第3章 电动机转矩转速控制(2).
运动控制_第3章____转速、电流双闭环直流调速系统

U
*
im
,转速外环呈开环状态,
转速的变化对系统不再产生影响。在这种情况下,电流负反
馈环起恒流调节作用,转速线性上升,从而获得极好的下垂
特性,如图 3-5中的AB段虚线所示。
第二十一页,编辑于星期三:九点 二十二分。
第 3章 转速、电流双闭环直流调速系统
此时,电流
I
d
U* im ?
?
I dm
,Idm 为最大电流,是由设
差调节。
第二十页,编辑于星期三:九点 二十二分。
第 3章 转速、电流双闭环直流调速系统
1) 转速调节器饱和
在电动机刚开始起动时,突加阶跃给定信号 U*n,由于
机械惯性,转速 n很小,转速负反馈信号 Un很小,则转速偏
差电压 ΔUn=U*n-Un>0很大,转速调节器 ASR 很快达到饱和
状态, ASR的输出维持在限幅值
图 3-5 双闭环直流调速系统的静特性
第二十三页,编辑于星期三:九点 二十二分。
第3章 转速、电流双闭环直流调速系统
2) 转速调节器不饱和
当转速n达到给定值且略有超调时 (即n>n0),ΔUn=
U*n-Un<0,则转速调节器 ASR的输入信号极性发生改变,
ASR 退出饱和状态,转速负反馈环节开始起转速调节作用,
用以调节起动电流并使之保持最大值,使得转速线性变化, 迅速上升到给定值; 在电动机稳定运行时,转速调节器退 出饱和状态,开始起主要调节作用,使转速随着转速给定信 号的变化而变化,电流环跟随转速环调节电动机的电枢电流 以平衡负载电流。
第六页,编辑于星期三:九点 二十二分。
第 3章 转速、电流双闭环直流调速系统
器ACR和转速调节器 ASR的输入电压偏差一定为零,因此,
第三章 同步电动机的变频调速控制

30年代
铝镍钴、铁氧体
差
易去磁
1
2 3
90年代 60年代 后期
铁氧体 稀土永磁: SmC05
3.6~4.0 24 33 38~40
价格低 (稀土的1/10) 热稳定性好 不怕去磁 钴含量高、价格高
70年代 初期
第三代
稀土永磁: SmC017 稀土永磁: 钕铁硼 Nd-Fe-B
我国储量世界第一, 温度可达200℃?
图示位置是转子磁极轴线 从某相绕组轴线转过30°的位 置,在此瞬间触发该相晶闸管, 从产生转矩的角度看是最有利 的。在此位置下,在绕组通电 的1/3周期里,载流导体正好 处于比较强的磁场中,所产生 的转矩平均值最大,脉动最小。 从时间相位上看,晶闸管触发 瞬间正好是该感应电势交变过 零之后的30°相位处,习惯上 将此点选作晶闸管触发相位的 基准点,称为空载换流超前 角 。
结 论
0 0 、 三相式,对转矩最为有利。
矛盾:
晶闸管靠反电势自然换流,要求 0 超前,目前常取 0 60 ,或按负载的 动态调节。转矩脉动大:凸极式无换向电 机中,还存在磁阻转矩,当 超前时为 0 负值,将使输出转矩减小。
二、逆变器晶闸管的换流问题
问题的提出: 直流无换向器电机的晶闸管直接接在直流电 源上,导通后无法自行关断,换流困难。必须采取 特殊的换流措施。 解决: 在过激状态下向逆变器提供超前的无功电流, 可利用电机的反电势来实现自然换流。
优点: (1) 只要精确地控制变频电源的频率就能准确控 制转速,无需速度反馈控制。 (2) 转矩干扰只影响同步电动机的功角,不影响 电机的转速可以在极低的转速下运行,调速范围 较宽。 (3)可以调节转子励磁来调节电机的功率因数,甚 至可在 下运行。 (4) 运行在超前功率因数下,有可能利用电动机 的反电势实现负载换流,克服强迫换流的弊病 (晶闸管)。 缺点:同步电机本身结构稍微复杂
电机与拖动基础第三章 直流电机原理(第二部分)

表示。每个元件首、末端所连两个换向片之间的跨 距是换向器节距yk,用换向片数来表示。
y=yk=1 (3)第二节距y2:连至同一个换向片的两个元件边 之间的距离,用虚槽数表示。
y2=y1-y
τ
•3
2. 单叠绕组的展开图
实例: 已知一台电机的极数2P=4, Ze=S=K=16,画出它的右行单叠 绕组的展开图。
额定电流
额定电磁转矩
•18
3.5 电枢电动势与电磁转矩
直流发电机和电动机电枢电动势与电磁转矩:
电枢电动势—输出电动势(与电枢 电流同方向) 电磁转矩—制动性转矩(与转速方 向相反)
电枢电动势—反电动势(与电枢电 流反方向)
电磁转矩—拖动性转矩(与转速方 向相同)。
电枢电动势的方向由电机的转向和主磁场的方向决定 电磁转矩的方向由电枢电流和主磁场的方向决定
•19
3.5.3 直流电机的电枢反应
Bδ τ
如磁路不饱和,总磁通量不变。但磁路饱和时,总磁通要降低, 称为去磁效应。
• 电枢磁通势改变气隙磁密分布及 每极磁通量大小的现象称为电枢 反应。
•06:50 •20
3.5.1 电枢电动势
电枢电动势是指直流电机正、负电刷之间的 感应电动势,也就是电枢绕组每个支路里的感 应电动势
一个极距范围内的平均磁密:Bav
li
一根导体的平均电动势: eav Bavliv
v 2 p n 60
eav
(
li
)li (2 p
n) 60
2 p
n 60
电枢电动势:Ea
根据感应电动势公式,气隙每极磁通Φ为
第3章步进电动机的控制

升速 恒速 减速 低速
起点
终点
(时间) t
图3-24
点、位控制中的加减速控制
15
变速控制的方法有:
改变控制方式的变速控制:最简单的变速控制可利用改变步进电 机的控制方式实现。例如:对于三相步进电机系统,启动或停止时 用三相六拍,大约0.1s以后,改用三相三拍,快到达终点时再采用 三相六拍,以达到减速控制的目的。 均匀地改变脉冲时间间隔的变速控制:步进电机的加速(或减速) 控制,可以用均匀地改变脉冲时间间隔来实现。 采用定时器的变速控制:单片机控制系统中,用单片机内部的定 时器来提供延时时间。方法是将定时器初始化后,每隔一定的时间, 由定时器向CPU申请一次中断,CPU响应中断后,便发出一次控制脉 冲。此时只要均匀地改变定时器时间常数,即可达到均匀加速(或 减速)的目的。这种方法可以提高控制系统的效率。
脉冲 方向控制
步进控制器
功率放大器
步进电机
负载
图3-19 步进电机控制系统的组成
2
随着电子技术的发展,除功率驱动电路之外,其它硬件电路均可由软 件实现。采用计算机控制系统,由软件代替步进控制器,不仅简化了 线路,降低了成本而且可靠性也大为提高,同时,根据系统的需要可 灵活改变步进电机的控制方案,使用起来很方便。典型的微型机控制 步进电机系统原理图如图3-20所示。 使用微型机对步进电机进行控制有串行和并行两种方式。 步 进 电 机
6
二、步进电动机的闭环控制
在开环步进电动机系统中,电动机的输出转矩在很大程度上取决于驱 动电源和控制方式。对于不同的步进电动机或同一种步进电动机而不 同负载,励磁电流和失调角发生改变,输出转矩都会随之发生改变, 很难找到通用的控速规律,因此,也很难提高步进电机的技术指标。 闭环系统是直接或间接地检测转子的位置和速度,然后通过反馈和适 当处理自动给出驱动脉冲串。因此采用闭环控制可以获得更精确的位 置控制和更高、更平稳的转速,从而提高步进电动机的性能指标。 步进电动机的输出转矩是励磁电流和失调角的函数。为了获得较高的 输出转矩,必须考虑到电流的变化和失调角的大小,这对于开环控制 来说是很难实现的。
现代电机控制技术第3章三相永磁同步电动机矢量控制课件

2
PMSM 的转子结构,按永磁体安装形式分类,有面装式、插入式和内装式三 种,如图 3-1、图 3-2 和图 3-3 所示。
图 3-1 面装式转子结构
图 3-2 插入式转子结构
图 3-3 内装式转子结构
(3-2) (3-3)
A LA LAB LAC iA fA
B LBA LB LBC iB fB
C
LCA
LCB
LC
iC
fC
(3-4)
式中, fA 、 fB 和 fC 分别为永磁励磁磁场链过 ABC 绕组产生的磁链。 11
同电励磁三相隐极同步电动机一样,因电动机气隙均匀,故 ABC 绕组
Lm1
1 2
Lm1
1 2
Lm1
Ls Lm1
1 2
Lm1
1 2
Lm1
1 2
Lm1
Ls Lm1
iA iB iC
fA fB fC
式中, A
(Ls
Lm1 )iA
1 2
Lm1
(iB
iC ) fA
。
(3-7)
12
若定子三相绕组为 Y 接,且无中线引出,则有iA iB iC 0 ,于是
将矢量图直接转换为 A 相绕组的相量图,或者反之。这一结论同样适用 于
PMSM,因此可将图 3-9a 所示的矢量图直接转换为 A 相绕组的相量图,如图
3-9b 所示。
17
a) 稳态矢量图
b) 相量图
图3-9 面装式PMSM矢量图和相量图
18
此时,可将式(3-17)直接转换为
U s Rs Is jωs Ls Is jωsΨ f Rs Is jωs Ls Is jωs Lm If Rs Is jωs Ls Is E0
第3章 第3节 绕线式异步电动机的调速

可直接控制转子回路内的滑差功率 实现转子串电阻调速和串级调速等调速方式 串级调速--变流装置在转子侧 调节滑差功率,调速装置容量小 3.3.1 绕线式异步电动机转子串电阻调速 1、转子串电阻调速原理 转子回路接三相附加电阻 机械特性从自然特性变为人工特性 最大转矩不变
临界转差率将随外加电阻的增大而增加
改变值,逆变器输出电压变化,实现调速
19
①第1工作区
( p 0
600 )
转子整流输出电压(考虑换流压降及电机转子侧电阻Rd):
U d 2.34sE 2 ( 3sX d
2 Rd ) I d
逆变电压:
U 2.34U 2T cos ( 3X T
2 RT )I d
1)亚同步系统--交直交 静止变流器作用: 回收利用转子绕组中的转差功 率--传递有功功率 二极管不可控整流桥把转差频率 的交流变成直流 有源逆变器把直流变成电网频 率的交流回馈电网 PCU—Power Converter Unit
2)超同步系统--交-交变流器
静止变流器能双向传递有功功率 既能运行于亚同步速度,又能运行 于超同步 同时相位能随意变化,传递无功 功率,改善功率因数
) cos1 (1
2X d Id 6 E2
)
Xd--转子不动时折算到转子侧的总漏抗 Id--负载电流即整流输出电流
E2--电机静止时转子绕组相电势
γ角与转差率s无关 随着负载电流Id的增加而增加
当 Id 6E2 4Xd 时
60
14
2、转子整流电路3种工作状态 ①第1工作状态 负载不很大,换流重叠角γ随负载上升而增大,变化范围:
忽略分母中 有
第3章 直流电机 《电机学(第2版)》王秀和、孙雨萍(习题解答)

第三章 直流电机习题解答3-1 直流电机铭牌上的额定功率是指输出功率还是输入功率?对发电机和电动机有什么不同?答:输出功率;对于电动机指轴上的输出机械功率,对于发电机指线段输出的电功率。
3-2. 一台p 对极的直流电机,采用单叠绕组,其电枢电阻为R ,若用同等数目的同样元件接成单波绕组时,电枢电阻应为多少? 答:P 2R .解析:设单叠绕组时支路电阻为R 1 ,考虑到并联支路数2a =2p ,故有:12R R P=,则12R PR = ,单波绕组时,并联支路数2a=2,每条支路有p 个R 1 ,则每条支路电阻为22p R ,并联电阻为2p R 。
3-3.直流电机主磁路包括哪几部分?磁路未饱和时,励磁磁通势主要消耗在哪一部分?答:(N 极),气隙,电枢齿,电枢磁轭,下一电枢齿,气隙,(S 极),定子磁轭,(N 极);主要消耗在气隙。
3-4. 在直流发电机中,电刷顺电枢旋转方向移动一角度后,电枢反应的性质怎样?当电刷逆电枢旋转方向移动一角度,电枢反应的性质又是怎样?如果是电动机,在这两种情况下,电枢反应的性质怎样?答:当电刷偏离几何中性线时,除产生交轴电枢磁动势外,还会产生直轴磁动势。
对于发电机,当电刷顺电枢旋转方向移动一角度后,产生的交轴磁动势F aq 对主磁场的影响与电刷位于中性线时的电枢反应磁动势相同,产生的直轴电动势F ad 有去磁作用。
当电刷逆电枢旋转方向移动一角度后,产生的交轴磁动势F aq 对主磁场的影响与电刷位于中性线时的电枢反应磁动势相同,产生的直轴电动势F ad 有助磁作用。
如果是电动机,两种情况下的影响与发电机恰好相反。
3-5. 直流电机电枢绕组元件内的电动势和电流是交流还是直流?为什么在稳态电压方程中不考虑元件本身的电感电动势?答:交流;因为在元件短距时,元件的两个边的电动势在一段时间内方向相反,使得元件的平均电动势稍有降低。
但直流电机中不允许元件短距太大,所以这个影响极小,故一般不考虑。
运动控制系统第3章-转速闭环控制的直流调速系统ppt

s)
闭环时,Dcl
nN s ncl (1
s)
得到 Dcl (1 K )Dop
(2-50)
闭环系统静特性和开环系统机械特性的关系
开环系统 Id n 例如:在图2-24中工作点从A A′
闭环系统 Id n Un Un Uc
n Ud0 例如:在图2-24中工作点从A B 比例控制直流调速系统能够减少稳态速降的实质在于它的自动 调节作用,在于它能随着负载的变化而相应地改变电枢电压, 以补偿电枢回路电阻压降的变化。
图2-26 积分调节器的输入和输出动态过程
图2-26 积分调节器的 输入和输出动态过程
只要ΔUn>0,积分调 节器的输出Uc便一直 增长;只有达到 ΔUn=0时, Uc才停止 上升;只有到ΔUn变 负, Uc才会下降。
当ΔUn=0时, Uc并 不是零,而是某一个 固定值Ucf
突加负载时,由于Idl的 增加,转速n下降,导 致ΔUn变正,
由式(2-48)可得
K
nop
1
275
1 103.6
ncl
2.63
则得
Kp
K
K s / Ce
103.6 30 0.015 / 0.2
46
即只要放大器的放大系数等于或大于46。
3.1.3 闭环直流调速系统反馈控制规律
(1)比例控制的反馈控制系统是被调量有 静差的控制系统 比例控制反馈控制系统的开环放大系数值 越大,系统的稳态性能越好。 但只要比例放大系数Kp=常数,开环放大 系数K≠∞,反馈控制就只能减小稳态误差, 而不能消除它, 这样的控制系统叫做有静差控制系统。
电力拖动自动控制系统 —运动控制系统
第3章
转速闭环控制的 直流调速系统
第三章 直流电机(2-5)

3)绝缘材料:作为带电体之间及带电体与铁心间 的电气隔离,要求耐热好,介电性能高。 4)结构材料:使电机各个零件构成一个整体,要 求材料的机械强度好,加工方便,重量轻。 四、电机的发热: 任何机械装置工作了一段时间后,都会出现发热 的现象,我们已经学过了电工,那么,很显然, 这是损耗的出现所导致的结果。 1、温升:电机的温度在工作了一段时间后不在上升 而达到某一稳定数值,此值和周围冷却介质温度 之差,我们称之为温升。 电机的温升不仅取决与损耗的大小和散热情况, 还与电机的工作方式有关:
铁心是导电的,交变的磁通也能在铁心中感 性电动势,并引起环流,这些环流在铁心内 部围绕磁通做涡流状流动,称为涡流。涡流 在铁心中引起的损耗称为涡流损耗
磁滞损耗和涡流损耗,总称铁心损耗
PFe CFe B f G
2 m 1.3
硅 钢 片 中 的 涡 流
B
八、能量守恒定律: 物理中的能量守恒定律在这里同样使用, 稳态运行时,
电刷A与B间的电动势波形
思考:如果没有换向器,电刷A、B间的电动势 波形是什么样的?
2、直流电动机的工作原理
在电动机中换向器和电刷的作用
换向器和电刷的共同作用是: 1、保证了每个磁极下线圈边中的电流始终是一个方 向,使电动机能连续的旋转。 2、将刷间的直流电逆变成线圈中的交流电; 3、把外面不转的电路与转动的电路连接。 思考:若无换向器,会出现什么结果?
电刷
b
N
a c
S + U –
I F IE Fd Tn NhomakorabeaE
换向片
当直流电机运行于发电状态时,感应电动势 的方向与电枢电流的实际方向相同。电枢绕组通 过电刷输出电能。
2. 电磁转矩 直流电动机电枢绕组中的电流(电枢电流Ia)与磁 通 相互作用,产生电磁力和电磁转矩,直流电机的 电磁转矩公式为 T=CT Ia
《机电传动技术》第三章 直流电机的工作原理及特性

T = TL +T0
转矩平衡过程 当电动机轴上的机械负载发生变化时, 当电动机轴上的机械负载发生变化时,通过电 动机转速、电动势、电枢电流的变化, 动机转速、电动势、电枢电流的变化,电磁转矩将 自动调整,以适应负载的变化,保持新的平衡。 自动调整,以适应负载的变化,保持新的平衡。 一定, (平衡 此时, 平衡), 例:设外加电枢电压 U 一定,T=TL (平衡),此时, 突然增加, 若TL突然增加,则调整过程为 E = KEΦn E↓ ↓ TL ↑ n↓ ↓ T↑
(3)求理想空载转速
根据(0,n0)和(TN,nN)两点,就可以作出他励电动 机的机械特性曲线。
正反转时的机械特性
2 、人为机械特性
人为机械特性是指人为地改变电动机电枢外加 电压、励磁磁通的大小以及电枢回路串接附加电 阻所得到的机械特性。直流他励电动机有三种人 为机械特性。
Ra U n= − T = n0 − ∆n 2 KeΦ Ke Kt Φ
n
d T
– U + 直流电从两电刷之间通入电枢绕组, 直流电从两电刷之间通入电枢绕组,电枢电流 方向如图所示 由于换向片和电源固定联接, 如图所示。 方向如图所示。由于换向片和电源固定联接,无论 线圈怎样转动,总是S极有效边的电流方向向里 极有效边的电流方向向里, 线圈怎样转动,总是 极有效边的电流方向向里 N 极有效边的电流方向向外。电动机电枢 极有效边的电流方向向外。电动机电枢绕组通电后 中受力(左手定则 按顺时针方向旋转。 左手定则)按顺时针方向旋转 中受力 左手定则 按顺时针方向旋转。
转子
转子部分:转子又称为电枢,包括电枢铁心、 电枢铁心、 转子部分 电枢铁心 电枢绕组、换向器、风扇、 电枢绕组、换向器、风扇、轴等
控制电机第三章 直流伺服电动机_OK

改进。
35
I a3
2.反接制动工作状态
适用情况:驱动电机反转
原因:本身和负载的转动惯
量,n1维持不变。
U a 2
工作特点:
(1)既非发电机,又非电动机。
(2)Ia3很大(设计放大器时必须考虑的问题)。
(3)T很大,制动转速。
(4)吸收电能,又吸收机械能——电机电枢铜耗。
36
3.动能制动工作状态
突变:U a1
U a2
U a 2 Ea1 I a 2 Ra
当 U a2
时,
Ia2
Ea1 为负。
Ia2
U a2
T为制动转矩,电机处于发电机状
态。当Ea1下降到比Ua2小时,电
机将回到电动机状态。
发电机状态加快了电机转速的衰减过程,提高了系统快速性。
34
U a2
实际电路中晶闸
管供电不允许反
措施:采用低速性能好的直流力矩电动机和低惯量直流电
动机。
30
由调节特性可知:
(1) 一定负载转矩下,当磁通不变时,Ua n。
(2) Ua=0时,电机立即停转,无自传现象。
(3)电动机反转:改变电枢电压的极性,电动机反转。
(4)低速工作不稳定。
机械特性和调节特性的比较
31
4 过渡过程的运行状态
l
I a
Dl
2a 2 2a
T CT I a kT I a
转矩系数kT
11
➢电磁转矩和转矩平衡方程
电磁转矩
T CT I a
稳态转矩平衡方程
T2 T T0 TL
Ts T0 TL
Ts T
动态转矩平衡方程
第3章直流电机习题解答

第三章直流电机习题解答3-1 直流电机铭牌上的额定功率是指输出功率还是输入功率?对发电机和电动机有什么不同?答:输出功率;对于电动机指轴上的输出机械功率,对于发电机指线段输出的电功率。
3-2. 一台p对极的直流电机,采用单叠绕组,其电枢电阻为R,若用同等数目的同样元件接成单波绕组时,电枢电阻应为多少?答:P2R.解析:设单叠绕组时支路电阻为R1 ,考虑到并联支路数2a=2p,故有:R 2R P1 , 则R1 2PR ,单波绕组时,并联支路数2a=2,每条支路有p 个R1 ,则每条支路电阻为 2p2R ,并联电阻为p2R 。
3-3.直流电机主磁路包括哪几部分?磁路未饱和时,励磁磁通势主要消耗在哪一部分?答:(N 极),气隙,电枢齿,电枢磁轭,下一电枢齿,气隙,(S 极),定子磁轭,(N 极);主要消耗在气隙。
3-4. 在直流发电机中,电刷顺电枢旋转方向移动一角度后,电枢反应的性质怎样?当电刷逆电枢旋转方向移动一角度,电枢反应的性质又是怎样?如果是电动机,在这两种情况下,电枢反应的性质怎样?答:当电刷偏离几何中性线时,除产生交轴电枢磁动势外,还会产生直轴磁动势。
对于发电机,当电刷顺电枢旋转方向移动一角度后,产生的交轴磁动势F aq 对主磁场的影响与电刷位于中性线时的电枢反应磁动势相同,产生的直轴电动势F ad 有去磁作用。
当电刷逆电枢旋转方向移动一角度后,产生的交轴磁动势F aq 对主磁场的影响与电刷位于中性线时的电枢反应磁动势相同,产生的直轴电动势F ad有助磁作用。
如果是电动机,两种情况下的影响与发电机恰好相反。
3-5. 直流电机电枢绕组元件内的电动势和电流是交流还是直流?为什么在稳态电压方程中不考虑元件本身的电感电动势?答:交流;因为在元件短距时,元件的两个边的电动势在一段时间内方向相反,使得元件的平均电动势稍有降低。
但直流电机中不允许元件短距太大,所以这个影响极小,故一般不考虑。
3-6.一台直流电动机运行在电动机状态时换向极能改善换向,运行在发电机状态后还能改善换向吗?答:不能;对电动机来说,换向极极性应与顺着电枢转向的下一个主极性相反,而发电机则应相同。
机电传动与控制(第四版)第3章课后习题参考答案

第三章3.1 为什么直流电记得转子要用表面有绝缘层的硅钢片叠压而成?直流电机的转子要用表面有绝缘层的硅钢片叠加而成是因为要防止电涡流对电能的损耗..3.2 并励直流发电机正传时可以自励,反转时能否自励?不能,因为反转起始励磁电流所产生的磁场的方向与剩余磁场方向相反,这样磁场被消除,所以不能自励.3.3 一台他励直流电动机所拖动的负载转矩TL=常数,当电枢电压附加电阻改变时,能否改变其稳定运行状态下电枢电流的大小?为什么?这是拖动系统中那些要发生变化?T=KtφIa u=E+IaRa当电枢电压或电枢附加电阻改变时,电枢电流大小不变.转速n与电动机的电动势都发生改变.3.4 一台他励直流电动机在稳态下运行时,电枢反电势E= E1,如负载转矩TL=常数,外加电压和电枢电路中的电阻均不变,问减弱励磁使转速上升到新的稳态值后,电枢反电势将如何变化? 是大于,小于还是等于E1?T=IaKtφ, φ减弱,T是常数,Ia增大.根据EN=UN-IaRa ,所以EN减小.,小于E1.3.5 一台直流发电机,其部分铭牌数据如下:PN=180kW, U N=230V,n N=1450r/min,ηN=89.5%,试求:①该发电机的额定电流;②电流保持为额定值而电压下降为100V时,原动机的输出功率(设此时η=ηN)PN=UNIN180KW=230*ININ=782.6A该发电机的额定电流为782.6AP= IN100/ηNP=87.4KW3.6 已知某他励直流电动机的铭牌数据如下:PN=7.5KW, U N=220V, n N=1500r/min, ηN=88.5%, 试求该电机的额定电流和转矩。
PN=UNINηN7500W=220V*IN*0.885IN=38.5ATN=9.55PN/nN=47.75Nm3.7一台他励直流电动机:PN=15KW, U N=220V, I N=63.5A, n N=2850r/min,Ra =0.25Ω,其空载特性为:U 0/ V 115 184 230 253 265I f/A 0.442 0.802 1.2 1.686 2.10今需在额定电流下得到150V 和220 V的端电压,问其励磁电流分别应为多少?由空载特性其空载特性曲线.当U=150V时If=0.71A当U=220V时If=1.08A3.8 一台他励直流电动机的铭牌数据为:PN=5.5KW, U N=110V, I N=62A, nN=1000r/min,试绘出它的固有机械特性曲线。
第三章 机电系统的速度控制

串电阻调速
异步电机调速
n 60 f (1 s) p
• 因此异步电动机的调速方法大致可分为改变转差率、极对 数和电源频率三种。
• 改变极对数调速的方法在第一章双速电机控制一节中已经 介绍。
• 改变转差率的方法又可以通过调定子电压、转子电阻、转 子电压以及定转子供电频率差等方法来实现,从而得出很 多种调速方法。会使电机特性变软。
3.直流调速系统的控制方式 主电路构成不同,控制方法不同 :移相控制、PWM控制等
电机调速系 统中通常为:
闭环控制方式 开环控制
闭环控制
单闭环 双闭环 多环控制
速度环 速度环和电流环
加位置环等
4.工作象限
n
n
n
n
a)单象限运行
0
T
0
T
0
T
0
T b)电压可反向的二象限运行
c) 电流可反向的二象限运行
Ud
M
优点:静止装置、经济、可靠 缺点:功率因数低、对电网谐波污染
直流脉宽调制(PWM)系统
原理电路图
控制思路
Ud
控制原理
制动时的能量传递关系 工作象限
i0 Ea
u0
VD u0
Ud
驱动 VT
0 Ton
T
U0
t
a) a)原理电路图
n
n
b)
b)斩波器输出电压波形
U0
u0
Ton T
Ud
tU d
越高(S值越小),则允许的调速范围就越小。
例如,某一开环V-M调速系统,额定 转速nN =1000r/min ,额定负载下的稳态速 降 △nN =50r/min,当要求静差率S=0.33 时,允许的调速范围为:
第三章步进电动机的控制

2、静特性:
静特性是指在稳定状态(通电状态不变,转子保持不动的定 位状态)时的特征,包括静转距、距角特性及静态稳定区。
A)静转距:电动机处于稳定状态下的电磁转距。它是绕组 内电流与失调角的函数。
在稳定状态下,若无负载,转子齿与定子齿对齐,处于初始 平衡状态,电磁转矩为0。若在转子加一负载转距,转子齿 要偏离初始位置,转过一个角度θ,这时定转子之间产生的 电磁转矩,此转矩克服负载转矩达到平衡,转子停在一个新 的平衡点,这时电动机的电磁转距即为静态转矩。
初始状态
A
B'
C'
C
B
A'
A
B'
C'
C
B
A'
A
B' 4 C'
31
C 2B
A'
3.1.2 步进电动机分类
反应式(磁阻式) 永磁式 分类方法很多,按工作原理可分为: 电磁式 混合式(永磁感应式) ★反应式步进电机的转子用硅钢片叠成,其上没有励磁线 圈,结构和原理简单。 ★电磁式步进电机的转子上有励磁线圈。 ★混合式步进电动机转子为永磁材料,在同样的励磁电流 下,可以产生更大的转矩,效率高,电流小,发热低。
组轮流励磁,利用电磁铁原理,每来一个电脉冲,电 机转动一个角度,将脉冲信号转换成角位移。
IA
A B' 1 C'
42
C 3B
A'
A 相通电, A 方向的磁通经转子形成 闭合回路。磁力线力图走磁阻最小的 路径,若转子和磁场轴线方向原有一 定角度,则在磁场的作用下,转子被 磁化吸引,使转、定子的齿对齐,使 得通电相磁路的磁阻最小。
机电传动控制(第3章) 直流电机的工作原理及特性

性硬度不变,调速范围较大;
3)恒转矩调速 4)U≤UN,n≤nN
3.改变电动机主磁通
UN Ra n T 2 K e 9.55( K e )
1)可以实现无级调节 2)随着Φ 的减小,n0增加,k 变大,特性变软; 3)恒功率调速 4)Φ ≤ΦN,n≥nN
1、改变电枢电路外串电阻 Rad 调速
UN Ra Rad n T 2 K e N 9.55( K e N )
特点: 1)
3)R越大,耗能越大
2.改变电动机电枢供电电压U
Ra U n T 2 K e N 9.55( K e N )
第三章
直流电机的工作原理及特性
重点掌握:
• 了解直流电机的基本结构及工作原理; • 掌握直流电动机的机械特性; • 掌握直流电动机启动、调速和制动等各种特性; • 掌握直流电动机电压平衡方程、机械特性方程及其相关 的计算方法。
3.1 直流电机的基本结构和工作原理 一、直流电机的基本结构
直流电机的组成可分为定子、转子和换向器三大部分。
3.21 有一台他励直流电动机,PN=7.5kW,UN=220V,IN=4lA, nN=1500r/min,Ra=0.38Ω,拖动恒转矩负载,且TL=TN, 现将电源电压降到U=150V,问: (1)降压瞬间的电枢电流及电磁转矩各多大? (2)稳定运行转速是多少?
3.22 有一台他励直流电动机,PN=21kW,UN=220V,IN=115A, nN=980r/min,Ra=0.1Ω,拖动恒转矩负载运行,弱磁调速时Φ 从ΦN调到0.8ΦN,问: (1)调速瞬间电枢电流是多少?(TL=TN) (2)若TL=TN和TL=0.5TN,调速前后的稳态转速各是多少?
电机原理与拖动——第三章直流电动机电力拖动2

电枢由晶闸管整流供电的直流调速系统示意图
晶闸管励磁的发电机-电动机机组调速系统 晶闸管励磁的发电机 电动机机组调速系统
(3)机械特性方程 机械特性方程
U0 --整流电压 整流电压 R0 -- 整流装置内阻
调压调速时的机械特性
(4)调压调速特点 调压调速特点 1) 调速范围广; 调速范围广; 2) 调速平滑性高; 调速平滑性高; 3) 设备投资大; 设备投资大; 4) 采用可控硅直流电源时效率高,采 采用可控硅直流电源时效率高, 用机组时效率较低。 用机组时效率较低。
3.3
他励直流电动机的调速
1.可以采用的调速方法: 可以采用的调速方法: 可以采用的调速方法 机械方法;电气方法;机械电气配合方法。 机械方法;电气方法;机械电气配合方法。 2.电气调速方法: 电气调速方法: 电气调速方法 由转速调节特性来看: 由转速调节特性来看
欲改变电动机的转速, 欲改变电动机的转速,可以改变电枢端电 包括改变U 和改变R 压 Ua (包括改变 和改变 ),或改变励磁 实现。 磁通 Φ 实现。
2.降低电源电压 降低电源电压
使用的可调直流电源有: 使用的可调直流电源有: (1)晶闸管整流装置; 晶闸管整流装置; 晶闸管整流装置 (2)电动机 发电机机组。 电动机-发电机机组 电动机 发电机机组。 容量较大时用机组作为可调直流电源, 容量较大时用机组作为可调直流电源,而用 晶闸管装置调节发电机G的励磁电流 的励磁电流。 晶闸管装置调节发电机 的励磁电流。
静差率与调速范围的关系: 静差率与调速范围的关系:
静差率与调速范围是互相联系的两项指标, 静差率与调速范围是互相联系的两项指标,系统 决定于低速特性的静差率。 可能达到最低速 nmin 决定于低速特性的静差率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( s) Kt 2 U a ( s) La Js ( La B Ra J ) s Ra B K e Kt
令: Ta La Ra
Ra J Tm Ke Kt J T B
电动机电磁时间常数 电动机机电时间常数 机械系统时间常数
则直流伺服电动机的传递函数可变为:
( s) 1/ Ke U a ( s) T T s 2 ( TaTm T ) s ( Tm 1) a m m T T
(6)倍频式H型单极性开关放大器
3.PWM放大器中的一些特殊问题
1. 功率管选择
2. 功率管的保护
3. 功率管的开通延时
4. 功率管的泵升电压
3.3.3 晶闸管驱动
(3)H型单极性开关放大器 控制方式是:VT1,VT2基极加相位反相的脉宽调 制型号,VT3加截止信号,VT4加导通信号。
(4)H型有限单极性开关放大器 控制方式是:VT1基极加脉宽调制型号, VT2 、VT3 加截止信号,VT4加导通信号。
(5)H型双极性开关放大器
ub1 ub 4 ub 2 ub3 ub1
§3.2.1 工作原理
电刷
+
U –
换向片
N
S
直流电源
电刷
换向器
线圈
§3.2.2
静态和动态特性
Tem Kt ia d J Tem Td dt ea K e dia ua Raia La ea dt
静态时可得直流伺服电动机的转速公式为:
ua Ra Tem K e K e Kt
如果忽略电枢及粘性阻尼系数,直流伺服电动机的传 递函数可近似为:
( s ) 1/ K e U a ( s ) Tm s 1
类似的可得到阻转矩与电机转速的传递函数为:
( s) La s Ra Td ( s) La Js 2 ( La B Ra J )s Ra B Ke Kt
理想空载转速
t u b a 机械特性硬度
Ra tan Tb Ke Kt
0
直流伺服电机的动态特性方程
dia (t ) ua (t ) Raia (t ) La ea (t ) dt ea (t ) K e (t )
Tem (t ) K t ia (t ) d ( t ) Tem (t ) J B (t ) Td (t ) dt
Lapalace变换
U a ( s ) Ra I a ( s ) La sI ( s ) Ea ( s ) E a ( s ) K e ( s ) Tem ( s ) Kt I a ( s ) Tem ( s ) J ( s ) B( s ) Td ( s )
(1)设计良好的机械系统,以减小等效转动惯量J;
(2)电机供电电源内阻尽可能小,降低电枢回路内阻 Ra; (3)附加加速度负反馈,加大等效反电动势系数Ke;
3.3 直流电动机驱动电路
直流电动机的驱动电路是用于放大控制信号并向电动 机提供必要能量的电子装置。
3.3.1
线性直流功率放大器
特点: 线性直流功率放大器是指放大器中的功率元 件工作于线性状态的放大器,其输出电压或电流同控
D
Ts
u p ui 2u p
1 ui (1 ) 2 up
(1 ui ) up 2 nt cos Ts
ui 4U s U m (t ) U s sin n 2 u p n 1 n
2
2.PWM功率放大器 (1)T型单极性开关放大器
(2)T型双极性开关放大器
第3章
电动机转矩转速控制
§3.2 直流步电动机原理与特性
一. 直流电机(DC Machines)概述
直流电机是电机的主要类型之一。直流电机可
作为发电机使用,也可作为电动机使用。
用作发电机可以获得直流电源,用作电动机,
由于其具有良好的调速性能,在许多调速性能要求 较高的场合,得到广泛使用。 直流电机的用途:作电源用:发电机;作动力用: 电动机;信号的传递:测速发电机,伺服电机
制信号成比例关系。
优点:线路相对简单,电磁干扰比较小。
缺点:效率很低。
一般用于控制小功率的电动机或电磁干扰较小的 系统中。
1、单极性功率放大器
2、
双极性功率放大器
3.3.2 线性直流功率放大器
1.脉宽调制原理
4U s 2 nt U m (t ) (2 D 1)U s ` sin n D cos Ts n 1 n
代入时间常数可得:
( s) 1 La s Ra Td ( s) Ke Kt T T s 2 ( TaTm T )s ( Tm 1) a m m T T
类似简化可得:
( s) Ra 1 Td ( s ) K e Kt Tm s 1
要加快系统响应速度,展宽系统频带,必须设法减小Tm。