制冷与低温技术原理(1)

合集下载

制冷与低温技术原理 吴业正

制冷与低温技术原理  吴业正

第一节 制冷的定义及研究内容
三、制冷与低温技术的研究内容
研究内容可以概括为以下四个方面: 研究内容可以概括为以下四个方面: 研究获得低于环境温度的方法 机理以及与此对应 方法、 (1) 研究获得低于环境温度的方法、 机理以及与此对应 循环,并对循环进行热力学的分析和计算。 的循环,并对循环进行热力学的分析和计算。 研究循环中使用的工质的性质 工质的性质, (2) 研究循环中使用的工质的性质, 从而为制冷机和低 温装置提供合适的工作介质。因工质在循环中发生状态变 化,所以工质的热物理性质是进行循环分析和计算的基础 数据。此外,为了使这些工质能实际应用,还必须掌握它 们的一般物理化学基础。 研究气体液化和分离技术。 (3) 研究气体液化和分离技术。 例如液化氧、氮、氢、 氦等气体,将空气或天然气液化、分离,均涉及一系列的 制冷和低温技术。
第二节 制冷与低温技术的应用
二、在工业及农牧业生产方面的应用
许多生产场所需要生产用空调系统,例如高温生产车 间、纺织厂、造纸厂、印刷厂、胶片厂、精密仪器车间、 精密加工车间、精密计量室、计算机房等的空调系统,为 提供恒温恒湿条件,以保证产品质量 机床、 保证产品质量或机床 各生产环境提供恒温恒湿条件 提供恒温恒湿条件 保证产品质量 机床、 仪表的精度。 仪表的精度。 机械制造中, 钢进行低温处理 钢进行低温处理,可以改变其金相组 机械制造中 , 对钢进行低温处理 织,使奥氏体变成马氏体,提高钢的硬度和强度。在机器 的装配过程中,利用低温进行零件的过盈配合 零件的过盈配合。化学工业 零件的过盈配合 中,借助于制冷,使气体液化、混合气分离 气体液化、 气体液化 混合气分离,带走化学反 应中的反应热。盐类结晶、润滑油脱脂、石油裂解、合成 橡胶、生产化肥均需要制冷。

制冷与低温技术原理

制冷与低温技术原理

制冷与低温技术原理制冷与低温技术是一门涉及物理、化学、工程学等多个领域的学科,它的发展与人类的生产生活息息相关。

本文将深入探讨制冷与低温技术的原理,希望能为读者提供一些有益的知识。

首先,我们来了解一下制冷与低温技术的基本原理。

制冷技术是利用一种叫做制冷剂的物质,通过蒸发和凝结的循环过程,将热量从一个地方转移到另一个地方的技术。

而低温技术则是在极低温度下对物体进行处理或保存的技术。

这两者的原理都是基于热力学和热传递的基本规律,通过控制温度和热量的传递,实现对物体温度的调节和控制。

在制冷技术中,制冷剂起着至关重要的作用。

制冷剂是一种能在低温下蒸发并在高温下凝结的物质,常见的制冷剂包括氨、氟利昂、氯化甲烷等。

通过控制制冷剂的蒸发和凝结过程,可以实现对物体温度的降低。

而在低温技术中,除了制冷剂的选择外,还需要考虑绝热材料、保温材料等因素,以防止热量的传递和损失。

另一个重要的原理是热力学的运用。

热力学是研究热量和功的转化关系的学科,它对制冷与低温技术的原理和应用有着重要的指导作用。

通过热力学的分析,可以确定制冷剂的选择、循环过程的设计以及系统的效率等关键参数,从而提高制冷与低温技术的性能和效率。

此外,工程学的原理也是制冷与低温技术的重要基础。

工程学包括热力学、流体力学、传热学等多个学科,它们为制冷与低温技术的设计、制造和应用提供了理论和方法。

例如,流体力学可以用来分析制冷剂在系统中的流动特性,传热学可以用来研究热量的传递规律,这些都为制冷与低温技术的实际应用提供了理论支持。

总的来说,制冷与低温技术的原理是多方面的,涉及物理、化学、工程学等多个学科的知识。

通过对制冷剂的选择、热力学的分析和工程学的应用,可以实现对物体温度的控制和调节,从而满足不同领域的需求。

希望本文能为读者对制冷与低温技术的原理有所了解,并对相关领域的研究和应用有所帮助。

CO2制冷

CO2制冷

1. CO2跨临界汽车空调与传统蒸气压缩式制冷的区别:高压侧气体无凝结换热; 系统压力高,接近10.0MPa;压比小。
2. 低压储液器:节流装置控制信号为排气压力,蒸发器出口会带液。 3. 回热器优点:可降低CO2节流前的温度,相当于降低气体冷却器出口温度T3,
提高制冷量与COP。缺点:提高吸气过热度和排气温度,吸气密度下降,单 位容积制冷量减小。总体评价:CO2回热有利。
排气压力越低。 5. T3越高,则COP越小,且提高排气压力使COP增大幅度越小。
14:10
4
3.8 CO2制冷
3.8.1 近临界和跨临界循环
1. 冷却器出口温度T3和对应的最佳排气压力,二者共同作用使COP达到最大值;
2. 梅辛特确定最佳排气压力图解法:过点3作等温线的切线,过点2作等熵线的切
线,两切线的交点O,交点O对应的比焓值等于1点的比焓值时,COP达到最大
值。
3. 工程上,采用气体冷却器出口温度T3和最佳排气压力的拟合关系式,作为控制
14依:10据。
5
3.8 CO2制冷
3.8.1 近临界和跨临界循环
1. 当气体冷却器出口温度T3降低2℃,会使最大COP值提高 达11%,对应的最佳排气压力降低达0.5MPa 。
14:10
6
3.8 CO2制冷
3.8.2 CO2跨临界循环的应用装置
力。 5. 压比很小,排气温度不会太高。 6. 因高压侧为单相气体,对充灌量也比较敏感。
14:10
9
制冷与低温技术原理
1
3.8 CO2制冷
3.8.1 近临界和跨临界循环
1. 环境性能优良。CO2是天然工质, ODP=0, GWP=1。 2. CO2临界点温度31℃。

16混合制冷剂_制冷与低温技术原理

16混合制冷剂_制冷与低温技术原理

制冷与低温技术原理混合制冷剂混合制冷剂(mixture refrigerants )两种或两种以上的纯制冷剂组成的混合溶液。

采用混合制冷剂为调节制冷剂的性质和扩大制冷剂的选择提供了更大的自由度。

非共沸混合物相变过程中,气相与液相的成分不相同,而且各自都是变化的,直到相变完成。

共沸混合物在定压相变过程中,其温度滑移为零,且气相与液相的成分相同。

近共沸混合物相变温度滑移很小的非共沸混合物,定压下相变时气相和液相成分改变很小,其热力性状很接近共沸混合物。

相变存在温度滑移存在共沸点混合物的T-x 相图定压下混合物的露点线和泡点线呈鱼形曲线。

它在定压相变(蒸发或凝结)过程中,伴随有一定的温度变化。

温度的改变量为混合物成分x 所对应的露点与泡点之差。

称该差值称为相变温度滑移。

另外,相变过程中,气相与液相的成分不相同,而且各自都是变化的,直到相变完成。

非共沸混合物的特征非共沸制冷剂在蒸发和冷凝过程中温度是变化的,其单级压缩循环的T-s 图如图所示,这就有可能较好的适应变温热源的情况,减少冷凝过程和蒸发过程中的传热温差,提高循环的热力完善度。

非共沸制冷剂单级循环的T-s 图T T kmax T kmin T 0maxT 0mins降低了制冷循环中的压比,使单级压缩能获得更低的蒸发温度。

同组成它的单一制冷剂相比,增大制冷机的制冷量。

混合制冷剂符号组分(成分)沸点/℃符号组分(成分)标准沸点/滑移温度/℃R401A R22/152a/124(53/13/34)-33.1R404A R125/143a/134a(44/52/4)-46.5/0.5R402A R125/290/22(60/2/38)-49.2R407A R32/125/134a(20/40/40)-45.8/6.6R402B(38/2/60)-47.4R407C R32/125/134a(23/25/52)-44.3/7.1R403A R290/22/21B(5/75/20)-50.0R410A R32/125 (50/50)-52.5/-R405A R22/152a/142b/C318(45/7/5.5/42.5)-27.3R507R125/143a(50/50)-46.5/0.2R406A R22/600a/142b(55/4/41)-22.0主要混合制冷剂共沸混合物的特征定压下混合物的露点线和泡点线存在一个相切点,该点称作共沸点。

制冷与低温技术原理-布雷顿制冷循环

制冷与低温技术原理-布雷顿制冷循环
将吸收式制冷系统与压缩式制冷系统做个对比:在蒸 气吸收式制冷系统中,吸收器好比压缩式制冷系统中压缩 机的吸入侧;发生器好比压缩机的排出侧;对发生器内溶 液的加热,提供提高制冷剂蒸气压力的能量。
第一节 物质相变制冷
蒸气吸收式制冷的机种以其所用的工质对区分。 当前普遍应用的工质对有两种:溴化锂-水(制冷剂是 水),氨-水(制冷剂是氨)。溴化锂吸收式制冷机用于制取 7~10℃的冷水;氨水吸收式制冷机能够制冷的温度可达20℃或更低。
第一节 物质相变制冷
图2-3 蒸气压缩式制冷的基本系统
第一节 物质相变制冷
蒸气压缩式制冷系统中,用压缩机抽出低压气并将其 提高压力后排出。气体压缩过程需要消耗能量,由输入压 缩机的机械能或电能提供。
第一节 物质相变制冷
三、蒸气吸收式制冷
蒸气吸收式制冷的基本系统如图2-4所示。整个系统 包括两个回路:制冷剂回路和溶液回路。
(2-1)
在 温 度 为 -20 ~ 0℃ 范 围 内 , 其 平 均 比 热 容 为 2.093
kJ/(kg·K)。
冰的导热系数也随温度改变。在-20℃以下,冰的导热
系 数 的 平 均 值 为 2.32 W/(m·K) 。 冰 在 0℃ 时 的 导 温 系 数
a=0.00419 W/h。
第一节 物质相变制冷
第一节 物质相变制冷
液体蒸发制冷以流体作制冷剂,通过一定的机器设备 构成制冷循环,可以对被冷却对象实现连续制冷。它是制 冷技术中使用的主要方法。
固体相变冷却则是以一定数量的固体物质作制冷剂, 作用于被冷却对象,实现冷却降温。一旦固体全部相变, 冷却过程即告终止。
第一节 物质相变制冷
1.固体相变冷却 常用的制冷剂有:冰、冰盐、干冰,以及其他固体物

制冷与低温技术原理

制冷与低温技术原理

制冷与低温技术原理制冷与低温技术是一门涉及物理、化学、工程学等多个学科知识的交叉领域,它广泛应用于工业生产、生活和科学研究等各个领域。

在现代社会中,制冷与低温技术已经成为不可或缺的一部分,它为人类的生产生活提供了便利,同时也推动了科学技术的发展。

本文将从制冷与低温技术的原理入手,对其进行深入探讨。

首先,制冷技术是利用物质的热力学性质,通过能量转移的方式将热量从一个物体转移到另一个物体,以达到降低物体温度的目的。

在制冷技术中,常用的原理包括蒸发冷却原理、压缩冷却原理和热电制冷原理等。

蒸发冷却原理是利用液体蒸发时吸收热量的特性,通过蒸发器将被制冷物体的热量吸收,从而降低其温度。

压缩冷却原理是通过压缩机将制冷剂压缩成高温高压气体,然后通过冷凝器散热,使其冷凝成液体,释放热量,从而降低被制冷物体的温度。

热电制冷原理则是利用热电材料在电场作用下产生冷热效应,实现制冷的原理。

其次,低温技术是指将物体的温度降低到较低的温度范围内,通常在零下100摄氏度以下。

低温技术的应用领域非常广泛,包括超导、超流体、超低温物理、医学冷冻、食品冷藏等多个领域。

在低温技术中,常用的原理包括制冷机制冷原理、液氮制冷原理和制冷剂制冷原理等。

制冷机制冷原理是通过制冷机将低温制冷剂制冷后传递给被制冷物体,实现降温的原理。

液氮制冷原理是利用液氮的低温特性,将其用作制冷剂,实现对被制冷物体的低温冷藏。

制冷剂制冷原理则是利用特定的制冷剂对被制冷物体进行制冷,以达到降温的目的。

综上所述,制冷与低温技术的原理涉及到多个方面的知识,包括热力学、物理学、化学等多个学科。

通过对制冷与低温技术原理的深入理解,我们可以更好地应用这些技术,推动科学技术的发展,为人类的生产生活提供更多的便利。

希望本文能够对读者有所帮助,也希望制冷与低温技术能够在未来得到更广泛的应用和发展。

制冷与低温技术原理(8.5.1)--氢液化循环

制冷与低温技术原理(8.5.1)--氢液化循环
• 循环图如何表示?
气体液化循环 --- 氢液化循环
二、带膨胀机的 氢液化循环
• 液氮预冷 • 膨胀气中压返回
气体液化循环 --- 氢液化循环
三、氦制冷氢液化循 环
氦气采用哪种循环? 氢气循环图如何表示?
气体液化循环 --- 氢液化循环
氢液化循环
一、节流氢液化循环 二、带膨胀机的氢液化循环 三、氦制冷氢液化循环
气体液化循环 --- 氢液化循环
一、节流氢液化循 环
• 一次节流 • 二次节流 • 液氮预冷
预冷温度如何确定?
气体液化循环 பைடு நூலகம்-- 氢液化循环
二、带膨胀机的氢 液化循环
• 液氮预冷 • 中温膨胀

制冷与低温原理_图文

制冷与低温原理_图文

(1-13) (1-14)
(1-15)
闭口系完成一循环后,循环中与外界交换的 热量等于与外界交换的净功量
(1-16)
4.2 开口系统的能量平衡
图1-2 开口系统流动过程中的能量平衡
图示开口系统,dτ 时间内,质量
的微
元工质流入截面1-1,质量
的微元工质流出
2-2,系统从外界得到热量 ,对机器设备作功 。
热力完善度
(1-34) (1-35)
(1-36) (1-37)
(1-38)
(1-39)
温度 T
3.热源温度可变时的逆向可逆循环—洛伦兹循环
图1-10 洛伦兹循环的T-s图
洛伦兹循环工作 在二个变温热源 间。
与卡诺循环不同 之处主要是蒸发 吸热和冷却放热 均为变温过程
熵S
(假设制冷过程和冷却过程传热温差均为Δ T )
作为制冷剂应符合的要求
1.热力学性质方面
(1) 工作温度范围内有合适的压力和压力比。 蒸发压力≧大气压力 冷凝压力不要过高 冷凝压力与蒸发压力之比不宜过大
(2) 单位制冷量q0和单位容积制冷量qv较大。 (3) 比功w和单位容积压缩功wv小,循环效率高。 (4) 等熵压缩终了温度t2不能太高,以免润滑条件恶化
是系统为维持工质流动所需的功 , 称为流动功
3.焓

用符号H表示,单位是焦耳 (J)
H= U+pV
(1-5)
比焓
用符号h表示,单位是焦耳/千克 (J/kg

(1-6)
焓是一个状态参数。
焓也可以表示成另外两个独立状态参数的函数 。 如:h=f(T,v) 或 h=f(p,T); h=f(p,v) (1-9)
借传热来传递能量无需物体的宏观移动。

制冷与低温技术原理

制冷与低温技术原理

制冷与低温技术原理制冷和低温技术是为了提供低温环境而开发出的一项技术。

制冷技术主要用于在一定的环境温度下,将热量从一个物体或空间中移除,以降低其温度。

而低温技术则是使温度进一步降低到极低的水平,通常用于实验室研究、医疗设备和工业应用等领域。

制冷技术的原理主要基于热力学和热传导的原理。

按照热力学原理,热量会从高温的物体流向低温的物体,直到两者达到热平衡。

因此,通过制冷技术,我们可以利用一些工具和材料来降低物体的温度,使其与环境温度相比更低。

通常采用的制冷原理之一是蒸发冷却。

这种原理运用液体蒸发时吸收热量的特性。

当液体(通常是制冷剂)处于较低的压力下时,其沸点也会降低,因此液体会蒸发。

在蒸发的过程中,液体吸收周围环境的热量,使得周围环境的温度降低。

这就是为什么在身体上喷洒酒精或水会感觉凉爽,因为当它们蒸发时会吸收皮肤表面的热量。

制冷技术还可以利用压缩循环来实现。

这种原理基于两种物质经历压缩和膨胀阶段时温度的变化。

在压缩阶段,制冷剂被压缩成高温高压气体,然后通过冷凝器散热,变成高温高压液体。

接下来,液体通过膨胀阀控制放松到较低的压力,以降低温度。

在膨胀的过程中,制冷剂从液体变为气体,吸收周围环境的热量,然后进入蒸发器。

在蒸发器中,制冷剂在降低周围温度的同时,释放蒸发时所吸收的热量,重复循环使用。

低温技术则需要更加复杂的工艺来实现极低的温度。

其中最常用的技术是梯级制冷。

梯级制冷依赖于多级的制冷循环,每个循环都有一个深冷剂和一个浅冷剂组成。

深冷剂的制冷剂在较低的温度下工作,将其对应的温度传递给下一个浅冷剂的制冷剂。

这样,随着级数的增加,整个系统可以实现更低的温度。

目前最低的实现的温度约为100mK,也就是0.1K。

为实现这样低的温度,需要采用超导材料和特殊的制冷手段。

另一个常用的低温技术是制冷剂的制冷。

这种方法依赖于制冷剂的相变性质。

当制冷剂压缩时,其温度会升高,然后通过冷凝器和膨胀阀实现制冷剂的降温,然后进入蒸发器。

制冷与低温技术原理吸收式制冷溴化锂

制冷与低温技术原理吸收式制冷溴化锂
调节,而且在部分负荷时,机组的热力系数并不明 显下降。
第20页/共23页
5.3.4 溴化锂吸收式制冷机的特点
(8)溴化锂溶液对金属,尤其是黑色金属有强烈的腐 蚀性,因此对金属的密封性要求非常严格。
(9)由于系统以热能作为补偿,加上溴化锂溶液的吸 收过程是放热过程,故对外界的排热量大。
(10) 一般只能制取5℃以上的冷水,多用于空气调节 及一些生产工艺用冷冻水。
(3)串并联流程:溶液分别同时进入高、低发生器, 高压发生器流出的溶液先进入低压发生器, 然后和低压发生器的溶液一起流回吸收器。
第9页/共23页
5.3.3 溴化锂吸收式制冷机的分类
按机组结构分类
(1)单筒型:机组的主要换热器(发生器、冷凝器、 蒸发器、吸收器)布置在一个筒体内。
(2)双筒型:机组的主要换热器布置在二个筒体内。 (3)三筒或多筒型:机组的主要换热器布置在三个
第2页/共23页
5.3 溴化锂吸收式制冷机
溴化锂水溶液的性质
✓ 无色液体,有咸味,无毒; ✓ 溴化锂在水中的溶解度随温度的降低而降低; ✓ 溶液中水的蒸气压力很低,比同温度下纯水的饱和蒸气
压力低很多,溶液有强烈的吸湿性; ✓ 密度比水大,比热容较小,粘度较大,表面张力大; ✓ 溴化锂水溶液的热导率随溴化锂质量分数的增大而降低,
5’ 79
2
9’
wa w0
4
(1)稀溶液的加压和预热过程
(2)发生器中的蒸气发生过程
8
(3)浓溶液的冷却与节流过程
6
(4)吸收器中的吸收过程
wr
w
第7页/共23页
5.3.3 溴化锂吸收式制冷机的分类
按用途分类:(1)冷水机组
(2)冷热水机组 (3)热泵机组

制冷与低温技术原理

制冷与低温技术原理

制冷与低温技术原理
制冷技术的原理是通过将热量从一个物体或空间转移到另一个物体或空间,从而降低物体或空间的温度。

主要有以下几种原理:
1. 蒸发冷却:利用液体蒸发过程中吸收热量的特性来降低温度。

例如,制冷机中的制冷剂在蒸发器中蒸发时吸收空气中的热量,使得空气变得冷。

2. 压缩膨胀循环:通过压缩和膨胀的过程来实现制冷。

制冷机中的制冷剂被压缩成高温高压气体,然后通过膨胀阀发生膨胀,降低温度。

3. 热电效应:在一些材料中,当电流通过时会发生热量的吸收或释放。

通过控制电流的大小和方向,可以实现温度的调节。

低温技术是在制冷技术的基础上进一步降低温度的技术。

常见的低温技术包括:
1. 冷冻机:使用制冷剂循环制冷的机器,能够将物体或空间的温度降低到较低的程度。

2. 液氮冷却:利用液氮的低沸点来实现低温。

液氮的沸点为-196°C,可以通过倒入液氮来使物体或空间迅速冷却。

3. 超导技术:超导材料在极低温度下具有无电阻的特性。

通过将材料冷却到超导温度,可以实现超导电流的高效传输。

这些制冷和低温技术被广泛应用于各个领域,如制冷设备、食品储存、科学实验、医疗保健等。

制冷与低温技术原理低温原理部分

制冷与低温技术原理低温原理部分
为人们提供各种清凉美味的饮品和冰淇淋。
环境影响
1 能源消耗
制冷设备需要大量的能源来维持低温环境, 导致能源消耗和环境污染。
2 制冷剂泄漏
制冷剂的泄漏会对大气造成破坏,加剧温室 效应,对全球气候变化做出贡献。
发展趋势
未来制冷与低温技术将更加注重能源效率和环保,采用更环保的制冷剂和高效的制冷设备来减少能源消耗和环 境影响。
总结和展望
制冷与低温技术在工业和生活中发挥着重要作用,未来的发展需要解决能源 消耗和环境污染等挑战,以创造更可持续的低温解决方案。
制冷与低温技术原理低温 原理部分
欢迎来到制冷与低温技术原理低温原理部分。本节将探讨制冷与低温技术的 定义、基本原理以及在工业和生活中的应用,以及其对环境的影响和未来发 展趋势。
定义和作用
制冷与低温技术专注于创造和维持低温环境,其作用不仅包括食品冷藏和保 鲜,还扩展到医疗、航天、化学和电子产业等各个领域。
基本原理
1 制冷剂循环
通过制冷剂在高温和低温环境中的循环流动,将热量从低温区域转移到高温区域。
2 蒸发冷却
通过将制冷剂蒸发来吸收热量,使环境变得更加凉爽。
3 压缩与膨胀
通过压缩制冷剂使其升温,然后通过膨胀使其降温,实现制冷效果。
工业应用
食品加工
低温技术用于食品冷冻、速冻、干燥和冷藏等 过程,以延长食品的保质期。
电子
低温条件下可以提高电子元件的性能和寿命。
功效。
化学工业
一些化学制程需要在低温下进行,以控制反应 速度和产率。
生活应用
1 家用冷藏冰柜
冷藏和冷冻食物,使其保持新鲜和可食用。
2 空调系统
利用制冷技术调节室内温度,提供舒适的居住环境。
3 冷饮店和冰淇淋店

制冷与低温技术原理低温原理部分

制冷与低温技术原理低温原理部分
• 性质最为复杂的低温工质
– 三个同位素 H、D、T,氕氘氚 – T在自然界不存在 – 质子数为1,中子数分别为:0、1、2 – 通常指的氢是:H2和HD的混合物 – 还有 D2,T2,DT,HT,
•2021/2/3
•28
低温工质的性质—氢的性质
• 正氢与仲氢
– 正氢Ortha- 双原子同向旋转 – 仲氢Para-双原子逆向旋转 – 正、仲比例因温度而不同,温度低仲氢多 – 正仲转化,放热反应 – 导致LH2储存困难 – 转化速度很慢
”气体氦,之后又获得了超流氦
•2021/2/3
•10
低温制冷技术的进步
• 低温的获得—低温及获得时间:
– 1911年荷兰Onnes发现了超导现象
– 1933年美国Giauque对顺磁盐绝热去磁获 得0.27K的低温
– 1963年美国Kurti用绝热退磁法获得1.2106K的低温
– 1966年Hall采用He3-He4稀释制冷获得0.1K 连 续 制 冷 , 接 着 Ford 以 同 样 的 方 法 获 得 0.025K的连续制冷
• 热能的品质与价值
– 能量转换的方向性—第二定律
• 热能与冷能
– 热量的逆向传递—有能量附加投入
– 热电,
投入?
– 热冷,
投入?
•2021/2/3
•3
热能与人工制冷
高温区
高温区
动力机 输出功
制冷机
输入功
低温区
低温区
• 非自发过程进行需要投入能量
•2021/2/3
•4
温度与能量等级
低温价值 (低 环温 境温 温度 度 1)100 %
• 低温分离
– 同时可以得到多种产品 – 连续生产 – 产品纯度高 – 设备庞大,初投资大

39下 气体绝热节流_制冷与低温技术原理

39下 气体绝热节流_制冷与低温技术原理

p1 )
hp
p1
h
0
p2
Δ hT
2 1Δ
x=0
x=1
a) T-s图
s
积分节流效应
x=1 x=0
T ΔTh
b) h-T图
气体绝热节流
T T2 -T1
p2 p1
h
dp
h(
p2
p1 )
hp
解析解
h
T P
h
1 cp
T
v T
p
v
实验公式
h
(a
0
b0
p)
273
2
T
作图法
T
p1
p2
1
气体绝热节流
思考题
微分节流效应、积分节流效应、等温 节流效应各代表什么?如何表示?
+1.30

+3.16
+0.31

-3.06
-0.3

+2.65
+0.26

-6.08
-0.596
气体绝热节流
h
T p
h
dh
c p dT
T
v T
p
v
ቤተ መጻሕፍቲ ባይዱ
dp
dh 0
h
T P
h
1 cp
T
v T
p
v
气体绝热节流
实际气体:
h
T P
h
1 cp
T
v T
p
0
h =常数 2
ΔTh
x=0
x=1
a) T-s图
s
p1
h
0
p2

低温制冷技术及其应用

低温制冷技术及其应用

低温制冷技术及其应用一、低温制冷原理低温制冷技术是一种利用低温环境实现热量转移和物质冷却的工程技术。

其基本原理是通过降低系统的温度,使热量从低温物体传向高温物体,从而实现制冷效果。

二、常见的低温制冷技术1. 机械制冷:利用机械压缩/膨胀原理,通过制冷剂的循环,实现制冷。

2. 液氮制冷:利用液氮的低温特性,通过液氮的蒸发吸热实现制冷。

3. 脉管制冷:利用脉管中冷媒的相变,实现低温制冷。

4. 热电制冷:利用热电效应实现制冷。

三、低温制冷技术的应用领域1. 科研实验:低温环境下进行物理、化学、生物等实验研究。

2. 工业生产:如金属冶炼、化学反应、能源开发等。

3. 医疗领域:如冷冻治疗、血液保存、器官移植等。

4. 航天领域:如卫星温度控制、空间探测器冷却等。

四、低温制冷技术的优缺点优点:1. 可实现低温环境,满足特殊需求。

2. 适用范围广,可用于不同领域。

3. 技术成熟,可靠性高。

缺点:1. 能耗较大,成本较高。

2. 部分技术复杂,维护困难。

3. 对环境有一定影响。

五、低温制冷技术的发展趋势1. 提高能效比,降低能耗。

2. 开发新型制冷技术,降低成本。

3. 拓宽应用领域,提高实用性。

六、低温制冷技术的前景展望随着科技的不断进步和各行业对低温环境需求的增加,低温制冷技术将有更广阔的应用前景。

未来,低温制冷技术将向更高效、更环保、更经济的方向发展。

在航天、能源、医疗等领域,低温制冷技术的市场需求将不断增长。

此外,随着新技术、新材料的发展,如纳米技术、超导材料等,也将为低温制冷技术的发展提供新的机遇和挑战。

七、低温制冷技术的实际案例分析例如,在医疗领域,低温冷冻手术是常见的应用案例。

通过使用低温冷冻技术,可以将病变组织迅速冷却至低温状态,使细胞内冰晶形成,破坏细胞结构,从而达到治疗目的。

此外,在科研实验中,低温制冷技术也广泛应用于材料科学、物理学、化学等领域的研究工作中,如超导材料的研究、量子计算的研究等。

在这些实验中,低温环境可以显著改变物质的性质,提供更多可能性来进行探索和研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

制冷与低温技术原理(1)•第一章绪论第一节制冷的定义及研究内容第二节制冷与低温技术的应用第三节制冷与低温技术的发展史•第一节制冷的定义及研究内容内容提要一、制冷与低温技术的重要性二、制冷与低温的定义三、制冷与低温技术的研究内容•第一节制冷的定义及研究内容一、制冷与低温技术的重要性在长期的生产实践和日常生活中,人们发现许多现象与温度有密切关系。

炎热条件下希望降温以提供适宜的工作和生活环境。

所有生物过程都受温度影响,低温抑制食品发酵、霉菌的增殖,对食品保鲜起重要作用。

材料的某些重要特性与温度有关,如机械材料具有冷脆性,塑料、橡胶也有同样的性质;又如金属的导电性随温度下降而提高,有些纯金属或合金当温度降到某一数值时出现超导性,人为地利用这些特性,需要人工创造低温环境。

通过降温产生物态变化,可使混合气体分离、气体液化。

扩散和化学反应与温度也有直接关系,许多生产工艺过程中温度对产品性能和•第一节制冷的定义及研究内容产品质量有很大影响。

空间和遥感遥控技术更是与制冷技术紧密联系,等等。

综上所述,随着科学技术的发展以及人民生活水平的不断提高,制冷和低温技术在工业、农业、国防、建设、科学研究等国民经济各个部门中的作用和地位日益重要。

•第一节制冷的定义及研究内容二、制冷与低温的定义制冷是指用人工的方法在一定时间和一定空间内将物体冷却,使其温度降低到环境温度以下,保持并利用这个温度。

按照所获得的温度,通常将制冷的温度范围划分为以下几个领域:120 K以上为普冷;120K~0.3K为深冷,也称为低温;0.3K以下为极低温。

由于温度范围不同,所采用的降温方式,使用的工质、机器设备以及依据的具体原理有很大差别。

•第一节制冷的定义及研究内容三、制冷与低温技术的研究内容研究内容可以概括为以下四个方面:(1)研究获得低于环境温度的方法、机理以及与此对应的循环,并对循环进行热力学的分析和计算。

(2)研究循环中使用的工质的性质,从而为制冷机和低温装置提供合适的工作介质。

因工质在循环中发生状态变化,所以工质的热物理性质是进行循环分析和计算的基础数据。

此外,为了使这些工质能实际应用,还必须掌握它们的一般物理化学基础。

(3)研究气体液化和分离技术。

例如液化氧、氮、氢、氦等气体,将空气或天然气液化、分离,均涉及一系列的制冷和低温技术。

•第一节制冷的定义及研究内容(4)研究所需的各种机械和设备,包括它们的工作原理、性能分析、结构设计。

此外还有热绝缘问题,装置的自动化问题,等等。

上述前三个方面构成制冷与低温技术原理的基本研究内容,第四方面涉及具体的设备和装置。

•第二节制冷与低温技术的应用内容提要一、在商业及人民生活方面的应用二、在工业及农牧业生产方面的应用三、在建筑工程方面的应用四、在科学研究及医疗卫生方面的应用五、在空间技术与低温物理方面的应用一、在商业及人民生活方面的应用食品冷冻冷藏和舒适性空气调节是制冷技术应用最为量大面广的领域。

商业制冷主要用于各类食品冷加工、冷藏贮存和冷藏运输,使之保质保鲜,满足各个季节市场销售的合理分配,并减少生产和分配过程中的食品损耗。

现代的食品工业,从生产、贮运到销售,有一条完整的“冷链”。

所使用的制冷装置有:各种食品冷加工装置、大型冷库、冷藏汽车、冷藏船、冷藏列车、分配性冷库,供食品零售商店、食堂、餐厅使用的小型装配式冷库、冷藏柜、各类冷饮设备、食品冷藏冷冻展示柜,直至家庭用的电冰箱。

•第二节制冷与低温技术的应用舒适性空调为人们创造适宜的生活和工作环境。

如家庭、办公室用的局部空调装置或房间空调器;大型建筑、公共场所、车站、机场、宾馆、商厦、影剧院、游乐厅、办公楼等使用的集中式空调系统;各种交通工具,如轿车、客车、飞机、火车、船舱等的空调设施;文物保藏环境的空气调节装置等等。

体育、游乐场所除采用制冷提供空气调节外,还用于建造人工冰场。

我国人工冰场原集中在东北、华北。

现在南方城市也相继建造了新型人工冰场,如广州溜冰俱乐部,冰场面积1000m2,年上冰人次已达20万;上海杰美体育中心的室内冰场,面积达1200m2。

•第二节制冷与低温技术的应用二、在工业及农牧业生产方面的应用许多生产场所需要生产用空调系统,例如高温生产车间、纺织厂、造纸厂、印刷厂、胶片厂、精密仪器车间、精密加工车间、精密计量室、计算机房等的空调系统,为各生产环境提供恒温恒湿条件,以保证产品质量或机床、仪表的精度。

机械制造中,对钢进行低温处理,可以改变其金相组织,使奥氏体变成马氏体,提高钢的硬度和强度。

在机器的装配过程中,利用低温进行零件的过盈配合。

化学工业中,借助于制冷,使气体液化、混合气分离,带走化学反应中的反应热。

盐类结晶、润滑油脱脂、石油裂解、合成橡胶、生产化肥均需要制冷。

在钢铁工业中,高炉鼓风需要用制冷的方法先除湿,再送入高炉,以降低焦铁比,提高铁水质量。

在农牧业中,利用低温对农作物种子进行低温处理;保存良种牲口的精液,以便进行人工授精。

在交通运输业中,已有采用压缩天然气的汽车。

因液化天然气存储体积小,能量密度大,今后液化天然气的发展必定更具优势。

•第二节制冷与低温技术的应用三、在建筑工程方面的应用在挖掘矿井、隧道、建造江河堤坝时,或者在泥沼、沙水中掘进时,采用冻土法保持工作面,避免坍塌和保证施工安全。

拌合混凝土时,以冰代替水,借冰的熔化热补偿水泥的固化反应热,这在制作大型混凝土构件时十分必要,可以有效地避免大型构件因散热不充分而产生内应力和裂缝等缺陷。

英吉利海底隧道全长52km,是迄今世界上最长的隧道。

列车以160 km/h的速度穿过隧道时,空气温度将上升到(49~55)℃,必须进行降温处理。

为此采用了8套冷水机组,分装在隧道两侧,供隧道降温,每套机组的能力达到(6000~7000)kW。

•第二节制冷与低温技术的应用四、在科学研究及医疗卫生方面的应用科学研究往往需要人工的低温环境。

例如:在军事科学中,为了研究高寒条件下使用的发动机、汽车、坦克、大炮的性能,需要先在相应的环境条件下作模拟试验;航天仪表、火箭、导弹中的控制仪,也需要在地面作模拟高空环境下的性能试验,低温低压环境实验装置为这类试验提供了条件。

气象科学中,云雾室需要(-45~30)℃的温度条件。

云雾室用于人工气候实验,研究雨滴、冰雹的增长过程、各种催化方法及扰动对云雾的宏观、微观影响,模拟云的物理现象,等等。

•第二节制冷与低温技术的应用在医疗卫生方面,冷冻医疗是可靠、安全、有效、易行和经济的治疗方法,特别是用于治疗恶性肿瘤。

用局部冷冻配合手术有很好的治疗效果,如:肿瘤、扁桃腺切除、心脏、皮肤、眼球移值,心脏大血管瓣膜冻存和移植,手术时采用的低温麻醉。

细胞组织、疫苗、药品的冷保存,用真空冷冻干燥法制作血干、皮干、等等。

可以说,现代医学已离不开制冷技术。

•第二节制冷与低温技术的应用五、在空间技术与低温物理方面的应用在空间技术方面,火箭推进器所需的液氧和液氢是在低温下制取的。

配合人造卫星发射和使用的红外技术也离不开低温环境。

红外探测器只有在低温条件下,才能获得优良的探测结果。

这就促进了辐射制冷器、固体制冷器、G-M 制冷机和维纳米尔制冷机的发展。

用液氮、液氦组成的低温泵可通过冷凝密闭容器内的气体使其达到高真空,在航天器的地面模拟试验中起重要作用。

而以微型制冷机与真空系统组成的低温泵,广泛应用于高真空技术,不但在空间技术中应用,而且在低温物理研究中起重要作用。

•第二节制冷与低温技术的应用在低温物理研究方面,低温技术提供的低温获得和低温保存的方法,为低温物理学的研究创造了条件。

低温声学、低温光学、低温电子学等一系列学科得到发展。

超导现象的发现和超导技术的发展也与制冷技术的发展分不开,在研究超导体时发现的约瑟夫逊效应,促进了超导技术在弱磁方面的应用。

此外,3He液化与4He超流动性中一些物理特性的研究,均在很低的温度下进行。

表1-1中列出了制冷和低温技术的一些应用范围。

•第三节制冷与低温技术的发展史内容提要一、制冷与低温的起源与发展的历程二、制冷与低温技术发展及研究的方向•第三节制冷与低温技术的发展史一、制冷与低温的起源与发展的历程人们很早就懂得冷的利用。

在我国古代就有人用天然冰冷藏食品和防暑降温。

马可·波罗在他的著作《马可·波罗游记》中,对中国制冷和造冰窖的方法有详细的记述。

1755年爱丁堡的化学教师库仑利用乙醚蒸发使水结冰。

他的学生布拉克从本质上解释了融化和气化现象,提出了潜热的概念,并发明了冰量热器,标志着现代制冷技术的开始。

在普冷方面,1834年发明家波尔金斯造出了第一台以乙醚为工质的蒸气压缩式制冷机,并正式申请了英国第6662号专利。

这是后来所有蒸气压缩式制冷机的雏型,但使用的工质是乙醚,容易燃烧。

•第三节制冷与低温技术的发展史1875年卡利和林德用氨作制冷剂,从此蒸气压缩式制冷机开始占有统治地位。

在此期间,空气绝热膨胀会显著降低空气温度的现象开始用于制冷。

1844年,医生高里用封闭循环的空气制冷机为患者建立了一座空调站,空气制冷机使他一举成名。

威廉·西门斯在空气制冷机中引入了回热器,提高了制冷机的性能。

1859年,卡列发明了氨水吸收式制冷系统,申请了原理专利。

1910年左右,马利斯·莱兰克发明了蒸气喷射式制冷系统。

20世纪,制冷技术有了更大发展。

全封闭制冷压缩机的研制成功;米里杰发现氟里昂制冷剂并用于蒸气压缩式制冷循环,以及混合制冷剂的应用;伯宁顿发明回热式除湿器循环以及热泵的出现,均推动了制冷技术的发展。

•第三节制冷与低温技术的发展史在低温方面,1877年卡里捷液化了氧气;1895年林德液化了空气,建立了空气分离设备;1898年杜瓦用液态空气预冷氢气,然后用绝热节流使氢气成为液体,温度降至20.4K;1908年卡末林·昂纳斯用液态空气和液态氢预冷氦气,再用绝热节流将氦液化,获得4.2K的低温。

杜瓦于1892年发明的杜瓦瓶,用于贮存低温液体,为低温领域的研究提供了重要条件。

1934年,卡皮查发明了先用膨胀机将氦气降温,再用绝热节流使其液化的氦液化器;1947年柯林斯采用双膨胀机于氦的预冷。

大部分的氦液化器现已采用膨胀机,在制冷技术的开发和实际使用中获得广泛的应用。

•第三节制冷与低温技术的发展史德拜和焦克分别在1926年和1927年提出了用顺磁盐绝热退磁的方法获取低温,应用此方法获得的低温现已达到(1×10-3~5×10-3)K;由库提和西蒙等提出的核子绝热去磁的方法可将温度降至更低,库提用此法于1956年获得了20×10-3K。

1951年伦敦提出并于1965年研制出的3He-4He混合液稀释制冷法,可达到4×10-3K;1950年泡墨朗切克提出的方法,利用压缩液态3He的绝热固化,达到1×10-3 K。

相关文档
最新文档