2016年高考理科数学全国1卷-含答案
2016年高考全国1卷理科数学试题及答案详解
启封前★绝密试题类型:A2016年普通高等学校招生全国统一考试理科数学(试题及答案详解)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B = (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)2(2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y + (A )1(B )2(C )3(D )2(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )100(B )99(C )98(D )97(4)某公司的班车在7:00,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A )31(B )21(C )32(D )43(5)已知方程132222=--+n m y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A )17π(B )18π(C )20π(D )28π(7)函数y=2x2–e|x|在[–2,2]的图像大致为(A )(B )(C )(D )(8)若101a b c >><<,,则 (A )c c a b <(B )c c ab ba <(C )log log b a a c b c <(D )log log a b c c <(9)执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足 (A )2y x =(B )3y x =(C )4y x =(D )5y x =(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB|=2,|DE|=25则C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD-A1B1C1D1的顶点A ,a//平面CB1D1,a ⋂平面ABCD=m ,a ⋂平面ABA1B1=n ,则m 、n 所成角的正弦值为 (A)3 (B)2 (C)3(D)1312.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a=(m ,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=__________. (14)5(2)x x +的展开式中,x3的系数是_________.(用数字填写答案)(15)设等比数列满足a1+a3=10,a2+a4=5,则a1a2…an 的最大值为____________。
2016年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2016年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.23.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.974.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.811.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.【专题】11:计算题;4O:定义法;5J:集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【考点】A8:复数的模.【专题】34:方程思想;4O:定义法;5N:数系的扩充和复数.【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.3.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.97【考点】83:等差数列的性质.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【考点】CF:几何概型.【专题】5I:概率与统计.【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【考点】KB:双曲线的标准方程.【专题】11:计算题;35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【考点】R3:不等式的基本性质.【专题】33:函数思想;35:转化思想;4R:转化法;51:函数的性质及应用;5T:不等式.【分析】根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.8【考点】K8:抛物线的性质;KJ:圆与圆锥曲线的综合.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;29:规律型;35:转化思想;5A:平面向量及应用.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5分)(2x+)5的展开式中,x3的系数是10.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;34:方程思想;49:综合法;5P:二项式定理.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3,求出r,即可求出展开式中x3的系数.==25﹣【解答】解:(2x+)5的展开式中,通项公式为:T r+1r,令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64.【考点】87:等比数列的性质;8I:数列与函数的综合.【专题】11:计算题;29:规律型;35:转化思想;54:等差数列与等比数列.【分析】求出数列的等比与首项,化简a1a2…a n,然后求解最值.【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【考点】HU:解三角形.【专题】15:综合题;35:转化思想;49:综合法;58:解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;34:方程思想;49:综合法;5H:空间向量及应用;5Q:立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的余弦值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P (X≤n)≥0.5中n的最小值.(Ⅲ)法一:由X的分布列得P(X≤19)=.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买19个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:X16171819202122P(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【考点】J2:圆的一般方程;KL:直线与椭圆的综合.【专题】34:方程思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A到PQ的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】32:分类讨论;35:转化思想;4C:分类法;4R:转化法;51:函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a (x﹣1)=(x﹣1)(e x+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
2016年高考理科数学全国1卷Word版(含详细答案)
绝密★ 启用前试题种类: A 2016 年一般高等学校招生全国一致考试理科数学本试题卷共 5 页, 24 题(含选考题 )。
全卷满分 150 分。
考试用时 120 分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考据号填写在试题卷和答题卡上,并将准考据号条形码粘贴在答题卡上的指定地点。
用2B 铅笔将答题卡上试卷种类 A 后的方框涂黑。
2、选择题的作答:每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、底稿纸和答题卡上的非答题地区内均无效。
3、填空题和解答题的作答:用署名笔挺接答在答题卡上对应的答题地区内。
写在试题卷、底稿纸和答题卡上的非答题地区均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的地点用2B 铅笔涂黑。
答案写在答题卡上对应的答题地区内,写在试题卷、底稿纸和答题卡上的非答题地区均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:此题共12 小题,每题5 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
(1)设会合A{ x x24x 30},B{ x 2x 3 0},则A B(A)( 3,3)(B)(3,3)(C)(1,3)(D)(3,3) 2222(2)设(1 i ) x1yi ,此中x, y是实数,则x yi(A)1(B)2(C)3(D)2(3)已知等差数列{ a n } 前9项的和为27 ,a108,则 a100( A)100(B)99(C)98(D)97(4)某公司的班车在7 : 30 , 8 : 00,8 : 30 发车,小明在 7 : 50 至 8 : 30之间抵达发车站乘坐班车,且抵达发车站的时候是随机的,则他等车时间不超出10 分钟的概率是(A)1(B)1(C)2(D)3 3234(5)已知方程x 2 y21 表示双曲线, 且该双曲线两焦点间的距离为 4 ,则 n 的2n 3m 2nm 取值范围是(A ) ( 1,3)(B ) ( 1, 3) ( C ) (0,3) ( D ) (0, 3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28,则它的3表面积是(A ) 17(B ) 18 (C ) 20(D ) 28(7)函数 y2x 2 e x 在 [ 2,2] 的图像大概为y y ( A )1( B )12 O2x2 O2xy y ( C )1( D )12O2x2 O2x(8)若 a b1, 0 c 1,则( A ) a cb c( B ) ab cba c ( C ) a log b c b log a c ( D ) log a c log b c(9)履行右边的程序框图,假如输入的x 0, y 1, n 1,则输出 x, y 的值知足( A ) y 2 x( B ) y 3x( C ) y 4x ( D ) y 5x( 10)以抛物线C 的极点为圆心的圆交 C 于 A, B 两点,交 C 的准线于 D, E 两点,已知AB 42,DE2 5 ,则 C 的焦点到准线的距离为(A )2(B )4(C )6 (D )8(11)平面过正方体 ABCDA 1B 1C 1D 1 的极点 A , // 平面 CB 1D 1 ,平面 ABCDm ,平面 ABB 1 A 1 n ,则 m,n 所成角的正弦值为32 ( C )31( A )(B )(D )2 23 3(12)已知函数f ( x)sin( x)(0,2) , x为 f ( x) 的零点,x为44y f ( x) 图像的对称轴,且 f ( x) 在( ,5) 单一,则的最大值为3618(A)11(B)9(C)7(D)5第II 卷本卷包含必考题和选考题两部分。
2016年高考理科数学全国卷1-答案
(Ⅱ)设圆心为 ,证明 为 的中垂线, 为 的中垂线,即可证明结论.
【考点】圆的切线的判定定理的证明
23.【答案】(Ⅰ)由 ,得 ,两式平方相加得, ,
为以 为圆心,以 为半径的圆,化为一般式 ①,
由 , ,
得 ;
【考点】简单曲线的极坐标方程,参数方程的概念
24.【答案】(Ⅰ) ,由分段函数的图象画法,可得 的图象,如图:
(Ⅱ)由 ,可得,当 时, ,解得 或 ,即有 ;
当 时, ,解得 或 ,即有 或 ;
当 时, ,解得 或 ,即有 或 .
综上可得, 或 或 .
则 的解集为
【提示】(Ⅰ)运用分段函数的形式写出 的解析式,由分段函数的画法,即可得到所求图象;
【提示】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据 不为0求出 的值,即可确定出出 的度数;
(Ⅱ)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出 的值,即可求 的周长.
【考点】解三角形
18.【答案】(Ⅰ) 为正方形,
,
,
,
,
平面 ,
平面 ,
平面 平面 ;
10.【答案】B
【解析】设抛物线为 ,如图: , , , , , , , ,解得 , 的焦点到准线的距离为4.
【提示】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.
【考点】圆与圆锥曲线的综合,抛物线的简单性质
11.【答案】A
【解析】如图, 平面 , 平面 , 平面 ,可知: , , 是正三角形, 、 所成角就是 ,则 、 所成角的正弦值为 .
2016高考理科数学全国1卷-含答案
2016年普通高等学校招生全统一考试理科数学第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设集合{}0342<+-=x x x A ,{}032>-=x x B ,则=B A(A )(3-,23-) (B )(3-,23) (C )(1,23) (D )(23-,3)(2) 设yi x i +=+1)1(,其中x ,y 是实数,则=+yi x(A )1 (B )2 (C )3 (D )2(3) 已知等差数列{}n a 前9项的和为27,810=a ,则=100a(A )100 (B )99 (C )98 (D )97(4) 某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )31(B )21 (C )32 (D )43 (5) 已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则m 的取值范围是 (A )(1-,3) (B )(1-,3) (C )(0,3) (D )(0,3)(6) 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是328π,则它的表面积是 (A )17π (B )18π (C )20π (D )28π(7) 函数xe x y -=22在[]22,-的图象大致为(A ) (B ) (C ) (D )(8) 若1>>b a ,10<<c ,则(A )c c b a < (B )c c ba ab < (C )c b c a a b log log < (D )c c b a log log <(9) 执行右图的程序框图,如果输入的0=x ,1=y ,1=n ,则输出y x ,的值满足(A )x y 2= (B )x y 3= (C )x y 4= (D )y (10) 以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 点.已知24=AB ,52=DE ,则C (A )2 (B )4 (C )6 (D )8(11) 平面α过正方体1111D C B A ABCD -的顶点A ,α∥平面11D CB ,α∩平面m ABCD =,α∩平面n A ABB =11,则n m ,所成角的正弦值为(A )23 (B )22 (C )33 (D )31(12) 已知函数)sin()(ϕω+=x x f )2,0(πϕω≤>,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图象的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5第Ⅱ卷本卷包括必考题和选考题两部分。
2016年高考理科数学(全国新课标卷1)(含解析)
绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合2430={|}A x x x -+<,3{}0|2x B x ->=,则A B =( ) A .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)22.设(1i)1i x y +=+,其中x ,y 是实数,则|i |x y +=( )A .1 BCD .23.已知等差数列{}n a 前9项的和为27,108a =,则100a =( )A .100B .99C .98D .974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A .13 B .12 C .23D .345.已知方程222213xym nm n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(1,3)-B.(1-C .(0,3)D.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A .17πB .18πC .20πD .28π7.函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D 8. 若0a b >>,01c <<,则( )A .cca b <B .ccab ba > C .alog log b a c b c <D .log log a b c c<9.执行右面的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足( )A .2y x =B .3y x =C .4y x =D .5y x =10.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点,已知||AB =||DE =C 的焦点到准线的距离为( )A .2B .4C .6D .811.平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A B CD .1312.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5(,)1836ππ单调,则ω的最大值为( )A .11B .9C .7D .5姓名________________ 准考证号_____________--------在--------------------此-------------------卷-------------------上--------------------答-------------------题--------------------无------------------效----------第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.设向量a (,1)m =,b (1,2)=,且|a +b ||2=a ||2+b 2|,则m = . 14.5(2x 的展开式中,3x 的系数是 (用数字填写答案).15.设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a …的最大值为 . 16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=. (Ⅰ)求C ;(Ⅱ)若c =ABC △,求ABC △的周长.18.(本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E BC A --的余弦值.19.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的 频率代替1台机器更换的易损零件数 发生的概率,记X 表示2台机器三年 内共需更换的易损零件数,n 表示购 买2台机器的同时购买的易损零件数. (Ⅰ)求X 的分布列;(Ⅱ)若要求()0.5P X n ≤≥,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?20.(本小题满分12分)设圆22215=0x y x ++-的圆心为A ,直线l 过点(10)B ,且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明||||EA EB +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.21.(本小题满分12分)已知函数2()(2)(1)xf x x e a x =-+-有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设1x ,2x 是()f x 的两个零点,证明:122x x +<.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)在图中画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.ABCDEF2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】{}{}2A x x 4x 30x 1x 3=-+<=<<,{}3B x 2x 30x x 2⎧⎫=->=>⎨⎬⎩⎭,故3B x 2⎧=⎨⎩【提示】解不等式求出集合【考点】交集及其运算【解析】(1i)x 1yi +=+,x xi 1yi ∴+=+,即x 1x y =⎧⎨=,解得x 1y 1=⎧⎨=,即x y i 1i 2+=+=【解析】等差数列,又10a 8=,【提示】根据已知可得【考点】等差数列的性质】双,方【解析】f (x)y =时,y 8=-x4x e 0-=【解析】a b 1>>线的距离为4.【提示】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【考点】圆与圆锥曲线的综合,抛物线的简单性质11.【答案】A【解析】如图,α∥平面CB α平面ABCD α平面ABA,11CB D △60,则m 32.【提示】画出图形,判断出m 【考点】异面直线及其所成的角【解析】πx 4=-为1πT 2=,即12ππ(n N 2=∈ω为正奇数,f (x)在5π36⎛⎫⎪⎝⎭上单调,πππ361812-=时,11π4-+π2ϕ≤,9π4-+ϕ,π2ϕ≤,ω【答案】2-222a b a b +=+,可得a b 0=,向量a (m,1)=,b (1,2)=,n123n (q++++-…6264==.【提示】设A ,B 两种产品分别是标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可.【考点】简单线性规划的应用三、解答题17.【答案】(Ⅰ)在ABC △已知等式利用正弦定理化简得12ab2,(a ∴的周长为5+(Ⅰ)A BEF 为正方形,AFD 90∠=,A F DF ∴⊥,DF EF F =,AF ∴⊥平面EFDCAF ⊂平面∴平面A BEF (Ⅱ)由A BE EF ⊥BE ∴⊥平面可得DFE 60∠.A B EF ∥EFDC AB ∴∥平面平面EFDC 平面ABCD ,EB (0,2a,0)∴=,a BC ,⎛= ,AB (2a,0,0)=-设平面BEC 的法向量为m (x ,=,则m EB 0m BC 0⎧=⎪⎨=⎪⎩,则m (3,0,=设平面ABC 的法向量为n (x ,y ,z =n BC=0n AB 0⎧⎪⎨=⎪⎩,则,取n (0,3,4)=的大小为θ,m n |m ||n |31316==++【提示】(Ⅰ)证明AF ⊥平面EFDC 平面EFDC ;(Ⅱ)证明四边形EFDC 为等腰梯形,4040=1EX EX <解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购222222143m 41m1m||MN |12242423m 41m3m 4+++===+++时,S 取得最小值12,又10>,可得3S 24833<=【提示】(Ⅰ)求得圆A EB ED =,再由圆的定义和椭圆的定义,b ,c ,即可得到所求轨迹方程;(Ⅱ)设直线l :x my =+0)1x ,2x 1x 121(x 2)e (x 1)-=-2[(x 2)g (x)-+'=∴当x 1<时,e 1,OA OB =120,OK ∴30,1OK OAsin30OA 2=直线AB 与O 相切;D 四点所在圆的圆心,设四点所在圆的圆心,OA OB =的中垂线,∴AB 中点,连结30,1OK OAsin30OA 2=曲线如图:(Ⅱ)由f (x)1>,可得,当3当x ≥时,4x 1->,解得x 5>或x 3<,即有x 3≤<或x 5>.(1,3)(5,)⎫+∞⎪⎭(Ⅰ)运用分段函数的形式写出f (x)的解析式,由分段函数的画法,即可得到所。
2016年高考理科数学全国1卷,附答案
2016 年高考数学全国 1 卷(理科)一、选择题:本大题共12 小题,每小题 5 分,每小题只有一项是符合题目要求的.9.执行如图的程序框图,如果输入的x=0, y=1,n=1,则输出x ,y 的值满足()2﹣4x+3<0} ,B={x|2x ﹣3>0} ,则 A ∩B=()1.设集合 A={x| x A .(﹣3,﹣)B .(﹣3, ) C.(1, )D .( ,3)2.设( 1+i )x=1+yi ,其中 x ,y 是实数,则 |x+yi|= ( ) A .1B.C.D. 23.已知等差数列 {a n } 前 9 项的和为 27,a 10=8,则 a100=( )A .100B.99C.98D. 97 4.某公司的班车在 7:00,8:00,8:30 发车,小明在 7:50 至 8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过 10 分钟的概率是( )A .y=2xB .y=3xC . y=4xD.y=5x A .B.C .D .10.以抛物线 C 的顶点为圆心的圆交 C 于 A 、B 两点,交 C 的准线于 D 、 E 两点.已知 |AB|=4,|DE|=2 ,则 C 的焦 点到准线的距离为( ) 5.已知方程﹣=1 表示双曲线,且该双曲线两焦点间的距离为 4,则 n 的取值范围是( )A .2B.4C.6D.8A .(﹣1, 3) B .(﹣1, )C .( 0,3)D.( 0,)11.平面 α过正方体 ABCD ﹣A 1B 1C 1D 1 的顶点 A ,α ∥平面 CB 1D 1,α ∩平面 ABCD=,m α ∩平面 ABB 1A 1=n ,则 m 、n所成角的 6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是 ,正弦值为( ) 则它的表面积是()A .B.C.D .12.已知函数 f (x )=sin ( ωx+φ)(ω>0,| φ| ≤ ), x=﹣为 f ( x )的零点, x= 为 y=f (x )图象的对称轴, 且 f ( x )在(, )上单调,则 ω 的最大值为() A .17πB . 18πC .20πD .28πA .11B.9C.7D. 57.函数y=2x2﹣e |x|在[﹣2,2] 的图象大致为()二、填空题:本大题共4 小题,每小题5 分,共 20 分 .13.设向量=(m , 1), =(1,2),且 |+ | 2=| | 2+| | 2,则m= .14.(2x+)5 的展开式中, x 3 的系数是.(用数字填写答案)15.设等比数列 {a n } 满足a 1+a 3=10,a 2+a 4=5,则 a 1a 2⋯ a n 的最大值为.A .B .C .D .16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料 1.5kg ,乙材料 1kg ,用 5 8.若 a >b >1,0<c <1,则()个工时;生产一件产品B 需要甲材料 0.5kg ,乙材料 0.3kg ,用 3 个工时,生产一件产品A 的利润为 2100 元,生产一件 A .ac <b c B .ab c <ba c C .alogc <b c B .ab c <ba c C .alogb c <blog a c D .log a c <log b c产品B 的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则在不超过 600 个工时的条件下,生产产品A 、产品B 的利润之和的最大值为元.第 1页共 9 页深圳星火教育龙华数学组余凤老师整理三、解答题:本大题共 5 小题,满分60 分,解答须写出文字说明、证明过程或步骤.19.(12 分)某公司计划购买 2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器演算外时,可以额17.(12 分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时了100 台这种机器在三年使用期内更换的易损零件数,整理集并(Ⅰ)求C;应同时购买几个易损零件,为此搜状图:得如图柱以这100 台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示 2 台机器三年内共需更为,求△ABC的周长.(Ⅱ)若c= ,△ABC的面积换的易损零件数,n 表示购买 2 台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5 ,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19 与n=20 之中选其一,应选用哪个?18.(12 分)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角 DE与二面角C﹣B E﹣F都是60°.A F﹣﹣(Ⅰ)证明平面ABEF⊥平面EFDC;A的余弦值.B C﹣(Ⅱ)求二面角E﹣第2页共9 页理整深圳星火教育龙华数学组余凤老师20.(12 分)设圆x2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆 A 于C,D两点,过 B 作2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆A 于C,D两点,过 B 作21.(12 分)已知函数 f (x)=(x﹣2)ex+a(x﹣1)x+a(x﹣1)2 有两个零点.AC的平行线交AD于点E.(Ⅰ)求 a 的取值范围;(Ⅰ)证明|EA|+|EB| 为定值,并写出点 E 的轨迹方程;(Ⅱ)设x1,x2 是f (x)的两个零点,证明:x1+x2<2.(Ⅱ)设点E的轨迹为曲线C1,直线l 交C1 于M,N两点,过 B 且与l 垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.第 3 页共9 页深圳星火教育龙华数学组余凤老师整理请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分. [ 选修4-5 :不等式选讲]24.已知函数 f (x)=|x+1| ﹣|2x ﹣3| .[ 选修4-1 :几何证明选讲] (Ⅰ)在图中画出y=f (x)的图象;(Ⅱ)求不等式|f (x)| >1 的解集.22.(10 分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[ 选修4-4 :坐标系与参数方程]23.在直角坐标系xOy中,曲线C1 的参数方程为(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.(Ⅰ)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(Ⅱ)直线C3 的极坐标方程为θ=α0,其中α0 满足tan α0=2,若曲线C1 与C2 的公共点都在C3 上,求a.第 4 页共9 页深圳星火教育龙华数学组余凤老师整理2016 年高考数学全国 1 卷(理科)参考答案与试题解析7.【解答】 解:∵ f (x )=y=2x 2﹣e |x| ,∴ f (﹣x )=2(﹣x )2﹣e |x| ,∴ f (﹣x )=2(﹣x )2﹣e |﹣x | =2x 2﹣e |x| ,故函数为偶函数, 一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.2 2 x当 x=±2 时, y=8﹣e ∈( 0,1),故排除 A ,B ; 当 x ∈[0 , 2] 时, f (x ) =y=2x ﹣e ,1.【解答】 解:∵集合A={x|x2﹣4x+3<0}= (1,3),B={x|2x ﹣3>0}= ( ,+∞),∴ f ′( x )=4x ﹣e x =0 有解,故函数 y=2x 2﹣e |x| 在[0 ,2] 不是单调的,故排除 C ,x =0 有解,故函数 y=2x 2﹣e |x| 在[0 ,2] 不是单调的,故排除 C ,故选: D∴A ∩B=( ,3),故选: D8.【解答】 解:∵ a >b >1,0< c <1,2.【解答】 解:∵( 1+i ) x=1+yi ,∴ x+xi=1+yi ,即,解得,即 |x+yi|=|1+i|=,∴函数 f (x) =x c 在( 0,+∞)上为增函数,故 a c >b c ,故 A 错误;c 在( 0,+∞)上为增函数,故 a c >b c ,故 A 错误; 故选: B .函数 f (x )=x c ﹣1 在( 0,+∞)上为减函数,故 a c ﹣1<b c ﹣1,故 ba c <ab c,即 ab c >ba c ;故 B 错误; c ﹣1 在( 0,+∞)上为减函数,故 a c ﹣1<b c ﹣1,故 ba c <ab c ,即 ab c >ba c ;故 B 错误;log a c <0,且 log b c <0,log a b < 1,即= <1,即 log a c >log b c .故 D 错误;3.【解答】 解:∵等差数列 {a n }前 9 项的和为 27,S 9===9a 5 .0<﹣l og a c <﹣l og b c ,故﹣b log a c <﹣a log b c ,即 blog a c >alog b c ,即 alog b c <blog a c ,故 C 正确;∴9a 5=27,a 5 =3,又∵ a 10=8,∴ d=1,∴ a 100=a 5+95d=98,故选: C故选: C4. 【解答】 解:设小明到达时间为y ,当 y 在 7: 50 至 8:00,或 8:20 至 8:30 时,9.【解答】 解:输入x =0,y=1,n=1,则x =0,y=1,不满足x2+y 2≥ 36,故 n=2,2+y 2≥ 36,故 n=2,小明等车时间不超过10 分钟,故 P= = ,故选: B则x= ,y=2,不满足x 2+y 2≥ 36,故 n=3,则x = ,y=6,满足x 2+y 2≥ 36,故 y=4x ,2+y 2≥ 36,故 n=3,则x = ,y=6,满足x 2+y 2≥ 36,故 y=4x , 故选: C5.【解答】 解:∵双曲线两焦点间的距离为4,∴ c=2,当焦点在 x 轴上时,可得: 4=(m2+n )+(3m 2﹣n ),解得: m2=1, 22∵方程﹣=1 表示双曲线,∴( m +n )(3m ﹣n )> 0,可得:(n+1)(3﹣n )> 0,210.【解答】 解:设抛物线为 y =2px ,如图: |AB|=4,|AM|=2 ,|DE|=2 ,|DN|= ,|ON|= ,解得:﹣1<n <3,即 n 的取值范围是: (﹣1,3).当焦点在 y 轴上时,可得:﹣4=(m 2+n )+(3m 2﹣n ),解得: m 2=﹣1, 2+n )+(3m 2﹣n ),解得: m 2=﹣1, x A = = , |OD|=|OA| ,=+5,解得: p=4.C 的焦点到准线的距离为:4.无解.故选: A .故选: B .6.【解答】 解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图: 可得:=,R=2.它的表面积是:×4π?2 2+=17π.故选:A.共9 页第5页理整深圳星火教育龙华数学组余凤老师11.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=,mα∩平面ABA1B1=n,15.【解答】解:等比数列{a n} 满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q= .a1+q1=10,解得a1=8.2a2a可知:n∥CD1,m∥B1D1,∵△CB1D1 是正三角形.m、n 所成角就是∠CD1B1=60°.则m、n 所成角的正弦值为:.故选:A.则a1a2⋯a n=a1n?q1+2+3+⋯+(n﹣1)=8n? = = ,当n=3 或4时,表达式取得最大值:=26=64.n?q1+2+3+⋯+(n﹣1)=8n? = = ,当n=3 或4 时,表达式取得最大值:=26=64.故答案为:64.16.【解答】解:(1)设A、B两种产品分别是x 件和y 件,获利为z 元.由题意,得,z=2100x+900y .不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y .经过 A 时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.12.【解答】解:∵x=﹣为f (x)的零点,x= 为y=f (x)图象的对称轴,故答案为:216000.∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f (x)在(,)上单调,则﹣= ≤,即T= ≥,解得:ω≤12,当ω=11 时,﹣+φ=kπ,k∈Z,∵| φ| ≤,∴φ=﹣,此时 f (x)在(,)不单调,不满足题意;当ω=9 时,﹣+φ=kπ,k∈Z,∵| φ| ≤,∴φ= ,此时 f (x)在(,)单调,满足题意;故ω的最大值为9,故选: B二、填空题:本大题共 4 小题,每小题 5 分,共25 分.13.【解答】解:| + | 2=||2+||2,可得? =0.向量=(m,1),=(1,2),三、解答题:本大题共 5 小题,满分60 分,解答须写出文字说明、证明过程或演算步骤.可得m+2=0,解得m=﹣2.故答案为:﹣2.17.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC ≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA )=sinC ,整理得:2cosCsin (A+B)=sinC ,14.【解答】解:(2x+ )r+1= =25 的展开式中,通项公式为:T5﹣r ,5 的展开式中,通项公式为:T5﹣r ,即2cosCsin (π﹣(A+B))=sinC2cosCsinC=sinC ∴cosC= ,∴C= ;令5﹣=3,解得r=4 ∴x 3 的系数 2 =10.故答案为:10.3 的系数 2 =10.故答案为:10.(Ⅱ)由余弦定理得7=a2+b2﹣2ab? ,∴(a+b)2+b2﹣2ab? ,∴(a+b)2﹣3ab=7,∵S= absinC= ab= ,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+ .第6页共9 页深圳星火教育龙华数学组余凤老师整理18.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,19.【解答】解:(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF? 平面ABEF,∴平面ABEF⊥平面EFDC;P(X=16)=()2= ,(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣A F﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,P(X=17)= ,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣B E﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB?平面EFDC,EF? 平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=C,D AB? 平面ABCD,P(X=18)=()2+2()2= ,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,P(X=19)= = ,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),P(X=20)= = = ,∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)P(X=21)= = ,P(X=22)= ,设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).∴X的分布列为:X 16 17 18 19 20 21 22设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).P(Ⅱ)由(Ⅰ)知:设二面角E﹣B C﹣A的大小为θ,则cosθ= = =﹣,P(X≤18)=P(X=16)+P(X=17)+P(X=18)= = .则二面角E﹣B C﹣A的余弦值为﹣.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)= + = .∴P(X≤n)≥0.5 中,n 的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)= + = .买19 个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20 个所需费用期望:EX2= +(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19 个更合适.第7页共9 页理整深圳星火教育龙华数学组余凤老师解法二:购买零件所用费用含两部分,一部分为购买零件的费用,21.【解答】解:(Ⅰ)∵函数 f (x)=(x﹣2)ex+a(x﹣1)2,∴f ′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),x+a(x﹣1)2,∴f ′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),另一部分为备件不足时额外购买的费用,x①若a=0,那么 f (x)=0? (x﹣2)e =0? x=2,函数 f (x)只有唯一的零点2,不合题意;当n=19 时,费用的期望为:19×200+500×0.2+1000 ×0.08+1500 ×0.04=4040 ,②若a>0,那么e x+2a>0 恒成立,当x<1 时,f ′(x)<0,此时函数为减函数;x+2a>0 恒成立,当x<1 时,f ′(x)<0,此时函数为减函数;当n=20 时,费用的期望为:20×200+500×0.08+1000 ×0.4=4080 ,∴买19 个更合适.当x>1 时,f ′(x)>0,此时函数为增函数;此时当x=1 时,函数 f (x)取极小值﹣e,x由f (2)=a>0,可得:函数 f (x)在x>1 存在一个零点;当x<1 时,e <e,x﹣2<﹣1<0,20.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0 即为(x+1)2+y2+2x﹣15=0 即为(x+1)2+y2 =16,可得圆心A(﹣1,0),半径r=4,∴f (x)=(x﹣2)e >(x﹣2)e+a(x﹣1)x+a(x﹣1) 2x+a(x﹣1) 22=a(x﹣1)2 +e(x﹣1)﹣e,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,令a(x﹣1)2+e(x﹣1)﹣e=0 的两根为t2+e(x﹣1)﹣e=0 的两根为t 1,t 2,且t 1 <t 2,则|EA|+|EB|=|EA|+|ED|=|AD|=4 ,故 E 的轨迹为以A,B为焦点的椭圆,则当x<t 1,或x>t 2 时,f (x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数 f (x)在x<1 存在一个零点;即函数 f (x)在R是存在两个零点,满足题意;且有2a=4,即a=2,c=1,b= = ,则点 E 的轨迹方程为+ =1(y≠0);③若﹣<a<0,则ln (﹣2a)<lne=1 ,当x<ln (﹣2a)时,x﹣1<ln (﹣2a)﹣1<lne ﹣1=0,(Ⅱ)椭圆C1:+ =1,设直线l :x=my+1,由PQ⊥l ,设PQ:y=﹣m(x﹣1),e x+2a<e ln (﹣2a)+2a=0,即 f ′(x)=(x﹣1)(e x+2a)>0 恒成立,故 f (x)单调递增,x+2a<e ln (﹣2a)+2a=0,即 f ′(x)=(x﹣1)(e x+2a)>0 恒成立,故 f (x)单调递增,当ln (﹣2a)<x<1 时,x﹣1<0,ex +2a>e ln (﹣2a)+2a=0,由可得(3m 1,y1),N(x2,y2 ),可得y1+y2=﹣,y1y2=﹣,2+4)y2+6my﹣9=0,设M(x2+4)y2+6my﹣9=0,设M(x 即f ′(x)=(x﹣1)(e x+2a)<0 恒成立,故 f (x)单调递减,当x>1 时,x﹣1>0,e x+2a>e ln (﹣2a)+2a=0,x+2a)<0 恒成立,故 f (x)单调递减,当x>1 时,x﹣1>0,e x+2a>e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,故当x=ln (﹣2a)时,函数取极大值,则|MN|= ?|y 1﹣y2|= ? = ? =12? ,由f (ln (﹣2a))=[ln (﹣2a)﹣2] (﹣2a)+a[ln (﹣2a)﹣1] 2=a{[ln (﹣2a)﹣2] 2+1} <0 得:函数 f (x)在R上至多存在一个零点,不合题意;A到PQ的距离为d= = ,|PQ|=2 =2 = ,④若a=﹣,则ln (﹣2a)=1,当x<1=ln (﹣2a)时,x﹣1<0,ex+2a<e ln (﹣2a)+2a=0,x+2a<e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,当x>1 时,x﹣1>0,e x+2a>e ln (﹣2a)+2a=0,则四边形MPNQ面积为S= |PQ| ?|MN|= ? ?12 ?即f ′(x)=(x﹣1)(e x+2a)>0 恒成立,故 f (x)单调递增,故函数 f (x)在R上单调递增,x+2a)>0 恒成立,故 f (x)单调递增,故函数 f (x)在R上单调递增,函数 f (x)在R上至多存在一个零点,不合题意;=24? =24 ,当m=0时,S取得最小值12,又>0,可得S<24? =8 ,⑤若a<﹣,则ln (﹣2a)>lne=1 ,当x<1 时,x﹣1<0,ex+2a<e ln (﹣2a)+2a=0,x+2a<e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,即有四边形MPNQ面积的取值范围是[12 ,8 ).当1<x<ln (﹣2a)时,x﹣1>0,ex+2a<e ln (﹣2a)+2a=0,x+2a<e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)<0 恒成立,故 f (x)单调递减,当x>ln (﹣2a)时,x﹣1>0,ex+2a>e ln (﹣2a)+2a=0,即f ′(x)=(x﹣1)(ex+2a)>0 恒成立,故 f (x)单调递增,故当x=1 时,函数取极大值,由f (1)=﹣e<0 得:函数 f (x)在R上至多存在一个零点,不合题意;综上所述, a 的取值范围为(0,+∞)第8 页共9 页深圳星火教育龙华数学组余凤老师整理证明:(Ⅱ)∵x1,x2 是f (x)的两个零点,∴y=2x 为圆C1 与C2 的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a3 ,2=0,即为 C2=0,即为 C∴f (x1)=f (x2)=0,且x1≠1,且x2≠1, 2∴1﹣a =0,∴a=1(a>0).∴﹣a= = ,令g(x)= ,则g(x1)=g(x2)=﹣a,[ 选修4-5 :不等式选讲]24.∵g′(x)= ,∴当x<1 时,g′(x)<0,g(x)单调递减;【解答】解:(Ⅰ)f (x)= ,当x>1 时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)= ﹣= ,由分段函数的图象画法,可得 f (x)的图象,如右:设h(m)= ,m>0,(Ⅱ)由|f (x)| >1,可得当x≤﹣1 时,|x ﹣4| >1,解得x>5 或x<3,即有x≤﹣1;则h′(m)= >0 恒成立,即h(m)在(0,+∞)上为增函数,当﹣1<x<时,|3x ﹣2| >1,解得x>1 或x<,即有﹣1<x<或1<x<;h(m)>h(0)=0 恒成立,即g(1+m)>g(1﹣m)恒成立,当x≥时,|4 ﹣x| >1,解得x>5 或x<3,即有x>5 或≤x<3.令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)? g(2﹣x1)>g(x1)=g(x2)? 2﹣x1>x2,综上可得,x<或1<x<3 或x>5.则|f (x)| >1 的解集为(﹣∞,)∪(1,3)∪(5,+∞).即x1+x2<2.请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分.[ 选修4-1 :几何证明选讲]【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=O,B∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°= OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=O,B TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.[ 选修4-4 :坐标系与参数方程]【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2+(y﹣1)2=a2.∴C1 为以(0,1)为圆心,以 a 为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2+y2=ρ2,y=ρsin θ,得ρ2﹣2ρsin θ+1﹣a2=0;(Ⅱ)C2:ρ=4cos θ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0 满足t an α0=2,得y=2x,∵曲线C1 与C2 的公共点都在C3 上,第9页共9 页深圳星火教育龙华数学组余凤老师整理。
2016年高考全国Ⅰ理科数学试题及答案(word解析版)
2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅰ,理1,5分】设集合{}2|430A x x x =-+<,{}|230B x x =->,则AB =( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D【解析】{|13}A x x =<<,3{|}2B x x =>,3{|3}2A B x x ∴=<<,故选D .【点评】考察集合运算和简单不等式解法,属于必考题型,难易程度:易. (2)【2016年全国Ⅰ,理2】设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B )2 (C )3 (D )2 【答案】B【解析】由题意知:1x y ==,i =1i 2x y ∴++=,故选B .【点评】察复数相等条件和复数的模,属于必考题型,难易程度:易. (3)【2016年全国Ⅰ,理3,5分】已知等差数列{}n a 前9项的和为27,108a =,则100a =( )(A )100 (B )99 (C )98 (D )97 【答案】C【解析】解法一:199599272a a S a +===,53a ∴= 1051105a a d -∴==-()100101001089098a a d ∴=+-=+=,选C . 解法二:91989272S a d ⨯=+=,即143a d +=,又10198a a d =+=,解得11,1a d =-=,()1001100119998a a d ∴=+-=-+=,故选C . 【点评】考察等差数列的基本性质、前n 项和公式和通项公式,属于必考题型,难易程度:易. (4)【2016年全国Ⅰ,理4,5分】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13(B )12 (C )23 (D )34【答案】B【解析】小明可以到达车站时长为40分钟,可以等到车的时长为20分钟,则他等车时间不超过10分钟的概率是201402P ==,故选B .【点评】考察几何概型的概率计算,第一次考察,难易程度:易.(5)【2016年全国Ⅰ,理5,5分】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A【解析】由题意知:2234m n m n ++-=,解得21m =,1030n n +>⎧∴⎨->⎩,解得13n -<<,故选A .【点评】考察双曲线的简单几何性质,属于了解层次,必考题,难易程度:易. (6)【2016年全国Ⅰ,理6,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π 【答案】A【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=解得2r =,2271431784S r r πππ∴=⋅+⋅=,故选A .【点评】考察三视图还原,球的体积表面积计算,经常考察,难易程度:中等. (7)【2016年全国Ⅰ,理7,5分】函数22xy x e =-在[2,2]-的图像大致为( )(A )(B )(C ) (D )【答案】D【解析】解法1(排除法):2()2xf x x e =-为偶函数,且2(2)887.40.6f e =-≈-=,故选D .解法2:2()2xf x x e =-为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如图),故存在实数0(0,1)x ∈,使得'0()0f x =且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时, '0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】本题结合导数利用函数奇偶性,综合考察函数解析式与函数图像之间的关系,常规题型,属于必考题,难易程度:中等.这类题型的最佳解法应为结合函数的性质,选取特殊点进行排除.(8)【2016年全国Ⅰ,理8,5分】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C【解析】解法1(特殊值法):令14,22a b c ===,,易知C 正确.解法2:当0α>时,幂函数()f x x α=在(0,)+∞上递增,故A 选项错误;当1a >时,a 越大对数函数()log a f x x =的图像越靠近x 轴,当01c <<时,log log a b c c >,故D 选项错误;c c ab ba <可化为()c a ab b<,由指数函数知,当1a >时,()x f x a =在(0,)+∞上递增,故B 选项错误;log log b a a c b c <可化为11log log abb ac c <,1111abbb b a <<<,故选C .【点评】本题综合考察幂函数、指数函数、对数函数的性质和不等式的性质,属于常考题型,难易程度:中等. 结合函数性质证明不等式是比较麻烦的,最好采用特殊值法验证排除.(9)【2016年全国Ⅰ,理9,5分】执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x = 【答案】C【解析】011x y n ===,,时,框图运行如下: 1、012x y n ===,,;2、1232x y n ===,,;3、3632x y n ===,,,故选C .【点评】考察算法中的循环结构,必考题型,难易程度:易. (10)【2016年全国Ⅰ,理10,5分】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C的标准线于D 、E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为( ) (A )2 (B )4 (C )6 (D )8【答案】B【解析】解法1排除法:当4p =时,不妨令抛物线方程为28y x =,当y =1x =,即A 点坐标为(,所以圆的半径为3r =,此时D 点坐标为(-,符合题意,故B 选项正确.解法2:不妨令抛物线方程为22y px =,D 点坐标为2P ⎛- ⎝,则圆的半径为r =,22834p r -=-,即A 点坐标为⎭,所以22=,解得4p =,故选B . 【点评】考察抛物线和圆的简单性质,必考题型,难易程度:中等. (11)【2016年全国Ⅰ,理11,5分】平面a 过正方体1111ABCD A B C D -的顶点A ,//a 平面11CB D ,a 平面ABCD m =,a 平面11ABA B n =,则m 、n 所成角的正弦值为( )(A (B )2 (C (D )13【答案】A【解析】令平面a 与平面11CB D 重合,则11m B D =,1n CD =,故直线m 、n 所成角为60o ,,故选A . 【点评】考察正方体中线面位置关系和两条直线夹角的计算,必考题型,难易程度:中等.(12)【2016年全国Ⅰ,理12,5分】已知函数()()sin 02f x x +πωϕωϕ⎛⎫=>≤ ⎪⎝⎭,,4x π=-为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B【解析】解法1(特殊值验证法)令9ω=,则周期29T π=,区间[]44ππ-,刚为94T ,且在53636ππ⎡⎤⎢⎥⎣⎦,上递减,恰好符合题意,故选B .解法2:由题意知152()24369T πππ≥-=,所以29Tπω=≤,故选B .【点评】综合考察三角函数图像的单调性、对称性、零点、周期等性质,属于必考题型,难易程度:偏难.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,理13,5分】设向量(),1m =a ,()1,2=b ,且222+=+a b a b ,则m = . 【答案】2-【解析】解法一(几何法)由向量加法的几何意义知a b ⊥,故20a b m ⋅=+=,所以2m =-;解法二(代数法)22(1)9114m m ++=+++,解得2m =-.【点评】考察向量运算,必考题型,难易程度:易.(14)【2016年全国Ⅰ,理14,5分】(52x +的展开式中,3x 的系数是 .(用数字填写答案) 【答案】10【解析】()555215522r rrrr rr T Cx C x---+==,令532r-=,解得4r =,454525210C -∴=⨯=. 【点评】考察二项式定理展开式中指定项问题,必考题型,难易程度:中等.(15)【2016年全国Ⅰ,理15,5分】设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 . 【答案】64【解析】由1310a a +=,245a a +=解得118,2a q ==,14118()()22n n n a --∴==,27321(4)21211()()22n nn n a a a ----+⋅⋅⋅+-∴⋅⋅⋅==,所以当3n =或4时,12n a a a ⋅⋅⋅有最大值64.【点评】考察等比数列的通项公式、等差数列求和及二次函数最值问题,必考题型,难易程度:中等. (16)【2016年全国Ⅰ,理16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
2016年全国高考数学(理科)试题与答案_全国1卷(解析版)
绝密 ★ 启用前2016年普通高等学校招生全国统一考试(全国1卷)数学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{}2430A x x x =-+< ,{}230x x ->,则A B =I (A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.(2)设(1i)1i x y +=+,其中x ,y 实数,则i =x y + (A )1 (B 2 (C 3 (D )2 【答案】B 【解析】试题分析:因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B.考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性.(3)已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D )97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C.考点:等差数列及其运算【名师点睛】我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )13 (B )12 (C )23 (D )34【答案】B考点:几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度由:长度、面积、体积等.(5)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A考点:双曲线的性质【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c 不是c,这一点易出错.(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 (A )17π (B )18π (C )20π (D )28π【答案】A 【解析】试题分析: 该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.(7)函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C ) (D )【答案】D考点:函数图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项. (8)若101a b c >><<,,则(A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c < 【答案】C 【解析】试题分析:用特殊值法,令3a =,2b =,12c =得112232>,选项A 错误,11223223⨯>⨯,选项B错误,2313log 2log 22<,选项C 正确,3211log log 22>,选项D 错误,故选C . 考点:指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数单调性进行比较,若底数不同,可考虑利用中间量进行比较.(9)执行右面的程序框图,如果输入的011x y n ===,,,则输出x ,y 的值满足 (A )2y x = (B )3y x = (C )4y x = (D )5y x =结束【答案】C考点:程序框图与算法案例【名师点睛】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=42,|DE|=25,则C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8【答案】B考点:抛物线的性质.【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.(11)平面α过正方体ABCD-A1B1C1D1的顶点A,α//平面CB1D1,αI平面ABCD=m,αI平面AB B1A1=n,则m、n所成角的正弦值为(A)32(B)22(C)33(D)13【答案】A【解析】试题分析:如图,设平面11CB D I 平面ABCD ='m ,平面11CB D I 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//DE B C ,连接11,CE B D ,则CE 为'm ,同理11BF 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60︒,故,m n 所成角的正弦值为32,选A. 考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.(12).已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5 【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:①()()()sin 0,0f x A x A ωϕω=+≠≠的单调区间长度是半个周期;②若()()()sin 0,0f x A x A ωϕω=+≠≠的图像关于直线x x =对称,则()0f x A= 或()0f x A=-.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = . 【答案】2- 【解析】试题分析:由222||||||+=+a b a b ,得⊥a b ,所以1120m ⨯+⨯=,解得2m =-. 考点:向量的数量积及坐标运算【名师点睛】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .(14)5(2)x x +的展开式中,x 3的系数是 .(用数字填写答案)【答案】10考点:二项式定理【名师点睛】确定二项展开式指定项的系数通常是先写出通项1r T +,再确定r 的值,从而确定指定项系数.(15)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 . 【答案】64 【解析】试题分析:设等比数列的公比为q ,由1324105a a a a +=⎧⎨+=⎩得,2121(1)10(1)5a q a q q ⎧+=⎪⎨+=⎪⎩,解得1812a q =⎧⎪⎨=⎪⎩.所以2(1)1712(1)22212118()22n n n n n n nn a a a a q--++++-==⨯=L L ,于是当3n =或4时,12n a a a L 取得最大值6264=.考点:等比数列及其应用高考中数列客观题大多具有小、巧、活的特点,在解答时要注意方程思想及数列相关性质的应用,尽量避免小题大做.(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 【答案】216000作出二元一次不等式组②表示的平面区域(如图),即可行域.考点:线性规划的应用【名师点睛】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.三.解答题:解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分为12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =(I )求C ;(II )若7,c ABC =∆的面积为33,求ABC V 的周长. 【答案】(I )C 3π=(II )57+【解析】 试题分析:(I )先利用正弦定理进行边角代换化简得得1cosC 2=,故C 3π=;(II )根据133sin C 22ab =.及C 3π=得6ab =.再利用余弦定理得 ()225a b +=.再根据7c =可得C ∆AB 的周长为57+.考点:正弦定理、余弦定理及三角形面积公式【名师点睛】三角形中的三角变换常用到诱导公式,()()sin sin ,cos cos ,A B C A B C +=+=- ()tan tan A B C +=-,就是常用的结论,另外利用正弦定理或余弦定理处理条件中含有边或角的等式,常考虑对其实施“边化角”或“角化边.”(18)(本小题满分为12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD , 90AFD ∠=o ,且二面角D -AF -E 与二面角C -BE -F 都是60o .(I )证明:平面ABEF ⊥平面EFDC ;(II )求二面角E -BC -A 的余弦值.【答案】(I )见解析(II )219- 试题解析:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E .又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF u u u r 的方向为x 轴正方向,GF u u u r 为单位长度,建立如图所示的空间直角坐标系G xyz -.由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =o ,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D 3.由已知,//F AB E ,所以//AB 平面FDC E . CA BD EF又平面CD AB I 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE-的平面角,C F 60∠E =o.从而可得(C -.所以(C E =u u u r ,()0,4,0EB =u u u r,(C 3,A =--u u u r ,()4,0,0AB =-u u u r . 设(),,n x y z =r是平面C B E 的法向量,则 C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩u u u r r u u u r r ,即040x y ⎧=⎪⎨=⎪⎩,所以可取(3,0,n =r . 设m r 是平面CD AB 的法向量,则C 00m m ⎧⋅A =⎪⎨⋅AB =⎪⎩u u u r r u u u r r ,同理可取()4m =r.则cos ,n m n m n m ⋅==r r r r r r 故二面角C E-B -A的余弦值为. 考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.(19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【答案】(I )见解析(II )19(III )19n =【解析】试题分析:(I )先确定X 的取值分别为16,17,18,18,20,21,22,,再用相互独立事件概率模型求概率,然后写出分布列;(II )通过频率大小进行比较;(III )分别求出n =9,n =20的期望,根据19=n 时所需费用的期望值小于20=n 时所需费用的期望值,应选19=n .所以X 的分布列为 X 16 17 18 19 20 21 22P 04.0 16.0 24.0 24.0 2.0 08.0 04.0(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19.(Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当19=n 时,08.0)500220019(2.0)50020019(68.020019⨯⨯+⨯+⨯+⨯+⨯⨯=EY 404004.0)500320019(=⨯⨯+⨯+.当20=n 时,04.0)500220020(08.0)50020020(88.020020⨯⨯+⨯+⨯+⨯+⨯⨯=EY 4080=. 可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n . 考点:概率与统计、随机变量的分布列【名师点睛】本题把随机变量的分布列与统计及函数结合在一起进行考查,有一定综合性但难度不是太大大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.(20). (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[试题解析:(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠,所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为: 13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N . 由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k . 则3482221+=+k k x x ,341242221+-=k k x x . 所以34)1(12||1||22212++=-+=k k x x k MN . 过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以 1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积 341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为)38,12[.考点:圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成, .其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.(21)(本小题满分12分)已知函数()()()221x f x x e a x =-+-有两个零点.(I)求a 的取值范围;(II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.【答案】(0,)+∞试题解析;(Ⅰ)'()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+.(i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln 2a b <,则 223()(2)(1)()022a fb b a b a b b >-+-=->, 故()f x 存在两个零点.(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-. 若2e a ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点. 若2e a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞.考点:导数及其应用【名师点睛】,对于含有参数的函数单调性、极值、零点问题,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;,解决函数不等式的证明问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,12OA为半径作圆.(I)证明:直线AB与e O相切;(II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.OD CBA【答案】(I)见解析(II)见解析试题解析:(Ⅰ)设E 是AB 的中点,连结OE ,因为,120OA OB AOB =∠=︒,所以OE AB ⊥,60AOE ∠=︒.在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半径,所以直线AB 与⊙O 相切. E O'DC OBA(Ⅱ)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上,所以'OO AB ⊥. 同理可证,'OO CD ⊥.所以//AB CD .考点:四点共圆、直线与圆的位置关系及证明【名师点睛】近几年几何证明题多以圆为载体命制,在证明时要抓好“长度关系”与“角度关系的转化”,熟悉相关定理与性质.该部分内容命题点有:平行线分线段成比例定理;三角形的相似与性质;四点共圆;圆内接四边形的性质与判定;切割线定理.(23)(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩(t 为参数,a >0). 在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .【答案】(I )圆,222sin 10a ρρθ-+-=(II )1⑵ 24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=Q ,224x y x ∴+=,即()2224x y -+= ②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①—②得:24210x y a -+-=,即为3C∴210a -=,∴1a =考点:参数方程、极坐标方程与直角坐标方程的互化及应用【名师点睛】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用.(24)(本小题满分10分),选修4—5:不等式选讲已知函数()123f x x x =+--.(I )在答题卡第(24)题图中画出()y f x =的图像;(II )求不等式()1f x >的解集.【答案】(I )见解析(II )()()11353⎛⎫-∞+∞ ⎪⎝⎭U U ,,,试题解析:⑴如图所示:考点:分段函数的图像,绝对值不等式的解法【名师点睛】不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式.。
2016年高考理科数学全国卷1含答案
绝密★启用前2016年普通高等学校招生全国统一考试理科数学(全国Ⅰ卷)本试题卷共5页,24题(含选考题),全卷满分150分,考试用时120分钟注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小时选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上帝非答题区域均无效。
.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5. 考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷一.选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x=-+<,{|230}B x x=->,则A B=【D】(A)3(3,)2--(B)3(3,)2-(C)3(1,2(D)3(,3)2(2)设(1i)1ix y+=+,其中x,y是实数,则i=x y+【B】(A)1(B(CD)2(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a 【C 】(A )100(B )99(C )98(D )97(4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是【B 】(A )13(B )12(C )23(D )34(5)已知方程222213x y m n m n -=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是【A 】(A )(–1,3) (B )(–1,) (C )(0,3) (D )(0,)33(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是【A 】(A )17π(B )18π(C )20π(D )28π (7)函数y =2x 2–e x在[–2,2]的图像大致为【D 】(A )(B )(C )(D)(8)若101a b c >><<,,则【C 】 (A )cca b <(B )ccab ba <(C )log log b a a c b c <(D )log log a b c c <(9)执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足【C 】入入(A )2y x =(B )3y x =(C )4y x =(D )5y x =(10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的标准线于D ,E 两点.已知|AB |=,|DE|=C 的焦点到准线的距离为【B 】 (A)2(B)4(C)6(D)8(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a ⋂平面ABCD =m ,a ⋂平面ABA 1B 1=n ,则m ,n 所成角的正弦值为【A 】(B (D)1312.已知函数()sin()(024f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为【A 】 (A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题 (21)题为必考题,每个试题考生都必须作答.第(22)题 (24)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = -2.(14)5(2x +的展开式中,x 3的系数是 10 .(用数字填写答案)(15)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为64.(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
2016全国高考数学试卷(理)(含解析)
2016年普通高等学校招生全国统一考试理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}0342<+-=x x x A ,{}032>-=x x B ,则=B A ( )A .⎪⎭⎫ ⎝⎛--23,3B .⎪⎭⎫ ⎝⎛-23,3C .⎪⎭⎫ ⎝⎛23,1D .⎪⎭⎫ ⎝⎛3,232.设()yi x i +=+11,其中x ,y 是实数,则yi x +=( ) A .1B .2C .3D .23.已知等差数列{}n a 前9项的和为27,810=a ,则=100a ( ) A .100B .99C .98D .974.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A .13B .12C .23D .345.已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .()3,1-B .()3,1-C .()3,0D .()3,06.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是( ) A .17πB .18πC .20πD .28π7.函数xe x y -=22在[]2,2-的图像大致为( )A .B .C .D .8.若10,1<<>>c b a ,则( ) A .ccb a < B .cc ba ab <C .c b c a a b log log <D .c c b a log log <9.执行右面的程序图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .x y 2=B .x y 3=C .x y 4=D .x y 5=10.以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知24=AB ,52=DE ,则C 的焦点到准线的距离为( ) A .2 B .4 C .6D .811.平面α过正方体1111D C B A A B CD -的顶点A ,α//平面11D CB , α平面m ABCD =, α平面n B A B A =11,则m 、n 所成角的正弦值为( )A .23B .22 C .33D .31 12.已知函数()()⎪⎭⎫⎝⎛≤>+=2,0sin πϕωϕωx x f ,4π-=x 为()x f 的零点,4π=x 为()x f y =图像的对称轴,且()x f 在⎪⎭⎫⎝⎛365,18ππ单调,则ω的最大值为( ) A .11 B .9C . 7D . 5第II 卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分13.设向量()1,m =,()2,1=+=,则m = . 14.()52x x +的展开式中,3x 的系数是 .(用数字填写答案)15.设等比数列{}n a 错误!未找到引用源。
(完整word版)2016年全国高考数学(理科)试题及答案-全国1卷(解析版)
范围是
(A) 1,3 (B) 1, 3 (C) 0,3 (D) 0, 3
【答案】A
考点:双曲线的性质 【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意 双曲线的焦距是 2c 不是 c,这一点易出错. (6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何
一. 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目 要求的.
(1)设集合 A x x2 4x 3 0 , x 2x 3 0 ,则 A B
(A)
3,
3 2
【答案】D
(B)
3,
3 2
(C)
1,
3 2
(D)
3 2
,
3
考点:集合的交集运算 【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般 要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数 集之间的运算,常借助数轴进行运算.
(8)若 a b 1,0 c 1,则 (A) ac bc (B) abc bac (C) a logb c b loga c (D) loga c logb c
【答案】C 【解析】
试题分析:用特殊值法,令 a 3, b
2,c
1
1
得 32
1
22 ,选项
A
1
错误, 3 22
1
2 32 ,选项
2016 高考数学(理科)试卷(全国 1 卷)
绝密 ★ 启用前
2016 年普通高等学校招生全国统一考试(全国 1 卷)
数学(理科)
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷
2016年高考理科数学全国1卷(word+精编详解)
请考生完整、准确填写以下信息姓名 准考证号考场号 座位号本 试 卷 上 交 至 各 地、州、市、师 招 办 封 存装订线 装订线2016年 普通高考绝密★启用前2016年普通高等学校招生全国统一考试(全国1卷)理科数学试题一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,3 2.设(1+i )x =1+yi ,其中x ,y 是实数,则|x +yi |=( )A.1B. 2C. 3D.2 3.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A.100 B.99 C.98 D.974.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘 坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A.13 B.12 C.23 D.345.已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A.(-1,3)B.(-1,3)C.(0,3)D.(0,3)6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几 何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π 7.函数y =2x 2-e |x |在[-2,2]的图象大致为( )8.若a >b >1,0<c <1,则( )A.a c <b cB.ab c <ba cC.a log b c <b log a cD.log a c <log b c9.执行如图所示的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A.y =2xB.y =3xC.y =4xD.y =5x10. 以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A.2B.4C.6D.811.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( ) A.32 B.22C.33D.1312.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5第II 卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分.13.设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________.14.(2x +x )5的展开式中,x 3的系数是______________(用数字填写答案).15.设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为__________.16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B 需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.三、解答题(本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤) 17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.装订线 装订线18.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥EFDC ;(2)求二面角E -BC -A 的余弦值.19.某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X 的分布列;(2)若要求P (X ≤n )≥0.5,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?20.设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于 P ,Q 两点,求四边形MPNQ 面积的取值范围.21.已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.22.如图,△OAB 是等腰三角形;∠AOB =120°.以O 为圆心,12OA 为半径作圆.(1)证明:直线AB 与⊙O 相切;(2)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB ∥CD . 23.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪一种曲线,并将C1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .24.已知函数f (x )=|x +1|-|2x -3|. (1)在图中画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.请考生完整、准确填写以下信息姓名准考证号考场号座位号本试卷上交至各地、州、市、师招办封存装订线装订线216年普通高考绝密★启用前2016年普通高等学校招生全国统一考试(全国1卷)理科数学参考答案一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案D 解析由A={x|x2-4x+3<0}={x|1<x<3},B={x|2x-3>0}=⎩⎨⎧⎭⎬⎫x⎪⎪x>32,得A∩B=⎩⎨⎧⎭⎬⎫x⎪⎪32<x<3=⎝⎛⎭⎫32,3,故选D.2.答案B 解析由(1+i)x=1+y i,得x+x i=1+y i⇒⎩⎪⎨⎪⎧x=1,x=y⇒⎩⎪⎨⎪⎧x=1,y=1.所以|x+y i|=x2+y2=2,故选B.3.答案C 解析由等差数列性质,知S9=9(a1+a9)2=9×2a52=9a5=27,得a5=3,而a10=8,因此公差d=a10-a510-5=1,∴a100=a10+90d=98,故选C.]4.答案B 解析如图所示,画出时间轴:小明到达的时间会随机的落在图中线段AB中,而当他的到达时间落在线段AC或DB时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P=10+1040=12,故选B.5.答案A 解析∵方程x2m2+n-y23m2-n=1表示双曲线,∴(m2+n)·(3m2-n)>0,解得-m2<n<3m2,由双曲线性质,知c2=(m2+n)+(3m2-n)=4m2(其中c是半焦距),∴焦距2c=2×2|m|=4,解得|m|=1,∴-1<n<3,故选A.]6.答案A 解析由题知,该几何体的直观图如图所示,它是一个球(被过球心O且互相垂直的三个平面)切掉左上角的18后得到的组合体,其表面积是球面面积的78和三个14圆面积之和,易得球的半径为2,则得S=78×4π×22+3×14π×22=17π,故选A.7.答案D 解析f(2)=8-e2>8-2.82>0,排除A;f(2)=8-e2<8-2.72<1,排除B;在x>0时,f(x)=2x2-e x,f′(x)=4x-e x,当x∈⎝⎛⎭⎫0,14时,f′(x)<14×4-e0=0,因此f(x)在⎝⎛⎭⎫0,14上单调递减,排除C,故选D.8.答案C 解析对A:由于0<c<1,∴函数y=x c在R上单调递增,则a>b>1⇒a c>b c,故A错;对B:由于-1<c-1<0,∴函数y=x c-1在(1,+∞)上单调递减,∴a>b>1⇔a c-1<b c-1⇔ba c<ab c,故B错;对C:要比较a log b c和b log a c,只需比较a ln cln b和b ln cln a,只需比较ln cb ln b和ln ca ln a,只需比较b ln b和a ln a.构造函数f(x)=x ln x(x>1),则f′(x)=ln x+1>1>0,f(x)在(1,+∞)上单调递增,因此f(a)>f(b)>0⇒a ln a>b ln b>0⇒1a ln a<1b ln b,又由0<c<1得ln c<0,∴ln ca ln a>ln cb ln b⇒b log a c>a log b c,C正确;对D:要比较log a c和log b c,只需比较ln cln a和ln cln b,而函数y=ln x在(1,+∞)上单调递增,故a>b>1⇔ln a>ln b>0⇔1ln a<1ln b,又由0<c<1得ln c<0,∴ln cln a>ln cln b⇔log a c>log b c,D错误,故选C.9.答案C 解析执行题中的程序框图,知第一次进入循环体:x=0+1-12=0,y=1×1=1,x2+y2<36;第二次执行循环体:n=1+1=2,x=0+2-12=12,y=2×1=2,x2+y2<36;第三次执行循环体:n=2+1=3,x=12+3-12=32,y=3×2=6,x2+y2>36,满足x2+y2≥36,故退出循环,输出x=32,y=6,满足y=4x,故选C.10.答案B 解析不妨设抛物线C:y2=2px(p>0),则圆的方程可设为x2+y2=r2(r>0),如图,又可设A(x0,22),D⎝⎛⎭⎫-p2,5,点A(x0,22)在抛物线y2=2px上,∴8=2px0,①点A(x0,22)在圆x2+y2=r2上,∴x20+8=r2,②点D⎝⎛⎭⎫-p2,5在圆x2+y2=r2上,∴5+⎝⎛⎭⎫p22=r2,③联立①②③,解得p=4,即C的焦点到准线的距离为p=4,故选B.11.答案A 解析如图所示,设平面CB1D1∩平面ABCD=m1,∵α∥平面CB1D1,则m1∥m,又∵平面ABCD∥平面A1B1C1D1,平面CB1D1∩平面A1B1C1D1=B1D1,∴B1D1∥m1,∴B1D1∥m,同理可得CD1∥n.装订线 装订线故m 、n 所成角的大小与B 1D 1、CD 1所成角的大小相等,即∠CD 1B 1的大小. 而B 1C =B 1D 1=CD 1(均为面对角线),因此∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A.12.答案B 解析 因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝⎛⎭⎫-π4=T 4+kT ,即π2=4k +14T =4k +14·2πω,所以ω=4k +1(k ∈N *), 又因为f (x )在⎝⎛⎭⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,由此得ω的最大值为9,故选B.]第II 卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分.13.答案 -2 解析 由|a +b |2=|a |2+|b |2,得a ⊥b ,所以m ×1+1×2=0,得m =-2.14.答案 10 解析 (2x +x )5展开式的通项公式T k +1=C k 5(2x )5-k (x )k =C k 525-k x 5-k2,k ∈{0,1,2,3,4,5},令5-k 2=3解得k =4,得T 5=C 4525-4x 5-42=10x 3,∴x 3的系数是10.]15.答案 64 解析 设等比数列{a n }的公比为q ,∴⎩⎪⎨⎪⎧a 1+a 3=10,a 2+a 4=5⇒⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎪⎨⎪⎧a 1=8,q =12,∴a 1a 2…a n =⎝⎛⎭⎫12(-3)+(-2)+…+(n -4)=⎝⎛⎭⎫1212n (n -7)=⎝⎛⎭⎫1212⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫n -722-494, 当n =3或4时,12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫n -722-494取到最小值-6,此时⎝⎛⎭⎫1212⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫n -722-494取到最大值26,所以a 1a 2…a n的最大值为64. 16.答案 216 000 解析 设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,y ≥0,x ∈N *,y ∈N*目标函数z =2 100x +900y .作出可行域为图中的四边形,包括边界,顶点为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max =2 100×60+900×100=216 000(元).三、解答题(本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤) 17.解析 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B cos A )=sin C ,2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13,从而(a +b )2=25. 所以△ABC 的周长为5+7.18.解析 (1)证明 由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC ,又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(2)解 过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标 系G -xyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3, 可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知,AB ∥EF ,所以AB ∥平面EFDC ,又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF ,由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°, 从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4),则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.19.解析 (1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而 P (X =16)=0.2×0.2=0.04;P (X =17)=2×0.2×0.4=0.16;P (X =18)=2×0.2×0.2+0.4×0.4=0.24;P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08;请考生完整、准确填写以下信息姓名 准考证号考场号 座位号本 试 卷 上 交 至 各 地、州、市、师 招 办 封 存装订线 装订线2016年 普通高考P (X =22)=0.2×0.2=0.04; 所以X 的分布列为X 16 17 18 19 20 21 22 P0.040.160.240.240.20.080.04(2)由(3)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当n =19时,EY =19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08 +(19×200+3×500)×0.04=4 040.当n =20时,EY =20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n =19时所需费用的期望值小于n =20时所需费用的期望值,故应选n =19.20.解析 (1)证明 因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为:x 24+y 23=1(y ≠0).(2)解 当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0.则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到m 的距离为2k 2+1,所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83).21.解析 (1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ).①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.②设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1) 上单调递减,在(1,+∞)上单调递增.又f (1)=-e,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0, 故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0,因此f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)上单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0. 由于f (2-x 2)=-x 2e 2-x 2+a (x 2-1)2,而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0,所以f (2-x 2)=-x 2e 2-x2-(x 2-2)e x2.设g (x )=-x e 2-x -(x -2)e x ,则g ′(x )=(x -1)(e 2-x -e x ),所以当x >1时,g ′(x )<0,而g (1)=0, 故当x >1时,g (x )<0,从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.22.证明 (1)设E 是AB 的中点,连接OE .因为OA =OB ,∠AOB =120°,所以OE ⊥AB ,∠AOE =60°,在Rt △AOE 中,OE =12AO ,即O 到直线AB 的距离等于⊙O 的半径,所以直线AB 与⊙O 相切.(2)因为OA =2OD ,所以O 不是A ,B ,C ,D 四点所在圆的圆心. 设O ′是A ,B ,C ,D 四点所在圆的圆心,作直线OO ′.由已知得O 在线段AB 的垂直平分线上,又O ′在线段AB 的垂直平分线上,所以OO ′⊥AB . 同理可证,OO ′⊥CD ,所以AB ∥CD .23.解析 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆. 将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上. 所以a =1.装订线 装订线24.解析 (1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤ 32,-x +4,x >32,y =f (x )的图象如图所示.(2)由f (x )的表达式及图象,当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5,故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x |x <13或x >5.所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x |x <13或1<x <3或x >5.。
2016年全国高考数学(理科)试题及答案-全国1卷(解析版).pdf
, x 2x 3 0 ,则
(A)3,
【参考答案】D ()
C 1,
,一般以基础题形式出现,属得分题.解决此类问题一般,如果是不等式解集、函数定义域及值域有关数
1中的负号易忽略,所以做复数题要注意运题一般难度不大,但容易出现运算错误,特别是i
算的准确性.
(3)已知等差数列a n前项的和为则
27, a10 8, a
100
1表示双曲线,且该双曲线两焦点间的距离为(C)
,所以以三视图为载体的立体几何
,高考试题中三视图一般常与几何体的表面积与体积交汇.由三(C)
( )
log c log c
a
b
( )C
D , C 选项 错误 故选 .
,一般以客观题形式出现,难度不大,求解此类
(10)以抛物线C的顶点为圆心的圆交C于A、B 两点,交C的准线于D、E 两点.已知
| AB|= 4 2 ,| DE|= 2 5 ,则C的焦点到准线的距离为
考点:抛物线的性质.。
2016年全国一卷理科数学试卷含答案
(15)设等比数列 满足 a1+a3=10,a2+a4=5,则 a1a2…an 的最大值为。 (16)某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料。生产一件产品 A 需要甲材料 1.5kg, 乙材料 1kg,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg,乙材料 0.3kg,用 3 个工时,生产一件产品 A 的利润为 2100 元,生产一件产品 B 的利润为 900 元。该企业现有甲材料 150kg,乙材料 90kg,则在不超过 600 个工时的条件下,生产产品 A、产品 B 的利润之和的最大值为元。
(A) y 2x (B) y 3x (C) y 4x (D) y 5x
(10)以抛物线 C 的顶点为圆心的圆交 C 于 A、B 两点,交 C 的标准线于 D、E 两点.已知|AB|= 4 2 ,|DE|= 2 5 ,
则 C 的焦点到准线的距离为
(A)2
(B)4
(C)6
(D)8
(11)平面 a 过正方体 ABCD-A1B1C1D1 的顶点 A,a//平面 CB1D1, a 平面 ABCD=m, a 平面 ABA1B1=n,
以这 100 台机器更换的易损零件数的频率代替 1 台机器更换的易损零件数发生的概率,记 X 表示 2 台机器 三年内共需更换的易损零件数, n 表示购买 2 台机器的同时购买的易损零件数. (I)求 X 的分布列; (II)若要求 P( X n) 0.5 ,确定 n 的最小值; (III)以购买易损零件所需费用的期望值为决策依据,在 n 19 与 n 20 之中选其一,应选用哪个?
则 m、n 所成角的正弦值为
32
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年普通高等学校招生全统一考试理科数学第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设集合{}0342<+-=x x x A ,{}032>-=x x B ,则=B A(A )(3-,23-) (B )(3-,23) (C )(1,23) (D )(23-,3)(2) 设yi x i +=+1)1(,其中x ,y 是实数,则=+yi x(A )1 (B )2 (C )3 (D )2(3) 已知等差数列{}n a 前9项的和为27,810=a ,则=100a(A )100 (B )99 (C )98 (D )97(4) 某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )31(B )21 (C )32 (D )43 (5) 已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则m 的取值范围是 (A )(1-,3) (B )(1-,3) (C )(0,3) (D )(0,3)(6) 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是328π,则它的表面积是 (A )17π (B )18π (C )20π (D )28π(7) 函数xe x y -=22在[]22,-的图象大致为(A ) (B ) (C ) (D )(8) 若1>>b a ,10<<c ,则(A )c c b a < (B )c c ba ab < (C )c b c a a b log log < (D )c c b a log log <(9) 执行右图的程序框图,如果输入的0=x ,1=y ,1=n ,则输出y x ,的值满足(A )x y 2= (B )x y 3= (C )x y 4= (D )y (10) 以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 点.已知24=AB ,52=DE ,则C (A )2 (B )4 (C )6 (D )8(11) 平面α过正方体1111D C B A ABCD -的顶点A ,α∥平面11D CB ,α∩平面m ABCD =,α∩平面n A ABB =11,则n m ,所成角的正弦值为(A )23 (B )22 (C )33 (D )31(12) 已知函数)sin()(ϕω+=x x f )2,0(πϕω≤>,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图象的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5第Ⅱ卷本卷包括必考题和选考题两部分。
第(13)~(21)题为必考题,每个试题都必须作答。
第(22)~(24)题为选考题,考生根据要求作答。
二、填空题:本题共4小题,每小题5分。
(13) 设向量)1,(m a =,)2,1(=b ,且222b a b a +=+,则=m .(14) 5)2(x x +的展开式中,3x 的系数是 .(用数字填写答案)(15) 设等比数列{}n a 满足1031=+a a ,542=+a a ,则n a a a ⋯21的最大值为 . (16) 某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件A 需要甲材料1.5kg,乙材料1kg ,用5个工时;生产一件B 需要甲材料0.5kg,乙材料0.3kg ,用3个工时.生产一件A 产品的利润为2100元,生产一件B 产品的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600工时的条件下,生产产品A 、产品B 的利润之和的最大值为 .三、解答题:解答应写出文字说明、证明过程或演算步骤。
(17) (本小题满分12分)ABC △的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2.(Ⅰ)求C ; (Ⅱ)若7=c ,ABC △的面积为233.求ABC △的周长.(18) (本小题满分12分)如图,在以F E D C B A ,,,,,为顶点的五面体中,面ABEF 为正方形,FD AF 2=,︒=∠90AFD ,且二面角E AF D --与二面角F BE C --都是60°. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角A BC E --的余弦值.(19) (本小题满分12分)某公司计划购买2台机器,该种机器使用三年后被淘汰.机器有一易损零件,在购买机器时,可以额外购买这种零件为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种三年使用期内更换的易损零件,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的频率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (Ⅰ)求X 的分布列;(Ⅱ)若要求5.0≥≤)(n X P ,确定n 的最小值;(Ⅲ)以购买易损零件所需要的期望值为决策依据,在19=n 与20=n 之中选其一,应选用哪个?(20) (本小题满分12分)设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于N M ,两点,过B 且与l 垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ 面积的取值范围.(21) (本小题满分12分)已知函数2)1()2()(-+-=x a e x x f x有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x .请考生在第(22)、(23)、(24)题中任选一题作答,如果多做,则按所做的第一题计分。
(22) (本小题满分10分)选修4-1:几何证明选讲如图,OAB △是等腰三角形,︒=∠120AOB .以O 为圆心,OA 21为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点D C ,在⊙O 上,且D C B A ,,,四点共圆,证明:CD AB ∥.(23) (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x (t 为参数,0>a ).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :θρcos 4=.(Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .(24) (本小题满分10分)选修4-5:不等式选讲已知函数321)(--+=x x x f .(Ⅰ)在答题卡第(24)题图中画出)(x f y =的图像; (Ⅱ)求不等式1)(>x f 的解集.2016年全国卷Ⅰ高考数学(理科)答案与解析一、选择题 【答案】(1)D (2)B (3)C (4)B (5)A (6)A (7)D (8)C (9)C (10)B (11)A (12)B 【解析】(1){}{}310342<<=<+-=x x x x x A ,{}⎭⎬⎫⎩⎨⎧>=>-=23032x x x x B ,∴ ⎭⎬⎫⎩⎨⎧<<=323x x B A .(2)∵yi x i +=+1)1(即yi xi x +=+1∴⎩⎨⎧==y x x 1,解得:⎩⎨⎧==11y x ,∴222=+=+y x yi x . (3)∵2792292)(955919==⨯=+=a a a a S ∴35=a ,∵810=a ∴1510510=--=a a d ,∴989010100=+=d a a .(4)如图所示,画出时间轴:小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟, 根据几何概型,所求概率21401010=+=p . (5)132222=--+nm y n m x 表示双曲线,则0)3)((22>-+n m n m ,∴223m n m <<-, ∵⎩⎨⎧=-++==22224)3()(42mn m n m c c 解得12=m ,∴31<<-n .(6)原立体图如图所示:是一个球被切掉左上角的1/8后的三视图,表面积是7/8的球面面积和三个扇形面积之和,8:208:107:507:408:308:007:30∴πππ172413248722=⨯⨯+⨯⨯=S (7)08.288)2(22>->-=e f ,排除A ; 17.288)2(22<-<-=e f ,排除B ;0>x 时,x e x x f -=22)( ,x e x x f -='4)(,当)41,0(∈x 时,0441)(0=-⨯<'e x f ∴)(x f 在)41,0(单调递减,排除C ;故选D(8)对A :由于01c <<,∴函数c y x =在R 上单调递增,因此1c ca b a b >>⇔>,A 错误;对B :由于110c -<-<,∴函数1c y x -=在()1,+∞上单调递减, ∴111c c c c a b ab ba ab -->>⇔<⇔<,B 错误对C :要比较log b a c 和log a b c ,只需比较ln ln a c b和ln ln b c a ,只需比较ln ln c b b 和ln ln ca a ,只需lnb b 和ln a a 构造函数()()ln 1f x x x x =>,则()'ln 110f x x =+>>,()f x 在()1,+∞上单调递增,因此()()110ln ln 0ln ln f a f b a a b b a a b b>>⇔>>⇔<又由01c <<得ln 0c <,∴ln ln log log ln ln a b c cb c a c a a b b<⇔<,C 正确对D :要比较log a c 和log b c ,只需比较ln ln c a 和ln ln cb而函数ln y x =在()1,+∞上单调递增,故111ln ln 0ln ln a b a b a b>>⇔>>⇔<又由01c <<得ln 0c <,∴ln ln log log ln ln a b c cc c a b >⇔>,D 错误故选C .【2°用特殊值法,令21,2,3===c b a 得212123>,排除A ;21213223⨯>⨯,排除B ;2log 221log 332<,C 正确;21log 21log 23>,排除D ;∴选C 】 (9)如下表:输出23=x ,6y =,满足4y x =,故选C . (10)以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,题目条件翻译如图:设()0,22A x ,,52p D ⎛⎫- ⎪⎝⎭, 点()0,22A x 在抛物线22y px =上,∴082px =……①点,52p D ⎛⎫- ⎪⎝⎭在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②点()0,22A x 在圆222xy r +=上,∴2208x r +=……③联立①②③解得:4p =,焦点到准线的距离为4p =.2°【如图,设抛物线方程为22y px =,圆的半径为r ,,AB DE 交x 轴于,C F 点,则22AC =,即A 点纵坐标为22,则A 点横坐标为4p ,即4OC p=,由勾股定理知2222DF OF DO r +==,2222AC OC AO r +==,即22224(5)()(22)()2p p+=+,解得4p =,即C 的焦点到准线的距离为4】(11)如图所示:∵11CB D α∥平面,∴若设平面11CB D 平面1ABCD m =,则1m m ∥又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C 平面111111A B C D B D =∴111B D m ∥,故11B D m ∥ 同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小.FαAA 1B1DC1D 1而1111B C B D CD ==(均为面对交线),因此113CD B π∠=,即11sin CD B ∠.(12)由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z()f x 在π5π,1836⎛⎫ ⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤接下来用排除法 若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫ ⎪⎝⎭单调递减二、填空题 【答案】(13)-2 (14)10 (15)64 (16)216 000 【解析】(13) 由已知得)3,1(+=+m b a ,∴2222222222113)1(+++=++⇔+=+m m b a b a ,解得2-=m .2°222b a b a +=+得b a⊥,∴0211=⨯+⨯m ,解得2-=m .(14)5(2x的展开式的通项为555255C (2)2C r r rr rr x x---=(0r =,1,2,…,5),令532r-=得4r =,所以3x 的系数是452C 10=.(15) 设等比数列{}n a 的公比为)0(≠q q ,∴⎪⎩⎪⎨⎧⎩⎨⎧=+=+⇔=+=+5105103112114231q a q a q a a a a a a ,解得⎪⎩⎪⎨⎧==2181q a ,故421-⎪⎭⎫⎝⎛=n n a ,∴⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛---+⋯+-+-⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=⋯4492721)7(214)2()3(212212121n n n n n a a a )(∴当43或=n 时,n a a a ⋯21取得最大值6426=.(16) 设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,构造线性规则约束为 **1.50.51500.3905360000x y x y x y x y x N y N ⎧+⎪+⎪⎪+⎪⎪⎨⎪⎪⎪∈⎪∈⎪⎩≤≤≤≥≥目标函数2100900z x y =+作出可行域为图中的四边形,包括边界,顶点为(60,100)(0,200)(0,0)(90,0)在(60,100)处取得最大值,210060900100216000z =⨯+⨯=三、解答题 (17)解:(I )由已知及正弦定理的,C A B B A C sin )cos sin cos (sin cos 2=+,即C B A C sin )sin(cos 2=+, 故C C C sin cos sin 2=, 可得21cos =C ,∴3π=C . (II )由已知,233sin 21=C ab , 又3π=C ,∴6=ab ,由已知及余弦定理得,7cos 222=-+C ab b a , 故1322=+b a ,从而25)(2=+b a , ∴ABC △的周长为75+(18)解:(I )由已知可得AF ⊥DF ,AF ⊥FE ,∴AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC . (II )过D 作DG ⊥EF ,垂足为G ,由(Ⅰ)知DG ⊥平面ABEF ,以G 为坐标原点,GF ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|GF ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系G-xyz .由(Ⅰ)知∠DFE 为二面角D −AF −E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=√3,可得A(1,4,0),B(−3,4,0),E(−3,0,0),D(0,0,√3), 由已知,AB ∥EF ,∴AB ∥平面EFDC ,又平面ABCD ⋂平面EFDC =CD ,故AB ∥CD ,CD ∥EF ,由BE ∥AF ,可得BE ⊥平面EFDC ,∴∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°,从而可得C (-2,0,√3),∴EC⃗⃗⃗⃗⃗ =(1,0,√3),EB ⃗⃗⃗⃗⃗ =(0,4,0),AC ⃗⃗⃗⃗⃗ =(−3,−4,√3),AB ⃗⃗⃗⃗⃗ =(−4,0,0), 设n =(x,y,z)是平面BCE 的法向量,则{n ⋅EC ⃗⃗⃗⃗⃗ =0,n ⋅EB ⃗⃗⃗⃗⃗ =0,即{x +√3z =04y =0 ,∴可取n =(3,0,−√3),设m 是平面ABCD 的法向量,则{m ⋅AC⃗⃗⃗⃗⃗ =0,m ⋅AB ⃗⃗⃗⃗⃗ =0,同理可取m =(0,√3,4),则cos 〈n ,m 〉=n⋅m|n |⋅|m |=−2√1919,故二面角E -BC -A 的余弦值为−2√1919. (19)解:(I )由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数位8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而 P (X=16)=0.2×0.2=0.04, P (X =17)=2×0.2×0.4=0.16,P (X =18)=2×0.2×0.2+0.4×0.4=0.24, P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24, P (X =20)=2×0.2×0.4+0.2×0.2=0.2, P (X =21)=2×0.2×0.2=0.08, P (X =22)= 0.2×0.2=0.04, 所以X 的分布列为(II )由(Ⅰ)知P (X ≤18)=0.44,P (X ≤19)=0.68,故n 的最小值为19.(III )记Y 表示2台机器在购买易损零件上所需的费用(单位:元),当n =19时,EY =19×200×0.68+(19×200+500) ×0.2+(19×200+2×500) ×0.08+(19×200+3×500) ×0.04=4040.当n =20时,EY =20×200×0.88+(20×200+500) ×0.08+(20×200+2×500) ×0.04=4080. 可知当n =19时所需费用的期望值小于n =20时所需费用的期望值,故应选n=19.(20)解:(I )∵|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC .∴|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |.又圆A 的标准方程为16)1(22=++y x ,从而|AD |=4,∴|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为:)(0 13422≠=+y y x .(II ) 当l 与x 轴不垂直时,设l 的方程为)(0 )1(≠-=k x k y ,),(11y x M ,),(22y x N . 由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y ,得01248)34(2222=-+-+k x k x k . 则3482221+=+k k x x ,341242221+-=k k x x ;∴34)1(12122212++=-+=k k x x k MN .过点B (1,0)且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k , ∴1344)12(4222222++=+-=k k k PQ . 故四边形MPNQ 的面积341112 212++==k PQ MP S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38 12(,. 当l 与x 轴垂直时,其方程为8,3,1===PQ MN x ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为),38 12[(21)解:(I ))2)(1()1(2)1()(a e x x a e x x f xx+-=-+-='.(i ) 设0=a ,则xe x xf )2()(-=,)(x f 只有一个零点.(ii )设0>a ,则当)1(,-∞∈x 时,0)(<'x f ;当)1(∞+∈,x 时,0)(>'x f .∴)(x f 在)1(,-∞单调递减,在)1(∞+,单调递增. 又a f e f =-=)2()1(,,取b 满足0<b 且2lnab <,则0)23()1()2(2)(22>-=-+->b b a b a b a b f , 故)(x f 存在两个零点.(iii )设0<a ,由0)(='x f 得1=x 或)2ln(a x -=.若2ea -≥,则1)2ln(≤-a ,故当)1(∞+∈,x 时,0)(>'x f ,因此)(x f 在)1(∞+,单调递增.又当1≤x 时,0)(<x f ,∴)(x f 不存在两个零点; 若2ea -<,则1)2ln(>-a ,故当))2ln(1(a x -∈,时,0)(<'x f ;当))2(ln(∞+-∈,a x 时,0)(>'x f .因此)(x f 在))2ln(1(a -,单调递减,在))2(ln(∞+-,a 单调递增.又当1≤x 时,0)(<x f ,∴)(x f 不存在两点零点. 综上,a 的取值范围为)0(∞+,.(II ) 不妨设21x x <,由(Ⅰ)知,)1(1,-∞∈x ,)1(2∞+∈,x ,)1(22,-∞∈-x ,)(x f 在)1(,-∞单调递减,∴)2()(22121x f x f x x ->⇔<+,即0)2(2<-x f . ∵22222)1()2(2-+-=--x a e x x f x ,而0)1()2()(22222=-+-=x a e x x f x , ∴22)2()2(2222x x e x e x x f -+-=--.设x xe x xex g )2()(2--+-=-,则)( )1()(2x x e e x x g --='-.∴当1>x 时,0)(<'x g ,而0)1(=g ,故当1>x 时0)(<x g . 从而0)2()(22<-=x f x g ,故221<+x x .(22)解:(I )设E 是AB 的中点,连结OE .∵OA =OB ,∠AOB =120°,∴OE ⊥AB ,∠AOE =60°. 在Rt △AOE 中,OE =12AO ,即O 到直线AB 的距离等于⊙O 的半径,∴AB 与⊙O 相切.(II ) ∵OA =2OD ,∴O 不是A ,B ,C ,D 四点所在圆的圆心.设O '是A,B,C,D 四点所在圆的圆心,作直线OO ′.由已知得O 在线段AB 的垂直平分线上,又O ′在线段AB 的垂直平分线上,∴OO ′⊥AB . 同理可证,OO ′⊥CD .∴AB ∥CD .EO'DCO BA(23)解:(I )消去参数t 得到1C 的普通方程222)1(a y x =-+.1C 是以(0,1)为圆心,a 为半径的圆.将θρθρsin cos ==y x ,代入1C 的普通方程中,得到1C 的极坐标方程为01sin 222=-+-a θρρ.(II ) 曲线21,C C 的公共点的极坐标满足方程组⎩⎨⎧==-+-θρθρρcos 401sin 222a ,若0≠ρ,由方程组得01cos sin 8cos 1622=-+-a θθθ,由已知2tan =θ,可得0cos sin 8cos 162=-θθθ,从而012=-a ,解得1-=a (舍去),1=a . 1=a 时,极点也为21,C C 的公共点,在3C 上.∴1=a .(24)解:(I )⎪⎪⎪⎩⎪⎪⎪⎨⎧>+-≤<---≤-=234231 231 4)(x x x x x x x f ,,,,)(x f y =的图像如图所示.(II ) 由)(x f 得表达式及图像,当1)(=x f 时,可得1=x 或3=x ;当1)(-=x f 时,可得31=x 或5=x ;故1)(>x f 的解集为{}31<<x x ;1)(-<x f 的解集为⎭⎬⎫⎩⎨⎧><531x x x 或丨. ∴1)(>x f 的解集为⎭⎬⎫⎩⎨⎧><<<53131x x x x 或或丨.。