缓蚀剂作用机理、研究现状及发展方向
气相缓蚀剂的研究现状及趋势
![气相缓蚀剂的研究现状及趋势](https://img.taocdn.com/s3/m/4cbf8c85cc22bcd126ff0c5a.png)
气相缓蚀剂的研究现状及趋势丛兰杰(中国石油大学石大科技集团山东东营257061)l囊_●自然科掌【麓弱综述了国内外气相缓蚀剂的发展历程,分别回顾了单组份、混合型和低毒高效气相缓蚀剂研究情况指出混合型气相缓蚀剂是研究开发的重点详细阐述了环境友好气相缓蚀剂、缓蚀剂基础理论研究以及缓蚀作用的研究方法等方面的研究。
这几个方面是气相缓蚀剂研究的发展趋势。
【关键词】气相缓蚀剂单组份复合型发展趋势中田分类号:T E6文★I标识码:A文章编号:1671--7597(2008)0610011一02i、M r■气相缓蚀剂(V PI)最初是为了保护热带气候中的铁制设备而发展起来的。
在二战期间,由于武器军械的防锈需要,促进了气相缓蚀剂的迅猛发展,之后的时间里,国内外对气相缓蚀剂做了大量的研究开发工作[1,2】。
由于钢铁使用的气相缓蚀剂对铜、银等有色金属会起腐蚀作用,所以,人们把研究重点转移到能同时保护铁和非铁金属的通用型气相缓蚀剂。
近年来由于市场需求的变化,特别是在炼油、化工等大型企业中出现了大量的闲置装置和设备,这些装置往往体积庞大、管路等连接复杂、造价昂贵,为防止大气腐蚀,迫切需要对它们进行保护。
由于气相缓蚀剂粒子的自由度较高,所以无论是金属制品的表面,还是内腔、沟槽甚至缝隙部位均可得到保护。
同时,还能保持金属材料原来的机械性能不变,被保护的金属在使用前表面通常不需经过处理[3]。
因此,气相缓蚀剂成为炼油、化工设备保护的首选材料[4—6]。
=、气相曩蚀捌的研究现状(一)单组份气相缓蚀剂在早期,人们常用樟脑来保护铁制的军用物资、机器和零部件。
随着科学技术的发展,研究者发现胺和胺盐能有效地保护钢铁,现在已经二环己胺和二环己胺盐以及其他胺是很好的钢铁大气缓蚀剂[7—9]。
1943年6月美国壳牌公司(S hel l D eve I opm ent C o.)研制出亚硝酸二环己胺(、,PI一260),并获得成功。
使用之后,引起了防锈工作者的极大兴趣,已发表有关文献200多篇。
钼酸盐缓蚀剂研究进展及发展趋势
![钼酸盐缓蚀剂研究进展及发展趋势](https://img.taocdn.com/s3/m/a915381c6edb6f1aff001f30.png)
收稿日期:2008-10-06作者简介::房娟娟(1983-),女,山东济南人,材料加工工程专业,06级研究生在读。
钼酸盐缓蚀剂研究进展及发展趋势房娟娟,许斌(山东建筑大学材料科学与工程学院,山东济南 250101)摘要:从钼酸盐的缓蚀机理、与其他缓蚀剂的协同缓蚀效应等方面,综述了国内外钼酸盐缓蚀剂的研究进展,并展望了钼酸盐缓蚀剂今后的研究方向。
关键词:钼酸盐;缓蚀机理;协同缓蚀效应;缓蚀剂中图分类号:TG174.42 文献标识码:A 文章编号:1008-021X(2008)11-0017-03Develop m ent and D eveloping D irection ofM olybdate I nhibitorFANG Juan -juan,XU B in(Schoo l o fM aterials Sc ience and Eng i n eering ,Shandong Jianzhu Un i v ersity ,Ji n an 250101,Ch i n a )Abst ract :The i n hibiti o n m echanis m of m o l y bdate i n h i b itor and its synergy effects w ith other corrosion i n h i b ito rs w ere researched.The progress and the f u ture research directi o ns o f the m o l y bdate inhibitor w ere rev ie w ed ,bo th at ho m e and abroad .K ey w ords :m olybdate ;i n hibiti o n m echanis m;concerted effect of co rrsion inhibiti o n ;corrsion inhibitors 钼酸盐阻锈剂因其低毒,无公害,高效,稳定等特点受到越来越多的关注。
缓蚀剂的作用机理、研究现状及发展方向..
![缓蚀剂的作用机理、研究现状及发展方向..](https://img.taocdn.com/s3/m/a62d6a9d168884868662d61c.png)
缓蚀剂的作用机理、研究现状及发展方向1缓蚀剂的作用机理缓蚀剂的作用机理概括起来可以分为两种,即电化学机理和物理化学机理[1]。
电化学机理是以金属表面发生的电化学过程为基础,解释缓蚀剂的作用。
而物理化学机理是以金属表面发生的物理化学变化为依据,说明缓蚀剂的作用。
这两种机理处理问题的方式不同,但它们并不矛盾,而且还存在着某种因果关系。
1.1缓蚀剂的电化学机理金属的腐蚀大多是金属表面发生原电池反应的结果,这也是造成浸蚀腐蚀最主要的因素,原电池反应包括阳极反应和阴极反应[1]。
如果缓蚀剂可以抑制阳极、阴极反应中的任何一个或两个,原电池反应将减缓,金属的腐蚀速度就会减慢。
把能够抑制阳极反应的缓蚀剂称为阳极抑制型缓蚀剂;能够抑制阴极反应的缓蚀剂称为阴极抑制型缓蚀剂;而既能抑制阳极反应又能抑制阴极反应的缓蚀剂称为混合型缓蚀剂。
重铬酸钾、铬酸钾、亚硝酸钠、硝酸钠、高锰酸钾、磷酸盐、硅酸盐、硼酸盐、碳酸盐、苯甲酸盐、肉桂酸盐等都属于阳极型缓蚀剂。
阳极型缓蚀剂对阳极过程的影响是:(1)在金属表面生成薄的氧化膜,把金属和腐蚀介质隔离开来;(2)因特性吸附抑制金属离子化过程;(3)使金属电极电位达到钝化电位[2]。
阴极型缓蚀剂主要通过以下作用实现缓蚀:(1)提高阴极反应的过电位.有时阴离子缓蚀剂通过提高氢离子放电的过电位抑制氢离子放电反应,例如,Na2C03、三乙醇胺等碱性缓蚀剂都可以中和水中的酸性物质,降低氢离子浓度,提高析氢过电位,使氢离子在金属表面的还原受阻,减缓腐蚀;(2)在金属表面形成化合物膜,如有机缓蚀剂中的低分子有机胺及其衍生物,都可以在金属表面阴极区形成多分子层,使去极化剂难以达到金属表面而减缓腐蚀;(3)吸收水中的溶解氧,降低腐蚀反应中阴极反应物的浓度,从而减缓金属的腐蚀。
混合型缓蚀剂对腐蚀电化学过程的影响主要表现在:(1)与阳极反应产物反应生成不溶物,这些不溶物紧密地沉积在金属表面起到缓蚀的作用,磷酸盐如Na3P04、Na2HP04对铁、镁、铝等的缓蚀就属于这一类型;(2)形成胶体物质,能够形成复杂胶体体系的化合物可作为有效的缓蚀剂,例如Na2Si03等;(3)在金属表面吸附,形成吸附膜达到缓蚀的目的,明胶、阿拉伯树胶等可以在铝表面吸附,吡啶及有机胺类可以在镁及镁合金表面吸附,故都可以起到缓蚀的作用[2]。
有机缓蚀剂的作用机理(最新整理)
![有机缓蚀剂的作用机理(最新整理)](https://img.taocdn.com/s3/m/d0c016be58fafab068dc02ab.png)
有机缓蚀剂的作用机理----冀衡酸洗缓蚀剂产品部有机缓蚀剂分子中通常同时具有极性基团与非极性基团,极性基团中存在氮、氧、磷、硫等元素,这些元素均含有孤对电子,而且电负性大,有机缓蚀剂通过极性基团牢固地吸附在金属表面上,而非极性基团排列在介质中,这样一方面有效地隔离了金属与腐蚀介质的接触,阻碍了腐蚀反应产物的扩散,同时还改变了双电层结构,提高了腐蚀反应的活化能,最终抑制了腐蚀反应的进行。
有机缓蚀剂的缓蚀性能有赖于其极性基团在金属表面吸附的强度,而极性基团的吸附可以是物理吸附也可以是化学吸附,或者两种吸附共同存在。
(1)有机缓蚀剂极性基团的物理吸附关于有机缓蚀剂的物理吸附行为,Mann最早做了深入的研究,他指出在酸性溶液中,吡啶(C5H5N)、烷基胺(RNH2)、硫醇(RSH)及三烷基磷等的中心原子(N、S、P等)含有孤对电子,这些中心原子与酸性溶液中的氢质子结合,最终形成阳离子:RNH2+H+=(RNH3)+形成的缓蚀剂与金属之间存在的范德华力使缓蚀剂吸附在金属表面,这就是物理吸附。
物理吸附速度很快,是可逆过程,容易脱附,吸附过程产生的热小,受温度影响小,而且金属和缓蚀剂间没有特定组合。
物理吸附会受到金属表面过剩电荷的显著影响,如上所述,大多有机缓蚀剂在酸性介质中都以阳离子形式存在,如果金属表面带有过剩负电荷,那么金属表面与缓蚀剂之间就会存在强烈的静电引力作用,使得缓蚀剂更容易吸附在金属表面,而且吸附作用力也更强;相反,金属表面如果存在过剩的正电荷,则会一定程度上抑制缓蚀剂向金属表面的吸附。
金属表面究竟携带何种过剩电荷,可以通过零电荷电位(即金属表面没有电荷存在时的电位)测量进行考察,零电荷电位可以通过微分电容曲线测试进行确定,即为金属电极双电层电容最小时的电位。
当金属开路电位大于零电荷电位时,金属表面带有过剩的正电荷,相反,金属表面则带有过剩的负电荷。
在缓蚀剂的实际应用中可以通过改变金属表面携带的过剩电荷量来促进缓蚀剂的物理吸附,如在酸性介质中,添加少量碘化物后,有机胺的缓蚀性能将为显著提高,这主要是碘化物吸附在金属表面后,使得金属表面带有更多的过剩负电荷,促进了有机胺类缓蚀剂在金属表面的吸附;同样有机胺类缓蚀剂之所以在盐酸介质中有着卓越的缓蚀性能,也部分归因于氯离子使得金属表面带有更多的过剩电荷。
缓蚀剂缓蚀作用的研究方法
![缓蚀剂缓蚀作用的研究方法](https://img.taocdn.com/s3/m/8de595e90d22590102020740be1e650e53eacf5e.png)
缓蚀剂缓蚀作用的研究方法
缓蚀剂具有一定的缓蚀作用,是能有效抑制金属加工过程中锈斑形成、硝化物沉积、漆涂层褪色等缓蚀性劣化现象的一类特殊添加剂。
缓蚀剂在抗衰老防腐、节能减排、吸收、稳定、传递和改性等领域具有重要应用价值,是控制金属加工过程中缓蚀性变化的关键技术和落实工艺稳定的奠基性技术。
因此,开展缓蚀剂缓蚀作用的研究,对确定缓蚀剂的作用机理以及实施有效的抑制加工过程中缓蚀性变化,具有重要的实际意义。
一般而言,缓蚀剂缓蚀作用的研究方法可以总结如下:
1.究面板材料的腐蚀特性:测量指标包括基材表面腐蚀深度,涂层厚度下降、涂层硬度变化等。
通过对面板材料进行腐蚀测试,分析缓蚀剂对其腐蚀性变化的影响,从而评估缓蚀剂的效果。
2.行模拟腐蚀试验:模拟腐蚀试验主要是通过金属表面的渗入深度、锈蚀斑的大小以及涂层褪色等指标,衡量缓蚀剂对金属腐蚀的抑制作用。
3. 缓蚀剂的细胞毒性进行分析:
缓蚀剂的细胞毒性对缓蚀剂的缓蚀作用具有重要影响,可以通过多组分测定缓蚀剂的毒性,从而分析缓蚀剂对各种危害物质的杀伤能力,确定其在缓蚀剂作用中的作用机理。
4.缓蚀剂的有效成分进行原子结构分析:
通过对缓蚀剂的有效成分的原子结构分析,可以确定其缓蚀作用的温和性,从而更好地设计缓蚀剂,控制其缓蚀作用的有效性和安全
性,从而有效抑制金属加工过程中缓蚀性变化。
以上是缓蚀剂缓蚀作用的研究方法,缓蚀剂在金属加工过程中的应用价值已经得到了广泛的关注与认可,如果通过正确的研究方法,对缓蚀剂的缓蚀作用机理以及抑制金属加工过程中缓蚀性变化完成
分析,将会大大推动缓蚀剂的应用与发展。
苯并三氮唑酮缓蚀剂机理
![苯并三氮唑酮缓蚀剂机理](https://img.taocdn.com/s3/m/f9748d43f68a6529647d27284b73f242336c3189.png)
苯并三氮唑酮缓蚀剂机理1.引言1.1 概述概述部分旨在引导读者了解本文的主题以及展示苯并三氮唑酮缓蚀剂机理的重要性。
本文主要探讨了苯并三氮唑酮缓蚀剂的化学结构和缓蚀机理,并对其应用前景进行了展望。
缓蚀剂作为一种关键材料,在保护金属材料免受腐蚀和氧化的过程中扮演着重要角色。
随着工业化和现代化进程的不断发展,金属材料在环境中的暴露和使用增加,因此探索高效的缓蚀剂机理显得尤为重要。
苯并三氮唑酮缓蚀剂作为一类新型缓蚀剂,在近年来得到了广泛的关注和研究。
其独特的化学结构和优异的缓蚀性能使其成为了研究的热点之一。
因此,深入探讨苯并三氮唑酮缓蚀剂的机理对于揭示其缓蚀性能的来源以及进一步改进其性能具有重要意义。
本文将首先确定苯并三氮唑酮缓蚀剂的化学结构,通过对其结构的分析,我们可以了解其分子组成和结构特征,为后续对其缓蚀机理的探讨提供基础。
随后,我们将重点探讨苯并三氮唑酮缓蚀剂的缓蚀机理。
在这一部分,我们将介绍苯并三氮唑酮缓蚀剂在金属表面形成保护膜的过程以及该膜对金属腐蚀的抑制作用。
同时,我们还将讨论苯并三氮唑酮缓蚀剂与金属表面之间的相互作用机制,以及它如何影响缓蚀性能的提高。
最后,我们将总结苯并三氮唑酮缓蚀剂的机理,并对其未来的应用前景进行展望。
通过对其机理的深入理解,我们可以为相关领域的研究提供更多的思路和方向,进而推动苯并三氮唑酮缓蚀剂的实际应用和发展。
总之,本文旨在通过对苯并三氮唑酮缓蚀剂机理的探讨,加深对其缓蚀性能的认识,并进一步提高其应用性能。
希望本文的内容能够为相关领域的研究者提供参考和启示,推动缓蚀剂研究的发展。
1.2文章结构1.3 目的本文的目的在于研究和探讨苯并三氮唑酮缓蚀剂的机理,以便深入了解该缓蚀剂的工作原理和应用效果。
具体而言,本文的目的包括以下几个方面:1. 确定苯并三氮唑酮缓蚀剂的化学结构:通过文献调研和实验研究,对该缓蚀剂的化学组成和结构进行详细的分析和确定,以便了解其在腐蚀抑制中的作用机制。
钢铁及铁质文物有机缓蚀剂的研究进展
![钢铁及铁质文物有机缓蚀剂的研究进展](https://img.taocdn.com/s3/m/5f99fb3231126edb6f1a1094.png)
基金项目:科技部科技支撑计划项目课题(铁质文物综合保护技术研究,课题编号2006BA K20B03)作者简介:李园(19842),女,硕士生,北京科技大学在读,muhua84@1631com 收稿日期:2008205208综述与进展钢铁及铁质文物有机缓蚀剂的研究进展李 园1,2,张治国,沈大娲,马清林(11北京科技大学,北京 100083;21中国文物研究所,北京 100029) 摘 要:概述了钢铁有机缓蚀剂的特点、作用机理及研究现状。
按照胺类缓蚀剂、硫脲及其衍生物、咪唑啉类缓蚀剂、苯并三氮唑缓蚀剂和醛类缓蚀剂5个种类,着重介绍了有机缓蚀剂的研究进展,并展望其在铁质文物保护中的发展趋势。
关键词:有机缓蚀剂;钢铁;铁质文物中图分类号:TG 174142 文献标识码:A 文章编号:167129905(2008)1020017203 缓蚀剂是一种以适当浓度和形式存在于环境(介质)中,从而防止或减缓腐蚀的化学物质或几种。
将缓蚀剂用于金属表面可以起到防护作用,保持金属材料的物理机械性能不变。
使用时可直接加入腐蚀系统中,具有操作简单、见效快和可以保护整个系统的优点。
与其它防腐蚀方法相比,缓蚀剂有以下特点[1]:(1)基本上不改变腐蚀环境,即可获得良好的效果;(2)基本上不增加设备投资,即可达到防腐蚀的目的;(3)缓蚀剂的效果不受被保护对象形状的影响;(4)对于腐蚀环境的变化,可以通过改变缓蚀剂的种类或浓度来保持防腐蚀效果;(5)同一配方有时可以同时防止多种金属在不同环境中的腐蚀。
1 有机缓蚀剂的特点及作用机理通常可根据缓蚀剂的化学组成将其分为无机缓蚀剂和有机缓蚀剂。
目前应用的有机缓蚀剂主要是含有未配对电子元素的有机物,如O 、N 、S 、P 的化合物和各种含有极性基团的化学物质,特别是含有氨基、醛基、羧基、羟基、巯基的各种化合物。
有机缓蚀剂多为吸附膜型缓蚀剂,也有混合抑制沉淀膜型缓蚀剂。
吸附作用可分为物理吸附和化学吸附。
气相缓蚀剂的作用机理与研究方法
![气相缓蚀剂的作用机理与研究方法](https://img.taocdn.com/s3/m/d3094e49178884868762caaedd3383c4bb4cb410.png)
气相缓蚀剂的作用机理与研究方法
气相缓蚀剂的作用机理与研究方法
一、作用原理
气相缓蚀剂(VCI)是一种通过蒸发和扩散释放到包装内部的物质,具有防腐蚀的作用。
其主要作用原理有两个:
1. 构筑互补保护层:VCI释放的化学物质会在金属表面形成一层保护膜,它能够与氧气、水蒸气等气体发生化学反应,从而保护金属。
2. 吸附防蚀:VCI释放的化学物质具有对金属表面吸附的能力,能够吸附在金属表面降低腐蚀的速度。
二、研究方法
VCI的研究方法主要分为以下几个方面:
1. 包装材料的选择:VCI需要通过包装材料释放到包装内部,因此,包装材料的选择对于VCI的使用至关重要。
一般建议使用聚乙烯、聚酰胺等包装材料。
2. VCI化学物质的筛选:VCI化学物质的选择需要考虑金属材料的种类、环境条件等因素。
VCI化学物质应具有良好的蒸发性、稳定性和吸附性。
3. VCI作用机理的研究:对VCI作用机理的研究是深入理解VCI腐蚀防护机理的必要条件。
目前,VCI作用机理的研究主要集中在基于表面电化学、原子力显微镜等表征手段的实验研究。
4. VCI性能的测试:VCI的性能测试主要包括蒸发速率、吸附能力、抗氧化性能等方面。
常用测试方法包括热重分析、XRD、SEM等。
5. VCI应用效果的评估:VCI应用效果的评估需要从防腐蚀效果、包装成本、环境污染等多方面进行综合评估。
综上,掌握气相缓蚀剂的作用机理和研究方法,对于科学地开发应用VCI技术具有重要的参考作用。
缓蚀剂作用机理、研究现状及发展方向
![缓蚀剂作用机理、研究现状及发展方向](https://img.taocdn.com/s3/m/125f78913169a4517723a3bf.png)
缓蚀剂作用机理、研究现状及发展方向摘要:本文详细介绍了缓蚀剂的分类、性能指标、保护的特点、作用理论、应用实例、研究现状及发展方向。
关键词:缓蚀剂;防腐技术;发展方向1 前言缓蚀剂是一种在低浓度下能阻止或减缓金属在环境介质中腐蚀的物质。
缓蚀剂又叫作阻蚀剂、阻化剂或腐蚀抑制剂等。
缓蚀剂保护技术已经发展为一项重要的防腐蚀技术,广泛用在石油、冶金、化工、机械制造、动力和运输等部门。
2 缓蚀剂的分类缓蚀剂的品种繁多,常用的如亚硝酸钠、铬酸盐、磷酸盐、石油磺酸钡、亚硝酸二环已胺等,至今尚难以有统一的分类方法。
常见到的分类方法有以下几种。
2.1 按缓蚀剂作用的电化学理论分类(1) 阳极型缓蚀剂通过抑制腐蚀的阳极过程而阻滞金属腐蚀的物质。
这种缓蚀剂通常是由其阴离子向金属表面的阳极区迁移,氧化金属使之钝化,从而阻滞阳极过程。
例如,中性介质中的铬酸盐与亚硝酸盐。
一些非氧化型的缓蚀剂,例如苯甲酸盐、正磷酸盐、硅酸盐等在中性介质中,只有与溶解氧并存,才起到阳极抑制剂的作用。
(2) 阴极型缓蚀剂通过抑制腐蚀的阴极过程而阻滞金属腐蚀的物质。
这种缓蚀剂通常是由其阳离子向金属表面的阴极区迁移,或者被阴极还原,或者与阴离子反应而形成沉淀膜,使阴极过程受到阻滞。
例如ZnSO4、Ca(HCO3) 2、As3+、Sb3+ 可以分别和OH-生成Zn(OH)2、Ca(OH)2沉淀和被还原为As、Sb 覆盖在阴极表面,以阻滞腐蚀。
(3) 混合型缓蚀剂这种缓蚀剂既可抑制阳极过程,又可抑制阴级过程。
例如含氮和含硫的有机化合物。
2.2 按化学成分分类(1) 无机缓蚀剂,如铬酸盐、亚硝酸盐、磷酸盐等。
(2) 有机缓蚀剂,如胺、硫脲、乌洛托品等。
2.3 按缓蚀剂所形成保护膜的特征分类(1) 氧化膜型缓蚀剂通过使金属表面形成致密的、附着力强的氧化膜而阻滞金属腐蚀的物质。
例如,铬酸盐、重铬酸盐、亚硝酸钠等。
由于它们具有钝化作用,故又称为钝化剂。
(2) 沉淀膜型缓蚀剂由于与介质中的有关离子反应并在金属表面生成有一定保护作用的沉淀膜,从而阻滞金属腐蚀的物质。
生物型缓蚀剂研究现状与展望
![生物型缓蚀剂研究现状与展望](https://img.taocdn.com/s3/m/1a22fbea524de518974b7d04.png)
求其最终的产品对环境无毒 、无害 ,而且在合成制备 醛 、糠 醛和 香草醛 等 。肉桂 醛具有高 效 、低毒 等优 及使用过程 中也应该尽量减少对环境的影响并降低生 点 ,已引起许多研究者的关注 ,是近年来 发展的高效 产成本 ,这 里面包括合成原料的选择 、工艺条件的优 低 毒有机 缓蚀 剂 。糠醛是 一种 混合控 制性 植物 缓蚀 化以及使用过程 中采用复配增效技术口。 剂 ,最初从米糠与稀酸共热制得 ,其他农副产 品如麦
Ab t a t sr c :Gr e h m ity i h n e r n a o c e t ic l re o o i a l u t i a l e n c e sr s t e i t g a tw y t r ae a c r u a c n m c ly s sa n b e d v lp n o it. h n t ed v l p e t fe ce t n n io me tfin l o r so n i i r s e eo i g s cey T e h e eo m n f in l a d e vr n n re dy c ro i n ih bt si o i y o
1 有机缓蚀剂 . 2
的胺化合物及其盐。例如 , 以长链脂肪胺、聚胺来替
大量 的有机 化 合物如 醛类 、胺类 、羧酸 、杂环 代芳香胺 ,由聚胺制成 的酰胺 、咪唑啉及聚酰胺等作 化合物 等可作 为缓蚀剂 , 目前应用的有机缓蚀剂主要 为低毒性的缓蚀 剂用于抑制金属的腐蚀 。 是含有 未配对 电子元素 的有机物 ,如0 、N、S 的 、P 王成 、汪 峰 、王 福 会 ¨ 们,用 电化 学 极 化 曲线
缓蚀剂研究报告
![缓蚀剂研究报告](https://img.taocdn.com/s3/m/d823c3c4988fcc22bcd126fff705cc1755275f7e.png)
缓蚀剂研究报告随着工业化进程的不断加速,金属材料的使用范围也越来越广泛。
然而,金属材料在使用过程中,往往会受到腐蚀的侵蚀,导致使用寿命缩短,甚至失效。
因此,为了延长金属材料的使用寿命,保证其正常运行,研究缓蚀剂已成为重要的课题之一。
一、缓蚀剂的定义和分类缓蚀剂是指一种能够防止金属腐蚀的物质,它能够在金属表面形成一层保护膜,防止腐蚀介质与金属接触,从而达到保护金属的目的。
缓蚀剂根据其化学结构和作用机理的不同,可以分为有机缓蚀剂和无机缓蚀剂两类。
有机缓蚀剂是指一类由含有活性基团的有机化合物组成的缓蚀剂。
它们能够与金属表面形成一层吸附层,从而阻止腐蚀介质与金属表面的接触。
而无机缓蚀剂则是指一类由无机化合物组成的缓蚀剂。
它们通常是一些金属离子或者其氧化物、氢氧化物等,能够与金属表面形成一层保护层,防止腐蚀介质与金属接触。
二、缓蚀剂的作用机理缓蚀剂的作用机理主要有以下几种:1. 形成保护膜:缓蚀剂能够与金属表面形成一层保护膜,防止腐蚀介质与金属接触,从而达到保护金属的目的。
2. 抑制电化学反应:缓蚀剂能够抑制金属与腐蚀介质之间的电化学反应,从而减缓金属腐蚀的速度。
3. 吸附作用:缓蚀剂能够与金属表面发生吸附作用,形成一层吸附层,从而防止腐蚀介质与金属接触。
三、缓蚀剂的应用缓蚀剂广泛应用于各个领域,如石油化工、船舶、冶金、汽车、航空航天等。
下面就以石油化工行业为例,介绍缓蚀剂的应用情况。
1. 石油开采在石油开采过程中,地下水、盐水等腐蚀性介质会对钢管、油井等金属设备造成腐蚀。
因此,石油开采过程中使用缓蚀剂,能够有效延长设备的使用寿命,提高生产效率。
2. 石油储存和运输石油储存和运输过程中,金属容器、管道等设备也会受到腐蚀的侵蚀。
使用缓蚀剂可以有效地保护这些设备,延长使用寿命,减少维修成本。
3. 炼油生产在炼油生产过程中,金属设备也会受到腐蚀的侵蚀。
使用缓蚀剂能够有效地保护这些设备,延长使用寿命,提高生产效率。
缓蚀剂的作用原理、研究现状及发展方向
![缓蚀剂的作用原理、研究现状及发展方向](https://img.taocdn.com/s3/m/b8fad87d6137ee06eef918b5.png)
缓蚀剂的作用原理、研究现状及发展方向1 缓蚀剂概述在美国材料与实验协会《关于腐蚀和腐蚀试验术语的标准定义》中,缓蚀剂是“一种以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓腐蚀的化学物质或几种化学物质的混合物” 。
缓浊剂是具有抑制金属锈蚀性质的一类无机物质和有机物质的总称。
某些有机物质,被有效地吸附在金属的表面上,从而明显地影响表面的电化学行为。
其作用机理有抑制表面的阳极反应和抑制阴极反应两种,结果都是使腐蚀电流降低。
缓蚀剂的作用不仅如此,它作为金属的溶解抑制剂还有许多实用价值。
如用在化学研磨、电解研磨、电镀和电解冶炼中的阳极解、刻蚀等。
总之,在同时发生金属溶解的工业方面,或县为了抑制过度溶解或是为了防止局部浸蚀使之均匀溶解。
缓蚀剂都起着重要的作用。
另外,电镀中的整平剂,从其本来的定义备不属于缓蚀剂的畴;但是,其作用机理(吸附)和缓蚀剂的机理类似。
具有整平作用的物质,同时有效地作为该金属的缓蚀剂的情况也是常的。
下图给出了有无缓蚀剂的不同效果:图 1 缓蚀剂的效果2 不同类型的缓蚀剂及其作用原理2.1 阳极型缓蚀剂及其作用原理阳极型缓蚀剂也称阳极抑制型缓蚀剂,主要是抑制阳极过程而使腐蚀速度减缓。
如中性介质中的亚硝酸盐、铬酸盐、磷酸盐、硅酸盐、苯甲酸钠等,它们能增加阳极极化,从而使腐蚀电位正移。
通常是缓蚀剂的阴离子移向金属阳极使金属钝化。
该类缓蚀剂属于“危险型”缓蚀剂,用量不足会加快腐蚀。
作用过程:(a)具有强氧化作用的缓蚀剂,使金属钝化(亚硝酸钠,高铬酸等);(b)具有阴极去极化性的钝化剂,在阴极被还原,加大阴极电流,使体系的氧化还原电位向正方移动,超过钝化电位,而使腐蚀电流达到很低的值。
(亚硝酸盐、硝酸盐与高价金属盐属于此类;铬酸盐、磷酸盐、钼酸盐、钨酸盐等在酸性溶液中也属于此类。
)图2 阳极型缓蚀剂作用原理2.2 阴极型缓蚀剂及其作用原理阴极型缓蚀剂也称阴极型抑制,其主要包括:酸式碳酸钙、聚磷酸盐、硫酸锌、砷离子、锑离子等,能使阴极过程减慢,增大酸性溶液中氢析出的过电位,使腐蚀电位向负移动。
缓蚀剂的作用原理、研究现状及发展方向
![缓蚀剂的作用原理、研究现状及发展方向](https://img.taocdn.com/s3/m/da91a576172ded630b1cb6f6.png)
缓蚀剂的作用原理、研究现状及发展方向学院: 材料科学与工程班级: 材硕1209学号: S2*******姓名: 张强2013年1月5日缓蚀剂的作用原理、研究现状及发展方向1、缓蚀剂概述它是指以适当的浓度与形式存在于环境中时,可以防止或减缓材料腐蚀的化学物质或复合物,所以也可以成为腐蚀抑制剂,它的用量很小,但效果显著[1]。
在酸性溶液、中性溶液、碱性溶液、有机溶剂以及大气、土壤等各种环境中均可利用缓蚀剂来抑制金属的腐蚀。
在工业生产中越来越广泛地应用缓蚀剂来实现腐蚀控制,通过在腐蚀介质中投加少量的缓蚀剂,可以有效地减缓或防止金属结构的腐蚀破坏,减少了设备维修等环节,保障设备的正常运行,提高了设备作业的安全系数,具有明显的经济价值与社会意义。
同时其它的防腐方法相比,如涂层、阴极保护等,使用缓蚀剂更为简单,总体价格更为低廉,效果也非常显著[2]。
与其他腐蚀防护手段相比,缓蚀剂主要具有如下独特的优势[1]:(l)缓蚀剂的投加、使用非常简单,不需要特殊的设施或设备。
如外加电源阴极保护或阳极保护都需要提供较大功率的、稳定的电源。
牺牲阳极保护需要提供阳极材料,并且这种阳极材料需要定期更换施工强度较大。
(2)使用缓蚀剂非常经济,随着缓蚀剂应用的不断深入,目前缓蚀剂的合成、制备技术非常成熟,相比其他的防腐措施,缓蚀剂的成本一般更低。
(3)投加缓蚀剂对设备外观、材质、机械性能等都无任何改变,而喷漆、电镀、涂层、内衬等防腐方法都无法做到。
(4)缓蚀剂添加量一般较少,使用缓蚀剂进行腐蚀控制,一般不会改变介质的原有物理、化学性质。
因此缓蚀剂技术也适用于石油天然气输送、贮存和炼制,城市供水管道等环境下的防腐。
2、缓蚀剂的分类及作用原理由于缓蚀剂种类繁多,使用条件多样,缓蚀机理也不完全相同,因此对缓蚀剂进行分类常按照缓蚀剂的化学成分、在金属表面成膜情况以及缓蚀机理等不同方法进行分类,每种分类方法都有其自身的优缺点,目前广泛采用的是如下几种分类方法:2.1 根据化学成分分类[3]根据产品的化学成分分类,可分为无机缓蚀剂、有机缓蚀剂。
有机缓蚀剂的作用机理
![有机缓蚀剂的作用机理](https://img.taocdn.com/s3/m/336003052f3f5727a5e9856a561252d380eb20ce.png)
有机缓蚀剂的作用机理
有机缓蚀剂指的是一类可用于金属表面防腐的有机溶剂,它们能够形
成一层保护膜,以防止金属被腐蚀。
这些有机缓蚀剂通常被用于汽车、船
舶等金属制品的维护和保养,以延长其使用寿命。
有机缓蚀剂通过以下几
种机理发挥作用:
1.形成抑制层:有机缓蚀剂能够在金属表面上形成一层致密、均匀的
抑制层,阻止氧气和水分进一步接触到金属表面,从而防止了金属的腐蚀。
这种抑制层通常是由有机缓蚀剂的分子与金属表面上的氧化物、氢氧化物
等物质发生反应形成的。
2.阻断金属表面:有机缓蚀剂能够通过吸附在金属表面上,形成一层
保护膜,阻止外界腐蚀物质的侵入。
这层保护膜通常是由有机缓蚀剂的分
子通过吸附作用形成的,它们能够填补金属表面的微小孔隙,从而增加了
表面的密度,大大减少了腐蚀物质的接触面积。
3.自修复能力:有机缓蚀剂还具有一定的自修复能力。
当金属表面被
损坏时,有机缓蚀剂能够很快地通过扩散到表面进行修复,形成一层新的
保护膜,以保护金属不被腐蚀。
4.发生氧化反应:有机缓蚀剂中的活性物质能够与金属表面上的氧气
发生氧化反应,形成一层氧化物膜,从而起到抑制腐蚀的作用。
这种氧化
反应常常是在酸性环境下进行的,有机缓蚀剂中的活性物质能够在这种环
境下发挥最大的作用。
综上所述,有机缓蚀剂通过形成抑制层、阻断金属表面、自修复能力
和发生氧化反应等机制,能够有效地防止金属腐蚀。
因此,有机缓蚀剂在
工业生产和日常生活中有着广泛的应用。
缓蚀剂的研究与应用
![缓蚀剂的研究与应用](https://img.taocdn.com/s3/m/6299af352cc58bd63086bde4.png)
缓蚀剂的研究与应用摘要:本文归纳总结了近年来缓蚀剂研究开发与应用情况,探讨了缓蚀剂的应用开发和缓蚀理论研究方面的部分成果,对缓蚀剂科学技术今后的发展趋势进行了展望。
主要内容包括:缓蚀剂按电化学机理的分类,水中离子沉淀膜型缓蚀剂、金属离子沉淀膜型缓蚀剂、缓蚀剂作用的理论研究与应用。
关键词:盐酸溶液,量子化学,缓蚀剂,阴极缓蚀剂,金属离子沉淀膜型缓蚀剂,铜银缓蚀剂苯骈三氮唑,盐酸酸洗缓蚀剂,后缓蚀剂1引言缓蚀剂是一种防腐蚀化学品,它少量加入环境介质中就能显著地降低金属的腐蚀速度。
与其它防腐蚀方法相比,缓蚀剂具有使用方便、经济有效的特点,广泛地应用于工业生产和社会生活中。
随着工业经济的发展和社会进步,缓蚀剂的作用功能和应用范围不断拓宽。
蚀防护是工业生产过程中非常重要的问题,在众多的防腐蚀方法中,缓蚀剂因具有经济、高效、适应性强等优点被广泛应用中石油、石化、钢铁、电力、建筑等领域2缓蚀剂按电化学机理的分类从电化学角度出发,金属的腐蚀是在电解质溶液中发生的阳极过程和阴极过程。
缓蚀剂的加人可以阻滞任何一过程的进行或同时阻滞两个过程进行,按上述电化学原理,缓蚀剂可分为阳极缓蚀剂、阴极缓蚀剂及混合型缓蚀剂。
2.1氧化膜型缓蚀剂缓蚀剂直接或间接地与金属生成氧化物或氢氧化物,从而在金属表面上形成保护膜,这种保护膜薄而致密,与基体金属的粘附性强,结合紧密,能阻碍溶解氧扩散,使金属的腐蚀反应速度降低。
这种保护膜在形成过程中,膜不会一直增厚,当这种氧化膜增大到一定厚度时,一部分氧化物会向溶液中扩散,当氧化物向溶液扩散的趋势成为膜增厚的障碍时,膜厚的增长就几乎自动停止。
因此,氧化膜型缓蚀剂效果良好,而且有过剩的缓蚀剂也不会产生垢。
多数氧化膜型缓蚀剂都是重金属含氧酸盐,如铬酸盐、铂酸盐、钨酸盐等。
因重金属缓蚀剂易造成环境污染,所以一般应用较少。
亚硝酸盐借助于水中溶解氧在金属表面形成氧化膜而成为氧化膜型氧化剂,具有代表性的有亚硝酸钠和亚硝酸按。
在油气田评价缓蚀剂及生产领域的应用
![在油气田评价缓蚀剂及生产领域的应用](https://img.taocdn.com/s3/m/542914a2162ded630b1c59eef8c75fbfc67d9469.png)
现场评价方法
挂片失重法
在油气田现场设置挂片试验装置, 定期测量挂片的质量变化,评估 缓蚀剂的缓蚀效果。
腐蚀监测系统
利用在线腐蚀监测系统,实时监 测油气田生产过程中的腐蚀速率 和缓蚀剂的效果。
油气田生产数据分
析
分析油气田生产过程中与腐蚀相 关的数据,如产水、产气、压力 等,评估缓蚀剂的缓蚀效果。
综合评价方法
案例二:某气田的缓蚀剂应用
缓蚀剂种类
该气田主要使用酸性缓蚀剂和有机缓蚀剂, 针对酸性气田的生产特点选择合适的缓蚀剂 。
应用效果
在采气井和集输管道中添加缓蚀剂,有效抑制了酸 性气体对金属的腐蚀,降低了腐蚀速率,延长了设 备使用寿命。
环保效益
该气田通过使用缓蚀剂,减少了因腐蚀产生 的废水和废气排放,降低了对环境的污染, 提高了环保效益。
04 缓蚀剂在油气田的应用实 例
案例一:某油田的缓蚀剂应用
缓蚀剂种类
该油田主要使用有机缓蚀剂和复合缓蚀剂,根据不同油藏条件和生 产需求选择合适的缓蚀剂。
应用效果
通过在采油井和集输管道中添加缓蚀剂,有效减缓了金属腐蚀速率, 延长了设备使用寿命,提高了油田生产的经济效益。
经济效益
该油田通过使用缓蚀剂,减少了因腐蚀导致的维修和更换设备费用, 降低了生产成本,提高了整体经济效益。
THANKS FOR WATCHING
感谢您的观看
用,降低了生产成本,提高了整体经济效益。同时,也保障了海上油气
田的安全生产和环保要求。
05 缓蚀剂的发展趋势与展望
高效环保型缓蚀剂的开发
总结词
随着环保意识的增强,高效环保型缓蚀剂已成为未来发展的趋势。
详细描述
这类缓蚀剂在保证良好缓蚀效果的同时,减少了环境影响和资源消耗,有助于实现可持续发展。
缓蚀剂的作用原理、研究现状及发展方向
![缓蚀剂的作用原理、研究现状及发展方向](https://img.taocdn.com/s3/m/2ccb1c620242a8956aece487.png)
缓蚀剂的作用原理、研究现状及发展方向1 缓蚀剂概述在美国材料与实验协会《关于腐蚀和腐蚀试验术语的标准定义》中,缓蚀剂是“一种以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓腐蚀的化学物质或几种化学物质的混合物”。
缓浊剂是具有抑制金属锈蚀性质的一类无机物质和有机物质的总称。
某些有机物质,被有效地吸附在金属的表面上,从而明显地影响表面的电化学行为。
其作用机理有抑制表面的阳极反应和抑制阴极反应两种,结果都是使腐蚀电流降低。
缓蚀剂的作用不仅如此,它作为金属的溶解抑制剂还有许多实用价值。
如用在化学研磨、电解研磨、电镀和电解冶炼中的阳极解、刻蚀等。
总之,在同时发生金属溶解的工业方面,或县为了抑制过度溶解或是为了防止局部浸蚀使之均匀溶解。
缓蚀剂都起着重要的作用。
另外,电镀中的整平剂,从其本来的定义备不属于缓蚀剂的畴;但是,其作用机理(吸附)和缓蚀剂的机理类似。
具有整平作用的物质,同时有效地作为该金属的缓蚀剂的情况也是常的。
下图给出了有无缓蚀剂的不同效果:图1 缓蚀剂的效果2 不同类型的缓蚀剂及其作用原理2.1 阳极型缓蚀剂及其作用原理阳极型缓蚀剂也称阳极抑制型缓蚀剂,主要是抑制阳极过程而使腐蚀速度减缓。
如中性介质中的亚硝酸盐、铬酸盐、磷酸盐、硅酸盐、苯甲酸钠等,它们能增加阳极极化,从而使腐蚀电位正移。
通常是缓蚀剂的阴离子移向金属阳极使金属钝化。
该类缓蚀剂属于“危险型”缓蚀剂,用量不足会加快腐蚀。
作用过程:(a)具有强氧化作用的缓蚀剂,使金属钝化(亚硝酸钠,高铬酸等);(b)具有阴极去极化性的钝化剂,在阴极被还原,加大阴极电流,使体系的氧化还原电位向正方移动,超过钝化电位,而使腐蚀电流达到很低的值。
(亚硝酸盐、硝酸盐与高价金属盐属于此类;铬酸盐、磷酸盐、钼酸盐、钨酸盐等在酸性溶液中也属于此类。
)图2 阳极型缓蚀剂作用原理2.2 阴极型缓蚀剂及其作用原理阴极型缓蚀剂也称阴极型抑制,其主要包括:酸式碳酸钙、聚磷酸盐、硫酸锌、砷离子、锑离子等,能使阴极过程减慢,增大酸性溶液中氢析出的过电位,使腐蚀电位向负移动。
钼酸锂缓蚀剂
![钼酸锂缓蚀剂](https://img.taocdn.com/s3/m/2c89caff64ce0508763231126edb6f1afe007168.png)
钼酸锂缓蚀剂:详细解读一、引言钼酸锂是一种重要的无机盐,因其具有独特的物理和化学性质,在许多领域都有着广泛的应用。
近年来,随着工业技术的不断发展,钼酸锂缓蚀剂在金属防腐蚀领域的应用逐渐受到关注。
本文将对钼酸锂缓蚀剂的原理、制备方法、应用领域以及未来发展进行详细解读。
二、钼酸锂缓蚀剂的原理1腐蚀与缓蚀剂腐蚀是指金属材料与环境中的介质发生化学或电化学反应,导致材料性能退化的过程。
缓蚀剂则是一种能够抑制金属腐蚀的物质,通过在金属表面形成保护膜或改变金属表面的性质,达到减缓腐蚀速率的目的。
2钼酸锂缓蚀剂的作用机制钼酸锂缓蚀剂的作用机制主要基于其能够在金属表面形成一层致密的保护膜,这层保护膜能够阻止腐蚀介质与金属表面的接触,从而有效降低腐蚀速率。
此外,钼酸锂缓蚀剂还具有抑制电化学反应的作用,通过干扰腐蚀电池的电子传递过程,降低腐蚀电流,进一步减缓金属腐蚀速率。
三、钼酸锂缓蚀剂的制备方法1直接合成法直接合成法是将原料按比例混合后,在一定温度和压力下进行反应,生成目标产物钼酸锂。
此方法的关键在于控制反应条件,确保原料充分反应并获得较高纯度的钼酸锂。
2复分解法复分解法是将已知的钼酸盐与另一种原料进行复分解反应,生成钼酸锂。
这种方法的关键在于选择合适的复分解试剂和反应条件,以确保产物纯度和产率。
3表面改性法表面改性法是对已存在的钼酸锂粉末进行表面处理,以提高其分散性和与其他材料的相容性。
常用的表面改性剂包括偶联剂、表面活性剂和钛酸酯等。
四、钼酸锂缓蚀剂的应用领域1石油化工行业石油化工行业是钼酸锂缓蚀剂的重要应用领域之一。
在石油开采、运输和加工过程中,金属设备容易受到腐蚀。
通过使用钼酸锂缓蚀剂,可以在金属表面形成保护膜,有效降低腐蚀速率,延长设备使用寿命。
此外,在化学反应过程中,钼酸锂缓蚀剂可以抑制腐蚀性介质的产生和扩散,有助于提高产品质量和生产效率。
2电力行业电力行业是另一个广泛应用钼酸锂缓蚀剂的领域。
在火力发电、核能和风能发电等过程中,金属设备长期处于高温、高湿、高盐雾等恶劣环境,容易发生腐蚀。
缓蚀剂的作用原理、研究现状及发展方向
![缓蚀剂的作用原理、研究现状及发展方向](https://img.taocdn.com/s3/m/2ccb1c620242a8956aece487.png)
缓蚀剂的作用原理、研究现状及发展方向1 缓蚀剂概述在美国材料与实验协会《关于腐蚀和腐蚀试验术语的标准定义》中,缓蚀剂是“一种以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓腐蚀的化学物质或几种化学物质的混合物”。
缓浊剂是具有抑制金属锈蚀性质的一类无机物质和有机物质的总称。
某些有机物质,被有效地吸附在金属的表面上,从而明显地影响表面的电化学行为。
其作用机理有抑制表面的阳极反应和抑制阴极反应两种,结果都是使腐蚀电流降低。
缓蚀剂的作用不仅如此,它作为金属的溶解抑制剂还有许多实用价值。
如用在化学研磨、电解研磨、电镀和电解冶炼中的阳极解、刻蚀等。
总之,在同时发生金属溶解的工业方面,或县为了抑制过度溶解或是为了防止局部浸蚀使之均匀溶解。
缓蚀剂都起着重要的作用。
另外,电镀中的整平剂,从其本来的定义备不属于缓蚀剂的畴;但是,其作用机理(吸附)和缓蚀剂的机理类似。
具有整平作用的物质,同时有效地作为该金属的缓蚀剂的情况也是常的。
下图给出了有无缓蚀剂的不同效果:图1 缓蚀剂的效果2 不同类型的缓蚀剂及其作用原理2.1 阳极型缓蚀剂及其作用原理阳极型缓蚀剂也称阳极抑制型缓蚀剂,主要是抑制阳极过程而使腐蚀速度减缓。
如中性介质中的亚硝酸盐、铬酸盐、磷酸盐、硅酸盐、苯甲酸钠等,它们能增加阳极极化,从而使腐蚀电位正移。
通常是缓蚀剂的阴离子移向金属阳极使金属钝化。
该类缓蚀剂属于“危险型”缓蚀剂,用量不足会加快腐蚀。
作用过程:(a)具有强氧化作用的缓蚀剂,使金属钝化(亚硝酸钠,高铬酸等);(b)具有阴极去极化性的钝化剂,在阴极被还原,加大阴极电流,使体系的氧化还原电位向正方移动,超过钝化电位,而使腐蚀电流达到很低的值。
(亚硝酸盐、硝酸盐与高价金属盐属于此类;铬酸盐、磷酸盐、钼酸盐、钨酸盐等在酸性溶液中也属于此类。
)图2 阳极型缓蚀剂作用原理2.2 阴极型缓蚀剂及其作用原理阴极型缓蚀剂也称阴极型抑制,其主要包括:酸式碳酸钙、聚磷酸盐、硫酸锌、砷离子、锑离子等,能使阴极过程减慢,增大酸性溶液中氢析出的过电位,使腐蚀电位向负移动。
硫脲的缓蚀研究进展情况分析汇报
![硫脲的缓蚀研究进展情况分析汇报](https://img.taocdn.com/s3/m/de13b3720622192e453610661ed9ad51f01d5408.png)
硫脲的缓蚀研究进展情况分析摘要硫脲作为防腐蚀领域的核心缓蚀剂,因具备独特的化学属性与广泛的实用性,而成为研究热点。
其缓蚀机制关键在于与金属表面的紧密交互,通过吸附作用形成持久保护膜并与金属离子发生络合,显著降低了金属的腐蚀速度。
近期,研究学者运用电化学测试、失重分析等多种先进方法,全面评估了硫脲的缓蚀效果,并探究了其在多种复杂环境下的应用效能。
硫脲缓蚀剂因其在石油化学工业、海洋工程等领域,尤其是在极端恶劣环境下的出色防腐性能而被广泛应用。
尽管硫脲缓蚀剂的成效显著,其研发道路上仍横亘着若干障碍,诸如作用机理不够明晰、环境适应能力有待提升和长期稳定性尚需充分验证等问题。
未来探究的重心应放在深化硫脲缓蚀作用机理的认识上,精妙地优化其在多样环境中的应用方案,并加大对长期稳定性和安全性能研究的力度。
这一连串的探索与努力,旨在从根本上增强硫脲缓蚀剂的防腐效能,为防腐蚀科学的前沿发展添砖加瓦。
关键词:硫脲;缓蚀剂;防腐蚀;机理探讨;应用实例;挑战与展望第一章引言1.1 研究背景及意义硫脲作为一种关键性的防腐缓蚀剂,在抵抗腐蚀的领域内拥有悠久且广泛的应用史。
金属材料,凭借其高导热性、优异的韧性和耐磨损性等工艺优势,在当代经济发展的洪流中扮演着不可或缺的角色。
然而,这些材料在面对腐蚀性环境时显得尤为脆弱,易受侵袭,这不仅会削弱其性能与使用寿命,还可能对生产安全构成严重隐患。
鉴于此,研发如硫脲这般高效的缓蚀剂,用以护航金属材料,增强其抵御腐蚀的能力,显得尤为关键与迫切。
随着现代工业的发展,腐蚀问题日益凸显,特别是在一些极端环境下,如高温、高压、高湿度等,金属材料的腐蚀速度会显著加快。
硫脲及其衍生物作为一类重要的缓蚀剂,能够通过在金属表面形成保护层,有效减缓金属的腐蚀速度。
这种保护层能够阻隔腐蚀介质与金属表面的直接接触,从而降低腐蚀反应的发生概率。
国内外学者对硫脲及其衍生物的缓蚀行为进行了深入研究。
这些研究涉及缓蚀剂的作用机理、影响因素以及实际应用效果等多个方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
缓蚀剂地作用机理、研究现状及发展方向1缓蚀剂地作用机理缓蚀剂地作用机理概括起来可以分为两种,即电化学机理和物理化学机理[1].电化学机理是以金属表面发生地电化学过程为基础,解释缓蚀剂地作用.而物理化学机理是以金属表面发生地物理化学变化为依据,说明缓蚀剂地作用.这两种机理处理问题地方式不同,但它们并不矛盾,而且还存在着某种因果关系.1.1缓蚀剂地电化学机理金属地腐蚀大多是金属表面发生原电池反应地结果,这也是造成浸蚀腐蚀最主要地因素,原电池反应包括阳极反应和阴极反应[1].如果缓蚀剂可以抑制阳极、阴极反应中地任何一个或两个,原电池反应将减缓,金属地腐蚀速度就会减慢.把能够抑制阳极反应地缓蚀剂称为阳极抑制型缓蚀剂;能够抑制阴极反应地缓蚀剂称为阴极抑制型缓蚀剂;而既能抑制阳极反应又能抑制阴极反应地缓蚀剂称为混合型缓蚀剂.重铬酸钾、铬酸钾、亚硝酸钠、硝酸钠、高锰酸钾、磷酸盐、硅酸盐、硼酸盐、碳酸盐、苯甲酸盐、肉桂酸盐等都属于阳极型缓蚀剂.阳极型缓蚀剂对阳极过程地影响是:(1)在金属表面生成薄地氧化膜,把金属和腐蚀介质隔离开来;(2)因特性吸附抑制金属离子化过程;(3)使金属电极电位达到钝化电位[2].阴极型缓蚀剂主要通过以下作用实现缓蚀:(1)提高阴极反应地过电位.有时阴离子缓蚀剂通过提高氢离子放电地过电位抑制氢离子放电反应,例如,Na2C03、三乙醇胺等碱性缓蚀剂都可以中和水中地酸性物质,降低氢离子浓度,提高析氢过电位,使氢离子在金属表面地还原受阻,减缓腐蚀;(2)在金属表面形成化合物膜,如有机缓蚀剂中地低分子有机胺及其衍生物,都可以在金属表面阴极区形成多分子层,使去极化剂难以达到金属表面而减缓腐蚀;(3)吸收水中地溶解氧,降低腐蚀反应中阴极反应物地浓度,从而减缓金属地腐蚀.混合型缓蚀剂对腐蚀电化学过程地影响主要表现在:(1)与阳极反应产物反应生成不溶物,这些不溶物紧密地沉积在金属表面起到缓蚀地作用,磷酸盐如Na3P04、Na2HP04对铁、镁、铝等地缓蚀就属于这一类型;(2)形成胶体物质,能够形成复杂胶体体系地化合物可作为有效地缓蚀剂,例如Na2Si03等;(3)在金属表面吸附,形成吸附膜达到缓蚀地目地,明胶、阿拉伯树胶等可以在铝表面吸附,吡啶及有机胺类可以在镁及镁合金表面吸附,故都可以起到缓蚀地作用[2].1.2缓蚀剂地物理化学机理从物理化学地角度来理解,缓蚀剂地作用可以分为生成氧化膜、沉淀膜和吸附膜3种.因此缓蚀剂也分为氧化膜型缓蚀剂、沉淀膜型缓蚀剂和吸附膜型缓蚀剂[3].1.2.1氧化膜型缓蚀剂氧化膜型缓蚀剂本身是氧化剂,可以和金属发生作用.或本身不具有氧化性,以介质中地溶解氧为氧化剂,使金属表面形成紧密地氧化膜,造成金属离子化过程受阻,从而减缓金属地腐蚀,这种缓蚀剂又称钝化剂.重铬酸钾、铬酸钾、高锰酸钾在含氧地水溶液中对铝、镁地缓蚀作用就属于这一类.氧化膜型缓蚀剂,缓蚀效率高,已得到广泛地应用.但如果用量不足,则可能在金属表面形成大阴极小阳极而发生孔蚀.所以这一类缓蚀剂又称为“危险型缓蚀剂[3].1.2.2 沉淀膜型缓蚀剂沉淀膜型缓蚀剂,就是在金属表面生成了沉淀膜.沉淀膜可由缓蚀剂分子之间相互作用生成,也可由缓蚀剂和腐蚀介质中地金属离子作用生成.在多数情况下,沉淀膜在阴极区形成并覆盖于阴极表面,将金属和腐蚀介质隔开,抑制金属电化学腐蚀地阴极过程,即阴极抑制型.有时沉淀膜能覆盖金属地全部表面,同时抑制金属电化学腐蚀地阳极过程和阴极过程,这一种称为混合抑制型[4].硫酸锌、碳酸氢钙、石灰、聚磷酸盐、硅酸盐及有机膦酸盐都属于阴极抑制型缓蚀剂.在中性含氧地水中,锌离子可以和阴极反应生成地氢氧根离子反应生成难溶地氢氧化锌沉淀膜覆盖于阴极,而抑制阴极反应.磷酸盐如Na2HP04或Na3P04,在有溶解氧情况下,可以和Fe3+反应生成一种不溶性地r-Fe203和FeP04·2H20混合物薄膜,抑制铁地腐蚀.需要注意地是,介质中氧地存在对缓蚀剂有加强作用.只有存在氧,才能发挥缓蚀剂地作用.混合抑制型缓蚀剂多为有机化合物.有机缓蚀剂分子上地反应基团和腐蚀过程中生成地金属离子相互作用生成沉淀膜,而抑制阴阳两极地电化学过程.例如,丙炔醇对铁在酸性水溶液中有良好地缓蚀效果.研究发现,丙炔醇发生作用时,先吸附于金属表面,受铁上析出氢地还原作用,发生聚合反应而生成聚合地配合物膜.覆盖于整个金属地表面,同时抑制腐蚀电化学反应地阳极反应和阴极反应.又如,8-羟基喹啉在碱性介质中对铝地腐蚀有缓蚀作用,这是由于缓蚀剂和铝离子反应生成地不溶性配合物沉淀膜覆盖在铝表面,抑制了铝在碱性水溶液中地腐蚀.苯并三氮唑对铜地缓蚀作用也认为是生成了不溶性地聚合物沉淀膜.吸附膜型缓蚀剂多为有机缓蚀剂,它们在腐蚀介质中对金属表面有良好地吸附性,这种吸附改变了金属表面地性质,抑制了金属地腐蚀.因为这类缓蚀剂分子结构具有不对称性,分子由极性基和非极性基组成.非极性基为烃基,有亲油性,而极性基如-COOH、-S03H 等具有亲水性,对金属表面也具有亲和性.当缓蚀剂分子地极性基在金属表面吸附后,其较长地非极性基也在范德华力地作用下紧密排列,从而形成牢固地吸附膜.表面吸附一方面改变了金属表面地电荷状态和界面性质,使金属表面地能量状态趋于稳定,增加腐蚀反应活化能,减缓腐蚀速度;另一方面,非极性基地隔离作用将金属表面和腐蚀介质隔开,阻碍电化学反应相关地电荷或物质地转移,从而减缓腐蚀[4].如果缓蚀剂在金属表面地吸附起源于缓蚀剂离子与金属表面电荷产生地静电引力和两者之间地范德华力,这种吸附就称为物理吸附.这种吸附速度快,可逆,吸附热小,受温度影响小,而且金属和缓蚀剂间没有特定组合.例如,有机胺类化合物在酸性介质中,氮原子接受一个质子而转化为烷基胺阳离子,该阳离子被金属表面带负电荷部分所吸引,形成单分子地吸附层,就是典型地物理吸附.铁、镍等过渡金属都具有未占据地空d轨道,易接受电子.有机缓蚀剂地极性基大部分含有O、N、S、P等电负性元素,它们都具有未共用电子对,能和金属作配位结合.这种以配位键作用形成地吸附称为化学吸附.胺和硫醇与金属地化学吸附如下式所示(M表示金属).在双键、叁键及苯环中存在地丌电子也可以发生类似地化学吸附.2缓蚀剂地研究现状2.1酸洗缓蚀剂地研究及其应用2.1.1硫酸酸洗缓蚀剂硫酸常在酸洗用量较大地金属材料酸浸除锈过程中作清洗主剂和在锅炉污垢中钙化合物含量很低地情况下用于酸洗锅炉[5].由于硫酸浓度高,密度大,所以在等物质地量清洗条件下,洗一台锅炉所用工业硫酸地体积仅为盐酸地1/4,而且浓硫酸对钢铁几乎不腐蚀,这给化学清洗带来了极大地方便,可以大大简化储存、运输和配酸地系统.用于硫酸溶液中地缓蚀剂主要有两种,一种是含氮化合物缓蚀剂,如胺、吡啶以及吡啶碱和醌、2-甲基吡啶、吡啶碘化合物和吡啶卤化物;另一种是含硫化合物地缓蚀剂,如硫脲以及硫脲衍生物等,后者对碳钢在硫酸中地缓蚀效率更高[6].盐酸酸洗地效果好,盐酸本身地危险性比硫酸小,在当量浓度下,与氧化铁之间地反应速率比硫酸快.但盐酸在超过40℃时易挥发,会导致酸液浓度下降,影响酸洗效果,故应注意控制温度.另外,盐酸对金属氢脆敏感性较硫酸小,而且硫酸溶液中具有腐蚀抑制作用地缓蚀剂一般在盐酸溶液中也有缓蚀作用,因而盐酸酸洗日益取代了硫酸酸洗.对碳钢盐酸酸洗有效地缓蚀剂大多为含有N、O、S、P原子地有机杂环化合物,而以含氮化合物用得最多[7].常见盐酸酸洗缓蚀剂有下列三种:(1)含氨化合物缓蚀剂,包括烷基胺和芳胺,饱和及不饱和地氮环化合物或乙烯氮化物缩合地多胺所合成地马尼什碱以及季铵、酰胺、聚胺等,如乌洛托品;(2)含硫化合物地缓蚀剂硫脲及衍生物,在酸洗液中,Fe3+离子是一种较强地去极化剂,如果积累较多会加剧钢地腐蚀而产生过酸洗地现象,苯硫脲与NH4HF3复合物能与Fe3+离子生成络合物,从而阻止过酸洗.另外稀土硫脲化合物也是一种有效地缓蚀剂;(3)其他化合物地缓蚀剂,某些含磷化合物,如磷酸三丁酯既能抑制钢基体腐蚀和氢渗透避免发生过酸洗,又利于酸液再生循环.2.1.3氢氟酸酸洗缓蚀剂[8]氢氟酸是一种弱无机酸,在空气中挥发,其蒸汽具有强烈地腐蚀性及毒性.但其溶解氧化物地速率快,具有溶解硅垢(硅地氧化物)地特殊性能.1968年氢氟酸酸洗首次在西德地一台运行后地超临界压力锅炉上使用获得成功.此后,西德有40%地锅炉都采用氢氟酸酸洗.虽然用氢氟酸酸洗存在操作不安全、价格高及污染环境地弊端.但从氢氟酸地特性考虑,应用了新型缓蚀剂后,它地使用范围仍然很广泛.国外研制地氢氟酸酸洗缓蚀剂,如西德研制地烷基硫脲和有机胺复配地Berin-31、BerinO-74、Rodine-31A、Rodine-58、Dodigen-95、Fiumin-34;美国专利报道用含活泼氢地有机胺与α-酮或α-醛地缩合物做氢氟酸缓蚀剂.国内生产地品种有IMC-5、Lan-826、SH416、SH406、N-1-A、W-19、BH-2、F-102、TPRI-Ⅲ、新洁尔灭等缓蚀剂,这些缓蚀剂经过试验和大型机组地实际使用,证明其对10CrMo910地缓蚀效率均可达到98%以上,腐蚀速率可控制在0.3-1.8g/(m2·h),这些缓蚀剂已在氢氟酸酸洗中广泛使用.2.1.4硝酸酸洗缓蚀剂[8]硝酸对锅炉垢物和金属氧化物溶解性较强,故硝酸有时代替盐酸酸洗.硝酸是一种氧化性很强地酸,而现在大多数地缓蚀剂是有机物,易发生氧化还原反应,因此,硝酸酸洗缓蚀剂种类较少.硝酸酸洗缓蚀剂常见地是硫脲和Na2S地混合物,吲哚(C8H7N)与NH4SN或Na2S地混合物.还有硫代硫酸盐、氯化苯胺、硫氰化钾、重铬酸钾、生物碱、苯肼等都是较好地硝酸酸洗缓蚀剂,但工业地使用价值不高.70年代以来国内研制了缓蚀效果较好地Lan-5、Lan-826和BH-25等硝酸缓蚀剂.2.1.5氨基磺酸酸洗缓蚀剂[9]氨基磺酸是一种粉末状中等酸性地无机酸.在酸洗过程中,不易挥发,在水中地溶解性好,不会发生盐类析出沉淀地现象,且不含卤离子,适于清洗钙量多及其他金属地碳酸盐、氢氧化物地垢类.但它酸洗氧化铁能力差,并且在60℃以上则发生分解现象.故其很少应用于大型锅炉地酸洗,一般应用于铜管地酸洗.氨基磺酸酸洗缓蚀剂主要有Lan-826、O'Bhibit(二丁基硫脲)、LN500系列.此外还有二丙炔基硫醚、丙炔醇、季铵盐、乙基硫脲和十二胺等.现国内常使用地氨基磺酸酸洗缓蚀剂为TPRI-7型缓蚀剂,通过对各种材质地静态腐蚀速率试验结果表明,缓蚀剂地腐蚀速率控制在0.6g/(m2·h)左右,效果很好.此外,对于EDTA清洗缓蚀剂,我国研究EDTA清洗技术是从20世纪80年代初开始地,EDTA清洗缓蚀剂大部分是复配而成地,如MBT+乌洛托品+OP-15、对十二烷基吡啶氯化物+OP-15及MBT+联氨+硫脲+乌洛托品等.这些缓蚀剂地配方在现场应用时,需要将每个组分单独加入,且缓蚀效果不理想,不利于现场操作,都没能得到发展.目前国内常见地EDTA清洗缓蚀剂有MBT、TSX-04、N2H4、乌洛托品、YHH-1、TRP-6等.另外,选择柠檬酸酸洗时,由于柠檬酸酸洗时地温度高,循环速度快,因此在选择柠檬酸酸洗时,缓蚀剂必须适用这种条件.常用地缓蚀剂有乌洛托品、硫脲、邻二甲苯硫脲、若丁、工业二甲苯硫脲等.2.2油田缓蚀剂地研究现状国外研究油田缓蚀剂起步较早,1949年,美国报道了有机含N咪唑啉及其衍生物抗CO,腐蚀地油田缓蚀剂专利.70年代未,华中理工大学和四川石油管理局井下作业处合作研制出7701复合缓蚀剂[10],我国才解决了油井酸化缓蚀剂技术难题.由于各油田地工况不同,影响缓蚀剂地因素也不相同,没有具有普遍适用性地油田缓蚀剂,国内石油管材研究所、沈阳腐蚀所、四川石油管理局、大庆、华北、胜利等油田地研究所等研制出CZ3、DPI、IMC、CT2、TG、WSI等系列油田缓蚀剂,并成功运用于各油气田,取得了良好地缓蚀效果.目前,国内外在油田缓蚀剂领域地研究仍十分活跃,主要针对全面腐蚀,特别是对CO,和HC1腐蚀地缓蚀技术地研究更为突出.近几年,许多油气田地腐蚀速率极高,不能用电化学腐蚀解释,经分析腐蚀产物,发现有微生物尸体存在,抽取井底样液,在显微镜下观察到活动地微生物,Johnson[11],Rosser[12],Fan[13]引等研究了抑制微生物腐蚀地缓蚀剂,取得了较好地成效.然而对抑制其他局部腐蚀尤其是应力腐蚀地缓蚀剂研究较少,有关报道很少.油田缓蚀剂地研制思路基本上是分析具体井中设备腐蚀机理,确定抑制腐蚀地化学结构,利用软硬酸理论等进行缓蚀剂地目标分子地设计,选择合适地合成路线进行制备,并用各种方法进行性能测试和缓蚀效果评价单靠一种成分难以达到满意地缓蚀效果,石油工业用缓蚀剂往往都是几种缓蚀成分按一定比例进行复配,通过协同效应提高缓蚀率.产生协同效应地机理随体系而异,许多还不太清楚.原则上阴极型和阳极型缓蚀剂复配,缓蚀剂和增溶分散剂复配,兼顾不同金属地复配等.腐蚀介质、流速、温度、压力、缓蚀剂浓度与类型、加药量、加药方式(连续注入和一次性注人)和加药周期都是影响缓蚀剂性能地因素[14].目前,国内外使用地油田缓蚀剂大多是吸附型缓蚀剂,主要缓蚀成分是有机物,如链状有机胺及其衍生物、咪唑啉及其盐、季铵盐类、松香衍生物、磺酸盐、亚胺乙酸衍生物及炔醇类等.丙炔醇类、有机胺类、咪唑啉及其衍生物类、季铵盐类缓蚀效果较好.从报道地情况看,研究地吸附型缓蚀剂主要有液相、气/液双相和沉降型缓蚀剂.液相缓蚀剂只适用液相介质中防腐,对气相中地设备无缓蚀效果.气/液双相缓蚀剂用于抑制含水井液体部分及液面100~500 m管段地腐蚀,它既含液相又含气相缓蚀成分[15],因此,既具液相又具气相保护作用.由于加入油气井中地缓蚀剂,易被流动地介质带走,或是被提取出地物质携出,造成浪费,因此,开始研究沉降型缓蚀剂.沉降型缓蚀剂(加重缓蚀剂),易沉降到井底,并在井底缓慢释放[16].在一定工艺条件下,沉降型缓蚀剂地缓蚀是采用螯合技术或高分子膜技术,将交联剂、螯合剂或高分子膜体和溶剂混合生成螯合物或制成微胶囊状,目前以螯合物产品为主.2.3气相缓蚀剂地研究现状2.3.1单组份气相缓蚀剂在早期,人们常用樟脑来保护铁制地军用物资、机器和零部件.随着科学技术地发展,研究者发现胺和胺盐能有效地保护钢铁,现在已经二环己胺和二环己胺盐以及其他胺是很好地钢铁大气缓蚀剂[17—19].1943年6月美国壳牌公司(Shell DeveIopment Co.)研制出亚硝酸二环己胺(PI一260),并获得成功.使用之后,引起了防锈工作者地极大兴趣,已发表有关文献200多篇.由于亚硝酸二环己胺室温下地饱和蒸气压低,保护时间长,保护效果好,到目前为止,它仍然是用得最多、最普遍地钢铁气相缓蚀剂.但一般试验条件下,亚硝酸二环己胺地保护效果并不好,其原因被认为是缓蚀剂通过液体薄层扩散到金属表面地速度过慢,即它保护地诱导期比氧腐蚀地诱导期长,以致在缓蚀剂到达金属表面时金属已发生了腐蚀[20].研究表明[21],亚硝酸二环己胺只有在充分预挥发、充分预膜地条件下,才能对钢铁设备起到非常好地保护效果,所形成地保护膜才具有很好地耐久性,而且保护时对系统地严密性要求不高,可用于经常打开地包装体系,但由于诱导期过长.不宜单独用于闲置设备地保护.英国于1945年起对气相缓蚀剂进行了研究,发现碳酸环己胺(CHC)对钢铁具有较好地保护作用.研究发现[22],碳酸环己胺在室温下地蒸汽压为53.33Pa,能较快起保护作用,可用于需要很快起保护作用地场合.据报道[23],碳酸环己胺可用于经常打开地包装体系,因为它地蒸气能迅速饱和容器,但实际上碳酸环己胺对常用设备地保护效果并不理想,英国曾用碳酸环己胺保护停用设备获得成功.但后来发现它难以保护垢下金属.魏刚等人[24,25]研究了碳酸环己胺地使用工艺及作用规律后发现,碳酸环己胺在不预挥发和不预膜地情况下,就能够起保护作用,但是它存在保护期短、保护膜耐久性差、对系统密封性要求过严和难以保护沉积物下方地金属等不足,认为碳酸环己胺仅适用于封存严密地、表面干净地化工装备金属地保护,此外,碳酸环己胺地价格也较贵.每公斤在80元以上.碳酸按、碳酸氢铵、苯甲酸铵和乌洛托品也可以单独作为气相缓蚀剂保护剂使用;碳酸铵和碳酸氢铵容易挥发,都是有效地气相缓蚀剂,但它们气味难闻,对保护体系地密封性要求高,所以限制了它们地推广应用[26—30].2.3.2混合型气相缓蚀剂选择气相缓蚀剂必须具备两个最基本地条件,即在其成分中应该含有一个或一个以上地缓蚀基团,再就是要具有适当地蒸气压.蒸气压过低,诱导期太长.缓蚀剂气体在短期内不能饱和保护空间,容易发生先期腐蚀;蒸气压太高,缓蚀剂挥发过快,如设备密封性不够好.缓蚀剂气体流失过快,使防锈期变短,需增加用量,提高保护成本.因此需要将不同蒸气压地两种或两种以上地缓蚀剂混合使用,如国内外较多使用地亚硝酸二环己胺与碳酸环己胺地混合药剂,亚硝酸二环己胺在21℃时地饱和蒸气压为0.016Pa.而碳酸环己胺在2l℃时为53Pa,两者混合使用,可取长补短,既能持续长效防锈,又能缩短缓蚀剂气氛达到平衡地时间,抑制设备地先期腐蚀.气相缓蚀剂地混合配方,一般是从各种无机、有机气相缓蚀剂中筛选复配后经试验来获取地.气相缓蚀剂混合起来使用地例子很多;如尿素和亚硝酸单乙醇胺地混合物、亚硝酸二环己胺80%和亚硝酸二异丙胺20%地混合物、苯甲酸和乌洛托品地混合物、苯甲酸、乌洛托品和亚硝酸钠地混合物、苯甲酸铵、碳酸铵和亚硝酸钠地混合物等.王忠义等人[31]研究认为苯甲酸与乌洛托品可以代替碳酸环己胺,用于停用设备保护,没有明显地毒害作用,气味也不太难闻,可以用于长期停用地设备地保护.采用氯化钱加碱类物质对停用设备进行保护,也取得了较好地保护效果,且药剂价格极为便宜,降低了保养费用.国内兰州华荣清洗防腐技术公司研制地TH901和HL91l停用设备保护剂[32],经一些厂家地使用,取得了较好地保护效果.常用地复合气相缓蚀剂主要有亚硝酸二环己胺80%+亚硝酸二异丙胺20%、苯甲酸钱+乌洛托品+亚硝酸钠、苯甲酸单乙醇胺+尿素+亚硝酸钠等[33,34].2.3.3高效低毒气相缓蚀剂在气相缓蚀剂地研究和发展过程中,亚硝酸二环己胺曾占据着主导地位置,以至于世界各国在介绍气相缓蚀剂地文献中,仍常以亚硝酸二环己胺为代表.但是,亚硝酸二环己胺地毒性越来越受人们重视,进入二十一世纪,在可持续发展战略地推动下,开发低公害、无污染地气相缓蚀剂是当务之急.国外报道[35]地高效低毒和高稳定性地钢铁用气相缓蚀剂多系咪唑类化合物,诸如2一甲基咪唑、2一乙基-4-甲基咪唑和2一异丙基咪唑等,其防锈性能优良,可满足美军标准MIL—I一22110,热稳定性好,毒性低,对人体无有害地生理毒性.并能被细菌降解.它们可以从维生素髓生产过程中地副产物中提取,成本较低.综上所述,大部分高效低毒型气相缓蚀剂尚处于实验室研究阶段,离大规模生产及使用尚存在一定距离,高效廉价地气相缓蚀剂既能提高设备地保护效果又能降低保护成本,是工业化应用地重点:由于单组分气相缓蚀剂地挥发性与保护时间、保护效果之间地矛盾,即低挥发VPI与先期腐蚀、高挥发VPI与保护时间短地矛盾,因而混合型气相缓蚀剂是研究开发地重点.2.4高效环境友好型缓蚀剂地最新进展依据可持续发展地社会理念,当今社会需要地是绿色化学,对环境有好多地材料.因此应运而发展地环境友好型缓蚀剂地发展.2000年,刘铮[36]采用失重法研究了植物型缓蚀剂没食子酸对碳钢地缓释性能.实验表明,在40℃和条件下,在5%稀盐酸中, 使用没食子酸与六次甲基四胺有较强地协同作用,其复配缓蚀率大于96%.通过研究找到了没食子酸在碳钢上地吸附等温式,计算出钢溶解地表观活化能,从而揭示了没食子酸在碳钢上地吸附机理.2002年,张大全[37]讨论了缓蚀剂应用开发地进展及其对环境地影响.基于绿色化学概念,从缓蚀剂地分子设计,合成路线、复配增效和应用性能等方面出发, 综合评价和认识缓蚀剂应用开发地环境负荷及经济效益,探讨了缓蚀剂地发展方向.王慧龙[38]等进一步介绍了环境友好缓蚀剂地研究进展,指出有机缓蚀剂中,醛类、胺类、梭类、杂环化合物通常由极性较大地N,O和S等原子为中心地极性基和C和H等原子组成地非极性基构成, 能以某种键地形式与金属表面结合, 氨基酸是分子中兼具有碱性氨基和酸性梭基地两性化合物, 缓蚀效率随分子中碳氢链长度和氨基数目地增加而增大.2007年M.M.EI-Rabiee,N.H.Helal[39]等人运用开路电位测量、极化曲线和电化学阻抗谱(EIS) 地研究方法,测试了腐蚀电流Icorr、腐蚀电压Ecorr和电阻Rcorr.研究了甘氨酸、谷氨酸、丙氨酸、领氨酸和半胧氨酸5种氨基酸, 在不同地PH值地铅矿水溶液中地腐蚀控制.考察了在酸溶液CL-对缓蚀效率地影响在中性和碱性溶液中,加人氨基酸能提高金属地腐蚀地极化电阻.在加缓蚀剂和无缓蚀剂情况下,研究了组氨酸、甘氨酸,在浓度比较低(25mmol/l)时最有希望作为环境友好性缓蚀剂.有机胺类化合物是缓蚀剂中应用最多地一类物质.脂肪胺、芳香胺、一元胺、二元胺或聚胺及它们地盐均被广泛应用于金属地缓蚀领域.开发环境友好地胺类缓蚀剂必须引人新地低毒性地有机胺化合物来替代有毒地胺化合物及其盐地应用.例如以更多地长链脂肪胺、聚胺来替代和减少芳香胺地应用.聚胺及其衍生物主要用在石油工业中, 由聚胺制成地酞胺、咪哩琳及聚酞胺等化合物作为低毒性地缓蚀剂被广泛用于抑制金属地腐蚀.目前研究开发地狡酸类环境友好缓蚀剂多数为脂肪族取代梭酸,主要应用于中性水介质.酞基肌氨酸合成原料易得,无毒性,易被生物降解,不会造成环境污染,且PH值适用范围很宽(6-11),是一种很有发展前途地缓蚀剂[4].其缓蚀机理主要是通过与金属离子赘合,形成单分子层地鳌合被膜吸附于金属表面,同时分子中疏水性地长链烃基可定向排列于金属表面, 使金属得到保护.S-梭乙基硫代琥珀酸[cesta]是近年来为满足环境保护地要求而出现地新型非磷缓蚀剂.cesta具有溶于水、生物降解性好、低毒、在较宽PH值范围内均具有缓蚀和阻垢等特性.目前已由日本MTS公司投产,应用前景良好.3缓蚀剂地应用缓蚀剂广泛地应用于石油化工、机械制造、交通等工业部门,并在某些工业生产中成为不可取代地重要防护措施,列入到生产工艺或操作规程中[2].石油工业是使用缓蚀剂最。