2017年苏州市平江中学初三数学二模试卷及答案

合集下载

江苏省2017届九年级第二次适应性练习(二模)数学试卷

江苏省2017届九年级第二次适应性练习(二模)数学试卷

江苏省2017届九年级数学第二次适应性练习(二模)试题一.选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B 铅笔把答题卡上相应的答案.........涂黑.) 1.﹣5的绝对值是-----------------------------------------------------------------( ▲ )A .5 B.15C .﹣5D .﹣15 2.下列算式中,正确的是----------------------------------------------------------( ▲ ) A .2x+2y=4xy B .2a 2+2a 3=2a 5 C .4a 2﹣3a 2=1 D .﹣2ba 2+a 2b=﹣a 2b 3.以下图形中对称轴的数量小于3的是--------------------------------------------( ▲ )A .B .C .D .4.如图,某工厂去年4~10月全勤人数的折线统计图,则图中统计数据的众数为--------( ▲ )A .46B .42C .32D .275.下列命题中,是假命题的是----------------------------------------------------( ▲ )A .平行四边形的两组对边分别相等B .两组对边分别相等的四边形是平行四边形C .矩形的对角线相等D .对角线相等的四边形是矩形6.如图,在⊙O 中,弦AC ∥半径OB ,若∠BOC=50°,则∠B 的大小为------------------( ▲ )A .25°B .30°C .50°D .60° 7.如图,□ABCD 的对角线交于坐标原点O .若点A 的坐标为(﹣4,2),则点C 坐标为--( ▲ )A .(2,﹣4)B .(4,2)C .(4,﹣2)D .(﹣2,﹣4)8. 某圆锥体的底面周长为4π,母线长为3,则该圆锥体的侧面积是--------------------( ▲ )A .4πB .6πC .10πD .12π第6题图第4题第7题图9.一食堂需要购买盒子存放食物,盒子有A 、B 两种型号,单个盒子的容量和价格如下表.现有15升食物需要存放且要求每个盒子要装满,由于A 型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则购买盒子所需最少费用是-------------------------------------------( ▲ )A .25元B .29元C .30元D .32元 10. 已知四边形ABCD 中,AD+DB+BC=16,则四边形ABCD 的面积的最大值是------------( ▲ )A .16B .32C ..2569二、填空题(本大题共有8小题,每空2分,共16分)11.在实数范围内分解因式:2x 2﹣8= ▲ .12.2017年无锡马拉松赛事在3月19日开跑,来自世界各地的30000名选手参加了这项国际赛事,将30000用科学记数法表示为 ▲ .13.若关于x 的一元二次方程x 2﹣x ﹣m=0的一个根是x=1,则m 的值是 ▲ .14.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为 ▲ .15.说明命题“若x >-3,则x 2>9”是假命题的一个反例,可以取x= ▲ .16.如图,MN 是⊙O 的直径,矩形ABCD 的顶点A 、D 在MN 上,顶点B 、C 在⊙O 上,若⊙O 的半径为5,AB=4,则BC边的长为 ▲ .17.如图,在平面直角坐标系中,□ABCD 的顶点B ,C 在x 轴上,A ,D 两点分别在反比例函数y=x4(x <0)与y=x1(x >0)的图象上,则□ABCD 的面积为 ▲ . 18.如图,等腰Rt △ABC 中,∠C=900,AC=BC=6,点M 在AB 上,且AM=22,点P 在射线AC 上,线段PM 绕着点P 旋转600得线段PQ ,且点Q 恰好在直线AB 上,则AP 的长为 ▲ .题图第18题图 第17题图 第16题 图。

江苏省苏州市中考数学二模考试试卷

江苏省苏州市中考数学二模考试试卷

江苏省苏州市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题,满分30分,每小题3分) (共10题;共28分)1. (3分) (2016七上·揭阳期末) 下列各对数中,数值相等的是()A . 23和32B . (-2)2和-22C . ()2和D . 2和︱-2︱2. (3分)(2019·宁江模拟) 作为世界文化遗产的长城,其总长大约为6700000m。

数据6700000用科学记数法表()A . 6.7×106B . 67×105C . 0.67×107D . 6.7×1073. (3分)(2017·宝安模拟) 下列各图中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (3分) (2015七下·成华期中) 下列运算中,正确的是()A . x3+x3=2x6B . x2•x3=x6C . x18÷x3=x6D . (x2)3=x65. (2分)(2018·三明模拟) 将一把直尺与一块三角板如图所示放置,若∠1=40°,则∠2的度数为()A . 50°B . 110°C . 130°D . 140°6. (3分)已知方程,那么的值为()A .B .C . 或D . 无解7. (2分)(2017·连云港模拟) 下列水平放置的四个几何体中,主视图与其它三个不相同的是()A .B .C .D .8. (3分) (2016七下·江阴期中) 某校春季运动会比赛中,七年级六班和七班的实力相当,关于比赛结果,甲同学说:六班与七班的得分比为4:3,乙同学说:六班比七班的得分2倍少40分,若设六班得x分,七班得y 分,则根据题意可列方程组()A .B .C .D .9. (3分)(2013·贺州) 直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C 不重合),若∠A=40°,则∠BDC的度数是()A . 25°或155°B . 50°或155°C . 25°或130°D . 50°或130°10. (3分)(2020·宿州模拟) 如图,O是平行四边形ABCD的对角线交点,E为AB中点,DE交AC于点F,若平行四边形ABCD的面积为16. 则△DOE面积是()A . 1B .C . 2D .二、填空题 (共5题;共14分)11. (3分) (2016九上·思茅期中) 分解因式:x2+4x+4=________.12. (3分)(2018·通辽) 如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为________.13. (3分)将一次函数y=﹣2x+6的图象向左平移________ 个单位长度,所得图象的函数表达式为y=﹣2x.14. (3分)(2020·上海模拟) 如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=,则CD=________.15. (2分)如图所示,已知抛物线C1 ,抛物线C2关于原点中心对称.如果抛物线C1的解析式为y=(x +2)2-1,那么抛物线C2的解析式为________.三、解答题(共8小题,满分75分) (共8题;共71分)16. (10分) (2018八上·长春期末) 先化简,再求值: ,其中17. (2分) (2015八上·永胜期末) 先化简,再求值:,其中x=2,y=﹣1.18. (8.0分) (2018七上·富顺期中) 观察下列等式将以上三个等式两边分别相加得:.(1)猜想并写出: ________ ;(2)直接写出下列各式的计算结果:① ________ ;② ________ ;(3)探究并计算:.19. (8.0分)(2019·晋宁模拟) 某校有学生3600人,在“文明我先行”的活动中,开设了“法律、礼仪、环保、感恩、互助”五门校本课程,规定每位学生必须且只能选一门,为了解学生的报名意向,学校随机调查了一些学生,并制成统计表和统计图:课程类别频数频率法律360.09礼仪550.1375环保m a感恩1300.325互助490.1225合计n 1.00(1)在这次调查活动中,学校采取的调查方式是________(填写“普查”或“抽样调查”)a=________,m =________,n=________.(2)请补全条形统计图,如果要画一个“校本课程报名意向扇形统计图”,那么“环保”类校本课程所对应的扇形圆心角应为________度;(3)请估算该校3600名学生中选择“感恩”校本课程的学生约有多少人?20. (9.0分)(2019·阳泉模拟) 如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D .(1)求证:AE是⊙O的切线;(2)若BC=2,∠D=60°时,求劣弧AC的长.21. (9.0分)(2017·淮安模拟) 水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额)22. (12分) (2016七下·槐荫期中) 如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是?23. (13.0分)(2019·婺城模拟) 如图是集体跳绳的示意图,绳子在最高处和最低处时可以近似看作两条对称的抛物线,分别记为C1和C2 ,绳子在最低点处时触地部分线段CD=2米,两位甩绳同学的距离AB=8米,甩绳的手最低点离地面高度AE=BN=米,最高点离地AF=BM=米,以地面AB、抛物线对称轴GH所在直线为x轴和y轴建立平面直角坐标系.(1)求抛物线C1和C2的解析式;(2)若小明离甩绳同学点A距离1米起跳,至少要跳多少米以上才能使脚不被绳子绊住?(3)若集体跳绳每相邻两人(看成两个点)之间最小距离为0.8米,腾空后的人的最高点头顶与最低点脚底之距为1.5米,请通过计算说明,同时进行跳绳的人数最多可以容纳几人?(温馨提醒:所有同学起跳处均在直线CD上,不考虑错时跳起问题,即身体部分均在C1和C2之间才算通过),(参考数据:=1.414,≈1.732)参考答案一、选择题(共10小题,满分30分,每小题3分) (共10题;共28分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共14分)11-1、12-1、13-1、14-1、15-1、三、解答题(共8小题,满分75分) (共8题;共71分)16-1、17-1、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、第11 页共11 页。

江苏省苏州市2017届九年级上期中数学模拟试卷(二)含答案解析

江苏省苏州市2017届九年级上期中数学模拟试卷(二)含答案解析

试卷第1页,总17页绝密★启用前江苏省苏州市2017届九年级上期中数学模拟试卷(二)含答案解析题号 一 二 得分注意事项:1.本试卷共XX 页,二个大题,满分134分,考试时间为1分钟。

请用钢笔或圆珠笔直接答在试卷上。

2.答卷前将密封线内的项目填写清楚。

一、单选题(共54分)评卷人 得分1.一元二次方程x 2+4x=0的解是( )(3分) A. x=﹣4 B. x 1=0,x 2=﹣4 C. x=4 D. x 1=0,x 2=42.用配方法解方程x 2﹣4x ﹣5=0时,原方程应变形为( )(3分) A. (x+1)2=6 B. (x+2)2=9 C. (x ﹣1)2=6 D. (x ﹣2)2=93.方程x 2=x 的解是( )(3分) A. x=1 B. x=0 C. x 1=1,x 2=0试卷第2页,总17页○………○……… D. x 1=﹣1,x 2=04.沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x ,根据题意可列方程为( )(3分) A. 20(1+2x)=80 B. 2×20(1+x)=80 C. 20(1+x 2)=80 D. 20(1+x)2=805.若抛物线y=ax 2经过P(1,﹣2),则它也经过( )(3分) A. (2,1) B. (﹣1,2) C. (1,2) D. (﹣1,﹣2)6.抛物线y=2(x ﹣3)2+1的顶点坐标是( )(3分) A. (3,1) B. (﹣3,1) C. (1,﹣3) D. (1,3)7.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则k 的取值范围是( )(3分) A. k >﹣1 B. k >﹣1且k≠0 C. k <1 D. k <1且k≠08. (3分)A. 0试卷第3页,总17页……○……………………装…………○…………订…………○…………线校:___________姓名:___________班级:___________考号:___________……○……………………装…………○…………订…………○…………线 B. 1 C. 2 D. 39.已知抛物线y=ax 2+bx+c 的图象如图所示,则|a ﹣b+c|+|2a+b|=( )(3分)A.B.C.D.10.(3分) A. 3个 B. 4个 C. 5个 D. 6个 11. (3分)12. (3分)试卷第4页,总17页………外……………装…………○…………订…………○…………线…………○……※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………内……………装…………○…………订…………○…………线…………○……13.(3分)14.(3分)15.(3分)16.(3分)17.(3分)18.(3分)二、解答题(共80分)评卷人 得分19.(8分)试卷第5页,总17页……内…………○…………装…………○…………订…………○…………线…………○……学校:___________姓名:___________班级:___________考号:___________……外…………○…………装…………○…………订…………○…………线…………○……20.(8分)21.(8分)22.(8分)23.(8分)24.(8分)。

中考数学二模试卷含答案解析 4

中考数学二模试卷含答案解析 4

江苏省苏州市市区中考数学一模试卷一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.)1.的倒数是()A.﹣3 B. C.3 D.2.下列计算正确的是()A.a2+a2=a4B.(a2)3=a5C.2a﹣a=2 D.(ab)2=a2b23.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:1 2 3 4 5每天使用零花钱(单位:元)人数 2 5 8 9 6则这30名同学每天使用的零花钱的众数和中位数分别是()A.4,3 B.4,3.5 C.3.5,3.5 D.3.5,44.已知x2﹣3x+1=0,则的值是()A.B.2 C.D.35.如图,已知AB、AD是⊙O的弦,∠B=30°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=20°,则∠BAD的度数是()A.30°B.40°C.50°D.60°6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=7.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.48.对于正数x,规定f(x)=,例如f(3)=,计算…f (998)+f(999)+f(1000)的结果是()A.999 B.999.5 C.1000 D.1000.59.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2C.cm2D.cm210.如图,OA在x轴上,OB在y轴上,OA=4,OB=3,点C在边OA上,AC=1,⊙P的圆心P 在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k 的值是()A. B. C. D.﹣2二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应题中横线上. 11.分解因式:a2﹣a=.12.函数y=中,自变量x的取值范围是.13.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为.14.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于”的概率是.15.圆锥底面圆的半径为3cm,其侧面展开图的圆心角是120°,则圆锥母线长为.16.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为.17.如图,CA⊥AB,DB⊥AB,已知AC=2,AB=6,点P射线BD上一动点,以CP为直径作⊙O,点P运动时,若⊙O与线段AB有公共点,则BP最大值为.18.如图(1)所示,E为矩形ABCD的边AD上一点动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①0<t≤5时,y=;②当t=6秒时,△ABE≌△PQB;③cos∠CBE=;④当t=秒时,△ABE∽△QBP;⑤线段NF所在直线的函数关系式为:y=﹣4x+96.其中正确的是.(填序号)三、解答题(本大题共11小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.计算:﹣1+(﹣2)3+|﹣3|﹣20.解不等式组:.21.先化简,再求值:(+)÷,其中a=+1.22.解分式方程:﹣.23.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.24.某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).25.如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).26.如图,在直角坐标系xOy中,一直线y=2x+b经过点A(﹣1,0)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OB=OD,过D点作DC⊥x轴交直线y=2x+b于C点,反比例函数y=(x>O)经过点C.(1)求b,k的值;(2)求△BDC的面积;(3)在反比例函数y=(x>0)的图象上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.27.如图,己知MN是⊙O的直径,P为⊙O上一点,NP平分∠MNQ,且NQ⊥PQ.(1)求证:直线PQ是⊙O的切线;(2)若⊙O的半径R=2,NP=2,求NQ的长.28.如图,二次函数y=ax2+x+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,己知点A(﹣1,0),点C(0,2)(1)求抛物线的函数解析式;(2)若点D是抛物线在第一象限的部分上的一动点,当四边形OCDB的面积最大时,求点D的坐标;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以B,C,E,F为顶点的四边形是平行四边形时,写出满足条件的所有点E的坐标.29.如图①,四边形ABCD中,AD∥BC,DC⊥BC,AD=6cm,DC=8cm,BC=12cm.动点M在CB上运动,从C点出发到B点,速度每秒2cm;动点N在BA上运动,从B点出发到A点,速度每秒1cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).(1)求线段AB的长.(2)当t为何值时,MN∥CD?(3)设三角形DMN的面积为S,求S与t之间的函数关系式.(4)如图②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t 值;若不存在,请说明理由.江苏省苏州市市区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.)1.的倒数是()A.﹣3 B. C.3 D.【考点】倒数.【分析】根据乘积是1的两数互为倒数,即可得出答案.【解答】解:根据题意得:﹣×(﹣3)=1,可得﹣的倒数为﹣3.故选A.【点评】本题考查了倒数的性质:乘积是1的两数互为倒数,可得出答案,属于基础题.2.下列计算正确的是()A.a2+a2=a4B.(a2)3=a5C.2a﹣a=2 D.(ab)2=a2b2【考点】幂的乘方与积的乘方;合并同类项.【分析】结合选项分别进行幂的乘方和积的乘方、合并同类项等运算,然后选择正确选项.【解答】解:A、a2+a2=2a2,原式错误,故本选项错误;B、(a2)3=a6,原式错误,故本选项错误;C、2a﹣a=a,原式错误,故本选项错误;D、(ab)2=a2b2,原式正确,故本选项正确.故选D.【点评】本题考查了幂的乘方和积的乘方、合并同类项等知识,掌握运算法则是解答本题的关键.3.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:1 2 3 4 5每天使用零花钱(单位:元)人数 2 5 8 9 6则这30名同学每天使用的零花钱的众数和中位数分别是()A.4,3 B.4,3.5 C.3.5,3.5 D.3.5,4【考点】众数;中位数.【分析】利用众数的定义可以确定众数在第三组,由于张华随机调查了20名同学,根据表格数据可以知道中位数是按从小到大排序,第15个与第16个数的平均数.【解答】解:∵4出现了9次,它的次数最多,∴众数为4.∵张华随机调查了30名同学,∴根据表格数据可以知道中位数=(3+4)÷2=3.5,即中位数为3.5.故选B.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.已知x2﹣3x+1=0,则的值是()A.B.2 C.D.3【考点】分式的化简求值.【分析】先根据x2﹣3x+1=0得出x2=3x﹣1,再代入分式进行计算即可.【解答】解:∵x2﹣3x+1=0,∴x2=3x﹣1,∴原式==.故选A.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.5.如图,已知AB、AD是⊙O的弦,∠B=30°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=20°,则∠BAD的度数是()A.30°B.40°C.50°D.60°【考点】圆周角定理.【分析】连接OA,根据圆的半径相等证明∠OAB=∠B和∠OAD=∠D,得到答案.【解答】解:连接OA,∵OA=OB,∴∠OAB=∠B=30°,∵OA=OD,∴∠OAD=∠D=20°,∴∠BAD=∠OAB+∠OAD=50°,故选:C.【点评】本题考查的是圆的性质和等腰三角形的性质,掌握圆的半径相等和等边对等角是解题的关键.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.7.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4a(c+2)=0,b2﹣4ac=8a>0,据此解答即可.③首先根据对称轴x=﹣=﹣1,可得b=2a,然后根据b2﹣4ac=8a,确定出a的取值范围即可.④根据对称轴是x=﹣1,而且x=0时,y>2,可得x=﹣2时,y>2,据此判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,∴△=0,即b2﹣4a(c+2)=0,∴b2﹣4ac=8a>0,∴结论②不正确;∵对称轴x=﹣=﹣1,∴b=2a,∵b2﹣4ac=8a,∴4a2﹣4ac=8a,∴a=c+2,∵c>0,∴a>2,∴结论③正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论④正确.综上,可得正确结论的个数是2个:③④.故选:B.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).8.对于正数x,规定f(x)=,例如f(3)=,计算…f (998)+f(999)+f(1000)的结果是()A.999 B.999.5 C.1000 D.1000.5【考点】分式的加减法.【专题】新定义.【分析】通过计算f(2)+f()=1,f(3)+f()=1,找出规律即可得出结论.【解答】解:∵f(1)==,f(2)+f()=1,f(3)+f()=1,∴原式=[f()+f(1000)]+[f()+f(999)]+…+[f()+f(2)]+f(1)=999+=999.5.故选B.【点评】本题考查的是分式的加减,根据题意找出规律是解答此题的关键.9.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2C.cm2D.cm2【考点】二次函数的应用;展开图折叠成几何体;等边三角形的性质.【分析】如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6﹣2x,∴纸盒侧面积=3x(6﹣2x)=﹣6x2+18x,=﹣6(x﹣)2+,∴当x=时,纸盒侧面积最大为.故选C.【点评】本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.10.如图,OA在x轴上,OB在y轴上,OA=4,OB=3,点C在边OA上,AC=1,⊙P的圆心P 在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k 的值是()A. B. C. D.﹣2【考点】切线的性质;反比例函数图象上点的坐标特征.【专题】计算题.【分析】作PM⊥AB于M,PN⊥x轴于N,如图,设⊙P的半径为r,根据切线的性质得PM=PN=r,再利用面积法求出r=,接着证明△OBC为等腰直角三角形得到NC=NB=,于是得到P点坐标为(,﹣),然后把P(,﹣)代入y=可求出k的值.【解答】解:作PM⊥AB于M,PN⊥x轴于N,如图,设⊙P的半径为r,∵⊙P与边AB,AO都相切,∴PM=PN=r,∵OA=4,OB=3,AC=1,∴AB==5,∵S△PAB+S△PAC=S△ABC,∴•5r+•r•1=•3•1,解得r=,∴BN=,∵OB=OC,∴△OBC为等腰直角三角形,∴∠OCB=45°,∴NC=NB=,∴ON=3﹣=,∴P点坐标为(,﹣),把P(,﹣)代入y=得k=×(﹣)=﹣.故选A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了反比例函数图象上点的坐标特征.二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应题中横线上. 11.分解因式:a2﹣a=a(a﹣1).【考点】因式分解-提公因式法.【专题】因式分解.【分析】这个多项式含有公因式a,分解因式时应先提取公因式.【解答】解:a2﹣a=a(a﹣1).【点评】本题考查了提公因式法分解因式,比较简单,注意不要漏项.12.函数y=中,自变量x的取值范围是x≥﹣1.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为 6.7×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故答案为:6.7×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.盒中卡片已经搅匀.从中随机地抽出1张卡片,则“该卡片上的数字大于”的概率是.【考点】概率公式.【分析】让1到10中大于的数的个数除以数的总个数即为所求的概率.【解答】解:1,2,3,4,5,6,7,8,9,10种,大于的数为:6,7,8,9,10;大于的概率是=.【点评】此题考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.关键是得到1到10中大于的数的个数.15.圆锥底面圆的半径为3cm,其侧面展开图的圆心角是120°,则圆锥母线长为9.【考点】圆锥的计算.【分析】利用圆锥的底面周长等于圆锥的侧面展开图的弧长即可求解.【解答】解:设母线长为l,则=2π×3解得:l=9.故答案为:9.【点评】考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为6.【考点】旋转的性质;相似三角形的判定与性质.【专题】几何图形问题.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C 是解题关键.17.如图,CA⊥AB,DB⊥AB,已知AC=2,AB=6,点P射线BD上一动点,以CP为直径作⊙O,点P运动时,若⊙O与线段AB有公共点,则BP最大值为.【考点】直线与圆的位置关系.【分析】首先判断当AB与⊙O相切时,PB的值最大,设AB与⊙O相切于E,连接OE,则OE⊥AB,过点C作CF⊥PB于F,由CA⊥AB,DB⊥AB,得到AC∥OE∥PB,四边形ABPC是矩形,证得CF=AB=6,在直角三角形PCF中,由勾股定理列方程求解.【解答】解:当AB与⊙O相切时,PB的值最大,如图,设AB与⊙O相切于E,连接OE,则OE⊥AB,过点C作CF⊥PB于F,∵CA⊥AB,DB⊥AB,∴AC∥OE∥PB,四边形ABPC是矩形,∴CF=AB=6,∵CO=OP,∴AE=BE,设PB=x,则PC=2OE=2+x,PF=x﹣2,∴(x+2)2=(x﹣2)2+62,解得;x=,∴BP最大值为:,故答案为:.【点评】本题考查了直线与圆的位置关系,梯形的中位线,勾股定理矩形的判定和性质,解题的关键是知道当PB取最大值时,AB与圆相切.18.如图(1)所示,E为矩形ABCD的边AD上一点动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①0<t≤5时,y=;②当t=6秒时,△ABE≌△PQB;③cos∠CBE=;④当t=秒时,△ABE∽△QBP;⑤线段NF所在直线的函数关系式为:y=﹣4x+96.其中正确的是①②④.(填序号)【考点】二次函数综合题.【分析】根据图(2)可以判断三角形的面积变化分为四段,①当点P在BE上运动,点Q到达点C时;②当点P到达点E时,点Q静止于点C,从而得到BC、BE的长度;③点P到达点D 时,点Q静止于点C;④当点P在线段CD上,点Q仍然静止于点C时.【解答】解:当0<t≤5时,点P在线段BE上运动.如图(1)所示:过点P作PF⊥BQ,垂足为F.S△BPQ=PF•BQ=BP•sin∠CBE•BQ=t•sin∠CBE•2t=sin∠CBEt2.将(5,20)代入得25sin∠CBE=20,解得:sin∠CBE=,0<t≤5时,y=,故①正确.∵sin∠CBE=,∴COS∠CBE=,故③错误.由图(2)可知:当t=5时,点Q与点C重合,当t=10时,点P与点E重合,则BC=10,BE=10.则BC=BE.∵∠AEB=∠CBE,∴AB=BEsin∠AEB=10×=8.在△ABE中,AE==6.当t=6时,如图2所示:在△ABE与△PQB中,,∴△ABE≌△PQB(SAS).故②正确.当t=秒时,如图3所示:∵当t=秒时,PD=﹣14=,∴PQ=8﹣=7.5.∴.又∵,∴.又∵∠BQP=∠A,∴△AEB∽△QBP.故④正确.由DC=8,可知点F(22,0)设NF的解析式为y=kx+b.将N、F的坐标代入得:,解得:k=﹣5,b=110.∴NF所在直线解析式为y=﹣5x+110.故⑤错误.故答案为:①②④.【点评】本题考查了动点问题的函数图象,根据图(2)判断出点P到达点E用了10s,点Q到达点C用了5s是解题的关键,也是本题的突破口三、解答题(本大题共11小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.计算:﹣1+(﹣2)3+|﹣3|﹣【考点】负整数指数幂;绝对值;有理数的乘方;零指数幂.【专题】计算题.【分析】按照实数的运算法则依次计算,注意:﹣1=9,()0=1.【解答】解:原式=9﹣8+3﹣1=3.【点评】本题需注意的知识点是:a﹣p=,任何不等于0的数的0次幂是1.20.解不等式组:.【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x≤2,解不等式②得:x>1.5,∴不等式组的解集为1.5<x≤2.【点评】本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.21.先化简,再求值:(+)÷,其中a=+1.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【解答】解:原式=÷=•=,当a=+1时,原式==1+.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.解分式方程:﹣.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:﹣(x﹣3)2﹣2x(x﹣3)=3x2,整理得:﹣x2+6x﹣9﹣2x2+6x=3x2,即2x2+6x+3=0,解得:x==,经检验x=都为分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【考点】正方形的判定;全等三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)由E是AD的中点,AF∥BC,易证得△AEF≌△DEB,即可得AD=BD,又由在△ABC中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=BC,即可证得:AD=AF;(2)由AF=BD=DC,AF∥BC,可证得:四边形ADCF是平行四边形,又由AB=AC,根据三线合一的性质,可得AD⊥BC,AD=DC,继而可得四边形ADCF是正方形.【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF;(2)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.【点评】此题考查了正方形的判定、平行四边形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.24.某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由A是36°,A的人数为20人,即可求得这次被调查的学生总人数;(2)由(1),可求得C的人数,即可将条形统计图(2)补充完整;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好同时选中甲、乙两位同学的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)∵A是36°,∴A占36°÷360=10%,∵A的人数为20人,∴这次被调查的学生共有:20÷10%=200(人),故答案为:200;(2)如图,C有:200﹣20﹣80﹣40=60(人),(3)画树状图得:∵共有12种等可能的结果,恰好同时选中甲、乙两位同学的有2种情况,∴恰好同时选中甲、乙两位同学的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25.如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)过点B作BE⊥AD于点E,然后根据AB=40m,∠A=30°,可求得点B到AD的距离;(2)先求出∠EBD的度数,然后求出AD的长度,然后根据∠A=30°即可求出CD的高度.【解答】解:(1)过点B作BE⊥AD于点E,∵AB=40m,∠A=30°,∴BE=AB=20m,AE==20m,即点B到AD的距离为20m;(2)在Rt△ABE中,∵∠A=30°,∴∠ABE=60°,∵∠DBC=75°,∴∠EBD=180°﹣60°﹣75°=45°,∴DE=EB=20m,则AD=AE+EB=20+20=20(+1)(m),在Rt△ADC中,∠A=30°,∴DC==(10+10)m.答:塔高CD为(10+10)m.【点评】本题考查了解直角三角形的应用,难度适中,解答本题的关键是根据仰角构造直角三角形并解直角三角形.26.如图,在直角坐标系xOy中,一直线y=2x+b经过点A(﹣1,0)与y轴正半轴交于B点,在x轴正半轴上有一点D,且OB=OD,过D点作DC⊥x轴交直线y=2x+b于C点,反比例函数y=(x>O)经过点C.(1)求b,k的值;(2)求△BDC的面积;(3)在反比例函数y=(x>0)的图象上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可求得b,进而求得D的坐标,根据D的坐标求得C的坐标,代入反比例函数的解析式即可求得k的值;(2)根据三角形的面积公式求得即可;(3)过点C作BD的平行线,交反比例函数y=(x>0)的图象于P,此时△BDP与△BDC同底等高,所以△BDP与△BDC面积相等,先求得直线BD的解析式,进而求得直线PC的解析式,然后联立方程即可求得P的坐标.【解答】解:(1)∵直线y=2x+b经过点A(﹣1,0),∴0=﹣2+b,解得b=2,∴直线的解析式为y=2x+2,由直线的解析式可知B(0,2),∵OB=OD=2∴D(2,0),把x=2代入y=2x+2得,y=2×2+2=6,∴C(2,6),∵反比例函数y=(x>O)经过点C,∴k=2×6=12;(2)S△BDC=DC×OD=×6×2=6;(3)过点C作BD的平行线,交反比例函数y=(x>0)的图象于P,此时△BDP与△BDC同底等高,所以△BDP与△BDC面积相等,∵B(0,2),D(2,0),∴直线BD的解析式为y=﹣x+2,。

[真卷]2017年江苏省苏州市姑苏区平江中学中考数学二模试卷含参考答案

[真卷]2017年江苏省苏州市姑苏区平江中学中考数学二模试卷含参考答案

2017年江苏省苏州市姑苏区平江中学中考数学二模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)的相反数是()A.B.C.D.2.(3分)2015年12月27日,苏州环古城河健康步道全线开通了.环古城河健身步道全程15 500m,沿护城河内岸环绕苏州古城.将数据15500用科学记数法可表示为()A.0.155×104B.0.155×105C.1.55×104D.1.55×1053.(3分)下列运算正确的是()A.x4+x2=x6B.x2•x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)24.(3分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°5.(3分)我校为了解七年级男同学参加课外体育运动的情况,随机调查了50名七年级男同学,其中,参加篮球运动的有14人,乒乓球运动的有11人,足球运动的有13人,其余参加羽毛球运动.则参加羽毛球运动的频率是()A.0.28 B.0.28 C.0.26 D.0.246.(3分)某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()A.15,15 B.17.5,15 C.20,20 D.15,207.(3分)若点A(﹣4,y1),B(﹣1,y2),C(1,y3)在抛物线y=﹣(x+2)2﹣1上,则()A.y1<y3<y2 B.y2<y1<y3C.y3<y2<y1D.y3<y1<y28.(3分)如图,在Rt△ABC中,∠B=90°,AB=2,以B为圆心,AB为半径画弧,恰好经过AC的中点D,则弧AD与线段AD围成的弓形面积是()A.B.C.D.9.(3分)如图,从坡上建筑物AB观测坡底建筑物CD.从A点处测得C点的俯角为45o,从B点处测得D点的俯角为30o.已知建筑物AB的高度为10m,AB 与CD的水平距离是OD=15m,则CD的高度为()A.(5﹣5)m B.(10﹣10)m C.(10﹣5)m D.(10﹣5)m 10.(3分)如图,在矩形ABCD中,AB<AD,E为AD边上一点,且AE=AB,连结BE,将△ABE沿BE翻折,若点A恰好落在CE上点F处,则∠CBF的余弦值为()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.(3分)若式子在实数范围内有意义,则x的取值范围是.12.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,若DE=2cm,则BC=cm.13.(3分)分解因式:3x2﹣12=.14.(3分)在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间为8小时的人数是.15.(3分)超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是分.16.(3分)关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为.17.(3分)如图,直线l1:y=2x﹣6与两坐标轴分别交于A、B两点,点M在直线l1上,且到两坐标轴的距离相等.现将直线l1绕点M按顺时针方向旋转得到直线l2,当直线l2与直线l1第一次成45o夹角时,直线l2的函数表达式为.18.(3分)如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(5分)计算:|﹣2|﹣+(3﹣π)0.20.(5分)解不等式组:.21.(6分)先化简,再求值:(1﹣)÷,其中x=﹣1.22.(6分)甲、乙两公司各为“见义勇为基金会”捐款30 000元,已知乙公司比甲公司人均多捐20元,且甲公司的人数比乙公司的人数多20%.问甲、乙两公司各有多少人?23.(8分)如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.24.(8分)平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.25.(8分)如图,已知A(m,)、B(n,2)是一次函数y=ax+b与反比例函数y=的两个交点,且位于第二象限内,过A作AC⊥x轴于C,过B分别作BD ⊥x轴于D,BE⊥AC于E,△ABE的面积为.(1)求一次函数与反比例函数的表达式;(2)若点P(t,0)为x轴上的一点,连结AP、BP,当∠APB>90°时,试求t 的取值范围.26.(10分)如图,在Rt△ABC中,∠C=90°,点D、E、F分别在AC、BC、AB 边上,以AF为直径的⊙O恰好经过D、E,且DE=EF.(1)求证:BC为⊙O的切线;(2)若∠B=40°,求∠CDE的度数;(3)若CD=2,CE=4,求⊙O的半径及线段BE的长.27.(10分)已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点.经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图1,连接DE,将△BDE以DE为轴翻折,点B的对称点为点G,当点G 恰好落在抛物线的对称轴上时,求G点的坐标;(3)①如图2,连接AD,点P为AD上一个动点,连结BP、PE,则BP+PE的最小值为;②如图3,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.28.(10分)如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P 运动的时间为t(秒).(1)求点N落在BD上时t的值;(2)直接写出点O在正方形PQMN内部时t的取值范围;(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;(4)直接写出直线DN平分△BCD面积时t的值.2017年江苏省苏州市姑苏区平江中学中考数学二模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)的相反数是()A.B.C.D.【解答】解:根据相反数的定义,得的相反数是﹣.故选D.2.(3分)2015年12月27日,苏州环古城河健康步道全线开通了.环古城河健身步道全程15 500m,沿护城河内岸环绕苏州古城.将数据15500用科学记数法可表示为()A.0.155×104B.0.155×105C.1.55×104D.1.55×105【解答】解:15500=1.55×104,故选:C.3.(3分)下列运算正确的是()A.x4+x2=x6B.x2•x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)2【解答】解:x4与x2不是同类项,不能合并,A错误;x2•x3=x5,B错误;(x2)3=x6,C正确;x2﹣y2=(x+y)(x﹣y),D错误,故选:C.4.(3分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠3=180°﹣90°﹣∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:C.5.(3分)我校为了解七年级男同学参加课外体育运动的情况,随机调查了50名七年级男同学,其中,参加篮球运动的有14人,乒乓球运动的有11人,足球运动的有13人,其余参加羽毛球运动.则参加羽毛球运动的频率是()A.0.28 B.0.28 C.0.26 D.0.24【解答】解:参加羽毛球运动的频数是50﹣14﹣11﹣13=12,频率是:12÷50=0.24.故选:D.6.(3分)某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()A.15,15 B.17.5,15 C.20,20 D.15,20【解答】解:共有数据12个,第6个数和第7个数分别是15元,20元,所以中位数是:(15+20)÷2=17.5(元);捐款金额的众数是15元.故选:B.7.(3分)若点A(﹣4,y1),B(﹣1,y2),C(1,y3)在抛物线y=﹣(x+2)2﹣1上,则()A.y1<y3<y2 B.y2<y1<y3C.y3<y2<y1D.y3<y1<y2【解答】解:y1=﹣(﹣4+2)2﹣1=﹣3,y2=﹣(﹣1+2)2﹣1=﹣,y3=﹣(1+2)2﹣1=﹣,则y3<y1<y2,故选:D.8.(3分)如图,在Rt△ABC中,∠B=90°,AB=2,以B为圆心,AB为半径画弧,恰好经过AC的中点D,则弧AD与线段AD围成的弓形面积是()A.B.C.D.【解答】解:连接BD,∵点D是Rt△ABC斜边的中点,∴BD=AD=CD,∴△ABC是等边三角形,∴S弓形=S扇形ABD﹣S△ABD=﹣×2×2×=﹣.故选B.9.(3分)如图,从坡上建筑物AB观测坡底建筑物CD.从A点处测得C点的俯角为45o,从B点处测得D点的俯角为30o.已知建筑物AB的高度为10m,AB 与CD的水平距离是OD=15m,则CD的高度为()A.(5﹣5)m B.(10﹣10)m C.(10﹣5)m D.(10﹣5)m 【解答】解:作CE⊥AO于点E,如右图所示,∵CE⊥AO,∠FAC=45°,OD=15m,∴∠CAE=45°,CE=15m,∴AE=15m,∵AB=10m,∴BE=5m,∵∠BOD=90°,∠BDO=30°,OD=15m,∴BO=15×tan30°=15×=5m,∴EO=BO﹣BE=5﹣5,∴CD=EO=5﹣5.故选A.10.(3分)如图,在矩形ABCD中,AB<AD,E为AD边上一点,且AE=AB,连结BE,将△ABE沿BE翻折,若点A恰好落在CE上点F处,则∠CBF的余弦值为()A.B.C.D.【解答】解:设AE=AB=1,CF=x,则AB=BF=2,由折叠可得,∠AEB=∠FEB,∠EFB=∠A=90°,由AD∥BC可得,∠CBE=∠AEB,∴∠CBE=∠CEB,∴CE=CB=1+x,在Rt△BCF中,CF2+BF2=BC2,∴x2+22=(1+x)2,解得x=,∴CE=1+x=,∴CB=,∴Rt△BCF中,cos∠CBF===.故选:B.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.(3分)若式子在实数范围内有意义,则x的取值范围是x≠﹣1.【解答】解:∵式子在实数范围内有意义,∴x+1≠0,解得:x≠﹣1.故答案为:x≠﹣1.12.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,若DE=2cm,则BC=4cm.【解答】解:∵D、E分别是AB、AC的中点.∴DE是△ABC的中位线,∴BC=2DE,∵DE=2cm,∴BC=2×2=4cm.故答案为:4.13.(3分)分解因式:3x2﹣12=3(x﹣2)(x+2).【解答】解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x+2)(x﹣2).14.(3分)在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间为8小时的人数是120.【解答】解:根据题中的数据得:1200×=120,则该校1200名学生一周的课外阅读时间为8小时的人数是120.故答案为:12015.(3分)超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是77分.【解答】解:根据题意,该应聘者的总成绩是:70×+80×+90×=77(分),故答案为:77.16.(3分)关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为1.【解答】解:∵关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,∴k≠0且b2﹣4ac>0,即,解得k>﹣1且k≠0,∴k的最小整数值为:1.故答案为:1.17.(3分)如图,直线l1:y=2x﹣6与两坐标轴分别交于A、B两点,点M在直线l1上,且到两坐标轴的距离相等.现将直线l1绕点M按顺时针方向旋转得到直线l2,当直线l2与直线l1第一次成45o夹角时,直线l2的函数表达式为y=x+4或y=x﹣.【解答】解:分两种情况:①如图1,当M在第一或三象限时,设M(x,x),∵点M在直线y=2x﹣6上,∴x=2x﹣6,x=6,∴M(6,6),当y=0时,2x﹣6=0,x=3,∴A(3,0),即OA=3,过M作MC⊥y轴于C,作MF⊥x轴于F,连接OM,则CM=FM=6,∵四边形COFM为正方形,∴∠CMO=45°,∴∠CMN+∠NMO=45°,∵∠NMA=45°,∴∠NMO+∠OMA=45°,∴∠CMN=∠OMA,过A作AE⊥OM于E,则△AEO是等腰直角三角形,∴AE=OE==,∵OM==6,∴EM=6﹣=,∴tan∠OMA===,∴tan∠CMN=tan∠OMA==,∴,∴CN=2,∴ON=OC﹣CN=6﹣2=4,∴N(0,4),设直线l2的函数表达式为:y=kx+b,把N(0,4)和M(6,6)代入得:,解得:,∴直线l2的函数表达式为:y=x+4.②如图2,当M在第四象限时,设M(x,﹣x),∴﹣x=2x﹣6,x=2,∴M(2,﹣2),过N作ND⊥l1于D,过M作ME⊥y轴于E,∴EM=OE=2,∴BE=6﹣2=4,tan∠EBM==,∴,∴BD=2ND,由勾股定理得:BM==2,∵∠NMB=45°,∴△NDM是等腰直角三角形,∴ND=DM,设ND=x,则DM=x,BD=2x,∴3x=2,x=,∴ND=,BD=,由勾股定理得:BN==,∴ON=6﹣=,∴N(0,﹣),同理可得直线l2的函数表达式为:y=x﹣,故答案为:y=x+4或y=x﹣,18.(3分)如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是8.【解答】解:如图,∵△ABC为等边三角形,∴∠B=60°,过D点作DE′⊥AB,则BE′=BD=2,∴点E′与点E重合,∴∠BDE=30°,DE=BE=2 ,∵△DPF为等边三角形,∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,在△DPE和△FDH中,,∴△DPE≌△FDH,∴FH=DE=2 ,∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为2 ,当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则△DF2Q≌△ADE,所以DQ=AE=10﹣2=8,∴F1F2=DQ=8,∴当点P从点E运动到点A时,点F运动的路径长为8.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(5分)计算:|﹣2|﹣+(3﹣π)0.【解答】解:|﹣2|﹣+(3﹣π)0=2﹣4+1=﹣1.20.(5分)解不等式组:.【解答】解:解不等式3x﹣3<1+x,得:x<2,解不等式x﹣2(x﹣1)≤1,得:x≥1,则不等式组的解集为1≤x<221.(6分)先化简,再求值:(1﹣)÷,其中x=﹣1.【解答】解:原式=•=,当x=﹣1时,原式=22.(6分)甲、乙两公司各为“见义勇为基金会”捐款30 000元,已知乙公司比甲公司人均多捐20元,且甲公司的人数比乙公司的人数多20%.问甲、乙两公司各有多少人?【解答】解:设甲公司有x人,乙公司有y人.依题意有:,解得:,经检验:是原方程组的解.答:甲公司300人,乙公司250人.23.(8分)如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.【解答】解:(1)若乙固定在E处,移动甲后黑色方块构成的拼图一共有3种可能,其中有两种情形是轴对称图形,所以若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.故答案为.(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率=.②黑色方块所构拼图中是中心对称图形有两种情形,①甲在B处,乙在F处,②甲在C处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是.故答案为.24.(8分)平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴DF∥BE,∵CF=AE,∴DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.(2)∵AB∥CD,∴∠BAF=∠AFD,∵AF平分∠BAD,∴∠DAF=∠AFD,∴AD=DF,在Rt△ADE中,∵AE=3,DE=4,∴AD==5,∴矩形的面积为20.25.(8分)如图,已知A(m,)、B(n,2)是一次函数y=ax+b与反比例函数y=的两个交点,且位于第二象限内,过A作AC⊥x轴于C,过B分别作BD ⊥x轴于D,BE⊥AC于E,△ABE的面积为.(1)求一次函数与反比例函数的表达式;(2)若点P(t,0)为x轴上的一点,连结AP、BP,当∠APB>90°时,试求t 的取值范围.【解答】解:(1)根据题意得:,解得,∴A(﹣4,),B(﹣1,2),代入一次函数y=ax+b,可得,解得,∴一次函数表达式为y=x+;把B(﹣1,2)代入反比例函数y=,可得k=﹣1×2=﹣2,∴反比例函数的表达式为y=﹣;(2)∵AC⊥x轴于C,BD⊥x轴于D,∴当∠APB=90°时,△ACP∽△PDB,∴,解得t=,∵∠APB>90°,∴t的取值范围为:<t<.26.(10分)如图,在Rt△ABC中,∠C=90°,点D、E、F分别在AC、BC、AB 边上,以AF为直径的⊙O恰好经过D、E,且DE=EF.(1)求证:BC为⊙O的切线;(2)若∠B=40°,求∠CDE的度数;(3)若CD=2,CE=4,求⊙O的半径及线段BE的长.【解答】(1)证明:连接OD、OE、DF,如图,∵AF为直径,∴∠ADF=90°,而∠C=90°,∴DF∥BC,∵DE=EF,∴=∴OE⊥DF,∴OE⊥BC,∴BC为⊙O的切线;(2)∵∠OEB=90°,∠B=40°,∴∠BOE=90°﹣40°=50°,∴∠OFE=(180°﹣50°)=65°,∴∠CDE=∠AFE=65°;(3)解:易得四边形CDHE为矩形,∴HE=CD=2,DH=CE=4,设⊙O的半径为r,则OH=OE﹣HE=r﹣2,OD=r,在Rt△OHD中,(r﹣2)2+42=r2,解得r=5,∵OH⊥DF,∴HF=DH=4,∵HF∥BE,∴△OHF∽△OEB,∴HF:BE=OH:OE,即4:BE=3:5,∴BE=.27.(10分)已知,△ABC在平面直角坐标系中的位置如图①所示,A点坐标为(﹣6,0),B点坐标为(4,0),点D为BC的中点,点E为线段AB上一动点.经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8.(1)求抛物线的解析式;(2)如图1,连接DE,将△BDE以DE为轴翻折,点B的对称点为点G,当点G 恰好落在抛物线的对称轴上时,求G点的坐标;(3)①如图2,连接AD,点P为AD上一个动点,连结BP、PE,则BP+PE的最小值为8;②如图3,当点E在线段AB上运动时,抛物线y=ax2+bx+8的对称轴上是否存在点F,使得以C、D、E、F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+8经过点A(﹣6,0),B(4,0),∴,解得,∴抛物线的解析式是:y=﹣x2﹣x+8;(2)如图①,作DM⊥抛物线的对称轴于点M,设G点的坐标为(﹣1,n),由翻折的性质,可得BD=DG,∵B(4,0),C(0,8),点D为BC的中点,∴点D的坐标是(2,4),∴点M的坐标是(﹣1,4),DM=2﹣(﹣1)=3,∵B(4,0),C(0,8),∴BC==4,∴BD=2,在Rt△GDM中,32+(4﹣n)2=20,解得n=4±,∴G点的坐标为(﹣1,4+)或(﹣1,4﹣);(3)①易知OA=6,OB=4,OC=8,∴AC==10,AB=10,∴AC=AB,∵D是BC的中点,∴AD⊥BC,则AD是BC的垂直平分线,∴BP=CP,∴BP+PE=CP+PE,∵BP+PE的值要最小,∴C、P、E应三点共线,要使CP+PE的值最小,则应CE⊥AB,此时点E与点O重合,∴CP+PE的最小值应等于OC,∵OC=8,即BP+PE的最小值是8;(3)抛物线y=ax2+bx+8的对称轴上存在点F,使得以C、D、E、F为顶点的四边形为平行四边形.①当CD∥EF,且点E在x轴的正半轴时,如图②,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则,解得∴点F的坐标是(﹣1,4),点E的坐标是(1,0).②当CD∥EF,且点E在x轴的负半轴时,如图③,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则,解得∴点F的坐标是(﹣1,﹣4),点E的坐标是(﹣3,0).③当CE∥DF时,如图④,,由(2),可得点D的坐标是(2,4),设点E的坐标是(c,0),点F的坐标是(﹣1,d),则,解得∴点F的坐标是(﹣1,12),点E的坐标是(3,0).综上,可得抛物线y=ax2+bx+8的对称轴上存在点F,使得以C、D、E、F为顶点的四边形为平行四边形,点F的坐标是(﹣1,4)、(﹣1,﹣4)或(﹣1,12).28.(10分)如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P 运动的时间为t(秒).(1)求点N落在BD上时t的值;(2)直接写出点O在正方形PQMN内部时t的取值范围;(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;(4)直接写出直线DN平分△BCD面积时t的值.【解答】解:(1)当点N落在BD上时,如图1.∵四边形PQMN是正方形,∴PN∥QM,PN=PQ=t.∴△DPN∽△DQB.∴.∵PN=PQ=PA=t,DP=3﹣t,QB=AB=4,∴.∴t=.∴当t=时,点N落在BD上.(2)①如图2,则有QM=QP=t,MB=4﹣t.∵四边形PQMN是正方形,∴MN∥DQ.∵点O是DB的中点,∴QM=BM . ∴t=4﹣t . ∴t=2. ②如图3,∵四边形ABCD 是矩形, ∴∠A=90°. ∵AB=4,AD=3, ∴DB=5.∵点O 是DB 的中点, ∴DO=.∴1×t=AD +DO=3+. ∴t=.∴当点O 在正方形PQMN 内部时,t 的范围是2<t <.(3)①当0<t ≤时,如图4.S=S 正方形PQMN =PQ 2=PA 2=t 2. ②当<t ≤3时,如图5,∵tan ∠ADB==,∴=.∴PG=4﹣t .∴GN=PN ﹣PG=t ﹣(4﹣t )=﹣4.∵tan ∠NFG=tan ∠ADB=, ∴.∴NF=GN=(﹣4)=t ﹣3.∴S=S 正方形PQMN ﹣S △GNF =t 2﹣×(﹣4)×(t ﹣3)=﹣t2+7t﹣6.③当3<t≤时,如图6,∵四边形PQMN是正方形,四边形ABCD是矩形.∴∠PQM=∠DAB=90°.∴PQ∥AD.∴△BQP∽△BAD.∴==.∵BP=8﹣t,BD=5,BA=4,AD=3,∴.∴BQ=,PQ=.∴QM=PQ=.∴BM=BQ﹣QM=.∵tan∠ABD=,∴FM=BM=.=(PQ+FM)•QM∴S=S梯形PQMF=[+]•=(8﹣t)2=t2﹣t+.综上所述:当0<t≤时,S=t2.当<t≤3时,S=﹣t2+7t﹣6.当3<t≤时,S=t2﹣t+.(4)设直线DN与BC交于点E,∵直线DN平分△BCD面积,∴BE=CE=.①点P在AD上,过点E作EH∥PN交AD于点H,如图7,则有△DPN∽△DHE.∴.∵PN=PA=t,DP=3﹣t,DH=CE=,EH=AB=4,∴.解得;t=.②点P在DO上,连接OE,如图8,则有OE=2,OE∥DC∥AB∥PN.∴△DPN∽△DOE.∴.∵DP=t﹣3,DO=,OE=2,∴PN=(t﹣3).∵PQ=(8﹣t),PN=PQ,∴(t﹣3)=(8﹣t).解得:t=.③点P在OC上,设DE与OC交于点S,连接OE,交PQ于点R,如图9,则有OE=2,OE∥DC.∴△DSC∽△ESO.∴.∴SC=2SO.∵OC=,∴SO==.∵PN∥AB∥DC∥OE,∴△SPN∽△SOE.∴.∵SP=3++﹣t=,SO=,OE=2,∴PN=.∵PR∥MN∥BC,∴△ORP∽△OEC.∴.∵OP=t﹣,OC=,EC=,∴PR=.∵QR=BE=,∴PQ=PR+QR=.∵PN=PQ,∴=.解得:t=.综上所述:当直线DN平分△BCD面积时,t的值为、、.。

最新江苏省苏州市中考数学二模试卷附解析

最新江苏省苏州市中考数学二模试卷附解析

江苏省苏州市中考数学二模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.二次函数2x y =的图象向右平移3个单位,得到新的图象的函数表达式是( )A .32+=x yB .32-=x yC .2)3(+=x yD .2)3(-=x y 2.下列图形中,是中心对称图形而不是轴对称图形的是( )A . 平行四边形B . 正方形C . 正三角形D . 线段AB 3.如图,在边长为4的等边三角形ABC 中,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积是( )A .43B .33C .23D .34.下列是二元一次方程的是( )A .36x x -=B .32x y =C .10x y -=D .23x y xy -=5.下列说法中,正确的是( )A .买一张电影票,座位号一定是偶数B .投掷一枚均匀的硬币,正面一定朝上C .三条任意长的线段可以组成一个三角形D .从1,2,3,4,5这五个数字中任取一个数,取得奇数的可能性大6.在多项式①2263a ab b ++;②221449m mn n -++;③21025a a -+;④2221ab a b +-;④6321y y -+中,不能用完全平方公式分解因式的有( )A .①②⑤B .③④C .①②④D .②④⑤ 7.从1 到9这九个自然教中任取一个,是2 的倍数或是3 的倍数的概率是( ) A .19 B . 29 C .12D .23 8.某园林占地面积约为800000 m 2,若按比例尺1:2000缩小后,其面积大约相当于( )A .一个篮球的面积B .一张乒乓球台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积9.下列说法中正确的个数有( )①全等i 角形对应角所对的边是对应边,对应边所夹的角是对应角②全等三角形对应边所对的角是对应角,对应边所夹的角是对应角③全等三角形中的公共边是对应边,公共角是对应角,对顶角是对应角④两个全等三角形中,相等的边是对应边,相等的角是对应角A.1个 B 2个C.3个D.4个10.下列说法中正确的是()A.直线大于射线B.连结两点的线段叫做两点的距离C.若AB=BC,则B是线段AC的中点D.两点之间线段最短11.运用分配律计算:(-3)×(-8+2-3),有下列四种不同的结果,其中正确的是()A.-3×8-3×2-3×3 B.-3×(-8)-3×2-3×3C.(-3)×(-8)+3×2-3×3 D.(-3)×(-8)-3×2+3×3二、填空题12.如图1,先将一矩形ABCD置于直角坐标系中,使点A与坐标系的原点重合,边AB、AD分别落在x轴、y轴上,再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图2),若AB=4,BC=3,则图1和图2中点B点的坐标为;点C的坐标.解答题13.如果一个几何体的主视图、左视图与俯视图都是一样的图形,那么这个几何体可能是.14.已知 CD 是 Rt△ABC 斜边上的高线,且 AB= 10,若 sin∠ACD=45,则CD= .15.如图,铁道口栏杆的短臂长为1.2m,长臂长为8m,当短臂端点下降0.6m时,长臂端点升高________m(杆的粗细忽略不计).16.如图,△EDC 是由△ABC 缩小后得到的,那么点E的坐标是.17.如图,AB = CD,∠AOC= 85°,则∠BOD= .18.已知一个四边形的边长依次分别为a,b,c,d,且a2+b2+c2+d2=2ac+2bd,•则此四边形为.19.如果菱形的周长为24 cm,一条较短的对角线长是6 cm,那么两相邻内角分别为、.20.已知2m n+=,2mn=-,则(1)(1)m n--= .21.认真观察图中的4个图中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征.特征 1:;特征2: .22.请举出生活中两个常见的反映旋转变换的例子:______________.23.长方形的长为2ab(m),面积为22a b(m2),则这个长方形的宽为 m,周长为 m. 24.在Rt△ABC中,∠C=90°,其中∠A,∠B的平分线的交点为E,则∠AEB的度数为.三、解答题25.在△ABC 中,∠C=900,∠A=300, BD是∠B的平分线,如图所示.(1)如果AD=2,试求BD和BC的长;(2)你能猜想AB与DC的数量关系吗,请说明理由.26.如图,AB、AC 是⊙O的两条弦,且AB=AC,延长CA 到点 D,使 AD=AC,连结 DB 并延长,交⊙O于点 E,求证:CE 是⊙O 的直径.27.如图所示,Rt△ACB中,∠ABC=90°,点B、C在x轴上,点A是直线y=x+m与双曲线my在第一象限内的交点,O为坐标轴原点,若△AOB 的面积为3.x(1)求m的值,并写出直线和双曲线的函数解析式;(2)求△ABC 的面积.28.如图.(1)如果此图形中四个点的纵坐标不变,横坐标都乘-1,在直角坐标中画出新图形,并比较新图形与原图形有何关系;(2)如果原图中四个点的横坐标不变,纵坐标都加上-2,在直角坐标系中画出新图形,并比较新图形与原图形有何关系.29.已知:如图,AD、BE是△ABC的高,F是DE中点,G是AB的中点.试说明GF⊥DE.30.计算:(1)(-2x)3·(4x2y) (2)(4×106)(8×104)·105 (3)(m3)4+m10·m2+m·m5·m6【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.C4.B5.D6.C7.D8.C9.D10.D11.D二、填空题12.B(4,0)、(32,2), C(4,3)、(2334-,2433+)13.球体或正方体14.24515.416.(—2,2)17.85°18.平行四边形19.60°,l20°20.-321.都是轴对称图形;这些图形的面积都等于4个单位面积22.略23.12ab,5ab24.135°三、解答题25.(1)BD=2,BC=3; (2)AB=32DC.26.连结 CB.∵AB=AC, ∵∠1=∠2 ,∵AD=AC, ∴AB=AD,∴∠ABD=∠D,∵∠1+∠2+∠ABD+∠D=180°,∴∠2+∠ABD=90,∴∠CBE=90°,∴CE 是⊙O 的直径.27.(1)设A 点坐标为(x A ,y A ),∵3AOB S ∆=,∴1||32A A x y ⋅=, ∴||6A A x y ⋅=,由图象在第一象限知m>0,∴6A m x y λ=⋅=,直线的解析式为:6y x =+,双曲线的解析式是6y x= (2)由66y x y x =+⎧⎪⎨=⎪⎩,2660x x +-=,得1153x =,2153x =-(舍去) 由点A 在第一象限知,x>0∴153153),C(一6,0) ∴ABC AOC AOB 12315S S S ∆∆∆=+=+28.(1)图略,四个点的坐标变为(0,0),(-6,3),(-4,0),(-6,-3),新图形与原图形关于 y 轴对称 (2)图略,四个点的坐标变为(0,-2),(6,1),(4,-2),(6,-5),新图形是由原图形向下平移 2个单位长度得到的29.先说明EG=DG ,再利用三线合一说明30.(1)-32x 5y ,(2)3.2×1016,(3)3m 12。

江苏省苏州市中考数学二模试题(2)

江苏省苏州市中考数学二模试题(2)

10。

我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整B,圆”.如图,直线l:43=+与x轴、y轴分别交于A、y kx∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是( ▲ )A.6 B.8 C.10 D.5二、填空题:(共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)11.在函数2y x =-中,自变量x 的取值范围是▲;12.分解因式:a a -3=▲13.底面周长为8πcm ,母线长为5cm 的圆锥的侧面积为▲cm 2.14.一组数据2、3、4、5、6的方差等于▲.15.若a +b =8,ab =15,则a 2+ab +b 2=▲.16.如图,在边长为6的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是▲17.如图①,在正方形ABCD 中,点P 沿边DA 从点D 开始向点A 以1cm /s 的速度移动;同时,点Q 沿边AB 、BC 从点A 开始向点C 以2cm /s 的速度移动.当点P 移动到点A 时,P 、Q 同时停止移动.设点P 出发xs 时,△PAQ 的面积为ycm 2,y 与x 的函数图象如图②,则线段EF 所在的直线对应的函数关系式为▲18.如图,平面直角坐标系中,已知点(0,1)A 、点(0,1)B t +、(0,1)(0)C t t ->,点P 在以D(4,3)为圆心,1为半径的圆上运动,且始终满足90BPC ∠=︒,则t 的取值范围是▲.第16题第17题第18题三、解答题(共76分)19.(5分)计算 131260cos 9-⎪⎭⎫⎝⎛+--+ 20。

(5分)解不等式组324313x x x x <+⎧⎪+⎨-≤-⎪⎩21.(6分)先化简,再求值:(+)÷,其中x =﹣1.22.(7分)列方程,解决问题。

苏州市中考数学二模试卷

苏州市中考数学二模试卷

苏州市中考数学二模试卷姓名:________班级:________成绩:________一、 选择题 (共 8 题;共 16 分)1. (2 分) 计算 6﹣(﹣4)+7 的结果等于( )A.5B.9C . 17D . ﹣92. (2 分) (2016·临沂) 如图,一个空心圆柱体,其主视图正确的是( )A.B.C. D. 3. (2 分) (2017 八下·胶州期末) 下列四个图形中,是中心对称图形的是( ) A. B.第 1 页 共 13 页C.D. 4. (2 分) 下列说法正确的是( ) A . 为了解我国中学生课外阅读的情况,应采用全面调查的方式 B . 一组数据 1,2,5,5,5,3,3 的中位数和众数都是 5 C . 抛掷一枚硬币 100 次,一定有 50 次“正面朝上” D . 甲组数据的方差是 0.03,乙组数据的方差是 0.1,则甲组数据比乙组数据稳定 5. (2 分) (2020 九下·重庆月考) 如图,在△ABC 中,∠B=2∠C,以点 A 为圆心,AB 长为半径作弧,交 BC 于点 D,交 AC 于点 G;再分别以点 B 和点 D 为圆心,大于 BD 的长为半径作弧,两弧相交于点 E,作射线 AE 交 BC 于点 F。

若以点 G 为圆心,GC 长为半径作两段弧,一段弧过点 C,而另一段弧恰好经过点 D,则此时∠FAC 的度 数为( )A . 54° B . 60° C . 66° D . 72° 6. (2 分) (2017·河南) 八年级某同学 6 次数学小测验的成绩分别为:80 分,85 分,95 分,95 分,95 分, 100 分,则该同学这 6 次成绩的众数和中位数分别是( ) A . 95 分,95 分 B . 95 分,90 分第 2 页 共 13 页C . 90 分,95 分 D . 95 分,85 分 7. (2 分) 在一间屋子里的屋顶上挂着一盏白炽灯,在它的正下方有一个球,如图所示,下列说法: (1)球在地面上的影子是圆;(2)当球向上移动时,它的影子会增大; (3)当球向下移动时,它的影子会增大;(4)当球向上或向下移动时,它的影子大小不变. 其中正确的有( )A . 0个 B . 1个 C . 2个 D . 3个 8. (2 分) (2020 七下·揭阳期末) 下列图案由边长相等的黑、白两色正方形按一定的规律拼接而成,依此 规律,第 n 个图形中白色正方形的个数为( )A . 4n+1 B . 4n-1 C . 3n-2 D . 3n+2二、 填空题 (共 10 题;共 11 分)9. (1 分) (2017 八上·深圳月考) 在函数中,自变量 x 的取值范围是________10. (1 分) (2020 八上·阳泉期末) 成人每天维生素 D 的摄入量约为 0.000006 克数据”0.0000046”用科学记数法表示为________。

江苏省苏州市中考数学二模试卷

江苏省苏州市中考数学二模试卷

江苏省苏州市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)小明做了以下4道计算题:①;②;③;④.请你帮他检查一下,他一共做对了()A . 1题B . 2题C . 3题D . 4题2. (2分)(2019·凤庆模拟) 如图,A、B、C是小正方形的顶点,且每个小正方形的边长为l,则tan∠BAC 为()A .B .C .D . 13. (2分)如图是一个以点A为对称中心的中心对称图形,若∠C =90°,∠B = 30°,AC = 1,则BB′的长为()A . 2B . 4C .D . 84. (2分)用科学记数法表示310000,结果正确的是()A . 3.1×104B . 3.1×105C . 31×104D . 0.31×1065. (2分)(2017·黔南) 我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A .B .C .D .6. (2分) (2016七上·萧山月考) 估计的运算结果应在()A . 6与7之间B . 7与8之间C . 8与9之间D . 9与10之间7. (2分)计算﹣的结果是()A .B .C .D .8. (2分)方程x2=16的解是()A . x=0B . x=16C . x1=0,x2=16D . x1=-4,x2=49. (2分)(2018·青岛模拟) 实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A . 小于或等于3的实数B . 小于3的实数C . 小于或等于﹣3的实数D . 小于﹣3的实数10. (2分)如图,平行四形ABCD中,∠A=100°,则∠B+∠D的度数是()A . 80°B . 100°C . 160°D . 180°11. (2分) (2016七下·宝丰期中) 某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是()A .B .C .D .12. (2分)(2017·微山模拟) 如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1,下列结论:①abc<0;②9a+3b+c=0;③4ac﹣b2<2a;④2b=3a.其中正确的结论是()A . ①③B . ②④C . ①④D . ②③二、填空题 (共6题;共16分)13. (2分) (2016七上·县月考) 计算 ________, =________.14. (1分) (2016九上·瑞安期中) 已知抛物线的对称轴是直线,则的值为________.15. (1分) (2016九下·江津期中) 从﹣3,﹣2,﹣1,0,1,2这六个数字中随机抽取一个数,记为a,a 的值即使得不等式组无解,又在函数y= 的自变量取值范围内的概率为________.16. (1分) (2017八下·郾城期末) 如图,直线y=kx+b与y= x交于A(3,1)与x轴交于B(6,0),则不等式组0 的解集为________.17. (1分)(2019·上海模拟) 如图,把边长为单位1的正方形一边与数轴重叠放置,以O为圆心,对角线OB长为半径画弧,交数轴正半轴于点A,则点A对应的数是________.18. (10分)如图,在正方形网格中,已知△ABC(不写作法):(1)画出△ABC关于x轴的对称△A1B1C1(2)画出△A1B1C1关于y轴的对称△A2B2C2.三、解答题 (共7题;共46分)19. (1分)(2018·乌鲁木齐) 不等式组的解集是________.20. (5分)小明调查了学校50名同学本学期购买课外书的花费情况,并将结果绘制成了下面的统计图,由于不小心滴上了墨水,导致花费为100元的人数看不清楚了.求出这50名学生本学期购买课外书花费的众数、中位数和平均数.21. (5分)(2019·云霄模拟) 如图,已知△ABC内接于⊙O , AD为直径,点C在劣弧AB上(不与点A ,B重合),设∠DAB=α,∠ACB=β,小明同学通过画图和测量得到以下近似数据:α30°35°40°50°60°80°β120°125°130°140°150°170°猜想:α关于β的函数表达式,并给出证明.22. (5分) (2016九上·无锡期末) 如图,小明从P处出发,沿北偏东60°方向行驶200米到达A处,接着向正南方向行驶一段时间到达B处.在B处观测到出发时所在的P处在北偏西37°方向上,这时P、B两点相距多少米?(精确到1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)23. (5分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)24. (10分)(2017·盘锦模拟) 由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;售价(元/台)月销售量(台)400200250x(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?25. (15分) (2016九上·南岗期末) ⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.(1)如图1,求证:AG=CP;(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2 ,求AC 的长.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共16分)13-1、14-1、15-1、16-1、17-1、18-1、18-2、三、解答题 (共7题;共46分) 19-1、20-1、21-1、22-1、23-1、24-1、24-2、25-1、25-2、25-3、。

江苏省苏州市重点中学2017年中考数学二模试卷及答案

江苏省苏州市重点中学2017年中考数学二模试卷及答案

苏州市XX 中学2016-2017学年第二学期初三二模试卷数学 2017.5本试卷由选择题、填空题和解答题三大题组成.共29小题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔涂在答题卡相应位置上. 1.﹣ 的相反数是 A .3B .﹣3 C.D.﹣2.下列运算正确的是( )A .a 2•a 3=a 6B .(a 3)4=a 12C .5a ﹣2a =3a 2D .(x +y )2=x 2+y 2 3.如左图是由4个大小相同的正方体组合而成的几何体,其主视图是A.B.C.D.4.函数y=3-x 中自变量x 的取值范围是A .x ≥3B .x ≥﹣3C .x ≠3D .x >0且x ≠35.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=110°,则∠2等于A .70°B .75°C .80°D .85° 6.下列一元二次方程中,有两个相等实数根的是A .x 2﹣8=0B .2x 2﹣4x +3=0C .5x +2=3x 2D .9x 2+6x +1=07.抛物线223y x x =++的对称轴是A .直线x =1B .直线x = -1C .直线x =-2D .直线x=212ba c)5(题第8.若x 2﹣3y ﹣5=0,则6y ﹣2x 2﹣6的值为A .4B .﹣4C .16D .﹣169.如图△ABC 中,∠C=90°,AC=4,BC=3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为( ) A .2B.C .3D .210.如图点A 、B 在反比例函数y=(k >0,x >0)图象上,BC ∥x 轴,交y轴于点C ,动点P 从坐标原点O 出发,沿O →A →B →C (图中“→”所示路线)匀速运动,终点为C ,过P 作PM ⊥x 轴,垂足为M .设三角形OMP 的面积为S ,P 点运动时间为t ,则S 关于x 的函数图象大致为A. B. C. D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上. 11.分解因式:29a -= ▲ .12.2017年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 ▲ .13.如图,等腰三角形ABC 的顶角为1200,底边BC 上的高AD= 4,则腰长为 ▲ .第13题 第14题 第15题14.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是 ▲ .15.如图,四边形ABCD 内接于O ,若四边形ABCO 是平行四边形,则ADC ∠的大小为OBCDA▲ .16.已知扇形的半径为6cm ,面积为10πcm 2,则该扇形的弧长等于▲ . 17.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD 为 ▲ 米(结果保留根号).第17题 第18题18.如图,正五边形的边长为2,连接对角线AD ,BE ,CE ,线段AD 分别与BE 和CE 相交于点M ,N ,给出下列结论:①∠AME =108°;②2AN AMAD =⋅;③MN=3;④1BE =.其中正确结论的序号是 ▲ .三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔. 19.(本题满分5分)计算:202(π--+.20.(本题满分5分)解不等式组:()12221x x x ->⎧⎪⎨+≥-⎪⎩21.(本题满分6分)21111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 1. 22.(本题满分6分)某校学生利用双休时间去距学校10 km 的天平山社会实践活动,一部分学生骑电瓶车先走,过了20 min 后,其余学生乘公交车沿相同路线出发,结果他们同时到达.已知公交车的速度是电瓶车学生速度的2倍,求骑电瓶车学生的速度和公交车的速度?23.(本题满分8分)如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E . (1)求证:BE =CD ;(2)连接BF ,若BF ⊥AE ,∠BEA =60°,AB =4,求平行四边形ABCD 的面积.24.(本题满分8分)为庆祝建军90周年,某校计划在五月份举行“唱响军歌”歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A ,B ,C ,D 四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息, 解答下列问题:(1)本次抽样调查中,选择曲目代号为A 的学生占抽样总数的百分比为 ▲ ;(2)请将图②补充完整;(3)若该校共有1260名学生,根据抽样调查的结果估计全校共有多少学生选择喜欢人数最多的歌曲?(要有解答过程)25.(本题满分8分)如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直于x 轴,垂足为点B ,反比例函数y =(x >0)的图象经过AO 的中点C ,且与AB 相交于点D ,OB =4,AD =3,(1)求反比例函数y=的解析式; (2)求cos ∠OAB 的值;(3)求经过C 、D 两点的一次函数解析式.26(本题满分10分)如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D .(1)求证:PC 是⊙O 的切线; (2)若PD =316cm ,AC =8cm ,求图中阴影部分的面积; (3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长.27.(本题满分10分)在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF . (1)如图1,当点D 在线段BC 上时,①BC 与CF 的位置关系为: ▲ .②BC ,CD ,CF 之间的数量关系为: ▲ ;(将结论直接写在横线上)(2)如图2,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论,再给予证明.第26题图BAE PO DC(3)如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.28.(本题满分10分)如图平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG 为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.苏州市XX学校2017届初三二模试卷数学参考答案及评分标准一、选择题(每小题3分,共30分)二、选择题(每小题3分,共24分) 11.(a + 3)(a - 3) 12.4.51×107 13.8 14.2915.60016.103∏ 17.418.①、②、③三、解答题(共11大题,共76分) 19.(本题共5分)解:原式= 3-2 + 1 ·············································································· 3分=2 ························································································· 5分20.(本题共5分)解:由①式得:x>3. ············································································ 2分由②式得:x 4≤. ·········································································· 4分∴不等式组的解集为: 34x <≤. ····················································· 5分21.(本题共6分) 解:原式=211x x x x ÷-- ··········································································· 1分 =1(1)(1)x x x x x-⋅+- ····································································· 2分 =11x + ···················································································· 4分当x 1时,原式··································································· 5分. ·················································································· 6分 22.(本题满分6分)解:设骑电瓶车学生的速度为x km /h ,汽车的速度为2x km /h ,可得:··········1分10x =102x +2060, ···············································································3分解得x =15,······················································································4分 经检验,x =15是原方程的解,······························································5分 2x =2×15=30.答:骑车学生的速度和汽车的速度分别是15 km /h ,30 km /h .·························6分 23.(本题共8分)(1)证明:∵四边形ABCD 为平行四边形 ∴AD∥BC,AB ∥C D ,AB=CD ,·····································································1分 ∴∠B+ ∠C=180°,∠AEB =∠DAE ,······························································2分 ∴AE 是∠BAD 的角平分线∴∠BAE =∠DAE , ∴∠BAE =∠DAE ,··················3分 ∴AB=BE,∴BE=CD ················································································4分·····5分····6分,······7分1AEBF······8分224.(本题共8分)1)由题意可得,本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为:×100%=20%.··················································2分(2)由题意可得,选择C的人数有:30÷﹣36﹣30﹣44=70(人)补全的图②柱状图正确·········································5分(3)由题意可得,全校选择此必唱歌曲共有:1260×=490(人),答:全校共有490名学生选择此必唱歌曲.········································8分25.(本题共8分)解:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数y=的函数图象上,∴,···························1分解得:.·········2分∴反比例函数的解析式为y=.········································3分(2)∵m=1,∴点A的坐标为(4,4),········································4分∴OB=4,AB=4.在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA==4,cos∠OAB===.········································5分(3))∵m=1,∴点C的坐标为(2,2),点D的坐标为(4,1).设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:.·····7分∴经过C、D两点的一次函数解析式为y=﹣x+3.········································8分26.(本题共10分)证明: ⑴如图,连接OC ,∵P A 切⊙O 于A .∴∠P AO =90º. ····································································································· 1分 ∵OP ∥BC ,∴∠AOP =∠OBC ,∠COP =∠OCB .∵OC =OB ,∴∠OBC =∠OCB ,∴∠AOP =∠COP . ······························································································· 2分 又∵OA =OC ,OP =OP , ∴△P AO ≌△PCO (SAS ).∴∠P AO =∠PCO =90 º, 又∵OC 是⊙O 的半径,∴PC 是⊙O 的切线. ······························································································ 3分 ⑵解法不唯一. 解:由(1)得P A ,PC 都为圆的切线,∴P A =PC ,OP 平分∠APC ,∠ADO =∠P AO =90 º,∴∠P AD+∠DAO =∠DAO+∠AOD , ∴∠P AD =∠AOD ,∴△ADO ∽△PDA . ······························································································ 4分 ∴AD DO PD AD =,∴2AD PD DO =⋅,∵AC =8, PD =163, ∴AD =12AC =4,OD =3,AO =5, 5分 由题意知OD 为△ABC 的中位线,∴BC =2OD =6,AB =10.∴S 阴=S 半⊙O -S △ACB =()221101254868=cm 2222ππ-⎛⎫-⨯⨯ ⎪⎝⎭. 答:阴影部分的面积为22548cm 2π-. ······································································· 6分 (3)如图,连接AE ,BE ,过点B 作BM ⊥CE 于点M . ················································· 7分 ∴∠CMB =∠EMB =∠AEB =90º,又∵点E 是AB ︵的中点,∴∠ECB =∠CBM =∠ABE =45º,CM =MB=,BE =AB cos450= ···························· 8分 ∴ EM,∴CE =CM +EM=()cm .·······················9分答:CE的长为. ······················································································· 10分 27.(本题共10分)解:(1)①垂直; ································································································· 1分 ②BC =CF +CD ; ···························2分 (2)成立,∵正方形ADEF 中,AD =AF ,∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF ,第23题答图B在△DAB与△F AC中,,∴△DAB≌△F AC,···························4分∴∠B=∠ACF,CF=BD∴∠ACB+∠ACF=90°,即CF⊥BD;∵BC=BD+CD,∴BC=CF+CD;···························6分(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,···························7分由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,···························8分∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,···························9分∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.··························10分28.(本题共10分)解:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;··························2分(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.·········3分设正方形OEFG边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p,解得p=1,∴点F的坐标为(1,1).·························4分②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),此时点F不在线段AC上,故舍去.··························5分综上所述:点F的坐标为(1,1);··························6分(3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.··························7分①当DN=DM时,(﹣t+)2=t2﹣t+2,解得t=;··························8分②当ND=NM时,﹣t+==,解得t=3﹣;··························9分③当MN=MD时,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.··························10分综上所述:当△DMN是等腰三角形时,t的值为,3﹣或1.。

苏州市2017初中数学毕业考试模拟卷及答案

苏州市2017初中数学毕业考试模拟卷及答案

苏州市2017年初中毕业暨升学考试模拟数学试卷本试卷由选择题、填空题和解答题三大题构成,共29小题,考试时间为120分钟,试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水署名笔将自己的姓名、准考据号填写在答题卷的相应地点上.2.答选择题一定用2B铅笔将答题卷上对应题目中的选项标号涂黑.如需变动,请用橡皮擦洁净后,再选涂其余答案.答非选择题一定用0.5毫米黑色墨水署名笔写在答题卡指定的地点上,不在答题地区内的答案一律无效,不得用其余笔答题.3.考生答题一定答在答题卷上,保持卷面洁净,答在试卷和底稿纸上一律无效。

一、选择题(本大题共l0小题.每题3分.共30分.在每题所给出的四个选项中,只有一项为哪一项切合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相对应的地点上)1.2的倒数是(▲) A.2B.-2C.1D.-1222.以下运算中,结果正确的选项是(▲)A.a4a4a8B.a3a2a5C.a8a2a4D.2a236a6 3.以下图形中,既是轴对称图形,又是中心对称图形的是(▲)4.抛物线y(x8)22的极点坐标是(▲) A.(—8,2)B.(—8,—2)C.(2,8)D.(8,2)5.一组数据1.2,1.3,1.6,1.6,1.8的众数是(▲)A.1.2B.1.3C.1.6D.1.86.2016年一季度全国城镇新增就业人数3320000人,用科学记数法表示(▲)A.332104B.0.332107C.3.32106D.3.32107 7.若m、n是一元二次方程x25x20的两个实数根,则m nmn的值是(▲)A.7B.-7C.3D.-38.如图,△ABC内接于⊙O,连结OA,OB,∠OBA=40°,则∠C的度数是(▲)A.60°B.50°C.45°D.40°9.如图,矩形ABCD的对角线AC和BD订交于点点E、F,AB=2,BC=3,则图中暗影部分的面积为O,过点O的直线分别交(AD▲和)BC于A.6B.3C.2D.1A E DCO OABFCB(第8题)(第9题)(第10题)10.如图,平面直角坐标系中,在边长为1的菱形ABCD的边上有一动点P从点A出发沿A BCDA匀速运动一周,则点P的纵坐标y与点P走过的行程S之间的函数关系用图象表示大概是(▲)A B C D二、填空题(本大题共 8小题,每题3分,共24分.把答案直接填在答题卡上相应的地点上)11.函数y x 3中,自变量x取值范围是▲.12.因式分解:2x28=▲.13.如图,在△ABC中,D,E分别是边AC、BC的中点,若DE=3,则AB=▲.14.某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若40%的人参加体育小组,35%的人参加美术小组,则参加音乐小组的有▲人.15.半径为2,圆心角为120°的扇形的面积为▲(结果保存).(第13题)(第16题)416.如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A按顺时针3方向旋转90°后获得△AO1B1,则点B1的坐标是▲.17.以下图的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟对付电话费▲元.18.已知点A、B分别在反比率函数28y=(x>0),y=(x>0)的图像上,且OA⊥OB,则tanB x x为▲.AOB(第17题)(第18题)三、解答题(本大题共11小题.共76分.把解答过程写在答题卡相对应的地点上,解答时应写出必需的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水署名笔)19.(此题满分5分)计算: 2 (3)0920.(此题满分3x145分)解不等式组x,并把它的解集表示在数轴上2x221.(此题满分5分)先化简,再求值:a24a24a4,此中a=32a22a a22.(此题满分116分)解分式方程:x2x1123.(此题满分6分)已知:如图,在等腰梯形ABCD中,AB//CD,点E、F分别在AD、BC上,且DE=CF.求证:AF=BED CE FA B(第23题)24.(此题满分6分)如图,A信封中装有两张卡片,卡片上分别写着7cm、3cm;B信封中装有三张卡片,卡片上分别写着2cm、4cm、6cm;信封外有一张写着5cm的卡片.所有卡片的形状、大小都完整同样.现随机从两个信封中各拿出一张卡片,与信封外的卡片放在一同,用卡片上注明的数目分别作三条线段的长度.1)求这三条线段能构成三角形的概率(画出树状图);2)求这三条线段能构成直角三角形的概率.A B5cm(第24题)25.(此题满分8分)某工程队承包了某段过江地道施工任务,甲、乙两个班组分别从东、西两头同时掘进.已知甲组比乙组均匀每日多掘进0.6米,经过5天施工,两组共掘进了45米.求甲、乙两个班组均匀每日各掘进多少米?26.(此题满分8分)城市规划时期,欲拆掉一电线杆AB,已知距电线杆AB水平距离14m的D处有一大坝,背水坡CD的坡度i=1:2,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2m的人行道.1)求BF的长;2)在拆掉电线杆AB时,为保证行人安全,能否需要将这人行道封上?请说明原因.(在地面上,以点B为圆心,以AB?长为半径的圆形地区为危险地区)(3≈1.732,2≈1.414)AG300C 1:2人B E行D F道(第26题)27.(此题满分8分)如图,AB是⊙O的直径,CD 是⊙O 的切线,切点为C .延伸 AB交CD 于点E .连结AC ,作∠DAC =∠ACD ,作AF ⊥ED 于点F ,交⊙O 于点G .1)求证:AD 是⊙O 的切线;2)假如⊙O 的半径是6cm ,EC =8cm ,求GF 的长.AOEBCGFD28.(此题满分9分)(第如图,现有一张边长为27题)4的正方形纸片ABCD,点P 为正方形AD边上的一点(不与点A 、点 D重合)将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于H ,折痕为EF ,连结BP 、BH . 1)求证:∠APB=∠BPH ;2)当点P 在边AD 上挪动时,△PDH 的周长能否发生变化?并证明你的结论;(3)设AP 为x ,四边形 EFGP 的面积为 S ,求出S 与x 的函数关系式,试问 S 能否存在最小值?若存在,求出 这个最小值;若不存在,请说明原因.APDA P DEEHHGGFF BCB(备用图)C(第28题)29.(此题满分 10分)如图1,已知直线y=kx 与抛物线y=4 x 2 22 交于点A (3,6).273(1)求直线y=kx 的分析式和线段OA 的长度;(2)点P 为抛物线第一象限内的动点,过点 P 作直线PM ,交x 轴于点M (点M 、O不重合),交直线OA 于点Q ,再过点 Q 作直线PM 的垂线,交 y 轴于点N .尝试究: 线段QM 与线段QN 的长度之比能否为定值?假如是,求出这个定值;假如不是,说 明原因;(3)如图2,若点B为抛物线上对称轴右边的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且知足∠BAE=∠BED=∠AOD.持续研究:m在什么范围时,切合条件的E点的个数分别是1个、2个?(第29题)参照答案一.选择题(每题3分,共30分)题号12345678910选项C B B D C C A B B A二.填空题(每题3分,共24分)11、x312、2(x2)(x2)13、614、204 16、(7,3)17、7.4115、18、32三.解答(本大共 11,共76分)19、解:原式=2-1+3⋯⋯⋯⋯3分 =4⋯⋯⋯⋯5分20、解:由①得 x >-1⋯⋯⋯⋯1分 由②得x <2⋯⋯⋯⋯2分∴原不等式的解集-1<x <2⋯⋯3分数略⋯⋯⋯⋯5分21、解:原式=a 24 a 22 ⋯⋯1分a2a2 aa 2 a2a⋯⋯2分a 2 a22aa 2⋯⋯3分当a32,原式=32⋯⋯4分33 23 ⋯⋯5分3110 ⋯⋯1分22、解:(x1)(x 1)x1x11 0⋯⋯3分x 0⋯⋯4分 ,x=0是原方程的解⋯⋯6分23、解:∵四形ABCD 是等腰梯形∴AD=BC, DAB=CBA⋯⋯⋯2分∵DE=CF∴AE=BF ⋯⋯⋯⋯3分又∵AB=BA∴△ABE ≌△BAF⋯⋯⋯5分∴AF=BE⋯⋯⋯6分24、解:(1)5A 信封73B 信封246 246⋯⋯⋯2分P (能成三角形)2⋯⋯⋯4分=3(2)P (能成直角三角形)1 ⋯⋯⋯6分=625、解:甲、乙班均匀每日掘 x 米,y 米, ⋯⋯⋯1分xy 0.6⋯⋯⋯5分依据意,得y)455(xx 4.8 ⋯⋯⋯7分解得4.2y答:甲班均匀每日掘4.8米,乙班均匀每日掘4.2米.⋯⋯⋯8分26、解:(1)∵Rt △CFD 中,CF=2,坡度i=1:2A∴DF=4⋯⋯⋯1分 ∴BF=BD+DF=14+4=18⋯⋯⋯2分(2)需要将这人行道封上⋯⋯⋯3分G300C∵BF=181:2∴CG=18人BE 行DF又∵Rt △CGA 中,∠ACG=30°道∴AG=18×tan30=18°×363⋯⋯⋯5分3632∴AB=AG+GB=AG+CF=≈6×1.732+2≈12.392⋯⋯⋯6分又∵BE=BD-ED=14-2=12 ⋯⋯⋯7分∴AB >BE所以,需要将这人行道封上⋯⋯⋯8分27、解:(1)接OC∵CD 是⊙O 的切∴∠OCD=90° ⋯⋯⋯1分∵OA=OC∴∠OCA=∠OAC ⋯⋯⋯2分又∵∠DAC=∠ACD∴∠OAD=∠OCD=90°∴AD 是⊙O 的切⋯⋯⋯3分(2)接BG∵OC=6cm ,EC=8cm∴在Rt △CEO 中,OE= OC 2+EC 2=10⋯⋯⋯4分 AE=OE+OA=16AF ⊥ED∴∠AFE=∠OCE=90°,∠E=∠E ∴Rt △AEF ∽Rt △OEC⋯⋯⋯5分∴AFAE 即AF 16 OCOE610∴AF=9.6⋯⋯⋯6分∵AB 是⊙O 的直径 ∴∠AGB=90° ∴∠AGB=∠AFE ∵∠BAG=∠EAF∴Rt △ABG ∽Rt △AEF ⋯⋯⋯7分∴AGAB即AG12AF AE 9.616AG=7.2GF=AFAG=9.67.2=2.4(cm)⋯⋯⋯8分28、解:(1)∵折叠PE=BE∴EBP=EPB⋯⋯⋯⋯⋯1分又∵EPH=EBC=90°∴PBC=BPH⋯⋯⋯⋯⋯2分又∵AD∥BC∴APB=PBC∴APB=BPH⋯⋯⋯⋯⋯3分(2)△PHD的周不,定8A B作BQ⊥PH,垂足Q由(1)知APB=BPH又∵A=E BQP=90°,BP=BP∴△ABP≌△QBP∴AP=QP,AB=BQ⋯⋯⋯⋯4分又∵AB=BC B ∴BC=BQ又∵C=BQH=90°,BH=BH∴△BCH≌△BQH∴CH=QH⋯⋯⋯⋯⋯5分∴△PHD的周:PD+DH+PH=AP+PD+DH+HC=AD+CD=8. 3)F作FM⊥AB,垂足M,FM=BC=AB又EF折痕,∴EF⊥BP PD QH G FC 6分∴∠EFM+∠MEF=∠ABP+∠BEF=90°∴∠EFM=∠ABP又∵A=EMF=90°∴△EFM≌△BPA∴EM=AP=x⋯⋯⋯⋯⋯⋯7分∴在Rt△APE中,(4BE)2x2BE2BE2x2解得8CF BE EM2x2x8∴⋯⋯⋯⋯⋯⋯8分又四形PEFG与四形BEFC全等S 1CF)BC1x2x)4 (BE(44∴221x2262∴当x=2,S有最小6⋯⋯⋯⋯⋯9分29、解:(1)把点A(3,6)代入y=kx得∵6=3k∴k=2AEMBPDHGFC(∴y=2x ⋯⋯⋯⋯⋯1分OA= 32 62 35 ⋯⋯⋯⋯⋯2分 2)QM是一个定,原因以下:QN如答1,点Q 作QG ⊥y 于点G ,QH ⊥x 于点H ①当QH 与QM 重合,然QG 与QN 重合 此QM QH QH tan AOM 2QN QG OH②当QH 与QM 不重合 QN ⊥QM ,QG ⊥QH不如点 H ,G 分在x 、y 的正半上 ∴∠MQH=∠GQN又∵∠QHM=∠QGN=90°∴△QHM ∽△QGN ∴QMQH QH tanAOM2 QNQG OH当点P 、Q 在抛物和直上不一样地点,同理可得QM2⋯⋯⋯⋯⋯6分QN3)如答2,延AB 交x 于点F ,点F 作FC ⊥OA 于点C ,点A 作AR ⊥x 于点R∴ ∵∠AOD=∠BAEAF=OF1352OC=AC=OA2∵∠ARO=∠FCO=90°,∠AOR=∠FOC ∴△AOR ∽△FOC∴OFAO 3 55OC OR 3∴OF=35 515∴点F (15,0)222直AF y=kx+b (k ≠0)把A (3,6),F (15,0)代入得2k=4,b=10,即y4x1033∴4x103y4 x 2 22273x 3 x 6∴(舍去),2y6y∴B (6,2) ∴AB=5⋯⋯⋯⋯7分(其余方法求出AB 的酌情分)精选文档11在△ABE 与△OED 中 ∵∠BAE=∠BED∴∠ABE+∠AEB=∠DEO+∠AEB , ∴∠ABE=∠DEO ∵∠BAE=∠EOD ∴△ABE ∽△OEDOE=x ,AE=3 5x (0<x <3 5)由△ABE ∽△OED 得AEAB 即3 5-x 5ODOE mx∴m1x(35x)1 (x 35)2 9⋯⋯⋯⋯8分552 4∴点(35,9)24∴如答3,当m9 ,OE=x=35,此E 点有1个⋯⋯⋯⋯⋯9分42当0<m <9,任取一个m 的都着两个x ,此E 点有2个⋯10分4。

【6套打包】苏州市中考第二次模拟考试数学试卷含答案

【6套打包】苏州市中考第二次模拟考试数学试卷含答案

【6套打包】苏州市中考第二次模拟考试数学试卷含答案中学数学二模模拟试卷一、选择题(本大题共12小题,共48.0分)1.下面调查方式中,合适的是()A. 调查你所在班级同学的体重,采用抽样调查方式B. 调查乌金塘水库的水质情况,采用抽样调査的方式C. 调查《联赛》栏目在我市的收视率,采用普查的方式D. 要了解全市初中学生的业余爱好,采用普查的方式2.-1的相反数是()A. 1B. 0C.D. 23.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用的时间的数据,结果如图所示,根据此条形统计图估计这一天该校学生平均课外阅读时间约为()A. 时B. 时C. 时D. 时4.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A. 2B. 3C. 4D.55.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔()A. 20支B. 14支C. 13支D. 10支6.如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是()A. 10B. 8C. 6D. 47.如图,甲为四等分数字转盘,乙为三等分数字转盘.同时自由转动两个转盘,当转盘停止转动后(若指针指在边界处则重转),两个转盘指针指向数字之和不超过4的概率是()A. B. C. D.8.如图,△ABC中,∠ABC=∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC与DE交于点O.下列结论中,不一定成立的是()A.B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l′的解析式为()A. B. C. D.10.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A. 最高分B. 中位数C. 方差D. 平均数11.在直角坐标系中,O为坐标原点,A(1,1),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有()A. 1个B. 2个C. 3个D. 4个12.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B-D-E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A. B.C. D.二、填空题(本大题共6小题,共24.0分)13.35989.76用科学记数法表示为______.14.方程x2-4x-3=0的解为______.15.已知等腰△ABC内接于半径为5的⊙O,如果底边BC的长为8,那么BC边上的高为______.16.100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为______个.17.如图,在四边形ABCD中,AB∥CD,2AB=2BC=CD=10,tan B=,则AD=______.18.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,AD=2AB,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是______.三、计算题(本大题共2小题,共20.0分)19.已知x=+1,求的值.20.如图1,二次函数y=ax2-2ax-3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.四、解答题(本大题共6小题,共58.0分)21.为了从甲、乙两名学生中选择一人参加电脑知识竞赛,在相同条件下对他们的电脑知识进行了10次测验,成绩如下:(单位:分)(1)请填写下表.(2)利用以上信息,请从三个不同的角度对甲、乙两名同学的成绩进行分析.22.如图,在⊙O中,弦AB与DC相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.23.已知抛物线y=(1-a)x2+8x+b的图象的一部分如图所示,抛物线的顶点在第一象限,且经过点A(0,-7)和点B.(1)求a的取值范围;(2)若OA=2OB,求抛物线的解析式.24.张强两次共购买香蕉(第二次多于第一次),共付出元,请问张强第一次,第二次分别购买香蕉多少千克?25.如图,在平面直角坐标系中,已知△AOB,A(0,-3),B(-2,0).将△OAB先绕点B逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;(1)在图中画出上述变换的图形,并涂黑;(2)求△OAB在上述变换过程所扫过的面积.26.如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?答案和解析1.【答案】B【解析】解:A、调查你所在班级同学的体重,采用普查,故A不符合题意;B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;故选:B.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.【答案】A【解析】解:-1的相反数是1.故选:A.只有符号不同的两个数叫做互为相反数.本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.3.【答案】B【解析】解:这一天该校学生平均课外阅读时间== =1.07(小时).故选:B.求出总的阅读时间与总人数的商即可.本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.4.【答案】C【解析】解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,据此可得.本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.5.【答案】C【解析】解:设小明最多能买钢笔x支,则小明买笔记本(30-x)本,故5x+2(30-x)≤100,解得x≤13.因为钢笔的支数应为整数,故小明最多能买钢笔13支.故选:C.先设小明最多能买钢笔x支,则小明买笔记本(30-x)本,再根据题意列出不等式求解即可.此题是一元一次不等式在实际生活中的运用,解答此题的关键是熟知不等式的性质,找到关键描述语,进而找到所求的量的等量关系.6.【答案】A【解析】解:法1:B点作x轴的垂线与x轴相交于点D,则BD⊥CD,∵A点经过点C反射后经过B点,∴∠OCA=∠DCB,∴△OAC∽△DBC,又∵BD⊥CD,AO⊥OC,根据勾股定理得出==,OA=2,BD=6,===∵OD=OC+CD=6∴OC=6×=1.5.AC===2.5,BC=2.5×3=7.5,AC+BC=2.5+7.5=10;法2:延长BC,与y轴交于E点,过B作BF⊥y轴,交y轴于F点,由题意得到A与E关于x轴对称,可得E(0,-2),AC=CE,∴BF=6,EF=OE+OF=6+2=8,在Rt△BEF中,根据勾股定理得:BE==10,则光线从A到B所经过的路程为AC+CB=EC+CB=BE=10.故选:A.法1:B点作x轴的垂线与X轴相交于点D,由已知条件可以得到△OAC∽△DBC,从而得到OA与BD、OC与CD、AC与BC的关系,然后求的A点到B点所经过的路程为AC+BC;法2:延长BC,交y轴与E,由题意得到A与E关于x轴对称,得到E(0,-2),过B作BF垂直于y轴,利用勾股定理求出BE的距离,即为光线从点A到点B所经过的路程.本题考查镜面反射的原理与性质、三角形相似的性质以及勾股定理的应用.7.【答案】D【解析】解:由树状图可知共有4×3=12种可能,两个转盘指针指向数字之和不超过4的有6种,∴两个转盘指针指向数字之和不超过4的概率是,故选:D.列举出所有情况,看两个转盘指针指向数字之和不超过4的情况占总情况的多少即可.本题主要考查列表法与树状图法,画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.8.【答案】B【解析】解:∵EC∥AB,DE∥BC,∴四边形DBCE为平行四边形,∴BC=DE,DB=EC,∵∠ABC=∠BAC,∴CB=CA,∴AC=DE,A结论正确,不符合题意;∵∠ABC与∠ACB不一定相等,∴AB与AC不一定相等,B结论错误,符合题意;∵AD=DB,DB=EC,∴AD=EC,C结论正确,不符合题意;∵DE∥BC,∴∠ADO=∠ABC,∴∠ADO=∠A,∴OA=OD,∵DE∥BC,D是AB的中点,∴OD=BC=DE=OE,∴OA=OE,D结论正确,不符合题意;故选:B.根据平行四边形的性质判定定理和性质定理判断A;根据等腰三角形的判定定理判断B;根据平行四边形的性质判断C,根据等腰三角形的性质判断D.本题考查的是三角形中位线定理、平行四边形的判定和性质、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.9.【答案】C【解析】解:∵直线L经过(0,0)、(1,2),∴直线l为y=2x,∵直线l沿x轴正方向向右平移2个单位得到直线l′,∴直线l′为y=2(x-2),即y=2x-4,故选:C.先确定直线l的解析式,然后根据平移的规律即可求得.本题考查了一次函数图象与几何变换,解决本题的关键是求直线解析式和熟练掌握平移的规律.10.【答案】B【解析】解:某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的中位数.故选:B.根据中位数的意义分析.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.11.【答案】D【解析】解:如图,观察图象可知,满足条件的点P有4个.故选:D.根据等腰三角形的定义画出图形即可.本题考查等腰三角形的判定,坐标与图形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.12.【答案】A【解析】解:∵BD=2,∠B=60°∴点D到AB距离为当0≤x≤2时,y=当2≤x≤4时,y=根据函数解析式,A符合条件故选:A.根据题意,将运动过程分成两段.分段讨论求出解析式即可.本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.13.【答案】3.598976×104【解析】解:将35989.76用科学记数法表示为:3.598976×104.故答案为:3.598976×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】x1=2+,x2=2-【解析】解:x==2所以x1=2+,x2=2-.本题可用公式法对方程进行求解,公式为:x=,由此可解此题.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是公式法.15.【答案】2或8【解析】解:①当圆心在三角形内部时,BC边上的高AD=+5=8;②当圆心在三角形外部时,BC边上的高AD=5-=2.因此BC边上的高为2或8.分两种情况讨论:当圆心在三角形内部时和当圆心在三角形的外部时.本题利用了勾股定理和垂径定理求解,注意要分两种情况讨论求解.16.【答案】33【解析】解:设这100个数为:1,0,-1,-1,0,1,1,0,-1,-1…,∴通过观察得:第1个数开始6个数一循环,∴100÷6=16 (4)又每组的6个数中有两个0,则这100个数中“0”的个数为:16×2+1=33个故这100个数中“0”的个数为33个.根据题意可知数列为:1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0…从第1个数开始6个数一循环,所以100÷6=16…4,所以100个数中“0”的个数为33个.主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.17.【答案】3【解析】解:∵2AB=2BC=CD=10,∴AB=BC=5,过A作AF⊥CD于F,过C作CE⊥AB于E,则∠AEC=∠AFD=∠BEC=90°,AF∥CE,∵AB∥CD,∴四边形AECF是矩形,∴AE=CF,AF=CE,∵在Rt△BEC中,tanB==,又∵BC=5,CE=3,BE=4,∴AE=CF=5-4=1,AF=CE=3,∵CD=10,∴DF=10-1=9,在Rt△AFD中,由勾股定理得:AD===3,故答案为:.过A作AF⊥CD于F,过C作CE⊥AB于E,根据矩形的性质得出AF=CE,AE=CF,求出AF和DF长,再根据勾股定理求出即可.本题考查了解直角三角形和矩形的性质和判定、平行线的性质等知识点,能构造直角三角形是解此题的关键.18.【答案】-【解析】解:∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S矩形ABCD -S△ABE-S扇形EBF=1×2-×1×1-=-.故答案为:-.利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S矩形ABCD -S△ABE-S扇形EBF,求出答案.此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE的长以及∠EBC的度数是解题关键.19.【答案】解:原式===;当x=+1时,原式=.【解析】先将所求的代数式化简,再将未知数的值代入计算求解.此题考查分式的计算与化简,解决这类题目关键是把握好通分与约分:分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.20.【答案】解:(1)∵y=ax2-2ax-3a=a(x-1)2-4a,∴D(1,-4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2-2ax-3a=a(x-3)(x+1)知,A(3,0)、B(-1,0)、C(0,-3a),则:AC2=(0-3)2+(-3a-0)2=9a2+9、CD2=(0-1)2+(-3a+4a)2=a2+1、AD2=(3-1)2+(0+4a)2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=-1即,抛物线的解析式:y=-x2+2x+3.②∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,-x2+2x+3),则OF=x,MF=-x2+2x+3,BF=OF+OB=x+1;∵MF:BF=1:2,即BF=2MF,∴2(-x2+2x+3)=x+1,化简,得:2x2-3x-5=0解得:x1=-1、x2=∴M(,)、N(,).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如右图;设Q(1,b),则QD=4-b,QB2=QG2=(1+1)2+(b-0)2=b2+4;∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;代入数据,得:(4-b)2=2(b2+4),化简,得:b2+8b-8=0,解得:b=-4±2;即点Q的坐标为(1,-4+2)或(1,-4-2).【解析】(1)将二次函数的解析式进行配方即可得到顶点D的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值,由此得出抛物线的解析式.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD2=2QG2=2QB2,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和⊙Q半径间的数量关系是解题题目的关键.21.【答案】解:(1)(2)甲成绩的众数是84,乙成绩的众数是90,从两人成绩的众数看,乙的成绩较好;甲成绩的方差是14.4,乙成绩的方差是34,从成绩的方差看,甲的成绩相对稳定;甲成绩、乙成绩的中位数、平均数都是84,但从(85分)以上的频率看,乙的成绩较好.【解析】(1)根据中位数、众数、频率的计算方法,求得甲成绩的中位数,乙成绩的众数,85分以上的频率.(2)可分别从众数、方差、频率三方面进行比较.本题重点考查平均数,中位数,众数及方差、频率的概念及求法,以及会用这些知识来评价这组数据.22.【答案】(1)证明:∵AB =CD ,∴= . ∴- = - . ∴= . ∴BD =CA .在△AEC 与△DEB 中, ∠∠ ∠,∴△AEC ≌△DEB (AAS ).(2)解:点B 与点C 关于直线OE 对称.理由如下:如图,连接OB 、OC 、BC .由(1)得BE =CE .∴点E 在线段BC 的中垂线上,∵BO =CO ,∴点O 在线段BC 的中垂线上,∴直线EO 是线段BC 的中垂线,∴点B 与点C 关于直线OE 对称.【解析】(1)要证△AEC ≌△DEB ,由于AB=CD ,根据等弦所对的弧相等得=,根据等量减等量还是等量,得=,由等弧对等弦得BD=CA ,由圆周角定理得,∠ACE=∠DBE ,∠AEC=∠DEB ,即可根据AAS 判定;(2)由△AEC ≌△DEB 得,BE=CE ,得到点E 在直线BC 的中垂线上,连接BO ,CO ,BO 和CO 是半径,则BO 和CO 相等,即点O 在线段BC 的中垂线上,亦即直线EO 是线段BC 的中垂线,所以点B 与点C 关于直线OE 对称.本题利用了圆周角定理、等弦所对的弧相等,等弧对等弦、全等三角形的判定和性质求解.23.【答案】解:(1)由图可知,b =-7.(1分)故抛物线为y=(1-a)x2+8x-7.又因抛物线的顶点在第一象限,开口向下,所以抛物线与x轴有两个不同的交点.∴ ,解之,得1<a<.(3分)即a的取值范围是1<a<.(6分)(2)设B(x1,0),由OA=20B,得7=2x1,即x1=.(7分)由于x1=,方程(1-a)x2+8x-7=0的一个根,∴(1-a)()2+8×-7=0∴.(9分)故所求所抛物线解析式为y=-x2+8x-7.(10分)【解析】(1)因为二次函数过点A,所以可以确定b的值,又因为抛物线为y=(1-a)x2+8x-7又抛物线的顶点在第一象限,开口向下,所以抛物线与x轴有两个不同的交点,所以可以确定1-a<0,△>0,解不等式组即可求得a的取值范围;(2)因为OA=2OB,可求得点B的坐标,将点A,B的坐标代入二次函数的解析式即可求得a,b的值,即可求得二次函数的解析式.此题考查了二次函数的图象的性质,开口方向,与x轴的交点个数与△的关系,待定系数法求函数解析式等;解题的关键是数形结合思想的应用.24.【答案】解:设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0<x<25.则①当0<x≤20,y≤40,则题意可得.解得.②当0<x≤20,y>40时,由题意可得.解得.(不合题意,舍去)③当20<x<25时,则25<y<30,此时张强用去的款项为5x+5y=5(x+y)=5×50=250<264(不合题意,舍去);④当20<x≤40 y>40时,总质量将大于60kg,不符合题意,答:张强第一次购买香蕉14kg,第二次购买香蕉36kg.【解析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=264.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y>40③当20<x<25时,则25<y<30.本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.25.【答案】解:(1)如图所示;(2)在Rt△AOB中,AB===,∴扇形BAA1的面积==π,梯形A1A2O2B的面积=×(2+4)×3=9,∴变换过程所扫过的面积=扇形BAA1的面积+梯形A1A2O2B的面积=π+9.【解析】(1)根据旋转的性质,结合网格结构找出点A、O的对应点A1、O1,再与点B顺次连接即可得到△BO1A1;再根据中学数学二模模拟试卷一、选择题(本大题共12小题,共48.0分)27.下面调查方式中,合适的是()A. 调查你所在班级同学的体重,采用抽样调查方式B. 调查乌金塘水库的水质情况,采用抽样调査的方式C. 调查《联赛》栏目在我市的收视率,采用普查的方式D. 要了解全市初中学生的业余爱好,采用普查的方式28.-1的相反数是()A. 1B. 0C.D. 229.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用的时间的数据,结果如图所示,根据此条形统计图估计这一天该校学生平均课外阅读时间约为()A. 时B. 时C. 时D. 时30.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A. 2B. 3C. 4D.531.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔()A. 20支B. 14支C. 13支D. 10支32.如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是()A. 10B. 8C. 6D. 433.如图,甲为四等分数字转盘,乙为三等分数字转盘.同时自由转动两个转盘,当转盘停止转动后(若指针指在边界处则重转),两个转盘指针指向数字之和不超过4的概率是()A. B. C. D.34.如图,△ABC中,∠ABC=∠BAC,D是AB的中点,EC∥AB,DE∥BC,AC与DE交于点O.下列结论中,不一定成立的是()A.B.C.D.35.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l′的解析式为()A. B. C. D.36.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A. 最高分B. 中位数C. 方差D. 平均数37.在直角坐标系中,O为坐标原点,A(1,1),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有()A. 1个B. 2个C. 3个D. 4个38.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B-D-E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A. B.C. D.二、填空题(本大题共6小题,共24.0分)39.35989.76用科学记数法表示为______.40.方程x2-4x-3=0的解为______.41.已知等腰△ABC内接于半径为5的⊙O,如果底边BC的长为8,那么BC边上的高为______.42.100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为______个.43.如图,在四边形ABCD中,AB∥CD,2AB=2BC=CD=10,tan B=,则AD=______.44.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,AD=2AB,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是______.三、计算题(本大题共2小题,共20.0分)45.已知x=+1,求的值.46.如图1,二次函数y=ax2-2ax-3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.四、解答题(本大题共6小题,共58.0分)47.为了从甲、乙两名学生中选择一人参加电脑知识竞赛,在相同条件下对他们的电脑知识10()请填写下表.(2)利用以上信息,请从三个不同的角度对甲、乙两名同学的成绩进行分析.48.如图,在⊙O中,弦AB与DC相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.49.已知抛物线y=(1-a)x2+8x+b的图象的一部分如图所示,抛物线的顶点在第一象限,且经过点A(0,-7)和点B.(1)求a的取值范围;(2)若OA=2OB,求抛物线的解析式.50.第二次分别购买香蕉多少千克?51.如图,在平面直角坐标系中,已知△AOB,A(0,-3),B(-2,0).将△OAB先绕点B逆时针旋转90°得到△BO1A1,再把所得三角形向上平移2个单位得到△B1A2O2;(1)在图中画出上述变换的图形,并涂黑;(2)求△OAB在上述变换过程所扫过的面积.52.如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?答案和解析1.【答案】B【解析】解:A、调查你所在班级同学的体重,采用普查,故A不符合题意;B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;故选:B.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.【答案】A【解析】解:-1的相反数是1.故选:A.只有符号不同的两个数叫做互为相反数.本题考查了相反数,在一个数的前面加上符号就是这个数的相反数.3.【答案】B【解析】解:这一天该校学生平均课外阅读时间== =1.07(小时).。

2017年苏州市中考数学二模试卷(含答案和解释)

2017年苏州市中考数学二模试卷(含答案和解释)

2017年苏州市中考数学二模试卷(含答案和解释)2017年江苏省苏州中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)�3的相反数是() A.�3 B.3 C. D. 2.(3分)北京时间2016年2月11日23点30分,科学家宣布:人类首次直接探测到了引力波,印证了爱因斯坦100年前的预言,引力波探测器LIGO的主要部分是两个互相垂直的长臂,每个臂长4000米,数据4000用科学记数法表示为() A.0.4×103 B.0.4×104 C.4×103 D.4×104 3.(3分)下列运算中,正确的是() A. =3 B.(a+b)2=a2+b2 C.()2= (a≠0) D.a3•a4=a12 4.(3分)2015年1月份,无锡市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是()日期 19 20 21 22 23 24 25 最低气温/℃ 2 4 5 3 4 6 7 A.4,4 B.5,4 C.4,3 D.4,4.5 5.(3分)如图所示,AB∥CD,∠CAB=116°,∠E=40°,则∠D的度数是() A.24° B.26° C.34° D.22° 6.(3分)已知反比例函数的图象经过点P(a,a),则这个函数的图象位于() A.第一、三象限 B.第二、三象限 C.第二、四象限 D.第三、四象限 7.(3分)五张标有2、6,3,4,1的卡片,除数字外,其它没有任何区别,现将它们背面朝上,从中任取一张,得到卡片的数字为偶数的概率是() A. B. C. D. 8.(3分)因为sin30°= ,sin210°= ,所以sin210°=sin(180°+30°)=�sin30°;因为sin45°= ,sin225°= ,所以sin225°=sin(180°+45°)=�sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=�sinα,由此可知:sin240°=() A. B. C. D. 9.(3分)菱形OABC 在平面直角坐标系的位置如图所示,点B的坐标为(9,3 ),点D是AB的中点,点P在OB上,则△ADP的周长最小值为() A.3 +3 B.3 +3 C.3 D.3 10.(3分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=�x于点N,若点P是线段ON上的一个动点,以AP为一边作等边三角形APB(顺时针),取线段AB的中点H,当点P从点O运动到点N时,点H运动的路径长是() A. B.2 C.1 D.二、填空题(本大题共8小题,每小题3分,共24分) 11.(3分)分解因式:x2�4= . 12.(3分)若分式的值为0,则x的值等于. 13.(3分)甲、乙两人进行射击测试,每人20次射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=2.5,则射击成绩较稳定的是(填“甲”或“乙”). 14.(3分)不等式组的最大整数解是. 15.(3分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是. 16.(3 分)如图,在边长为2的菱形ABCD 中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为. 17.(3分)已知当x=m和x=n时,多项式x2�4x+1的值相等,且m≠n,则当x=m+n�3时多项式x2�4x+1的值为. 18.(3分)如图,直线l1∥l2∥l3,等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为.三、解答题(本大题共10小题,共76分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推理步骤或文字说明). 19.(5分)计算:�3tan30°�()�2. 20.(5分)先化简,再求值:,其中a满足a2+3a=5. 21.(6分)学校准备随机选出七、八两个年级各1名学生担任领操员.现已知这两个年级分别选送一男、一女共4名学生为备选人,请你利用树状图或列表求选出“一男一女”两名领操员的概率. 22.(6分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论. 23.(8分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确字数x 人数A 0≤x<8 10 B 8≤x<16 15 C 16≤x<24 25 D 24≤x<32 m E 32≤x<40 n 根据以上信息解决下列问题:(1)在统计表中,m= ,n= ,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数. 24.(8分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名同学购票恰好用去750元,甲乙两种票各买了多少张? 25.(8分)如图,一次函数y=kx�4(k≠0)的图象与y轴交于点A,与反比例函数y= (x>0)的图象交于点B(6,b).(1)b= ;k= .(2)点C是直线AB上的动点(与点A,B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,当点C的横坐标为3时,得△OCD,现将△OCD沿射线AB方向平移一定的距离(如图),得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上,求点O′,D′的坐标. 26.(10分)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2 ,sin∠BCP= ,求点B到AC 的距离.(3)在第(2)的条件下,求△ACP的周长. 27.(10分)如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD�DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P 作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P开始运动时,⊙O 的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值. 28.(10分)如图1,抛物线y=ax2�6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出直线AB和抛物线的函数表达式.(2)设△PMN的面积为S1,△AEN 的面积为S2,若S1:S2=36:25,求m的值.(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B.①在x轴上找一点Q,使△OQE′∽△OE′A,并求出Q点的坐标.②求BE′+ AE′的最小值.2017年江苏省苏州中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)�3的相反数是() A.�3 B.3 C. D.【解答】解:�3的相反数是3.故选:B. 2.(3分)北京时间2016年2月11日23点30分,科学家宣布:人类首次直接探测到了引力波,印证了爱因斯坦100年前的预言,引力波探测器LIGO的主要部分是两个互相垂直的长臂,每个臂长4000米,数据4000用科学记数法表示为()A.0.4×103 B.0.4×104 C.4×103 D.4×104 【解答】解:4000=4×103,故选:C. 3.(3分)下列运算中,正确的是() A. =3 B.(a+b)2=a2+b2 C.()2= (a≠0) D.a3•a4=a12 【解答】解:(�3)3=�27,负数没有平方根,故A错误;(a+b)2=a2+2ab+b2,故B错误;()2= ,故C正确;a3•a4=a7,故D错误.故选:C. 4.(3分)2015年1月份,无锡市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是()日期 19 20 21 22 23 24 25 最低气温/℃ 2 4 5 3 4 6 7 A.4,4 B.5,4 C.4,3 D.4,4.5 【解答】解:将一周气温按从小到大的顺序排列为2,3,4,4,5,6,7,中位数为第四个数4; 4出现了2次,故众数为4.故选:A. 5.(3分)如图所示,AB∥CD,∠CAB=116°,∠E=40°,则∠D的度数是() A.24° B.26° C.34° D.22° 【解答】解:∵AB∥CD,∠CAB=116°,∴∠ACD=180°�∠CAB=64°,∵∠E=40°,∴∠D=∠ACD�∠E=24°.故选:A. 6.(3分)已知反比例函数的图象经过点P(a,a),则这个函数的图象位于()A.第一、三象限 B.第二、三象限 C.第二、四象限 D.第三、四象限【解答】解:设反比例函数解析式为y= (k≠0),∵点P(a,a)在反比例函数图象上,∴k=a2.当a≠0时,k=a2>0,反比例函数图象在第一、三象限;当a=0时,点P为原点,不可能在反比例函数图象上,故无此种情况.故选:A. 7.(3分)五张标有2、6,3,4,1的卡片,除数字外,其它没有任何区别,现将它们背面朝上,从中任取一张,得到卡片的数字为偶数的概率是()A. B. C. D.【解答】解:在2、6,3,4,1这5张卡片中,数字为偶数的有2、6、4这3张,∴得到卡片的数字为偶数的概率为,故选:C. 8.(3分)因为sin30°= ,sin210°= ,所以sin210°=sin(180°+30°)=�sin30°;因为sin45°= ,sin225°= ,所以sin225°=sin(180°+45°)=�sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=�sinα,由此可知:sin240°=() A. B. C. D.【解答】解:∵当α为锐角时有sin(180°+α)=�sinα,∴sin240°=sin(180°+60°)=�sin60°=�.故选:C. 9.(3分)菱形OABC在平面直角坐标系的位置如图所示,点B的坐标为(9,3 ),点D是AB的中点,点P在OB上,则△ADP的周长最小值为() A.3 +3 B.3 +3 C.3 D.3 【解答】解:如图,连接CD交OB于P,连接PA,此时△AD P的周长最小.作BH⊥x轴于H.∵B(9,3 ),∴OH=9,BH=3 ,∵∠BHO=90°,∴OB= =6 ,∴OB=2BH,∴∠BOH=30°,∠OBH=60°,∵四边形OABC为菱形,∴设OC=BC=x,∴CH=OH�OC=9�x,在Rt△BCH中,∠BHC=90°,∴BC2=CH2+BH2,∴x2=(9�x)2+27,∴x=6,∴A(3,3 ),B(9,3 ),C(6,0),∵D为AB中点,∴D (6,3 ),∴CD=3 ,AD=3,∴△ADP的周长的最小值=AD+CD=3+3 ,故选:B. 10.(3分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=�x于点N,若点P是线段ON上的一个动点,以AP为一边作等边三角形APB(顺时针),取线段AB 的中点H,当点P从点O运动到点N时,点H运动的路径长是()A. B.2 C.1 D.【解答】解:由上图可知,当P在O点时,△AOB1为正三角形,当P在N点时,△ANB2为正三角形,H1,H2分别为AB1与AB2的中点,∵P在直线ON上运动,∴B1B2的运动轨迹也为直线,∵△OAB1为正三角形,∴∠OAB1=∠1+∠2=60°,同理∠NAB2=∠2+∠3=60°,∴∠1=∠3,在△OAN与△B1AB2中,,∴△OAN≌△B1AB2,∴B1B2=ON,∴点A横坐标为,∵AN⊥x轴,∴M(,0),∵直线ON的解析式为:y=�x,∴∠MON=45°,∴N (,�),∴ON=2=B1B2,∵H1,H2分别为AB1 与AB2的中点,∴H1H2= B1B2=1,故选:C.二、填空题(本大题共8小题,每小题3分,共24分) 11.(3分)分解因式:x2�4= (x+2)(x�2).【解答】解:x2�4=(x+2)(x�2).故答案为:(x+2)(x�2). 12.(3分)若分式的值为0,则x的值等于 3 .【解答】解:由题意得:x�3=0,且x≠0,解得:x=3,故答案为:3. 13.(3分)甲、乙两人进行射击测试,每人20次射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=2.5,则射击成绩较稳定的是乙(填“甲”或“乙”).【解答】解:∵S甲2=3,S乙2=2.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为:乙. 14.(3分)不等式组的最大整数解是 2 .【解答】解:,由①得,x<3;由②得,x≥�1;∴不等式组的解为�1≤x<3,它所包含的整数为�1,0,1,2.∴它的最大整数解为2.故答案为2. 15.(3分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是3π.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是 =3π,故答案为:3π. 16.(3分)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE 沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为2�.【解答】解:∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,∴AE= ,由折叠易得△ABB′为等腰直角三角形,∴S△ABB′= BA•AB′=2,S△ABE=1,∴CB′=2BE�BC=2 �2,∵AB∥CD,∴∠FCB′=∠B=45°,又由折叠的性质知,∠B′=∠B=45°,∴CF=FB′=2�.故答案为:2�. 17.(3分)已知当x=m和x=n时,多项式x2�4x+1的值相等,且m≠n,则当x=m+n�3时多项式x2�4x+1的值为�2 .【解答】解:∵x=m 和x=n时,多项式x2�4x+1的值相等,∴y=x2�4x+1的对称轴为直线x= =�,解得m+n=4,∴x =m+n�3=4�3=1,x2�4x+1=12�4×1+1=�2.故答案为:�2 18.(3分)如图,直线l1∥l2∥l3,等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为.【解答】解:如图,作BF⊥l3,AE⊥l3,∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CBF=90°,∴∠ACE=∠CBF,在△ACE和△CBF中,,∴△ACE≌△CBF,∴CE=BF=3,CF=AE=4,∵l1与l2的距离为1,l2与l3的距离为3,∴AG=1,BG=EF=CF+CE=7 ∴AB= =5 ,∵l2∥l3,∴ = ∴DG= CE= ,∴BD=BG�DG=7�= ,∴ = .故答案为:.三、解答题(本大题共10小题,共76分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推理步骤或文字说明). 19.(5分)计算:�3tan30°�()�2.【解答】解:原式=2 �3× �4= �4. 20.(5分)先化简,再求值:,其中a满足a2+3a=5.【解答】解:原式= ÷ = ÷ = • = ,当a2+3a=5时,原式= . 21.(6分)学校准备随机选出七、八两个年级各1名学生担任领操员.现已知这两个年级分别选送一男、一女共4名学生为备选人,请你利用树状图或列表求选出“一男一女”两名领操员的概率.【解答】解:画树状图如下:由上面的树状图可知,一共有4种情况,一男一女所占的情况有2种,∴概率为 = . 22.(6分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC= BC,∴AD=AF;(2)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形. 23.(8分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确字数x 人数A 0≤x<8 10 B 8≤x<16 15 C 16≤x<24 25 D 24≤x<32 m E 32≤x<40 n 根据以上信息解决下列问题:(1)在统计表中,m= 30 ,n= 20 ,并补全条形统计图.(2)扇形统计图中“C 组”所对应的圆心角的度数是90°.(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.【解答】解:(1)抽查的总人数是:15÷15%=100(人),则m=100×30%=30,n=100×20%=20..故答案是:30,20;(2)扇形统计图中“C组”所对应的圆心角的度数是:360°× =90°.故答案是:90°;(3)“听写正确的个数少于24个”的人数有:10+15+25=50 (人).900× =450 (人).答:这所学校本次比赛听写不合格的学生人数约为450人. 24.(8分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?【解答】解:设甲、乙两种票各买x张,y张,根据题意,得:,解得:,答:甲、乙两种票各买20张,15张. 25.(8分)如图,一次函数y=kx�4(k≠0)的图象与y轴交于点A,与反比例函数y= (x>0)的图象交于点B(6,b).(1)b= 2 ;k= 1 .(2)点C是直线AB上的动点(与点A,B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,当点C的横坐标为3时,得△OCD,现将△OCD沿射线AB方向平移一定的距离(如图),得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上,求点O′,D′的坐标.【解答】解:(1)∵点B在反比例函数y= (x>0)的图象上,将B(6,b)代入y= ,得b=2,∴B(6,2),∵点B在直线y=kx�4上,∴2=6k�4,解得k�1,故答案为:2,1.(2)∵点C的横坐标为3,把x=3代入y=x�4,得y=�1,∴C(3,�1),∵CD∥y轴,∴点D的横坐标为3,把x=3代入y= ,可得y=4,∴D(3,4).由平移可得,△OCD≌△O'C'D',设O'(a,),则C'(a+3,�1),∵点C'在直线y=x�4上,∴ �1=a+3�4,∴ =a,∵a>0,∴a=2 ,∴O'(2 ,2 ),∴D'(2 +3,2 +4). 26.(10分)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2 ,sin∠BCP= ,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【解答】解:(1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180° ∴2∠BCP+2∠BCA=180°,∴∠BCP+∠BCA=90°,又C点在直径上,∴直线CP是⊙O的切线.(2)如右图,作BD⊥AC于点D,∵PC⊥AC ∴BD∥PC ∴∠PCB=∠DBC ∵BC=2 ,sin∠BCP= ,∴sin∠BCP=sin∠DBC= = = ,解得:DC=2,∴由勾股定理得:BD=4,∴点B到AC的距离为4.(3)如右图,连接AN,∵AC为直径,∴∠ANC=90°,∴Rt△ACN 中,AC= =5,又CD=2,∴AD=AC�CD=5�2=3.∵BD∥CP,∴ ,∴CP= .在Rt△ACP中,AP= = , AC+CP+ AP=5+ + =20,∴△ACP 的周长为20. 27.(10分)如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD�DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE 上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为(t�1)cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.【解答】解:(1)由勾股定理可知AB= =10.∵D、E分别为AB和BC的中点,∴DE= AC=4,AD= AB=5.∴点P在AD上的运动时间= =1s,当点P在线段DE上运动时,DP段的运动时间为(t�1)s,∵DE段运动速度为1cm/s,∴DP=(t�1)cm,故答案为:t�1.(2)当正方形PQMN与△ABC重叠部分图形为五边形时,有一种情况,如下图所示.当正方形的边长大于DP时,重叠部分为五边形,∴3>t�1,t<4,DP>0,∴t�1>0,解得t>1.∴1<t<4.∵△DFN∽△ABC,∴ = = = ,∵DN=PN�PD,∴DN=3�(t�1)=4�t,∴ = ,∴FN= ,∴FM=3�= , S=S梯形FMHD+S矩形DHQP,∴S= ×( +3)×(4�t )+3(t�1)=�t2+3t+3(1<t<4).(3)①当圆与边PQ相切时,如下图,当圆与PQ相切时,r=PE,由(1)可知,PD=(t�1)cm,∴PE=DE�DP=4�(t�1)=(5�t)cm,∵r 以0.2cm/s的速度不断增大,∴r=1+0.2t,∴1+0.2t=5�t,解得:t= s.②当圆与MN相切时,r=CM.由(1)可知,DP=(t�1)cm,则PE=CQ=(5�t)cm,MQ=3cm,∴MC=mq+cq=5�t+3=(8�t)cm,∴1+0.2t=8�t,解得:t= s.∵P到E点停止,∴t�1≤4,即t≤5,∴t= s(舍),综上所述,当t= s时,⊙O与正方形PQMN的边所在直线相切. 28.(10分)如图1,抛物线y=ax2�6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出直线AB和抛物线的函数表达式.(2)设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值.(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B.①在x轴上找一点Q,使△OQE′∽△OE′A,并求出Q点的坐标.②求BE′+ AE′的最小值.【解答】解:(1)把点A(8,0)代入抛物线y=ax2�6ax+6,得64a�48a+6=0,∴16a=�6,a=�,∴y=�x2+ x+6与y轴交点,令x=0,得y=6,∴B(0,6).设AB为y=kx+b过A(8,0),B(0,6),∴ ,解得:,∴直线AB的解析式为y=�x+6.(2)∵E(m,0),∴N(m,�m+6),P(m,� m2+ m+6).∵PE∥OB,∴△ANE∽△ABO,∴ = ,∴ = ,解得:AN= .∵PM⊥AB,∴∠PMN=∠NEA=90°.又∵∠PNM=∠ANE,∴△NMP∽△NEA.∵ = ,∴ = ,∴PM= AN= × =12�m.又∵PM=�m2+ m+6�6+ m=�m2+3m,∴12�m=�m2+3m,整理得:m2�12m+32=0,解得:m=4或m=8.∵0<m<8,∴m=4.(3)①在(2)的条件下,m=4,∴E(4,0),设Q(d,0).由旋转的性质可知OE′=OE=4,若△OQE′∽△OE′A.∴ = .∵0°<α<90°,∴d>0,∴ = ,解得:d=2,∴Q(2,0).②由①可知,当Q为(2,0)时,△OQE′∽△OE′A,且相似比为 = = = ,∴ AE′=QE′,∴BE′+ AE′=BE′+QE′,∴当E′旋转到BQ所在直线上时,BE′+QE′最小,即为BQ长度,∵B(0,6),Q(2,0),∴BQ= =2,∴BE′+ AE′的最小值为2 .。

江苏省苏州市中考数学二模试题(1)

江苏省苏州市中考数学二模试题(1)

江苏省苏州市2017届中考数学二模试题9、如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm/s 的速度沿A →C →B 运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是(▲)第9题图A .B .C .D .10、如图,在等腰Rt △ABC 中,AC=BC=2,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是(▲)A .πB .πC .2D .2第10题图二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上)11、代数式1-x 在实数范围内有意义,则x 的取值范围是▲.12、已知关于x 的方程032=+-m x x 的一个根是1,则m=▲.13、在实数范围内分解因式:1642-m =▲.14、分式方程:351+=x x 的解是▲.15、如图,A 、B 、C 是⊙O 上的三点,∠AOB=100°,则∠ACB=▲度.(15)(17)(18)16、若一个圆锥的底面圆半径为3cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是▲cm .17、如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是▲.18、如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 半径的最小值为▲.FG EH DCBA三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19、(本题满分5分)计算:201700)1(45sin 2-1214.3--+-+)(π.20、(本题满分4分)解方程:0152=--x x .21、(本题满分7分)已知:14)96)(2()3(22--+-+÷-=x x x x x A .(1)化简A ;(2)若x 满足不等式组⎪⎩⎪⎨⎧<-<-343112x x x ,且x 为整数时,求A 的值.22、(本题满分6分)如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A 、D 、G 在同一直线上,且AD=3,DE=1,连接AC 、CG 、AE ,并延长AE 交CG 于点H .(1)求证:∠DA E=∠D CG ;(2)求线段HE 的长.23、(本题满分8分)今年某市高中招生体育考试测试管理系统的运行,将测试完进行换算统分改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考前张老师为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类:A、实心球(2kg);B、立定跳远;C、50米跑;D、半场运球;E、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)将上面的条形统计图补充完整;(2)假定全市初三毕业学生中有5500名男生,试估计全市初三男生中选50米跑的人数有多少人?(3)甲、乙两名初三男生在上述选择率较高的三个项目:B、立定跳远;C、50米跑;D、半场运球中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.24、(本题满分8分)某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).(1)A、B两种花草每棵的价格分别是多少元?(2)若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.25、(本题满分8分)如图,在平面直角坐标xoy 中,正比例函数kx y =的图象与反比例函数xmy =的图象都经过点A (2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA 向上平移3个单位长度后与y 轴交于点B ,与反比例函数图象在第四象限内的交点为C ,连接AB 、AC ,求点C 的坐标及△ABC 的面积.26、(本题满分10分)如图,已知⊙O 的半径为2,AB 为直径,CD 为弦.AB 与CD 交于点M ,将沿CD 翻折后,点A 与圆心O 重合,延长OA 至P ,使AP=OA ,连接PC .(1)求CD 的长;(2)求证:PC 是⊙O 的切线;(3)点G 为的中点,在PC 延长线上有一动点Q ,连接QG 交AB 于点E .交于点F(F 与B 、C 不重合),则GE •GF 为一定值。

苏州市中考数学二模试卷

苏州市中考数学二模试卷

苏州市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·自贡) 380亿用科学记数法表示为()A . 38×109B . 0.38×1013C . 3.8×1011D . 3.8×10102. (2分)(2019·白云模拟) 下列计算中,正确的是()A .B .C .D .3. (2分) (2017七下·姜堰期末) 不等式x-2≤0的解集在数轴上表示正确的是()A .B .C .D .4. (2分)若将30°、45°、60°的三角函数值填入表中,则从表中任意取一个值,是的概率为()α30°45°60°sinαcosαtanαA .B .C .D .5. (2分)已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A . 0<α<1B . 1<α<1.5C . 1.5<α<2D . 2<α<36. (2分)(2016·南通) 若一个多边形的内角和与它的外角和相等,则这个多边形是()A . 三角形B . 四边形C . 五边形D . 六边形7. (2分) (2019·苏州模拟) 如图,的顶点与坐标原点重合,=90°, ,当点在反比例函数( >0)的图像上移动时,点的坐标满足的函数解析式为()A .B .C .D .8. (2分)(2018·东莞模拟) 如图,AB是⊙O的切线,切点为A,OA=1,∠AOB=60°,则图中阴影部分的面积是()A .B .C .D .9. (2分)如图所示,若在象棋盘上建立直角坐标系,使“将”位于点(3,-2),则“炮”位于点()A . (1,-1)B . (1,1)C . (-1,2)D . (1,-2)10. (2分)某校七年级三班为配合国家级卫生城市创建验收,自愿组织参加环卫整治活动,学校用两张统计图公布了该班学生参加本次活动的情况.小明、小华、小丽三个同学看了这张统计图后,小明说:“该班共有25名学生参加了本次活动”小华说:“该班参加美化数目的学生占参加本次活动人数的40%”小丽说:“该班有6名学生清扫道路.”小明、小华、小丽三人说法正确的有()A . 0个B . 1个C . 2个D . 3个二、填空题 (共6题;共6分)11. (1分) (2019七下·温州期中) 将一条两边沿互相平行的纸带按如图所示折叠,已知∠1=76°,则∠2的度数为________°12. (1分)(2020·连山模拟) 已知关于的二次函数的图象开口向下,与的部分对应值如下表所示:下列判断,① ;② ;③方程有两个不相等的实数根;④若,则,正确的是________(填写正确答案的序号) .13. (1分) (2018九上·台州期中) 如图,在正方形ABCD中,AB=3,点E , F分别在CD , AD上,CE=DF ,BE , CF相交于点G ,连接DG .点E从点C运动到点D的过程中,DG的最小值为________.14. (1分) (2019九上·梁平期末) 如图,在直角坐标系中,有两点、以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为________.15. (1分)(2017·通州模拟) 2002年8月,在北京召开国际数学家大会,大会的会标取材于我国古代数学家赵爽的《勾股圆方图》.其中的“弦图”是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,如图所示.如果直角三角形的直角边分别为a,b(a>b),斜边为c,那么小正方形的面积可以表示为________.16. (1分) (2020八下·农安月考) 计算:(3﹣π)0+()﹣2=________.三、解答题 (共13题;共113分)17. (5分)(2019·西安模拟) 计算: +|1﹣ |﹣2× +()﹣118. (5分) (2017八上·宁化期中) 解方程组: .19. (5分)计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+()﹣1 .20. (5分)某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,现在报名参加的学生有多少人?21. (5分)如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.22. (10分) (2020八下·哈尔滨期中) 如图1,在平行四边形ABCD中,对角线AC、BD交于点O,经过点O 的直线AD于点E,交BC于点F.(1)求证:OE=OF;(2)如图2,连接AF、CE,当AF⊥FC时,在不添加辅助线的情况下,直接写出等于的线段.23. (10分)(2020·北京模拟) 如图,在平面直角坐标系中,一次函数的图象与轴、轴分别交于点,,点的坐标为.(1)求的值;(2)已知点在第四象限,且到两坐标轴距离相等,若的面积是面积的2倍,求点的坐标.24. (8分)(2011·福州) 在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:(1)图1中“统计与概率”所在扇形的圆心角为________度;(2)图2、3中的a=________,b=________;(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?25. (10分)(2019·银川模拟) 如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.(1)求证:∠1=∠2.(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.26. (10分) (2019八下·丰润期中) 如图,矩形ABCD中,点E , F分别在边AB , CD上,点G , H在对角线AC上,EF与AC相交于点O , AG=CH , BE=DF .(1)求证:四边形EGFH是平行四边形;(2)若EG=EH , DC=8,AD=4,求AE的长.27. (15分)(2019·东湖模拟) △AB C中,BC=12,高AD=8,矩形EFGH的一边GH在BC上,顶点E、F分别在AB、AC上,AD与EF交于点M.(1)求证:;(2)设EF=x,EH=y,写出y与x之间的函数表达式;(3)设矩形EFGH的面积为S,求S与x之间的函数表达式,并写出S的最大值.28. (10分) (2017八下·嵊州期中) 已知:如图,在▱ABCD中,E是CA延长线上的点,F是AC延长线上的点,且AE=CF.求证:(1)△ABE≌△CDF;(2)BE∥DF.29. (15分)(2016·重庆B) 已知△ABC是等腰直角三角形,∠BAC=90°,CD= BC,DE⊥CE,DE=CE,连接AE,点M是AE的中点.(1)如图1,若点D在BC边上,连接CM,当AB=4时,求CM的长;(2)如图2,若点D在△ABC的内部,连接BD,点N是BD中点,连接MN,NE,求证:MN⊥AE;(3)如图3,将图2中的△CDE绕点C逆时针旋转,使∠BCD=30°,连接BD,点N是BD中点,连接MN,探索的值并直接写出结果.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共13题;共113分)17-1、18-1、19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、29-1、29-2、29-3、。

2017年江苏省苏州市昆山市中考数学二模试卷(解析版)

2017年江苏省苏州市昆山市中考数学二模试卷(解析版)

2017年江苏省苏州市昆山市中考数学二模试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相对应的位置上. 1.(3分)的相反数是()A.3B.﹣3C.D.﹣2.(3分)下列计算正确的是()A.=﹣4B.(a2)3=a5C.a•a3=a4D.2a﹣a=2 3.(3分)南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为()A.0.35×108B.3.5×107C.3.5×106D.35×1054.(3分)函数y=中自变量x的取值范围是()A.x≥2B.x>2C.x≤2D.x≠25.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁6.(3分)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.7.(3分)下列说法中,你认为正确的是()A.四边形具有稳定性B.等边三角形是中心对称图形C.等腰梯形的对角线一定互相垂直D.任意多边形的外角和是360°8.(3分)如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分9.(3分)如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB =CD=4,则OP的长为()A.1B.C.2D.210.(3分)如图,A、B、C是反比例函数y=(k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条二、填空题:本大题共8个小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.11.(3分)因式分解:a2﹣2a=.12.(3分)掷一枚质地均匀的正方体骰子(六个面上分别刻有1到6的点数),向上一面出现的点数大于2且小于5的概率为.13.(3分)已知x=﹣1是一元二次方程ax2+bx﹣10=0的一个解,且a≠﹣b,则的值为.14.(3分)如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为.15.(3分)如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是cm.16.(3分)已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:则关于x的一元二次方程ax2+bx+c=﹣2的根是.17.(3分)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD 方向向右平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于.18.(3分)赵爽弦图是由位于第一象限的四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x轴和y轴,大正方形的顶点B1、C1、C2、C3、…、∁n在直线y=﹣x+上,顶点D1、D2、D3、…、D n在x轴上,则第n个阴影小正方形的面积为.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相对应的位置上,解答时应写必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔. 19.(5分)计算:+()﹣1﹣2cos60°+(2﹣π)0.20.(6分)解不等式组,并写出该不等式组的最大整数解.21.(6分).先化简,再求值:(+)÷,其中a=2017,b=.22.(6分)有三个质地、大小都相同的小球分别标上数字2,﹣2,3后放入一个不透明的口袋搅匀,任意摸出一个小球,记下数字a后,放回口袋中搅匀,再任意摸出一个小球,又记下数字b.这样就得到一个点的坐标(a,b).(1)求这个点(a,b)恰好在函数y=﹣x的图象上的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)(2)如果再往口袋中增加n(n≥1)个标上数字2的小球,按照同样的操作过程,所得到的点(a,b)恰好在函数y=﹣x的图象上的概率是(请用含n的代数式直接写出结果).23.(7分)如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE ∥AC,AE∥OB,(1)求证:四边形AEBD是菱形;(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.24.(8分)宁波轨道交通4号线已开工建设,计划2020年通车试运营.为了了解镇民对4号线地铁票的定价意向,某镇某校数学兴趣小组开展了“你认为宁波4号地铁起步价定为多少合适”的问卷调查,并将调查结果整理后制成了如下统计图,根据图中所给出的信息解答下列问题:(1)求本次调查中该兴趣小组随机调查的人数;(2)请你把条形统计图补充完整;(3)如果在该镇随机咨询一位居民,那么该居民支持“起步价为2元或3元”的概率是(4)假设该镇有3万人,请估计该镇支持“起步价为3元”的居民大约有多少人?25.(8分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?26.(8分)如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE=∠A.(1)求证:BC是⊙O的切线;(2)若sin B=,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).27.(10分)在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.28.(12分)已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x﹣2经过A、C两点,且AB=2.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=,当t为何值时,s有最小值,并求出最小值.(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.2017年江苏省苏州市昆山市中考数学二模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相对应的位置上. 1.(3分)的相反数是()A.3B.﹣3C.D.﹣【解答】解:的相反数是﹣,故选:D.2.(3分)下列计算正确的是()A.=﹣4B.(a2)3=a5C.a•a3=a4D.2a﹣a=2【解答】解:A、=4,故原题计算错误;B、(a2)3=a6,故原题计算错误;C、a•a3=a4,故原题计算正确;D、2a﹣a=a,故原题计算错误;故选:C.3.(3分)南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为()A.0.35×108B.3.5×107C.3.5×106D.35×105【解答】解:350万=3 500 000=3.5×106.故选:C.4.(3分)函数y=中自变量x的取值范围是()A.x≥2B.x>2C.x≤2D.x≠2【解答】解:由题意得,2x﹣4≥0,解得x≥2.故选:A.5.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.6.(3分)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.【解答】解:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选:A.7.(3分)下列说法中,你认为正确的是()A.四边形具有稳定性B.等边三角形是中心对称图形C.等腰梯形的对角线一定互相垂直D.任意多边形的外角和是360°【解答】解:A、四边形不具有稳定性,原说法错误,故本选项错误;B、等边三角形不是中心对称图形,说法错误,故本选项错误;C、等腰梯形的对角线不一定互相垂直,说法错误,故本选项错误;D、任意多边形的外角和是360°,说法正确,故本选项正确;故选:D.8.(3分)如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分【解答】解:连接OC、OC′,如图,∵∠AOB=90°,C为AB中点,∴OC=AB=A′B′=OC′,∴当端点A沿直线AO向下滑动时,AB的中点C到O的距离始终为定长,∴滑动杆的中点C所经过的路径是一段圆弧.故选:B.9.(3分)如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB =CD=4,则OP的长为()A.1B.C.2D.2【解答】解:作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,则AE=BE=AB=2,DF=CF=CD=2,在Rt△OBE中,∵OB=,BE=2,∴OE==1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,而OE=OF=1,∴四边形OEPF为正方形,∴OP=OE=.故选:B.10.(3分)如图,A、B、C是反比例函数y=(k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条【解答】解:如解答图所示,满足条件的直线有4条,故选:A.二、填空题:本大题共8个小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.11.(3分)因式分解:a2﹣2a=a(a﹣2).【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).12.(3分)掷一枚质地均匀的正方体骰子(六个面上分别刻有1到6的点数),向上一面出现的点数大于2且小于5的概率为.【解答】解:掷一枚均匀的骰子时,有6种情况,出现点数大于2且小于5的情况有2种,故其概率是=,故答案为:.13.(3分)已知x=﹣1是一元二次方程ax2+bx﹣10=0的一个解,且a≠﹣b,则的值为5.【解答】解:∵x=﹣1是一元二次方程ax2+bx﹣10=0的一个解,∴a﹣b﹣10=0,∴a﹣b=10.∵a≠﹣b,∴a+b≠0,∴====5,故答案是:5.14.(3分)如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为24.【解答】解:连接BD,交AC与点O,∵四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵AB=15,sin∠BAC=,∴sin∠BAC==,∴BO=9,∴AB2=OB2+AO2,∴AO===12,∴AC=2AO=24,故答案为24.15.(3分)如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是10cm.【解答】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R﹣2)2,解得R=5,∴该光盘的直径是10cm.故答案为:1016.(3分)已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:则关于x的一元二次方程ax2+bx+c=﹣2的根是x1=﹣4,x2=0.【解答】解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣2,∵x=﹣4时,y=﹣2,∴x=0时,y=﹣2,∴方程ax2+bx+c=﹣2的解是x1=﹣4,x2=0.故答案为:x1=﹣4,x2=0.17.(3分)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD 方向向右平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于4或8.【解答】解:设AC交A′B′于H,∵A′H∥CD,AC∥CA′,∴四边形A′HCD是平行四边形,∵∠A=45°,∠D=90°∴△A′HA是等腰直角三角形设AA′=x,则阴影部分的底长为x,高A′D=12﹣x∴x•(12﹣x)=32∴x=4或8,即AA′=4或8cm.故答案为:4或8.18.(3分)赵爽弦图是由位于第一象限的四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x轴和y轴,大正方形的顶点B1、C1、C2、C3、…、∁n在直线y=﹣x+上,顶点D1、D2、D3、…、D n在x轴上,则第n个阴影小正方形的面积为.【解答】解:设第n个大正方形的边长为a n,则第n个阴影小正方形的边长为a n,当x=0时,y=﹣x+=,∴=a1+a1,∴a1=.∵a1=a2+a2,∴a2=,同理可得:a3=a2,a4=a3,a5=a4,…,∴a n=a1=,∴第n个阴影小正方形的面积为==.故答案为:.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相对应的位置上,解答时应写必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔. 19.(5分)计算:+()﹣1﹣2cos60°+(2﹣π)0.【解答】解:原式=2+2﹣1+1=4.20.(6分)解不等式组,并写出该不等式组的最大整数解.【解答】解:解不等式①得,x≥﹣2,解不等式②得,x<1,∴不等式组的解集为﹣2≤x<1.∴不等式组的最大整数解为:x=0.21.(6分).先化简,再求值:(+)÷,其中a=2017,b=.【解答】解:(+)÷===2b,当a=2017,b=时,原式=2.22.(6分)有三个质地、大小都相同的小球分别标上数字2,﹣2,3后放入一个不透明的口袋搅匀,任意摸出一个小球,记下数字a后,放回口袋中搅匀,再任意摸出一个小球,又记下数字b.这样就得到一个点的坐标(a,b).(1)求这个点(a ,b )恰好在函数y =﹣x 的图象上的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)(2)如果再往口袋中增加n (n ≥1)个标上数字2的小球,按照同样的操作过程,所得到的点(a ,b )恰好在函数y =﹣x 的图象上的概率是(请用含n 的代数式直接写出结果).【解答】解:(1)列表得:∵共有9种等可能的结果,其中符合要求的结果有2种, ∴P (点在函数图象上)=;(2)∵再往口袋中增加n (n ≥1)个标上数字2的小球,共有(n +3)2种等可能的结果,其中符合要求的结果有2(n +1)种, 故答案为:.23.(7分)如图,在平面直角坐标系中,矩形OABC 的对角线OB ,AC 相交于点D ,且BE ∥AC ,AE ∥OB ,(1)求证:四边形AEBD 是菱形;(2)如果OA =3,OC =2,求出经过点E 的反比例函数解析式.【解答】(1)证明:∵BE ∥AC ,AE ∥OB , ∴四边形AEBD 是平行四边形,∵四边形OABC是矩形,∴DA=AC,DB=OB,AC=OB,∴DA=DB,∴四边形AEBD是菱形;(2)解:连接DE,交AB于F,如图所示:∵四边形AEBD是菱形,∴AB与DE互相垂直平分,∵OA=3,OC=2,∴EF=DF=OA=,AF=AB=1,3+=,∴点E坐标为:(,1),设经过点E的反比例函数解析式为:y=,把点E(,1)代入得:k=,∴经过点E的反比例函数解析式为:y=.24.(8分)宁波轨道交通4号线已开工建设,计划2020年通车试运营.为了了解镇民对4号线地铁票的定价意向,某镇某校数学兴趣小组开展了“你认为宁波4号地铁起步价定为多少合适”的问卷调查,并将调查结果整理后制成了如下统计图,根据图中所给出的信息解答下列问题:(1)求本次调查中该兴趣小组随机调查的人数;(2)请你把条形统计图补充完整;(3)如果在该镇随机咨询一位居民,那么该居民支持“起步价为2元或3元”的概率是(4)假设该镇有3万人,请估计该镇支持“起步价为3元”的居民大约有多少人?【解答】解:(1)由题意可得,同意定价为5元的所占的百分比为:18°÷360°×100%=5%,∴本次调查中该兴趣小组随机调查的人数为:10÷5%=200(人),即本次调查中该兴趣小组随机调查的人数有200人;(2)由题意可得,2元的有:200×50%=100人,3元的有:200﹣100﹣30﹣10=60人,补全的条形统计图如右图所示;(3)由题意可得,该居民支持“起步价为2元或3元”的概率是:,故答案为:;(4)由题意可得,(人),即该镇支持“起步价为3元”的居民大约有9000人.25.(8分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?【解答】解:(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,由题意得:t+4t+3(100﹣3t)=200,解得:t=25.答:t的值是25.②设该养老中心建成后能提供养老床位y个,由题意得:y=t+4t+3(100﹣3t)=﹣4t+300(10≤t≤30),∵k=﹣4<0,∴y随t的增大而减小.当t=10时,y的最大值为300﹣4×10=260(个),当t=30时,y的最小值为300﹣4×30=180(个).答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.26.(8分)如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O 与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE=∠A.(1)求证:BC是⊙O的切线;(2)若sin B=,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).【解答】(1)证明:连接OE,∵在△ABC中,∠C=90°,FG⊥BC,∴∠BGF=∠C=90°,∴FG∥AC,∴∠OFG=∠A,∴∠OFE=∠OFG,∴∠OFE=∠EFG,∵OE=OF,∴∠OFE=∠OEF,∴∠OEF=∠EFG,∴OE∥FG,∴OE⊥BC,∴BC是⊙O的切线;(2)解:∵在Rt△OBE中,sin B=,⊙O的半径为r,∴OB=r,BE=r,∴BF=OB+OF=r,∴FG=BF•sin B=r,∴BG==r,∴EG=BG﹣BE=r,∴S△FGE=EG•FG=r2,EG:FG=1:2,∵BC是切线,∵∠EGH=∠FGE,∴△EGH∽△FGE,∴=()2=,∴S△EHG=S△FGE=r2.27.(10分)在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.【解答】解:(1)由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°,∴∠BAC=∠BAD=45°,∵∠ACB=90°,∴AC=CB,(2)①由旋转得,AD=AB,∴∠ABD=∠ADB,∵∠DAF=∠ABD,∴∠DAF=∠ADB,∴AF∥BD,∴∠BAC=∠ABD,∵∠ABD=∠F AD由旋转得,∠BAC=∠BAD,∴∠F AD=∠BAC=∠BAD=×180°=60°,由旋转得,AB=AD,∴△ABD是等边三角形,∴AD=BD,在△AFD和△BED中,,∴△AFD≌△BED,∴AF=BE,②如图,由旋转得,∠BAC=∠BAD,∵∠ABD=∠F AD=∠BAC+∠BAD=2∠BAD,由旋转得,AD=AB,∴∠ABD=∠ADB=2∠BAD,∵∠BAD+∠ABD+∠ADB=180°,∴∠BAD+2∠BAD+2∠BAD=180°,设BD=y,作BG平分∠ABD,∴∠BAD=∠GBD=36°∴AG=BG=BD=y,∴DG=AD﹣AG=AD﹣BG=AD﹣BD,∵∠BDG=∠ADB,∴△BDG∽△ADB,∴.∵DG=AD﹣BD,∴=﹣1,∴﹣1,∴﹣1,∴1=()2﹣即()2﹣﹣1=0,∴,∵∠F AD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED,∴,∴AF==x.28.(12分)已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x﹣2经过A、C两点,且AB=2.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=,当t为何值时,s有最小值,并求出最小值.(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.【解答】解:(1)由直线:y=x﹣2知:A(2,0)、C(0,﹣2);∵AB=2,∴OB=OA+AB=4,即B(4,0).设抛物线的解析式为:y=a(x﹣2)(x﹣4),代入C(0,﹣2),得:a(0﹣2)(0﹣4)=﹣2,解得a=﹣∴抛物线的解析式:y=﹣(x﹣2)(x﹣4)=﹣x2+x﹣2.(2)在Rt△OBC中,OB=4,OC=2,则tan∠OCB=2;∵CE=t,∴DE=2t;而OP=OB﹣BP=4﹣2t;∴s===(0<t<2),∴当t=1时,s有最小值,且最小值为1.(3)在Rt△OBC中,OB=4,OC=2,则BC=2;在Rt△CED中,CE=t,ED=2t,则CD=t;∴BD=BC﹣CD=2﹣t;以P、B、D为顶点的三角形与△ABC相似,已知∠OBC=∠PBD,则有两种情况:①=⇒=,解得t=;②=⇒=,解得t=;综上,当t=或时,以P、B、D为顶点的三角形与△ABC相似.。

九年级二模试题答案2017

九年级二模试题答案2017

2017年初中学业水平模拟考试(二)数学试题参考答案及评分标准 2018.05一、选择题(本大题共12小题,共36分. 在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,填在题后的小括号内,每小题选对得3分. 错选、不选或多选均记零分.)分.)13. (x +y )(x ﹣y ﹣3);14. 23+1;15. -4<x ≤4;16.12a ;17. 5;18.195π三、解答题(本大题共7小题,共66分. 解答应写出文字说明、证明过程或演算步骤) 19.解方案一,解法如下:在Rt △BGC 中,∠BGC =90°,∠BCG =13°,BG =CD =6.9,∵tan ∠BCG =BG CG ,∴CG = 6.9tan13o ≈6.90.23=30,……………………………3分 在Rt △ACG 中,∠AGC =90°,∠ACG =22°,∵tan ∠ACG =AGCG ,∴AG =30×tan22°≈30×0.40=12,…………………6分 ∴AB =AG+BG =12+6.9≈19(米).……………………………………7分 答:教学楼的高度约19米.……………………………………8分 方案二,解法如下:在Rt △AFB 中,∠ABF =90°,∠AFB =43°,∵tan ∠AFB =AB FB ,∴FB =AB tan43o ≈AB0.93,……………………………3分 在Rt △ABE 中,∠ABE =90°,∠AEB =32°,∵tan ∠AEB =ABEB ,∴EB =ABtan32o ≈AB0.62,……………………………6分∵EF =EB ﹣FB 且EF =10,∴AB 0.62﹣AB0.93=10,……………………7分解得AB =18.6≈19(米).答:教学楼的高度约19米.………………………………………8分20. 解:(1)共调查的中学生家长数是:40÷20%=200(人);………………1分 (2)扇形C 所对的圆心角的度数是:360°×(1﹣20%﹣15%﹣60%)=18°;…………………………………………2分 C 类的人数是:200×(1﹣20%﹣15%﹣60%)=10(人),…………………3分 补图如下:……………………4分(3)根据题意得: 10000×60%=6000(人),答:10000名中学生家长中有6000名家长持反对态度;………………5分 (4)设初三(1)班两名家长为A 1,A 2,初三(2)班两名家长为B 1,B 2,一共有12种等可能结果,其中2人来自不同班级共有8种………………7分∴P (2人来自不同班级)=812=23.…………………………………………8分 21. 解:(1)线段OA 对应的函数关系式为:s =112t (0≤t ≤12)…………1分线段AB 对应的函数关系式为:s =1(12<t ≤20);……………………2分(2)图中线段AB 的实际意义是: 小明出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟; ……………………4分 (3)由图象可知,小明花20分钟到达学校,则小明的妈妈花20﹣10=10分钟到达学校,可知小明妈妈的速度是小明的2倍,即:小明花12分钟走1千米,则妈妈花6分钟走1千米,故D (16,1),小明花20﹣12=8分钟走圆弧形道路,则妈妈花4分钟走圆弧形道路,故B (20,1). ………6分 妈妈的图象经过(10,0)(16,1)(20,1)如图中折线段CD ﹣DB 就是所作图象.…………………………………………8分22. 解:(1)设该商场购进LED 灯泡x 个,普通白炽灯泡的数量为(300-x )个, 根据题意得:(60-45)x +(0.9×30-25)(300-x )=3200 ………………………………2分解得,x =200 300-200=100答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个. ………4分(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120﹣a)个,这批灯泡的总利润为W元,根据题意得W=(60﹣45)a+(30﹣25)(120﹣a)…………………………………5分=10a+600 …………………………………6分∵10a+600≤[45a+25(120﹣a)]×30% …………………………………7分解得a≤75,…………………………………8分∵k=10>0,∴W随a的增大而增大,∴a=75时,W最大,最大值为1350,………9分此时购进普通白炽灯泡(120﹣75)=45个.答:该商场购进LED灯泡75个,则购进普通白炽灯泡45个,这批灯泡的总利润为1350元.10分23. 解:(1)CD=BE;理由如下………………………1分∵△ABC和△ADE为等边三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=60°,…2分∵∠BAE=∠BAC-∠EAC=60°-∠EAC,∠DAC=∠DAE-∠EAC=60°-∠EAC,∴∠BAE=∠DAC,……………………………………………3分∴△ABE≌△ACD,……………………………………………4分∴CD=BE;………………………………………………………5分(2)△AMN是等边三角形;理由如下:………………………6分∵△ABE≌△ACD,∴∠ABE=∠ACD∵M、N分别是BE、CD的中点,∴BM CD=CN,…………7分∵AB=AC,∠ABE=∠ACD,∴△ABM ACN,………………………………………………8分∴AM=AN,∠MAB=∠NAC,∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,…9分∴△AMN是等边三角形,……………………………………………10分24. (1)连接OD.∵OA=OD,∴∠OAD=∠ODA.-------------------------2分∵EF是BD的中垂线,∴DF=BF.∴∠FDB=∠B.------------------------------------------------3分∵∠C=90°,∴∠OAD+∠B=90°.∴∠ODA+∠FDB=90°.∴∠ODF=90°.-------4分又∵OD为⊙O的半径,∴DF为⊙O的切线.-----------------------------------5分(2)法一:连接OF.在Rt△ABC中,∵∠C=90°,sinA=45,AB=10,∴AC=6,BC=8.-----------------------------------------7分∵AO=x,DF=y,∴OC=6-x,CF=8-y,在Rt△COF中,OF2=(6-x)2+(8-x) 在Rt△ODF中,OF2=x2+y2∴(6-x)2+(8-x)2=x2+y2.-----------9分∴y=-34x+254(0<x≤6)---------------------------------------10分法二:过点O做OM⊥AD于点M.在Rt△OAM中,∵AO=x,sinA=45,∴AM=35x.-----------------------------------------7分∵OA=OD,OM⊥AD,∴AD=65x.∴BD=10-65x ∵EF是BD的中垂线,∴BE=5-35x ∵cos B=BEBF=BCAB,∴5-35xy=810.-----------------------------------------9分∴y=-34x+254(0<x≤6)---------------------------------------10分25. 解:(1)抛物线y=﹣12x2+72x+4中:令x=0,y=4,则B(0,4);…………………………2分令y=0,0=﹣12x2+72x+4,解得x1=﹣1、x2=8,则A(8,0);∴A(8,0)、B(0,4).…………………………………………………4分(2)△ABC中,AB=AC,AO⊥BC,则OB=OC=4,∴C(0,﹣4).由A(8,0)、B(0,4),得:直线AB:y=﹣12x+4;…………………5分依题意,知:OE=2t,即E(2t,0);∴P(2t,﹣2t2+7t+4)、Q(2t,﹣t+4),PQ=(﹣2t2+7t+4)﹣(﹣t+4)=﹣2t2+8t;……6分S=S△ABC+S△PAB=12×8×8+12×(﹣2t2+8t)×8=﹣8t2+32t+32=﹣8(t﹣2)2+64;∴当t=2时,S有最大值,且最大值为64.…………………………………8分(3)∵PM∥y轴,∴∠AMP=∠ACO<90°;而∠APM是锐角,所以△P AM若是直角三角形,只能是∠P AM=90°;即有△PAE∽△AME,所以PE AEAE EM=,即2AE PE EM=……………9分由A(8,0)、C(0,﹣4),得:直线AC:y=12x﹣4;所以,M(2t,t-4),得:PE=﹣2t2+7t+4,EM=4﹣t,AE=8﹣2t∴(﹣2t2+7t+4)(4﹣t)=(8﹣2t)2,………10分故(﹣2t2+7t+4)(4﹣t)=4(4﹣t)2 ﹣2t2+7t+4=4(4﹣t)即有2t2-11t+12=0,解之得:3=2t或=4t(舍去)∴存在符合条件的3=2t.…………………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年(下)二模测试卷
初三数学
注意事项:
1.答题前,考生务必将自己的学校、班级、姓名、考试号、考场号、座位号,用0.5毫米黑色墨水签字
笔填写在答题纸相对应的位置上,并认真核对;
2.答题必须用0.5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不
得用其他笔答题;
3.考生答题必须答在答题纸上,保持纸面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请.将选择题的答案用........2B ..铅笔涂在答题卡相应的位置上.............. 1.23
的相反数为
A .32-
B .32
C .23
D .23
-
2.2015年12月27日,苏州环古城河健康步道全线开通了.环古城河健身步道全程15 500 m ,沿护城河内岸环绕苏州古城.将数据15500用科学记数法可表示为 A .0.155×104
B .0.155×105
C .1.55×104
D .1.55×105
3.下列运算正确的是
A .426x x x +=
B .236x x x =
C .()3
26
x x =
D .()2
2
2
x y x y -=- 4.如右图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=55o , 那么∠2的度数是 A .20° B .30°
C .35°
D .50°
5.我校为了解七年级男同学参加课外体育运动的情况,随机调查了50名七年级男同学,其中,参加篮球运动的有14人,乒乓球运动的有11人,足球运动的有13人,其余参加羽毛球运动.则参加羽毛球运动的频率是
A .0.28
B .0.28
C .0.26
D .0.24
6.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是 A .15,15 B .17.5,15
C .20,20
D .15,20
7.若点A (-4,y 1),B (-1,y 2),C (1,y 3)在抛物线21(2)12
y x =-+-上,则
A .y 1<y 3<y 2
B .y 2<y 1<y 3
C .y 3<y 2<y 1
D .y 3<y 1<y 2 8.如图,在Rt △ABC 中,∠B =90o ,AB =2,以B 为圆心,AB 为半径画弧,恰好经过AC 的中点D ,则AD 与线段AD 围成的弓
形面积是 A .22π- B
.2π
C
.23π- D
.43
π-9.如图,从坡上建筑物AB 观测坡底建筑物CD .从A 点处测得C 点的俯角为45o ,从B 点
F E D
C
B
A
(第8题) (第9题) (第12题) (第14题)
第18题)
处测得D 点的俯角为30o .已知建筑物AB 的高度为10 m ,AB 与
CD 的水平距离是OD =15m ,则CD 的高度为
A .(
5)m
B .
(10)m
C .
(10-m D .(10-m
10.如图,在矩形ABCD 中,AB <AD ,E 为AD 边上一点,且AE =12
AB ,连结BE ,将△
ABE 沿BE 翻折,若点A 恰好落在CE 上点F 处,则∠CBF 的余弦值为
A .23
B .45
C
D .35
二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上................ 11.若式子2在实数范围内有意义,则x 的取值范围是 ▲ .
12.如图,△ABC 中,D 、E 分别是边AB 、AC 的中点.若DE =2,则BC = ▲ . 13.分解因式:2312x -= ▲ .
14.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查
了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间为8小时的人数是 ▲ . 15
将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是 ▲ 分.
16.关于x 的方程2440kx x --=有两个不相等的实数根,则k 的最小整数值为 ▲ . 17.如图,直线l 1∶y =2x -6与两坐标轴分别
交于A 、B 两点,点M 在直线l 1上,且到两坐标轴的距离相等.现将直线l 1绕点M 按顺时针方向旋转得到直线l 2,当直线l 2与直线l 1第一次成45o 夹角时,直线l 2的函数表达式为 ▲ .
18.如图,在等边△ABC 中,AB =10,BD =4BE =2,点P 从点E 出发沿EA 连结PD ,以PD 为边,在PD 的右侧按如图所示的
方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上...............
,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.
19.(本题满分5分) 计算:()0
23--π.
20.(本题满分5分) 解不等式组:{
331,
2(1) 1.
x x x x -<+--≤
21.(本题满分6分)
先化简,再求值:2
121(122
x x x x ++-÷++,其中1x =.
22.(本题满分6分) 甲、乙两公司为“见义勇为基金会”各捐款30000元.已知乙公司比
甲公司人均多捐20元,且甲公司的人数比乙公司的人数多20%.甲、乙两公司各有多少人?
23.(本题满分8分) 如图,3×3的方格分为上中下三层,第一层有一
枚黑色方块甲,可在方格A 、B 、C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D 、E 、F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图. (1)若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 ▲ .
(2)若甲、乙均可在本层移动,请用树状图或列表法求出黑色方块所构拼图是轴对称图形的概率.
24.(本题满分8分) 在□ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在CD 上,CF =AE ,
连接BF ,AF .
(1)求证:四边形BFDE 是矩形;
(2)若AF 平分∠BAD ,且AE =3,DE =4,求矩形BFDE 的面积.
25.(本题满分8分) 如图,已知A (m ,12
)、B (n ,2)k
的两个交点,且位于第二象限内,过A 作AC ⊥x 轴于C ,过AC 于E ,△ABE 的面积为94
. (1)求一次函数与反比例函数的表达式;
(2)若点P (t ,0)为x 轴上的一点,连结AP 、BP ,
当∠APB >90°时,试求t 的取值范围.
26.(本题满分10分) 如图,在Rt △ABC 中,∠C =90o ,点D 、
E 、
F 分别在AC 、BC 、AB 边上,以AF 为直径的⊙O 恰好经过D 、E ,且DE =EF . (1)求证:BC 为⊙O 的切线;
y
图1 图2 图
3
O
D
C
B
A
P N O D C
B
A (Q ) O
D
C
B
A
(备用图1) (备用图2)
(2)若∠B =40o ,求∠CDE 的度数;
(3)若CD =2,CE =4,求⊙O 的半径及线段BE 的长.
27.(本题满分10分) 已知,△ABC 在平面直角坐标系中的位置如图①所示,A 点坐标为(-6,
0),B 点坐标为(4,0),点D 为BC 的中点,点E 为线段AB 上一动点.经过点A 、B 、C 三点的抛物线的解析式为y =ax 2+bx +8. (1)求抛物线的解析式;
(2)如图1,连接DE ,将△BDE 以DE 为轴翻折,点B 的对称点为点G ,当点G 恰好落在抛物线的对称轴上时,求G 点的坐标;
(3)①如图2,连接AD ,点P 为AD 上一个动点,连结BP 、PE ,则BP +PE 的最小值为 ▲ ;
②如图3,当点E 在线段AB 上运动时,抛物线y =ax 2+bx +8的对称轴上是否存在点F ,使得以C 、D 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.
28.(本题满分10分) 如图,在矩形ABCD 中,AB =4cm ,BC =3cm ,点O 为对角线BD 的
中点,点P 从点A 出发,沿折线AD -DO -OC 以1cm/s 的速度向终点C 运动,当点P 与点A 不重合时,过点P 作PQ ⊥AB 于点Q ,以PQ 为边向右作正方形PQMN ,设正方形PQMN 与△ABD 重叠部分图形的面积为S (cm 2),点P 运动的时间为t (秒). (1)求点N 落在BD 上时t 的值;
(2)则点O 在正方形PQMN 内部时t 的取值范围是 ▲ ; (3)当点P 在AD 上运动时,求S 与t 之间的函数关系式; (4)则直线DN 平分△BCD 面积时t 的值是 ▲ .。

相关文档
最新文档