无人机短距离图像传输与接收原理

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无人机短距离图像传输与接收原理及常见问题

总序

图像传输原理、一、模拟微波传输原理:

1.1系统特点

系统容量有限实际使用环境中图像发送端和接收端都处于空中平台中,

实时性由于图像发送和接收的实时性要求高,使用体积有限,故而选择的图像压缩和解压缩算法必须高效、易于实现,同时时延小。

高保真图像显示由于接收端需要对图像进行分辨从而做出正确的选择,因而图像压缩算法必须选用高保真的压缩算法。

干扰信道环境使用环境为战时复杂的电磁环境,信道中存在着各种噪声、突发干扰和随机干扰。

1.2系统方案

由于系统容量要求,采用频分体制完成多个信道的同时工作,同时将红外图像压缩后传输以减小每个信道使用带宽。

1.2.1发送端设计

发送端包括三部分:综合基带、发射机和天线。综合基带是其中的关键部件,完成对图像数据的采集、压缩、编码和交织,完成对状态数据的采集、编码,完成对传送数据的组帧输出及对发射信号的发送控制。考虑功耗、体积和实际耗费资源,选择一片大规模FPGA完成所有信号处理。

1.2.2接收端设计

接收端包括四部分:接收天线、信号处理机、接收处理组件

接收处理组件完成数据的接收、存盘、图像数据提取、解压缩和显示及状态数据的提取和显示。解压缩采用软件实现,解压缩软件嵌入到指控平台接收端的接收软件中,在接收信号的同时完成压缩图像的解码和实时显示。

1.3关键技术

1.3.1天线设计

由于发送端设备位于导弹上,接收端设备位于飞机上,故而存在收发天线失配问题,设计时接收端天线采用圆极化形式,发送端天线采用一对垂直分布的线极化天线,这样将极化损耗降到最低,有利于接收端的接收。同时考虑通信时抗干扰问题,发送端天线采用后向天线图形式,为增加抗干扰性,还要求发送端天线具有一定的增益。图2为发送天线仿真图。

1.3.2信源信道联合编解码技术

由于红外导引头的图像格式不是标准的视频图像格式,普通的视频图像压缩标准并不适用;红外导引头的图像具有目标形状变化比较快的特点,也不适用帧间压缩方式;同时考虑到弹上应用环境的特殊性,压缩算法必须具有硬件实现简单、体积和功耗小,考虑实际使用环境,其压缩和解压缩算法实现还必须具备实时性强的特点,因此,选用多分辨率重采样图像压缩算法对图像数据进行压缩。

接收端若使用软件对RS码解码,会造成较大的时延,故使用硬件完成图像数据的解交织、译码和状态数据的译码,使用软件完成图像数据的解压缩和图像显示。

1.3.3信号处理平台的选择与设计

设计初期必须进行发送端和接收端的信号处理平台的选择。

2验证

因为实际最大的空间传输时延是可以计算出来的,使用衰减器将发送端和接收端直接连接在一起,直接测试发送端和接收端的图像数据起始端的信号差异即可测出系统时延。

室外验证试验中,接收天线采用双天线接收,增益为17dB,选择分集合成接收机,在发射系统天线前端使用衰减器。

因此,本文主要对无人机短距离图像传输的原理和常见图像不稳定问题进行分析和探究。目前无人机图像传输器主要分为两种。一种是基于WiFi信号进行图像传输。如Phantom 4(大疆公司旗下精灵4无人机)、EXPLOR V(零度智控旗下探索者无人机).而另一种则是直接利用1.2G、5.8G信号频段进行直接信号传输。如柏通1.2G图传,TS832图传。

WiFi类图传主要是利用中继模块产生WiFi信号,进而进行图像传输。WiFi图传的数据传输需要发送端与接收端首先建立起通讯握手机制,再传输每个大小为512字节的数据包。每个数据包传输必须完整无误,丢失其中一个字节都会导致整个数据包重新发送,确认完整的接收一个数据包之后,才开始传输下一个数据包,而这也正是导致图传延时的原因。

而对于自树林中进行飞行,由于树上有潮湿的水蒸气阻挡信号,很容易引起WiFi数据包丢失某些字节,整个大数据包就必须重新发送,这就导致WiFi图传经常性的延时。

解决办法lightbridge高清图传技术应用了单向传输技术,

2.4G指工作频率在2.4G的范围内。

信号的发射首先需要高频振荡器产生一个固定的频率,在频率产生的同时会产生很多次生频率,这些频率往往是以主要频率倍数形式存在,比如想要得到一个100MHZ的信号作为可以传到FM收音机的载波,要想频率稳定就必须使用稳频晶体。而如果只有10MHZ的稳频晶体,就可以用该晶体起振后选频出它的10倍后的频率。

无线传输

是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加

以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能力和可扩展性都提高不少。

发送端包括三部分:综合基带、发射机和天线。综合基带是其中的关键部件,完成对图像数据的采集、压缩、编码和交织,完成对状态数据的采集、编码,完成对传送数据的组帧输出及对发射信号的发送控制。考虑功耗、体积和实际耗费资源,选择一片大规模FPGA完成所有信号处理。

1.2.2接收端设计

接收端包括四部分:接收天线、信号处理机、接收处理组件

接收处理组件完成数据的接收、存盘、图像数据提取、解压缩和显示及状态数据的提取和显示。解压缩采用软件实现,解压缩软件嵌入到指控平台接收端的接收软件中,在接收信号的同时完成压缩图像的解码和实时显示。

1无线信道图像传输系统设计

1.1系统特点

系统容量有限实际使用环境中图像发送端和接收端都处于空中平台中,考虑系统中有多个数据流通信,图像实际使用带宽过大,一方面影响整个系统容量,另外会带来接收端诸多问题,为满足实际工程应用,必须控制每组信道的使用带宽,故而需将图像压缩后传输。

实时性由于图像发送和接收的实时性要求高,使用体积有限,故而选择的图像压缩和解压缩算法必须高效、易于实现,同时时延小。

高保真图像显示由于接收端需要对图像进行分辨从而做出正确的选择,因而图像压缩算法必须选用高保真的压缩算法。

干扰信道环境使用环境为战时复杂的电磁环境,信道中存在着各种噪声、突发干扰和随机干扰。

1.2系统方案

由于系统容量要求,采用频分体制完成多个信道的同时工作,同时将红外图像压缩后传输以减小每个信道使用带宽。

1.2.1发送端设计

发送端包括三部分:综合基带、发射机和天线。综合基带是其中的关键部件,完成对图像数据的采集、压缩、编码和交织,完成对状态数据的采集、编码,完成对传送数据的组帧输出及对发射信号的发送控制。考虑功耗、体积和实际耗费资源,选择一片大规模FPGA完成所有信号处理。

1.2.2接收端设计

接收端包括四部分:接收天线、信号处理机、接收处理组件

相关文档
最新文档