a<1 时,试确定函数g(x)=f(x-a)-x2 的零点个数,并说明理由.[审题程序]第一步:利用导数求函数的单调区间;第二步:简化g(x)=0,构造新函数;第三步:求新函数的单调性及最值;第四步:确定结果.[规范解答] (1)因为f(x)=(x+a)e x,x∈R,所以f′(x)=(x+a+1)e x.令f′(x)=0,得x=-a-1.当x 变化时,f(x)和f′(x)的变化情况如下:x (-∞,-a-1) -a-1 (-a-1,+∞)f′(x) -0 +f(x)故f((2)结论:函数g(x)有且仅有一个零点.理由如下:由g(x)=f(x-a)-x2=0,得方程x e x-a=x2,显然x=0 为此方程的一个实数解,所以x=0 是函数g(x)的一个零点.当x≠0 时,方程可化简为e x-a=x.设函数F(x)=e x-a-x,则F′(x)=e x-a-1,令F′(x)=0,得x=a.当x 变化时,F(x)和F′(x)的变化情况如下:0 xx即 F (x )a ). 所以 F (x )的最小值 F (x )min =F (a )=1-a . 因为 a <1,所以 F (x )min =F (a )=1-a >0, 所以对于任意 x ∈R ,F (x )>0, 因此方程 e x -a =x 无实数解. 所以当 x ≠0 时,函数 g (x )不存在零点. 综上,函数 g (x )有且仅有一个零点.典例 321.(12 分)已知函数 f (x ) = ax 3 - ax - x ln x , 且 f (x ) ≥ 0 .(1) 求 a ;(2) 证明: f (x ) 存在唯一的极大值点 x 0 ,且e -2 <f (x ) < 2-3.21. 解:(1) f ( x ) 的定义域为(0,+∞)设 g (x ) = ax - a - lnx ,则 f (x ) = xg (x ) , f (x ) ≥ 0 等价于 g (x ) ≥ 0因为 g (1) =0,g (x ) ≥ 0, 故g' (1) =0, 而g' (x ) = a - 1 , g' (1) =a - 1, 得a = 1若 a =1,则 g' (x ) = 1 - 1.当 0<x <1 时, g' (x ) <0, g (x ) 单调递减;当 x >1 时, g' (x ) >0, g ( x ) 单调递增.所以 x=1 是g (x ) 的极小值点,故g (x ) ≥ g (1)=0综上,a=1(2)由(1)知f (x ) = x 2 - x - x l n x , f ' ( x ) = 2x - 2 - l n x设h (x )= 2x - 2 - l n x , 则 h ' ( x ) = 2 - 1x当x ∈ ⎛ 0, 1 ⎫ 时, h ' (x ) <0 ;当x ∈ ⎛ 1 , +∞⎫ 时, h ' (x ) >0 ,所以h (x ) 在⎛ 0, 1 ⎫ 单调递减,在⎛ 1 , +∞⎫ 单调递增 2 ⎪ 2 ⎪ 2 ⎪ 2 ⎪⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭0 0又h (e -2)>⎛ 1 ⎫ <0, h (1) = 0 ,所以h (x ) 在⎛ 0, 1 ⎫ 有唯一零点 x 0,在⎡1 , +∞⎫有唯一零点 1,且当x ∈ (0, x ) 时, h (x ) >0 ;当x ∈ (x , 1) 时,0, h 2 ⎪ 2 ⎪ ⎢ 2 ⎪ 0 0 ⎝ ⎭ ⎝ ⎭ ⎣ ⎭h (x ) <0 ,当x ∈ (1, +∞) 时, h (x ) >0 .因为f ' (x ) = h (x ) ,所以 x=x 0 是 f(x)的唯一极大值点由f ' (x 0 ) = 0得l n x 0 = 2( x 0 - 1) , 故f (x 0 ) =x (0 1 - x 0 )由x ∈ (0, 1) 得f ' (x ) < 14因为 x=x 0 是 f(x)在(0,1)的最大值点,由e -1 ∈ (0, 1) , f ' (e-1)≠ 0 得f (x ) >f (e-1)= e-2所以e -2<f (x ) <2- 2[解题反思] 在本例(1)中求 f (x )的单调区间的关键是准确求出 f ′(x ),注意到 e x >0 即可.(2)中由 g (x )=0 得 x e x -a =x 2,解此方程易将 x 约去,从而产生丢解情况.研究 e x -a =x 的解转化为研究函数 F (x )=e x -a -x 的最值,从而确定 F (x )零点,这种通过构造函数、研究函数的最值从而确定函数零点的题型是高考中热点题型,要熟练掌握.[答题模板] 解决这类问题的答题模板如下:[题型专练]2.(2017·浙江金华期中)已知函数f(x)=ax3+bx2+(c-3a-2b)x+d 的图象如图所示.(1)求c,d 的值;(2)若函数f(x)在x=2 处的切线方程为3x+y-11=0,求函数f(x)的解析式;1(3)在(2)的条件下,函数y=f(x)与y=f′(x)+5x+m 的图象有三个不同的交点,求m 的取值范围.3[解] 函数f(x)的导函数为f′(x)=3ax2+2bx+c-3a-2b.(1)由图可知函数f(x)的图象过点(0,3),且f′(1)=0,得E rr o r!解得E rr o r!(2)由(1)得,f(x)=ax3+bx2-(3a+2b)x+3,所以f′(x)=3ax2+2bx-(3a+2b).由函数f(x)在x=2 处的切线方程为3x+y-11=0,得E rr o r!所以E rr o r!解得E rr o r!所以f(x)=x3-6x2+9x+3.(3)由(2)知f(x)=x3-6x2+9x+3,所以f′(x)=3x2-12x+9.1函数y=f(x)与y=f′(x)+5x+m 的图象有三个不同的交点,3等价于x3-6x2+9x+3=(x2-4x+3)+5x+m 有三个不等实根,等价于g(x)=x3-7x2+8x-m 的图象与x 轴有三个交点.因为g′(x)=3x2-14x+8=(3x-2)(x-4),g(2)=68-m,g(4)=-16-m,3 27当且仅当E rr o r!时,g(x)图象与x 轴有三个交点,解得-16<m<68. 所以m 的取值范围为(-16,68).27 2721.(12 分)已知函数(f x)=a e2x+(a﹣2) e x﹣x.(1)讨论f (x) 的单调性;(2)若f (x) 有两个零点,求a 的取值范围.21.解:(1)f (x) 的定义域为(-∞, +∞) ,f '(x) = 2ae2x+ (a - 2)e x-1 = (ae x-1)(2e x+1) ,(十字相乘法)(ⅰ)若a ≤ 0 ,则f '(x) < 0 ,所以f (x) 在(-∞, +∞) 单调递减.(ⅱ)若 a > 0 ,则由 f '(x) = 0 得 x =-ln a .当x ∈(-∞, -ln a) 时,f '(x) < 0 ;当x ∈(-ln a, +∞) 时,f '(x) > 0 ,所以f (x) 在(-∞, -ln a) 单调递减,在(-ln a, +∞) 单调递增.110 0 0 0 3(2)(ⅰ)若 a ≤ 0 ,由(1)知, f (x ) 至多有一个零点.1 (ⅱ)若 a > 0 ,由(1)知,当 x = -ln a 时, f (x ) 取得最小值,最小值为 f (- ln a ) = 1- + ln a .(观察特殊值 1)a①当 a = 1 时,由于 f (-ln a ) = 0 ,故 f (x ) 只有一个零点;②当 a ∈ (1, +∞) 时,由于1-+ ln a > 0 ,即 f (-ln a ) > 0 ,故 f (x ) 没有零点; a③当 a ∈(0,1) 时,1- + ln a < 0 ,即 f (-ln a ) < 0 .a又 f (-2) = a e -4 + (a - 2)e -2 + 2 > -2e -2 + 2 > 0 ,故 f (x ) 在(-∞, -ln a ) 有一个零点.设正整数n 0 满足 n 0 > ln( a3-1) ,则 f (n ) = e n 0 (a e n 0 + a - 2) - n > e n 0 - n > 2n 0 - n > 0 .由于ln( a-1) > -ln a ,因此 f (x ) 在(-ln a , +∞) 有一个零点.综上, a 的取值范围为(0,1) .题型三 利用导数证明不等式题型概览:证明 f (x )<g (x ),x ∈(a ,b ),可以直接构造函数 F (x )=f (x )-g (x ),如果 F ′(x )<0,则 F (x )在(a ,b )上是减函数, 同时若 F (a )≤0,由减函数的定义可知,x ∈(a ,b )时,有 F (x )<0,即证明了 f (x )<g (x ).有时需对不等式等价变形后间接构造.若上述方法通过导数不便于讨论 F ′(x )的符号,可考虑分别研究 f (x )、g (x )的单调性与最值情况,有时需对不等式进行等价转化.(2017·陕西西安三模)已知函数 f (x ) e x .(1) 求曲线 y =f (x )在点 P ( = xe 2)处的切线方程;2, 2- = (x(2)证明:f (x )>2(x -ln x ). [审题程序]第一步:求 f ′(x ),写出在点 P 处的切线方程;第二步:直接构造 g (x )=f (x )-2(x -ln x ),利用导数证明 g (x )min >0. [规范解答] (1)因为 f (x ) e x f ′(x )=e x ·x -e xe x (x -1),f ′(2) e 2 e 2,所以切线方 程为 ye 2 e2 2 4 = ,所以 x -2),即 e 2x -4y =0. = x 2 x 2= 4 ,又切点为(2, 2 )(2) 证明:设函数 g (x )=f (x )-2(x -ln x )e x2x +2ln x ,x ∈(0,+∞),则 g ′(x ) e x (x -1)-2 2= -x (e x -2x )(x -1),x ∈(0,+∞).= + =x 2 x x 2设 h (x )=e x -2x ,x ∈(0,+∞),则 h ′(x )=e x -2,令 h ′(x )=0,则 x =ln2.当 x ∈(0,ln2)时,h ′(x )<0;当 x ∈(ln2,+∞)时,h ′(x )>0.所以 h (x )min =h (ln2)=2-2ln2>0,故 h (x )=e x -2x >0.令 g ′(x ) (e x-2x )(x -1)=0,则 x =1.=x 2当 x ∈(0,1)时,g ′(x )<0;当 x ∈(1,+∞)时,g ′(x )>0.所以 g (x )min =g (1)=e -2>0,故 g (x )=f (x )-2(x -ln x )>0,从而有 f (x )>2(x -ln x ).[解题反思] 本例中(2)的证明方法是最常见的不等式证明方法之一,通过合理地构造新函数 g (x ).求 g (x ) 的最值来完成.在求 g (x )的最值过程中,需要探讨 g ′(x )的正负,而此时 g ′(x )的式子中有一项 e x -2x 的符号不易确定,这时可以单独拿出 e x -2x 这一项,再重新构造新函数 h (x )=e x -2x (x >0),考虑 h (x )的正负问题,此题看似简单,且不含任何参数,但需要两次构造函数求最值,同时在(2)中定义域也是易忽视的一个方向.[答题模板] 解决这类问题的答题模板如下:=[题型专练]3.(2017·福建漳州质检)已知函数 f (x )=a e x -b ln x ,曲线 y =f (x )在点(1,f (1))处的切线方程为 y =(1)x +1.(1)求 a ,b ; (2)证明:f (x )>0.[解] (1)函数 f (x )的定义域为(0,+∞).e-1 f ′(x )=a e x bf (1) 1f ′(1) 1 1,- ,由题意得 = , = - x e e所以E rr o r !解得E rr o r !(2)由(1)知 f (x ) 1 ·e x-ln x . e 2 因为 f ′(x )=e x -2 1(0,+∞)上单调递增,又 f ′(1)<0,f ′(2)>0,- 在x= + 2 20 0 0所以 f ′(x )=0 在(0,+∞)上有唯一实根 x 0,且 x 0∈(1,2). 当 x ∈(0,x 0)时,f ′(x )<0,当 x ∈(x 0,+∞)时,f ′(x )>0, 从而当 x =x 0 时,f (x )取极小值,也是最小值.由 f ′(x )=0,得 e x 0-2 1x -2=-ln x .0 = , 则 0 0 x 0故 f (x )≥f (x )=e x 0-2-ln x 1 x -2>2 1 ·x 0-2=0,所以 f (x )>0. x 0 x 04、【2017 高考三卷】21.(12 分)已知函数 f (x ) =x ﹣1﹣a ln x .(1)若 f (x ) ≥ 0 ,求 a 的值;(2)设 m 为整数,且对于任意正整数 n ,(1+ 1) ( 1+ 1) (1+ 2221) ﹤m ,求 m 的最小值. 2n 21.解:(1) f ( x ) 的定义域为(0,+∞) .f ⎛ 1 ⎫1①若a ≤ 0 ,因为 ⎪ =- +a ln 2<0,所以不满足题意;⎝ ⎭ ②若a >0,由 f ' ( x ) = 1- a = x - a知,当x ∈(0,a ) 时, f ' ( x )<0 ;当 x ∈(a ,+∞) 时, f ' ( x )>0 ,所以 f ( x ) 在(0,a ) 单调递减,x x在(a ,+∞) 单调递增,故 x=a 是 f ( x ) 在 x ∈(0,+∞) 的唯一最小值点. 由于 f (1) = 0 ,所以当且仅当 a =1 时, f ( x ) ≥ 0.故 a =1(2)由(1)知当 x ∈(1,+∞) 时, x -1- ln x >0令 x =1+ 1 得ln ⎛1+ 1 ⎫< 1,从而 2n 2n ⎪ 2n ⎝⎭ln ⎛1+ 1 ⎫+ln ⎛1+ 1 ⎫+⋅⋅⋅+ln ⎛1+ 1 ⎫<1 + 1 +⋅⋅⋅+ 1 =1-1<12 ⎪ 22 ⎪ 2n ⎪ 2 22 2n 2n ⎝ ⎭ ⎝ ⎭ ⎝ ⎭故⎛1+ 1 ⎫⎛1+ 1 ⎫ ⋅⋅⋅⎛1+ 1 ⎫<e2 ⎪ 22 ⎪ 2n⎪ ⎝ ⎭⎝ ⎭ ⎝ ⎭而⎛1+ 1 ⎫⎛1+ 1 ⎫⎛1+ 1 ⎫>2 ,所以 m 的最小值为 3. 2 ⎪ 22 ⎪ 23 ⎪ ⎝⎭⎝ ⎭⎝ ⎭21.(12 分)已知函数f (x) =ln x+ax2+(2a+1)x.(1)讨论f (x) 的单调性;(2)当 a﹤0 时,证明 f (x) ≤-34a- 2 .【答案】(1)当a ≥ 0 时, f (x) 在(0,+∞) 单调递增;当 a < 0 时,则 f (x) 在(0,-1) 单调递增,在(-2a1,+∞) 单调递减;(2)详见解析2a题型四利用导数研究恒成立问题题型概览:已知不等式恒成立求参数取值范围,构造函数,直接把问题转化为函数的最值问题;若参数不便于分离,或分离以后不便于求解,则考虑直接构造函数法,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.,对∀ = 0<x < ;由E rr o r !得 x > .,则 ln x1 2 1 2已知函数 f (x ) 1ln x -mx ,g (x )=x a(a >0).= - 2 x(1) 求函数 f (x )的单调区间; (2) 若 m =1x ,x ∈[2,2e 2]都有 g (x )≥f (x )成立,求实数 a 的取值范围. 2e 2[审题程序]第一步:利用导数判断 f (x )的单调性,对 m 分类讨论;第二步:对不等式进行等价转化,将 g (x 1)≥f (x 2)转化为 g (x )min ≥f (x )max ; 第三步:求函数的导数并判断其单调性进而求极值(最值); 第四步:确定结果.[规范解答] (1)f (x ) 1ln x -mx ,x >0,所以f ′(x ) 1m ,= = - 2 2x当 m ≤0 时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当 m >0 时,由 f ′(0)=0 得 x 1 ;由E rr o r !得 1 12m 2m 2m 综上所述,当 m ≤0 时,f ′(x )的单调递增区间为(0,+∞);当 m >0 时,f (x )的单调递增区间为(0,1),单调递减区间为( 1,+∞).2m 2m(2)若 m =1f (x )=1 - 1x . 2e 2 2 2e 2对∀x 1,x 2∈[2,2e 2]都有 g (x 1)≥f (x 2)成立, 等价于对∀x ∈[2,2e 2]都有 g (x )min ≥f (x )max ,由(1)知在[2,2e 2]上 f (x )的最大值为 f (e 2) 1= , 2+g ′(x )=1 a >0(a >0),x ∈[2,2e 2],函数 g (x )在[2,2e 2]上是增函数,g (x ) =g (2)=2 a2 a 1 a ≤3,min - , 由 - ≥ , 得 x2 又 a >0,所以 a ∈(0,3],所以实数 a 的取值范围为(0,3].2 2 2[解题反思] 本例(1)的解答中要注意 f (x )的定义域,(2)中问题的关键在于准确转化为两个函数 f (x )、g (x )的最值问题.本题中,∀x 1,x 2 有 g (x 1)≥f (x 2)⇔g (x )min ≥f (x )max .若改为:∃x 1,∀x 2 都有 g (x 1)≥f (x 2),则有 g (x )max ≥f (x )max .若改为:∀x 1,∃x 2 都有 g (x 1)≥g (x 2),则有 g (x )min ≥f (x )min 要仔细体会,转化准确.[答题模板] 解决这类问题的答题模板如下:[题型专练]4.已知 f (x )=x ln x ,g (x )=-x 2+ax -3.(1) 对一切 x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数 a 的取值范围;(2)证明:对一切 x ∈(0,+∞),ln x > 1 e x 2- 恒成立.e x[解] (1)由题意知 2x ln x ≥-x 2+ax -3 对一切 x ∈(0,+∞)恒成立, 则 a ≤2ln x +x 3,x 设 h (x )=2ln x +x +3,(x >0) x+e= - (x则 h ′(x ) (x +3)(x -1),=x 2①当 x ∈(0,1)时,h ′(x )<0,h (x )单调递减,②当 x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以 h (x )min =h (1)=4,对一切 x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以 a ≤h (x )min =4.即实数 a 的取值范围是(-∞,4].(2) 证明:问题等价于证明 x ln x > x -2∈(0,+∞)).e x e 又f (x )=x ln x ,f ′(x )=ln x +1,当 x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当 x ∈(1 )时,f ′(x )>0,f (x )单调递增,所以 f (x ) =f (1)1.,+∞emin =- e e设 m (x ) x 2∈(0,+∞)),e x则 m ′(x ) e1-x ,=易知 m (x ) e x=m (1) 1max =- ,e从而对一切 x ∈(0,+∞),ln x > 1 e x 2- 恒成立.e x②当 x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以 h (x )min =h (1)=4,对一切 x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以 a ≤h (x )min =4.即实数 a 的取值范围是(-∞,4].题型五:二阶导主要用于求函数的取值范围23.(12 分)已知函数 f (x )=(x+1)lnx ﹣a (x ﹣1).(x(I)当a=4 时,求曲线 y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a 的取值范围.【解答】解:(I)当a=4 时,f(x)=(x+1)lnx﹣4(x﹣1). f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率 k=f′(1)=﹣2,则曲线 y=f(x)在(1,0)处的切线方程为 y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在 x0∈(1,+∞),f′(x0)=0,函数 f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由 f(1)=0,可得存在 x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.23.(12 分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4 时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a 的取值范围.【解答】解:(I)当a=4 时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)= ,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.题型六:求含参数求知范围此类问题一般分为两类:一、也可分离变量,构造函数,直接把问题转化为函数的最值问题.此法适用于方便分离参数并可求出函数最大值与最小值的情况,若题中涉及多个未知参量需分离出具有明确定义域的参量函数求出取值范围并进行消参,由多参数降为单参在求出参数取值范围。

(word完整版)高二数学选修22导数12种题型归纳(中等难度),文档

(word完整版)高二数学选修22导数12种题型归纳(中等难度),文档

导数题型分类剖析〔中等难度〕一、变化率与导数函数 y f ( x0 ) 在x0到x0+x之间的平均变化率,即 f ' ( x0 ) =lim y= limf (x0x) f ( x0 ),表示x 0x x x 函数 y f (x0 ) 在x0点的斜率。

注意增量的意义。

例 1:假设函数y f ( x) 在区间 (a,b) 内可导,且A .f' ( x )B.2 f'( x0)例 2:假设f'( x0)3,那么lim f ( xh) f ( xh0hA. 3B.6f ( x0h2 ) f ( x0 )例 3:求lim hh0x0 (a,b) 那么limf ( xh) f (xh)的值为〔〕h0hC.2 f'(x0)D.03h)〕〔C.9D.12二、“隐函数〞的求值将 f ' ( x0 ) 看作一个常数对 f (x0 ) 进行求导,代入x0进行求值。

2例 1: f x x3xf 2 ,那么 f2例 2:函数 f x f cos x sin x ,那么f4的值为.4例 3:函数 f ( x) 在R上满足f ()2f(2x)x2 8x8,那么曲线y f ( x) 在点(1, f (1)) 处的切线方程x为〔〕A. y2x 1B.y xC.y3x2D. y2x3三、导数的物理应用若是物体运动的规律是s=s〔t〕,那么该物体在时辰t 的瞬时速度 v=s′〔t 〕。

若是物体运动的速度随时间的变化的规律是v=v 〔 t〕,那么该物体在时辰t 的加速度 a=v′〔 t〕。

例 1:一个物体的运动方程为s 1t t 2其中 s 的单位是米,t的单位是秒,求物体在 3 秒末的瞬时速度。

例 2:汽车经过启动、加速行驶、匀速行驶、减速行驶此后停车,假设把这一过程中汽车的行驶行程s 看作时间t 的函数,其图像可能是〔〕s s s sO t O t O t O tA.B.C.D.四、根本导数的求导公式① C0; 〔C为常数〕②x n nx n 1;③ (sin x)cos x ;④ (cos x)sin x ;1;⑧l o g a x 1 log a e.⑤ (e x ) e x ;⑥ (a x)a x ln a ;⑦ln xx x例 1:以下求导运算正确的选项是( )A . x1 11B . log 2x=1 C . 3 x3 xlog 3 e D . x 2 cosx2xsin xx 2x ln 2x例 2:假设f x x f x f x f xf x, fxf x n N ,那么 fx0 sin ,1 0,2 1,n 1n ,2005五、导数的运算法那么常数乘积: (Cu )' Cu ' . 和差: ( u v)' u ' v ' .乘积: (uv ) 'u ' v uv ' .除法: uu' v uv 'vv 2例 1:〔 1〕函数 yx 3 log 2 x 的导数是〔 2〕函数 x n e 2 x 1 的导数是六、复合函数的求导f [ ( x)] f ( )* (x) ,从最外层的函数开始依次求导。

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法一、导数的概念1.1 导数的定义•导数的定义公式:f′(x)=limℎ→0f(x+ℎ)−f(x)ℎ•导数表示函数在某一点的变化率1.2 导数的几何意义•函数图象在某一点的切线斜率•函数图象在某一点的局部线性近似二、导数的基本运算法则2.1 基本导数公式•常数函数:d dx (C)=0•幂函数:d dx (x n)=nx n−1•指数函数:ddx(a x)=a x ln(a)2.2 函数和、差、积、商的导数•和的导数:(u+v)′=u′+v′•差的导数:(u−v)′=u′−v′•积的导数:(uv)′=u′v+uv′•商的导数:(uv)′=u′v−uv′v2,其中v≠02.3 复合函数的导数•复合函数的求导公式:如果y=f(u)及u=g(x), 则dy dx =dy dududx三、导数的应用3.1 函数的单调性•若f′(x)>0,则函数f(x)在该区间上单调递增•若f′(x)<0,则函数f(x)在该区间上单调递减3.2 函数的极值与最值•极大值:若f′(x0)=0,且f″(x0)<0,则f(x0)是函数f(x)在x0处的极大值•极小值:若f′(x0)=0,且f″(x0)>0,则f(x0)是函数f(x)在x0处的极小值3.3 函数的拐点•拐点:若f″(x0)=0,则f(x)在x0处的图像有拐点3.4 函数的图像•函数图象的基本性质–若f′(x)>0,则函数的图像上的点随x的增大而上升–若f′(x)<0,则函数的图像上的点随x的增大而下降–若f″(x)>0,则函数的图像在该区间上凹–若f″(x)<0,则函数的图像在该区间上凸四、基础导数题型4.1 求导数•题型1:求函数的导数y=f(x)•题型2:求函数的高阶导数y(n)=f(x)4.2 高阶导数应用•题型1:求函数的极值和拐点•题型2:求函数在某点的切线方程•题型3:求函数的图像4.3 求解极值问题•题型1:求一定范围内函数的极大值和极小值•题型2:求满足一定条件的函数极值4.4 函数的单调性•题型1:判断函数的单调区间•题型2:填空题,填写使函数单调递增或递减的区间五、综合题型5.1 数学建模•题型1:利用导数求解实际生活中的问题5.2 物理应用•题型1:利用导数求解物理问题,如速度、加速度等5.3 函数的变化率•题型1:求函数在某点的变化率•题型2:求函数在某段区间的平均变化率六、总结本篇文章主要介绍了高中阶段导数相关的内容,包括导数的基本定义、几何意义、基本运算法则,以及导数在函数的单调性、极值与最值、图像以及物理应用中的运用。

(整理)导数应用的题型与解题方法.

(整理)导数应用的题型与解题方法.

导数应用的题型与解题方法一、专题概述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n 次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

二、知识整合1.导数概念的理解.2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值.复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3.要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

4.求复合函数的导数,一般按以下三个步骤进行:(1)适当选定中间变量,正确分解复合关系;(2)分步求导(弄清每一步求导是哪个变量对哪个变量求导);(3)把中间变量代回原自变量(一般是x )的函数。

也就是说,首先,选定中间变量,分解复合关系,说明函数关系y=f(μ),μ=f(x);然后将已知函数对中间变量求导)'(μy ,中间变量对自变量求导)'(x μ;最后求x y ''μμ⋅,并将中间变量代回为自变量的函数。

整个过程可简记为分解——求导——回代。

熟练以后,可以省略中间过程。

若遇多重复合,可以相应地多次用中间变量。

三、例题分析例1.⎩⎨⎧>+≤==11)(2x b ax x x x f y 在1=x 处可导,则=a =b 思路:⎩⎨⎧>+≤==11)(2x bax x x x f y 在1=x 处可导,必连续1)(lim 1=-→x f xb a x f x +=+→)(l i m 1 1)1(=f ∴ 1=+b a2lim 0=∆∆-→∆x y x a xyx =∆∆+→∆0lim ∴ 2=a 1-=b例2.已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限:(1)hh a f h a f h 2)()3(lim 0--+→∆; (2)h a f h a f h )()(lim 20-+→∆分析:在导数定义中,增量△x 的形式是多种多样,但不论△x 选择哪种形式,△y 也必须选择相对应的形式。

(完整)高二数学导数知识点总结及习题练习,推荐文档

(完整)高二数学导数知识点总结及习题练习,推荐文档
高三专题复习——导数
在解题中常用的有关结论(需要熟记):
(1)曲线 y f (x) 在x x0 处的切线的斜率等于 f (x0 ) ,切线方程为 y f (x0 )(x x0 ) f (x0 ) (2)若可导函数 y f (x) 在 x x0 处取得极值,则 f (x0 ) 0 。反之,不成立。 (3)对于可导函数 f (x) ,不等式 f (x) 0() 0 的解集决定函数 f (x) 的递增(减)区间。
若对 x1 I1 , x2 I2 ,使得 f (x1 ) g(x2 ) ,则 f (x)max g(x)max .
(11)已知 f (x) 在区间I1 上的值域为 A,, g(x) 在区间I2 上值域为 B, 若 对 x1 I1 , x2 I2 ,使得 f (x1 ) = g(x2 ) 成立,则 A B 。
(4)函数 f (x) 在区间 I 上递增(减)的充要条件是: x I f (x) 0 ( 0) 恒成立 (5)函数 f (x) 在区间 I 上不单调等价于 f (x) 在区间 I 上有极值,则可等价转化为方程
f (x) 0 在区间 I 上有实根且为非二重根。(若 f (x) 为二次函数且 I=R,则有 0 ) 。 (6) f (x) 在区间 I 上无极值等价于 f (x) 在区间在上是单调函数,进而得到 f (x) x2
考点一:导数几何意义:
角度一 求切线方程
(π)
1.(2014·洛阳统考)已知函数 f(x)=3x+cos 2x+sin 2x,a=f′ 4 ,f′(x)是 f(x)的导函数,则
过曲线 y=x3 上一点 P(a,b)的切线方程为( )
A.3x-y-2=0 C.3x-y-2=0 或 3x-4y+1=0 解析:选 A 由 f(x)=3x+cos 2x+sin

导数常见题型与解题方法总结

导数常见题型与解题方法总结

导数常见题型与解题方法总结我折腾了好久导数常见题型与解题方法这件事,总算找到点门道。

导数这东西啊,刚接触的时候简直一头雾水。

就说求导公式吧,那时候我就死记硬背,结果一到做题就懵。

像简单的求函数的导数,比如说y = x²,我一开始还能根据公式(xⁿ)' = nxⁿ⁻¹得出y' = 2x,可稍微复杂点的就不行了。

后来我碰到那种复合函数求导的题,就彻底傻了。

有个题是y = (2x + 1)²,我还按照原来的方法做,根本做不对。

后来我才知道复合函数求导要一层一层来,就像剥洋葱一样。

对于这个题,我们可以设u = 2x+1,那y = u²。

先对y关于u求导得y' = 2u,再对u关于x求导得u' = 2,最后根据复合函数求导公式(y(u(x)))' = y'(u) u'(x),就得到y' = 2(2x + 1) 2 = 4(2x + 1)。

还有那种利用导数求函数单调性的题。

我一开始想当然的认为只要导数大于零就是单调递增,小于零就是单调递减,可是忽略了定义域。

有次考试给了一个分式函数,在求单调性的时候,我没在意分母不能为零这个定义域的限制,结果得出了完全错误的答案。

后来我学乖了,先求定义域,然后再求导判断导数在定义域内的正负情况。

比如说y = 1 / (x - 1),先确定定义域是x≠1,再求导y' = - 1 / (x - 1)²,在定义域内y'一直小于零,所以函数在x≠1的时候单调递减。

再就是利用导数求函数极值和最值。

我试过很多方法,有时候分不清楚极大值和极小值。

后来我就发现如果函数在某点的导数由正变为负,那这个点就是极大值点,如果导数由负变为正,就是极小值点。

求最值的话,就把极值点的值和区间端点的值都求出来比较一下。

比如说y = x³- 3x²在区间[ - 1,3]上的最值,先求导y' = 3x²- 6x = 3x(x - 2),得到极值点x = 0和x = 2,然后把y在- 1,0,2,3这些点的值都算出来,比较得出最大值和最小值。

(完整版)高考导数题型归纳,推荐文档

(完整版)高考导数题型归纳,推荐文档

高考压轴题:导数题型及解题方法
(自己总结供参考)
一.切线问题
题型1 求曲线在处的切线方程。

)(x f y =0x x =方法:为在处的切线的斜率。

)(0x f '0x x =题型2 过点的直线与曲线的相切问题。

),(b a )(x f y =方法:设曲线的切点,由求出,进而)(x f y =))(,(00x f x b x f x f a x -='-)()()(0000x 解决相关问题。

注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。

例 已知函数f (x )=x 3﹣3x.
(1)求曲线y=f (x )在点x=2处的切线方程;(答案:)
0169=--y x (2)若过点A 可作曲线的三条切线,求实数的取值范围、
)2)(,1(-≠m m A )(x f y =m (提示:设曲线上的切点();建立的等式关系。

将问题转化为关
)(x f y =)(,00x f x )(,00x f x 于的方程有三个不同实数根问题。

(答案:的范围是)
m x ,0m ()2,3--练习 1. 已知曲线x
x y 33
-=(1)求过点(1,-3)与曲线相切的直线方程。

答案:(或x x y 33-=03=+y x )
027415=--y x (2)证明:过点(-2,5)与曲线相切的直线有三条。

x x y 33
-=2.若直线与曲线相切,求的值. (答案:1)0122=--+e y x e x
ae y -=1a 题型3 求两个曲线、的公切线。

)(x f y =)(x g y =。

word完整版导数有关知识点总结经典例题及解析近年高考题带答案推荐文档

word完整版导数有关知识点总结经典例题及解析近年高考题带答案推荐文档

导数及其应用【考纲说明】1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。

2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。

3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。

【知识梳理】一、导数的概念函数y=f(x),如果自变量X在X0处有增量X ,那么函数y相应地有增量y=f( X0+ X)- f (X0),比值X叫做函y f (x o x) f(x o) y数y=f (x)在x o到x o+ x之间的平均变化率,即x= x 。

如果当X 0时,x有极限,我们就说函数y=f(x)在点x o处可导,并把这个极限叫做 f (x)在点x o处的导数,记作f' (x o)或y' x|勺。

r. y .. f (X o X) f (X o) lim — lim即 f (x o) = x o X= x o X 。

说明:yy(1)函数f (x )在点X 0处可导,是指 x 0时, x 有极限。

如果 x 不存在极限,就说函数在点 X 0处不可导,或说无导数。

(2)X 是自变量x 在X 0处的改变量,X 0时,而 y 是函数值的改变量,可以是零。

由导数的定义可知,求函数 y=f (x )在点x o 处的导数的步骤: (1) 求函数的增量 y =f ( x o + X ) — f (x o );y f(X o X ) f(X o )(2)求平均变化率 x =X ;lim —(3) 取极限,得导数f '(x= x o x 。

二、 导数的几何意义函数y=f (x )在点x o 处的导数的几何意义是曲线 y=f (x )在点p (x o , f (x o ))处的切线的斜率。

高考导数题型分析及解题方法(可编辑修改word版)

高考导数题型分析及解题方法(可编辑修改word版)

在区间 上的最大值是 2高考导数题型分析及解题方法本知识单元考查题型与方法:※※与切线相关问题(一设切点,二求导数=斜率=y 2 - y 1,三代切点入切线、曲x 2 - x 1线联立方程求解);※※其它问题(一求导数,二解 f ' (x ) =0 的根—若含字母分类讨论,三列 3 行 n列的表判单调区间和极值。

结合以上所得解题。

)特别强调:恒成立问题转化为求新函数的最值。

导函数中证明数列型不等式注意与原函数联系构造,一对多涉及到求和转化。

关注几点:恒成立:(1)定义域任意 x 有 f (x ) >k ,则 f (x )min >常数 k ;(2)定义域任意 x 有 f (x ) <k ,则 f (x )max <常数 k恰成立:(1)对定义域内任意 x 有 f (x ) > g (x ) 恒成立,则【f (x )-g (x )】min > 0,(2)若对定义域内任意 x 有 f (x ) < g (x ) :恒成立,则【f (x )-g (x )】max < 0能成立:(1)分别定义在[a ,b ]和[c ,d ]上的函数 f (x )和g (x ) ,对任意的 x 1 ∈[a , b ], 存在x 2 ∈[c , d ], 使得 f (x 1 ) < g (x 2 ) ,则 f (x )max < g (x )max(2)分别定义在[a ,b ]和[c ,d ]上的函数 f (x )和g (x ) ,对任意的 x 1 ∈[a , b ], 存在 x 2 ∈[c , d ], 使得 f (x 1 ) > g (x 2 ) ,则 f (x )min > g (x )min一、考纲解读考查知识题型:导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值;证明不等式、求参数范围等 二、热点题型分析题型一:利用导数研究函数的极值、最值。

导数常见题型与解题方法总结

导数常见题型与解题方法总结

导数常见题型与解题方法总结导数题型总结:1.分离变量:在使用分离变量时,需要特别注意是否需要分类讨论(大于0,等于0,小于0)。

2.变更主元:已知谁的范围就把谁作为主元。

3.根分布。

4.判别式法:结合图像分析。

5.二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系;(2)端点处和顶点是最值所在。

基础题型:此类问题提倡按以下三个步骤进行解决:1.令f'(x)=0,得到两个根。

2.画两图或列表。

3.由图表可知。

另外,变更主元(即关于某字母的一次函数)时,已知谁的范围就把谁作为主元。

例1:设函数y=f(x)在区间D上的导数为f'(x),f'(x)在区间D上的导数为g(x),若在区间D上,g(x)<___成立,则称函数y=f(x)在区间D上为“凸函数”。

已知实数m是常数,f(x)=(-x^4+mx^3+3x^2)/62.1.若y=f(x)在区间[0,3]上为“凸函数”,求m的取值范围。

解法一:从二次函数的区间最值入手,等价于g(x)<0在[0,3]上恒成立,即g(0)<0且g(3)<0.因此,得到不等式组-3<m<2.解法二:分离变量法。

当x=0或x=3时,g(x)=-3<0.因此,对于0≤x≤3,g(x)<___成立。

根据分离变量法,得到不等式组-3<m<2.2.若对满足m≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,求b-a的最大值。

由f(x)=(-x^4+mx^3+3x^2)/62得到f'(x)=(-4x^3+3mx^2+6x)/62,f''(x)=(-12x^2+6mx+6)/62.因为f(x)在区间(a,b)上为“凸函数”,所以f''(x)>0在(a,b)___成立。

因此,得到不等式组a≤x≤b和-12a^2+6ma+6>0,即a≤x≤b且m≤2或a≤x≤b且m≥1/2.由于m≤2,所以a≤x≤b且m≤2.根据变更主元法,将F(m)=mx-x^2+3视为关于m的一次函数最值问题,得到不等式组F(-2)>0和F(2)>0,即-2x-x^2+3>0且2x-x^2+3>0.解得-1<x<1.因此,b-a=2.Ⅲ)由题意可得,对任意x∈[1,4],有f(x)≤g(x)代入g(x)得:x3+(t-6)x2-(t+1)x+3≥x3+(t-6)x2/2化___:x2(t-7/2)-x(t+1/2)+3≥0由于对于任意x∈[1,4],不等式都成立,所以判别式≤0:t+1/2)2-4×3×(t-7/2)≤0化___:t2-10t+19≤0解得:1≤___≤9综上所述,a=-3,b=1/2,f(x)的值域为[-4,16],t的取值范围为1≤t≤9.单调增区间为:$(-\infty,-1),(a-1,+\infty)$和$(-1,a-1)$。

导数专题的题型总结

导数专题的题型总结

导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。

- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。

- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。

- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。

2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。

- 解析:- 设u = 2x+1,则y = u^5。

- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。

- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。

- 所以y^′ = 5u^4·2=10(2x + 1)^4。

二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。

- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。

- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。

2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。

- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。

- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。

(完整word版)导数的基本题型归纳,推荐文档

(完整word版)导数的基本题型归纳,推荐文档

导数基础题型题型一 导数与切线利用两个等量关系解题:①切点处的导数=切线斜率,即()k x f o =';②切点()o o y x ,代入曲线方程或者代入切线方程.切点坐标(或切点横坐标)是关键例1:曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2例2:已知函数的图象在点(1,f (1))处的切线方程是x -2y +1=0,则f (1)+2f ′(1)的值是() A.12 B .1 C.32 D .2例3 求曲线132+=x y 过点(1,1)的切线方程练习题:1.已知函数y =ax 2+1的图象与直线y =x 相切,则a =( )A.18B.14C.12 D .12.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .153.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2B .-2C .-12 D.124.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________.5.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2. 求直线l 2的方程;题型二 用导数求函数的单调区间①求定义域;②求导;③令0)(='x f 求出x 的值;④划分区间(注意:定义域参与区间的划分);⑤判断导数在各个区间的正负.例1:求函数c x x x y +-+=33123的单调区间.例2 求函数x a x a x x f )1(ln 21)(2+-+=的单调区间(其中a >0)例3:已知函数ax x y +=2在),1[+∞上为增函数,求a 的取值范围.练习题:1.求函数x x x f ln 2)(2-=的单调增区间.2.已知331)(23-++=x ax x x f 在]3,1[上单调递减,求a 的取值范围.题型三 求函数极值和最值①求定义域;②求导;③令0)(='x f 求出x 的值;④列表(注意:定义域参与区间的划分); ⑤确定极值点.;5,求出极值,区间端点的函数值,比较后得出最值例:求函数x x y ln 2-=的极值.例:求函数y =x +2cos x 在区间⎣⎡⎦⎤0,π2上的最大值.例:已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为 ( )A .-37B .-29C .-5D .-11例:若函数b bx x x f 36)(3+-=在)1,0(内有极小值,则实数b 的取值范围是 ( )A .)1,0(B .)1,(-∞C .),0(∞+D .)21,0(练习题:1.设函数x xx f ln 2)(+= 则 ( ) A.x=21为f(x)的极大值点 B.x=21为f(x)的极小值点 C.x=2为 f(x)的极大值点 D.x=2为 f(x)的极小值点2. 已知函数x b x a x x f +-=ln )(在1=x 处取得极值,则a 与b 满足 . ,题型四、函数与导数图象的关系▲函数看增减,导数看正负例:若函数c bx x x f ++=2)(的图象的顶点在第四象限,则函数f ′(x)的图象是( )练习题:1.下图是函数y=f(x)的导函数y=f ′(x)的图象,则下面判断正确的是 ( )A.在区间(-2,1)内f(x)是增函数B.在(1,3)内f(x)是减函数C.在(4,5)内f(x)是增函数D.在x=2时f(x)取到极小值2. f ′(x)是f (x )的导函数,f ′(x)的图象如右图所示,则f (x )的图象只可能是( )A B C D。

导数题型及解题方法归纳

导数题型及解题方法归纳

导数题型及解题方法归纳一、导数的定义1. 导数的概念在微积分中,导数是用来描述函数变化率的量。

给定函数f(x),其导数可以看作是函数在某一点x 处的瞬时变化率。

导数的定义可以用以下式子表示:f′(x )=lim Δx→0f (x +Δx )−f (x )Δx2. 函数可导性一个函数在某一点可导的条件是该点邻近的间断点和极限不存在,且函数曲线经过该点处的切线存在。

二、导数的求解方法1. 基本导数公式可以通过基本导数公式来求常见函数的导数。

一些常用的基本导数公式包括: - 常数函数的导数为0:(c )′=0,其中c 为常数。

- 幂函数的导数:(x n )′=nx n−1,其中n 为常数。

- 指数函数的导数:(e x )′=e x 。

- 对数函数的导数:(lnx )′=1x 。

- 三角函数的导数: - (sinx )′=cosx - (cosx )′=−sinx - (tanx )′=sec 2x - (cotx )′=−csc 2x2. 求导法则为了更方便地求导,可以使用一些求导法则。

一些常用的求导法则包括: - 和差法则:(u ±v )′=u′±v′ - 乘法法则:(uv )′=u′v +uv′ - 商法则:(u v )′=u′v−uv′v 2,其中v 不等于0。

- 复合函数求导法则:若y = f(g(x)),则dy dx =dy du ⋅du dx ,其中u = g(x)。

3. 高阶导数高阶导数表示对函数进行多次求导得到的导数。

高阶导数可以通过多次使用导数公式和求导法则求解。

4. 隐函数求导有些函数可以通过隐函数形式表示,这时可以使用隐函数求导方法来求导。

隐函数求导的关键是利用导数的定义和求导法则,将相关变量分离并进行求导。

三、导数题型及解题方法1. 常函数的导数对于常函数f(x) = c,其导数为0,即f′(x)=0。

2. 幂函数的导数对于幂函数f(x) = x^n,其中n为常数,其导数为(x n)′=nx n−1。

(完整版)导数的基本题型归纳,推荐文档

(完整版)导数的基本题型归纳,推荐文档

导数基础题型题型一 导数与切线利用两个等量关系解题:①切点处的导数=切线斜率,即;()k x f o ='②切点代入曲线方程或者代入切线方程.()o o y x ,切点坐标(或切点横坐标)是关键例1:曲线y =在点(-1,-1)处的切线方程为( )xx +2A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2例2:已知函数的图象在点(1,f (1))处的切线方程是x -2y +1=0,则f (1)+2f′(1)的值是( )A. B .1 C. D .21232例3 求曲线过点(1,1)的切线方程132+=x y 练习题:1.已知函数y =ax 2+1的图象与直线y =x 相切,则a =( )A. B. C.D .11814122.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .153.设曲线y =在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )x +1x -1A .2 B .-2 C .- D.12124.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________.5.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.求直线l 2的方程;题型二 用导数求函数的单调区间①求定义域;②求导;③令求出的值;④划分区间(注意:定义域参与区间的划分)0)(='x f x ;⑤判断导数在各个区间的正负.例1:求函数的单调区间.c x x x y +-+=33123例2 求函数的单调区间(其中>0)x a x a x x f )1(ln 21)(2+-+=a 例3:已知函数在上为增函数,求的取值范围.ax x y +=2),1[+∞a 练习题:1.求函数x x x f ln 2)(2-=的单调增区间.2.已知在上单调递减,求的取值范围.331)(23-++=x ax x x f ]3,1[a题型三 求函数极值和最值①求定义域;②求导;③令求出的值;④列表(注意:定义域参与区间的划分);0)(='x f x ⑤确定极值点.;5,求出极值,区间端点的函数值,比较后得出最值例:求函数的极值.x x y ln 2-=例:求函数y =x +2cos x 在区间上的最大值.[0,π2]例:已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为()A .-37B .-29C .-5D .-11例:若函数b bx x x f 36)(3+-=在)1,0(内有极小值,则实数b 的取值范围是 ( )A .)1,0(B .)1,(-∞C .),0(∞+D .)21,0(练习题:1.设函数 则 ( x x x f ln 2)(+=)A.x=为f(x)的极大值点 B.x=为f(x)的极小值点 2121C.x=2为 f(x)的极大值点 D.x=2为 f(x)的极小值点2. 已知函数在处取得极值,则与满足 .x b x a x x f +-=ln )(1=x a b ,题型四、函数与导数图象的关系▲函数看增减,导数看正负例:若函数的图象的顶点在第四象限,则函数f ′(x)的图象是( )c bx x x f ++=2)(练习题:1.下图是函数y=f(x)的导函数y=f ′(x)的图象,则下面判断正确的是 ( )A.在区间(-2,1)内f(x)是增函数B.在(1,3)内f(x)是减函数C.在(4,5)内f(x)是增函数D.在x=2时f(x)取到极小值2. f ′(x)是f (x )的导函数,f ′(x)的图象如右图所示,则f (x )的图象只可能是( )A B C D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《导数各种题型及解法总结》基础知识梳理1. 常见题型一、小题:1.函数的图象2.函数的性质(单调性、奇偶性、周期性、对称性);3.分段函数求函数值;4.函数的定义域、值域(最值);5.函数的零点;6.抽象函数;二、大题:1. 求曲线在某点处的切线的方程; ()y f x =2. 求函数的解析式3. 讨论函数的单调性,求单调区间;4. 求函数的极值点和极值;5. 求函数的最值或值域;6. 求参数的取值范围7. 证明不等式;8. 函数应用问题2. 在解题中常用的有关结论(需要熟记):(1)曲线在处的切线的斜率等于,且切线方程为。

()y f x =0x x =0()f x '000()()()y f x x x f x '=-+(2)若可导函数在处取得极值,则。

反之,不成立。

()y f x =0x x =0()0f x '=(3)对于可导函数,不等式的解集决定函数的递增(减)区间。

()f x ()f x '0>0<()()f x (4)函数在区间I 上递增(减)的充要条件是:恒成立( 不恒为0).()f x x I ∀∈()f x '0≥(0)≤()f x '(5)函数(非常量函数)在区间I 上不单调等价于在区间I 上有极值,则可等价转化为方程()f x ()f x 在区间I 上有实根且为非二重根。

(若为二次函数且I=R ,则有)。

()0f x '=()f x '0∆>(6) 在区间I 上无极值等价于在区间在上是单调函数,进而得到或()f x ()f x ()f x '0≥在I 上恒成立()f x '0≤(7)若,恒成立,则; 若,恒成立,则x I "Î()f x 0>min ()f x 0>x I ∀∈()f x 0<max ()f x 0<(8)若,使得,则;若,使得,则.0x I ∃∈0()f x 0>max ()f x 0>0x I ∃∈0()f x 0<min ()f x 0<(9)设与的定义域的交集为D ,若 D 恒成立,则有()f x ()g x x ∀∈()()f x g x >.[]min ()()0f x g x ->(10)若对、 ,恒成立,则.11x I ∀∈22x I ∈12()()f x g x >min max ()()f x g x >若对,,使得,则.11x I ∀∈22x I ∃∈12()()f x g x >min min ()()f x g x >若对,,使得,则.11x I ∀∈22x I ∃∈12()()f x g x <max max ()()f x g x <(11)已知在区间上的值域为A,,在区间上值域为B ,()f x 1I ()g x 2I 若对,,使得=成立,则。

11x I ∀∈22x I ∃∈1()f x 2()g x A B ⊆(12)若三次函数f(x)有三个零点,则方程有两个不等实根,且极大值大于0,极小值小于0.()0f x '=12x x 、(13)证题中常用的不等式:① ② ③ ln 1(0)x x x ≤->ln +1(1)x x x ≤>-()1x e x≥+④ ⑤⑥ 1xex -≥-ln 1(1)12x x x x -<>+22ln 11(0)22x x x x <->3. 解题方法规律总结1.关于函数单调性的讨论:大多数函数的导函数都可以转化为一个二次函数,因此,讨论函数单调性的问题,又往往转化为二次函数在所给区间上的符号问题。

要结合函数图象,考虑判别式、对称轴、区间端点函数值的符号等因素。

2. 已知函数(含参数)在某区间上单调,求参数的取值范围,有三种方法:①子区间法;②分离参数法;③构造函数法。

3. 注意分离参数法的运用:含参数的不等式恒成立问题,含参数的不等式在某区间上有解,含参数的方程在某区间上有实根(包括根的个数)等问题,都可以考虑用分离参数法,前者是求函数的最值,后者是求函数的值域。

4.关于不等式的证明:通常是构造函数,考察函数的单调性和最值。

有时要借助上一问的有关单调性或所求的最值的结论,对其中的参数或变量适当赋值就可得到所要证的不等式。

对于含有正整数n 的带省略号的不定式的证明,先观察通项,联想基本不定式(上述结论中的13),确定要证明的函数不定式(往往与所给的函数及上一问所得到的结论有关),再对自变量x 赋值,令x 分别等于1、2、…….、n,把这些不定式累加,可得要证的不定式。

)5. 关于方程的根的个数问题:一般是构造函数,有两种形式,一是参数含在函数式中,二是参数被分离,无论哪种形式,都需要研究函数在所给区间上的单调性、极值、最值以及区间端点的函数值,结合函数图象, 确立所满足的条件,再求参数或其取值范围。

一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令得到两个根;第二步:画两图或列表;第三步:由图表可知;0)('=x f 其中不等式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);例1:设函数在区间D 上的导数为,在区间D 上的导数为,若在区间D 上,()y f x =()f x '()f x '()g x 恒成立,则称函数在区间D 上为“凸函数”,已知实数m 是常数,()0g x <()y f x =4323()1262x mx x f x =--(1)若在区间上为“凸函数”,求m 的取值范围;()y f x =[]0,3(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.2m ≤m ()f x (),a b b a -例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的不等式恒成立,求a 的取值范围.],2,1[++∈a a x ()f x a '≤(二次函数区间最值的例子)点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:恒成立恒成立;从而转化为第一、二种题型)()(x g x f >0)()()(>-=⇔x g x f x h 例3;已知函数图象上一点处的切线斜率为,32()f x x ax =+(1,)P b 3-326()(1)3(0)2t g x x x t x t -=+-++>(Ⅰ)求的值; (Ⅱ)当时,求的值域;,a b [1,4]x ∈-()f x (Ⅲ)当时,不等式恒成立,求实数t 的取值范围。

[1,4]x ∈()()f x g x ≤二、题型一:已知函数在某个区间上的单调性求参数的范围解法1:转化为在给定区间上恒成立, 回归基础题型0)(0)(''≤≥x f x f 或解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;做题时一定要看清楚“在(m,n )上是减函数”与“函数的单调减区间是(a,b )”,要弄清楚两句话的区别:前者是后者的子集例4:已知,函数.R a ∈x a x a x x f )14(21121)(23++++=(Ⅰ)如果函数是偶函数,求的极大值和极小值;)()(x f x g '=)(x f (Ⅱ)如果函数是上的单调函数,求的取值范围.)(x f ),(∞+-∞a 例5、已知函数3211()(2)(1)(0).32f x x a x a x a =+-+-≥ (I )求的单调区间; (II )若在[0,1]上单调递增,求a 的取值范围。

子集思想()f x ()f x 三、题型二:根的个数问题题1函数f(x)与g(x)(或与x 轴)的交点======即方程根的个数问题解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;第三步:解不等式(组)即可;例6、已知函数,,且在区间上为增函数.232)1(31)(x k x x f +-=kx x g -=31)()(x f ),2(+∞(1)求实数的取值范围;k (2)若函数与的图象有三个不同的交点,求实数的取值范围.)(x f )(x g k 根的个数知道,部分根可求或已知。

例7、已知函数321()22f x ax x x c =+-+(1)若1x =-是()f x 的极值点且()f x 的图像过原点,求()f x 的极值;(2)若21()2g x bx x d =-+,在(1)的条件下,是否存在实数b ,使得函数()g x 的图像与函数()f x 的图像恒有含1x =-的三个不同交点?若存在,求出实数b 的取值范围;否则说明理由。

题2:切线的条数问题====以切点为未知数的方程的根的个数0x 例7、已知函数在点处取得极小值-4,使其导数的的取值范围为32()f x ax bx cx =++0x '()0f x >x ,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取(1,3)()f x (1,)P m -()y f x =m 值范围.题3:已知在给定区间上的极值点个数则有导函数=0的根的个数()f x 解法:根分布或判别式法例8、例9、已知函数,(1)求的单调区间;(2)令23213)(x x a x f +=)0,(≠∈a R a )(x f =x 4+f (x )(x ∈R )有且仅有3个极值点,求a 的取值范围.()g x 14其它例题1、(最值问题与主元变更法的例子).已知定义在上的函数在R 32()2f x ax ax b =-+)(0>a 区间上的最大值是5,最小值是-11.[]2,1-(Ⅰ)求函数的解析式;()f x (Ⅱ)若时,恒成立,求实数的取值范围.]1,1[-∈t 0(≤+'tx x f )x 解:(Ⅰ)32'2()2,()34(34)f x ax ax b f x ax ax ax x =-+∴=-=- 令=0,得 '()f x []1240,2,13x x ==∉-因为,所以可得下表:0>a x [)2,0-0(]0,1'()f x +0-()f x ↗极大↘因此必为最大值,∴因此, ,)0(f 50=)(f 5=b (2)165,(1)5,(1)(2)f a f a f f -=-+=-+∴>- 即,∴,∴11516)2(-=+-=-a f 1=a .52(23+-=x x x f )(Ⅱ)∵,∴等价于,x x x f 43)(2-='0(≤+'tx x f )0432≤+-tx x x 令,则问题就是在上恒成立时,求实数的取值范围,x x xt t g 43)(2-+=0)(g ≤t ]1,1[-∈t x 为此只需,即,⎩⎨⎧≤≤-0)10)1((g g ⎩⎨⎧≤-≤-005322x x x x 解得,所以所求实数的取值范围是[0,1].10≤≤x x 2、(根分布与线性规划例子)已知函数322()3f x x ax bx c =+++(Ⅰ)若函数在时有极值且在函数图象上的点处的切线与直线平行,求()f x 1=x (0,1)30x y +=的解析式;)(x f (Ⅱ) 当在取得极大值且在取得极小值时, 设点所在平面区()f x (0,1)x ∈(1,2)x ∈(2,1)M b a -+域为S, 经过原点的直线L 将S 分为面积比为1:3的两部分, 求直线L 的方程.解: (Ⅰ). 由, 函数在时有极值 ,∴2()22f x x ax b '=++()f x 1=x 220a b ++=∵∴又∵ 在处的切线与直线平行,(0)1f =1c =()f x (0,1)30x y +=∴ 故 ∴ ………. 7分(0)3f b '==-12a =3221()3132f x x x x =+-+(Ⅱ) 解法一: 由 及在取得极大值且在取得极小值,2()22f x x ax b '=++()f x (0,1)x ∈(1,2)x ∈∴ 即令,则(0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩0220480b a b a b >⎧⎪++<⎨⎪++>⎩(,)M x y 21x b y a =-⎧⎨=+⎩∴ ∴ 故点所在平面区域S 为如图△ABC, 12a y b x =-⎧⎨=+⎩20220460x y x y x +>⎧⎪++<⎨⎪++>⎩M 易得, , , , , (2,0)A -(2,1)B --(2,2)C -(0,1)D -3(0,2E -2ABC S ∆=同时DE 为△ABC 的中位线, ∴ 所求一条直线L 的方程为: 13DECABED S S ∆=四边形0x =另一种情况设不垂直于x 轴的直线L 也将S 分为面积比为1:3的两部分, 设直线L 方程为,它与y kx =AC,BC 分别交于F 、G, 则 , 0k >1S =四边形D E G F由 得点F 的横坐标为: 220y kx y x =⎧⎨++=⎩221F x k =-+由 得点G 的横坐标为:460y kx y x =⎧⎨++=⎩641G x k =-+∴ 即 OGE OFD S S S ∆∆=-四边形D E G F 61311222214121k k =⨯⨯-⨯+⨯=+216250k k +-=解得: 或 (舍去) 故这时直线方程为:12k =58k =-12y x =综上,所求直线方程为: 或 .…………….………….12分0x =12y x =(Ⅱ) 解法二: 由 及在取得极大值且在取得极小值,2()22f x x ax b '=++()f x (0,1)x ∈(1,2)x ∈∴ 即 令, 则(0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩0220480b a b a b >⎧⎪++<⎨⎪++>⎩(,)M x y 21x b y a =-⎧⎨=+⎩∴ ∴ 故点所在平面区域S 为如图△ABC, 12a y b x =-⎧⎨=+⎩20220460x y x y x +>⎧⎪++<⎨⎪++>⎩M 易得, , , , , (2,0)A -(2,1)B --(2,2)C -(0,1)D -3(0,2E -2ABC S ∆=同时DE 为△ABC 的中位线, ∴所求一条直线L 的方程为:13DEC ABED S S ∆=四边形0x =另一种情况由于直线BO 方程为: , 设直线BO 与AC 交于H ,12y x =由 得直线L 与AC 交点为: 12220y x y x ⎧=⎪⎨⎪++=⎩1(1,2H --∵ , , 2ABC S ∆=1112222DEC S ∆=⨯⨯=11222211122H ABO AOHS S S ∆∆∆=-=⨯⨯-⨯⨯=A B∴ 所求直线方程为: 或 0x =12y x =3、(根的个数问题)已知函数的图象如图所示。

相关文档
最新文档