九年级数学培优练习题
九年级数学下册2023年中考专题培优训练(培优篇):函数
九年级数学下册2023年中考专题培优训练(培优篇):函数一、单选题1.下列曲线中不能..表示y 是x 的函数的是( ) A . B .C .D .2.如图,直线1:3L y x =+与直线2:L y ax b =+相交于点()4A m ,,则关于x 的不等式3x ax b +≤+的解集是( ).A .4x ≥B .4x ≤C .1x ≥D .1x ≤3.若直线3y x =与x 轴所夹的锐角为α,则sin α的值为( ) A 3B .12C 3D 34.下列四个选项中,不符合直线3y x =--的性质特征的选项是( ) A .经过第二、三、四象限 B .y 随x 的增大而减小 C .与x 轴交于()3,0 D .与y 轴交于()0,3-5.已知反比例函数()0ky k x=≠,当21x -≤≤-时,y 的最大值是6,则当2x ≥时,y 有( )A .最小值6-B .最小值3-C .最大值6-D .最大值3-6.如图,正比例函数y ax =(a 为常数,且0a ≠)和反比例函数ky x=(k 为常数,且0k ≠)的图像相交于)(2,A m -和B 两点,则不等式kax x<的解集为( )A .<2x -或2x >B .22x -<<C .20x -<<或2x >D .<2x -或02x <<7.对于反比例函数2023y x=,下列说法正确的是( ) A .图象分布在第二、四象限内 B .图象经过点()1,2023-- C .y 随x 的增大而减小 D .0x <时,y 随x 的增大而增大8.如图,P 是反比例函数()50y x x=>的图象上一点,PA x ⊥轴于点A ,动点B 从原点O 出发,沿y 轴正方向移动,连接AB ,BP .在点B 移动过程中,PAB 的面积( )A .越来越大B .不变C .越来越小D .先变大后变小9.对于二次函数()222y x =-+的图像,下列说法正确的是( ) A .对称轴为直线2x =- B .最低点的坐标为()2,2 C .与x 轴有两个公共点D .与y 轴交点坐标为()0,210.如图,在平面直角坐标系中,点()12,A m y -,()2,B m y 都在二次函数()21y x n =-+的图象上.若12y y >,则m 的取值范围是( )A .1m <B .1m >C .2m <D .>2m11.如图,一场篮球比赛中,一名篮球运动员投篮,球沿抛物线20.2y x bx c =-++运行,然后准确落入篮筐内,已知球出手时离地面高2.25米,距篮筐中心的水平距离OH 是4米,篮筐的中心离地面的高度为3.05m ,该抛物线的表达式为( )A .20.2 2.25y x x =--+B .20.2 2.25y x x =-++C .20.22 2.25y x x =--+D .20.22 2.25y x x =-++12.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,其对称轴为直线12x =-,且与x轴的一个交点坐标为()2,0-.下列结论:①0abc >;①a b =;①930a b c -+>;①20a c +=;①关于x 的一元二次方程20ax bx c ++=有两个相等的实数根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题13.如图,点A 是反比例函数ky x=图象上一点,过点A 作AH x ⊥轴,垂足为H ,连接OA ,已知AOH △的面积是6,则k 的值是__________.14.把抛物线2(1)3y x =-++向左平移2个单位长度,然后向下平移3个单位长度,平移后抛物线的表达式为__________.15.一辆汽车匀速通过某段公路,所需时间t (h )与行驶速度v (km/h )满足函数关系kt v=,其图象为如图所示的一段曲线,且端点为()40,1A 和(),0.5B m .若行驶速度不得超过60km/h ,则汽车通过该路段最少需要_________h ?16.反比例数4y x =-,当4y <时,x 的取值范围是______.17.如图,在平面直角坐标系中,OAC 的顶点A 在反比例函数ky x=的图象上,点C 在x 轴上,AC 边交反比例函数图象于点B ,若2BOCS=,且2AB BC =,则k 的值为___________.18.如图,直线334y x =--与x 轴、y 轴分别交于点A 和点B ,点C 是x 轴上的一个动点,将ABC 沿BC 所在直线折叠后,点A 恰好落在y 轴上点D 处,则点C 的坐标为______.三、解答题19.如图,直线1l :23y ax =+与x 轴和y 轴分别交于B ,C 两点,直线2l :23y x b =-+与x轴交于点A ,并且这两直线交点P 的坐标为()22,.(1)求两直线的解析式; (2)求四边形AOCP 的面积.20.李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y (①)与加热时间x (s )之间近似满足一次函数关系,根据记录的数据,画函数图象如下:(1)加热前水温是 ①.(2)求乙壶中水温y 关于加热时间x 的函数解析式. (3)当甲壶中水温刚达到80①时,乙壶中水温是 ①.21.如图,直线2y ax =+与x 轴、y 轴分别相交于A 、B 两点,与双曲线()0k y x x=>相交于点P ,PC x ⊥轴于点C ,且4PC =,点A 的坐标为()4,0-.(1)求一次函数的解析式; (2)求双曲线的解析式;(3)若点Q 为双曲线上点P 右侧的一点,且QH x ⊥轴于H ,当以点Q 、C 、H 为顶点的三角形与AOB 相似时,求点Q 的坐标. 22.如图,已知一次函数112y x =-与反比例函数()0k y k x =≠相交于点(),1A m 、()2,B n -.过点A 分别向x 轴、y 轴作垂线,垂足分别为点M 、N .连接,,OA OB AB .(1)求反比例函数的解析式;(2)若四边形OMAN 的面积记作1S ,AOB 的面积记作2S ,求12S S 的值. 23.为了做好校园疫情防控工作,学校每周要对办公室和教室进行药物喷洒消毒,消毒药物在每间教室内空气中的浓度y (单位:3mg/m )与时间x (单位:min )的函数关系如图所示.在进行药物喷洒时y 与x 的函数关系式为2y x =,药物喷洒完成后y 与x 成反比例函数关系,两个函数图象的交点为(5,)A n .(1)n 的值为__________;(2)当5x ≥时,y 与x 的反比例函数关系式为__________;(3)当教室空气中的药物浓度不高于31mg/m 时,对人体健康无危害.当教室药物喷洒完成45min 后,学生能否进入教室?请通过计算说明.24.某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.假设果园增种x 棵橙子树,增种后果园橙子的总产量为y 个,那么请你求出当果园增种多少棵橙子树时,橙子的总产量最多,并求出此时的总产量.25.如图,抛物线2y ax bx c =++经过点()()2,0,4,0A B -,与y 轴正半轴交于点C ,且2OC OA =,抛物线的顶点为D ,直线y mx n =+经过B ,C 两点,与对称轴交于点E .(1)求抛物线及直线BC 的函数表达式;(2)点M 是直线BC 上方抛物线上的动点,连接,MB ME ,得到MBE △,求出MBE △面积的最大值及此时点M 的坐标;(3)直线()0y kx k =>交线段BC 于点H ,若以点O ,B ,H 为顶点的三角形与CDE 相似,求k 的值;(4)点N 在对称轴上,满足BNC ABC ∠=∠,求出点N 的坐标.。
九年级数学第一次月考阶段性测试(苏科版第1-2章,培优卷)(解析版)
九年级数学第一次月考阶段性测试(江苏专用,10月份培优卷)班级:__________姓名:___________得分:__________注意事项:本试卷满分120分,试题共26题,其中选择6道、填空10道、解答10道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共6小题,每小题2分,共12分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(23-24九年级上·江苏盐城·阶段练习)下列方程是一元二次方程的是()A.2x+y=1B.x2=0C.x x+3=x2 D.x2+3x=1【答案】B【分析】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.根据一元二次方程的定义逐个判断即可.【详解】解:A、2x+y=1是二元一次方程,故A选项不符合题意;B、x2=0是一元二次方程,故B选项符合题意;C、x x+3=x2整理得3x=0,是一元一次方程,故C选项不符合题意;D、x2+3x=1是分式方程,不是整式方程,故D选项不符合题意;故选:B.2.(24-25九年级上·江苏宿迁·阶段练习)将一元二次方程x x+1=2化为一般形式,正确的是() A.x2+x-2=0 B.x2-x+2=0 C.x2+x=2 D.x2+2x-2=0【答案】A【分析】本题主要考查了一元二次方程的一般式.根据一元二次方程的一般式ax2+bx+c=0a≠0,即可求解.【详解】解:∵x x+1=2,∴x2+x-2=0,故选:A.3.(2024·江苏无锡·一模)下列结论:①三点确定一个圆;②相等的圆心角所对的弧相等;③经过半径的端点并且垂直于这条半径的直线是圆的切线;④圆内接四边形对角互补;⑤三角形的外心到三角形三个顶点的距离都相等;⑥直角三角形的内心在斜边的中点上.正确的个数是()A.1个B.2个C.3个D.4个【答案】B【分析】本题考查圆的性质,涉及确定圆的条件、圆心角与弧的关系、切线判定、圆内接四边形、三角形的内心与外心定义等知识,根据相关概念,逐项判断即可得到答案,熟记与圆有关的概念与性质是解决问题的关键.【详解】解:①当三点在一条直线上时,无法确定一个圆;故①结论错误;②圆的大小不同,相等的圆心角所对的弧不相等;故②结论错误;③经过半径的端点(不是圆心)并且垂直于这条半径的直线是圆的切线;故③结论错误;④圆内接四边形对角互补;故④结论正确;⑤三角形的外心是三角形外接圆的圆心,到三角形三个顶点的距离都相等;故⑤结论正确;⑥直角三角形的外心在斜边的中点上;故⑥结论错误;综上所述,正确的结论是④⑤,共2个,故选:B .4.(24-25九年级上·江苏南京·阶段练习)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC上的点.连接AC ,若∠BAC =20°,则∠D 的度数为( ).A.100°B.110°C.120°D.130°【答案】B【分析】本题考查了圆周角定理,连接BD ,根据圆周角定理求出∠ADB 及∠BDC 的度数,进而可得出结论,根据题意作出辅助线,构造出圆周角是解题的关键.【详解】解:连接BD ,∵AB 是半圆的直径,∴∠ADB =90°,∵∠BAC =20°,∴∠BDC =∠BAC =20°,∴∠ADC =∠ADB +∠BDC =90°+20°=110°,故选:B .5.(2024·江苏无锡·一模)设x 1,x 2是关于x 的一元二次方程x 2-2m +1 x +m 2+2=0的两个实数根,且x 1+1 x 2+1 =8,则m 的值为()A.1B.-3C.3或-1D.1或-3【答案】A【分析】本题考查了一元二次方程根与系数的关系,解一元二次方程,一元二次方程根的判别式,解题的关键是掌握一元二次方程ax 2+bx +c =0a ≠0 根与系数关系:x 1+x 2=-b a ,x 1⋅x 2=ca.先根据一元二次方程根与系数的关系得出x 1x 2=c a =m 2+2,x 1+x 2=-ba=2m +1 ,再得出x 1+1 x 2+1 =x 1x 2+x 1+x 2+1=8,得出关于m 的一元二次方程,求解,再根据判别式检验即可.【详解】解:∵x 1,x 2是关于x 的一元二次方程x 2-2m +1 x +m 2+2=0的两个实数根,∴x 1x 2=c a =m 2+2,x 1+x 2=-ba=2m +1 ,∵x 1+1 x 2+1 =x 1x 2+x 1+x 2+1=8,∴m 2+2+2m +1 +1=8,整理得:m 2+2m -3=0,m -1 m +3 =0,解得:m =1或m =-3,当m =1时,原方程为x 2-4x +3=0,Δ=b 2-4ac =16-4×1×3=4>0,则原方程有实数根,符合题意;当m =-3时,原方程为x 2+4x +11=0,Δ=b 2-4ac =16-4×1×11=-28<0,则原方程无实数根,不符合题意;综上:m =1.故选:A .6.(2023·湖北武汉·模拟预测)如图,AB 为⊙O 直径,C 为圆上一点,I 为△ABC 内心,AI 交⊙O 于D ,OI ⊥AD 于I ,若CD =4,则AC 为()A.1255B.1655C.25D.5【答案】A【分析】如图,连接BI ,BD ,由题意知,AD 平分∠BAC ,BI 平分∠ABC ,则∠BAD =∠CAD ,∠ABI =∠CBI ,BD=CD,BD =CD =4,由∠DBI =∠DBC +∠CBI =∠DAC +∠CBI =∠DAB +∠ABI =∠BID ,可得ID =BD =4,由垂径定理得OI ⊥AD ,则AD =2ID =8,由勾股定理得,AB =BD 2+AD 2=45,如图,连接OD 交BC 于E ,则OD ⊥BC ,设DE =x ,则OE =25-x ,由勾股定理得,BE 2=OB 2-OE 2=BD 2-DE 2,即25 2-25-x 2=42-x 2,解得x =455,进而可得BE =855,BC =2BE =1655,由勾股定理得,AC =AB 2-BC 2,计算求解即可.【详解】解:如图,连接BI ,BD ,由题意知,AD 平分∠BAC ,BI 平分∠ABC ,∴∠BAD =∠CAD ,∠ABI =∠CBI ,∴BD=CD,BD =CD =4,∵∠DBI =∠DBC +∠CBI =∠DAC +∠CBI =∠DAB +∠ABI =∠BID ,∴ID =BD =4,∵OI ⊥AD ,∴AD =2ID =8,由勾股定理得,AB =BD 2+AD 2=45,如图,连接OD 交BC 于E ,则OD ⊥BC ,设DE =x ,则OE =25-x ,由勾股定理得,BE 2=OB 2-OE 2=BD 2-DE 2,即25 2-25-x 2=42-x 2,解得x =455,∴BE =855,BC =2BE =1655,由勾股定理得,AC =AB 2-BC 2=1255,故选:A .【点睛】本题考查了内心,勾股定理,垂径定理,同弧或等弧所对的圆周角相等,等腰三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.二、填空题(本大题共10小题,每小题2分,共20分)请把答案直接填写在横线上7.(23-24九年级上·江苏泰州·阶段练习)若x 2=x ,则x =.【答案】1或0【分析】移项后分解因式得出x (x -1)=0,推出x =0,x -1=0,求出即可.本题考查了解一元二次方程,掌握方法是解题的关键.【详解】解:x 2=x ,∴x 2-x =0,∴x (x -1)=0,∴x =0,x -1=0,解得:x 1=0,x 2=1,故答案为:1或0.8.(23-24九年级上·江苏盐城·阶段练习)已知一元二次方程x 2-5x +2=0的两个根为x 1、x 2,x 1+x 2则的值为.【答案】5【分析】本题考查了韦达定理,熟练掌握该知识点是解题的关键.根据韦达定理进行计算即可.【详解】解:∵x 2-5x +2=0∴a =1,b =-5∴x 1+x 2=-b a =--51=5故答案为:5.9.(24-25九年级上·江苏南京·阶段练习)若关于x 的方程kx 2-x +1=0有两个不等的实数根,则k 的值为.【答案】k <14且k ≠0【分析】本题考查一元二次方程判别式,熟练掌握方程有两个不相等的实数根,则Δ>0是解题的关键.根据方程有两个不相等的实数根,Δ>0,结合一元二次方程的定义求解即可.【详解】解:由根与系数的关系可知,当一元二次方程有两个不等的实数根,则Δ>0,且k ≠0,即Δ=b 2-4ac =-1 2-4×1×k =1-4k >0,解得,k <14,∴k <14且k ≠0.故答案为:k <14且k ≠010.(22-23九年级上·江苏扬州·单元测试)在半径是20cm的圆中,的圆心角所对的弧长为cm.(结果保留π)【答案】10π【分析】本题考查了弧长的计算,根据弧长公式l=nπr180n是圆心角度数,r是半径,由此即可求解.【详解】解:的圆心角所对的弧长为l=90π×20180=10π,故答案为:10π.11.(2024·北京门头沟·一模)如图所示,为了验证某个机械零件的截面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是.【答案】90°的圆周角所对的弦是直径【分析】本题考查圆周角定理,掌握“90°的圆周角所对的弦是直径”是正确解答的关键.根据圆周角定理进行判断即可.【详解】解:根据“90°的圆周角所对的弦是直径”即可得出答案,故答案为:90°的圆周角所对的弦是直径.12.(2024·江苏扬州·模拟预测)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠D=34°,则∠A的度数为.【答案】28°/28度【分析】本题考查了切线的性质,圆周角定理,熟知切线的性质与圆周角定理是解题的关键.连接OC,根据切线的性质得∠OCD=90°,求出∠DOC的度数,再根据圆周角定理计算∠A的度数.【详解】解:如图,连接OC,∵DC切⊙O于点C,∴OC⊥DC,∴∠OCD=90°,∵∠D=34°,∴∠DOC=90°-34°=56°,∴∠A=12∠DOC=28°,故答案为:28°.13.(20-21九年级上·四川绵阳·阶段练习)若关于x的方程ax2+bx+c=0的解为x1=-1,x2=3,则方程a (x -1)2+b (x -1)+c =0的解为.【答案】x 1=0,x 2=4【分析】将第二个方程中的(x -1)看成一个整体,则由第一个方程的解可知,x -1=-1或3,从而求解【详解】解:∵关于x 的方程ax 2+bx +c =0的解为x 1=-1,x 2=3,∴方程a (x -1)2+b (x -1)+c =0的解为x -1=-1或3,解得:x 1=0,x 2=4.【点睛】本题考查一元二次方程的解的概念,正确理解概念,利用换元法解方程是解题关键.14.(2024·江苏泰州·三模)如图,正五边形ABCDE 的边长为6,以顶点A 为圆心,长为半径画圆,若图中阴影部分恰是一个圆锥的侧面展开图,则这个圆锥底面圆的半径是.【答案】1.8【分析】本题主要考查了求圆锥底面圆半径,正多边形内角,熟知圆锥底面圆的周长即为其展开图中扇形的弧长是解题的关键.先利用正多边形内角和定理求出∠A 的度数,再根据圆锥底面圆的周长即为其展开图中扇形的弧长进行求解即可.【详解】解:∵ABCDE 是正五边形,∴∠A =180°×5-35=108°,设底面圆的半径为r ,则2πr =108π×6180,解得r =1.8,故答案为:1.8.15.(22-23九年级上·江苏泰州·阶段练习)如图,⊙M 半径为2,圆心M 坐标(3,4),点P 是⊙M 上的任意一点,P A ⊥PB ,且P A 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为.【答案】6【分析】本题主要考查点与圆的位置关系,熟练掌握直角三角形斜边上的中线等于斜边的一半得到答案即可.由Rt△APB中AB=2OP得到要使AB取得最小值,即OP需取最小值,连接OM,交⊙M于点P 即可得到答案.【详解】解:连接OP,∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,要使AB取得最小值,即OP需取最小值,连接OM,交⊙M于点P ,此时OP取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3,MQ=4,∴OM=5,∵MP =2,∴OP =3,∴AB=2OP =6,故答案为:6.16.(22-23九年级上·江苏盐城·期中)以正方形ABCD的边为直径作半圆O,过点C作直线切半圆于点F,交边于点E,若△CDE的周长为12,则正方形ABCD的边长为.【答案】4【分析】本题考查了正方形的性质、切线长定理等知识点,利用正方形的性质和圆的切线的判定得出均为圆O的切线是解题关键.根据切线长定理可得AE=EF,BC=CF,然后根据△CDE的周长可求出正方形的边长.【详解】解:在正方形ABCD中,∠BAD=∠ABC=90°,AD=CD=BC=AB,∵CE与半圆O相切于点F,以正方形ABCD的边为直径作半圆O,∴AD,BC与半圆O相切,∴AE=EF,BC=CF,∵△CDE的周长为12,∴EF+FC+CD+ED=12,∴AE+ED+CD+BC=AD+CD+BC=12,∵AD=CD=BC=AB,∴正方形ABCD的边长为4.故答案为:4.三、解答题(本大题共10小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(23-24九年级上·江苏常州·期末)解下列方程:(1)x2-4x=12;(2)3x(2x-5)=4x-10.【答案】(1)x1=6,x2=-2;(2)x1=23,x2=52.【分析】本题主要考查解一元二次方程,掌握配方法,因式分解法解一元二次方程是解题的关键.(1)运用配方法解一元二次方程即可求解;(2)运用因式分解法求一元二次方程即可求解.【详解】(1)解:x2-4x=12x2-4x+4=16x-22=16x-2=±4∴x1=6,x2=-2;(2)解:3x(2x-5)=4x-103x2x-5-22x-5=02x-53x-2=0∴2x-5=0或3x-2=0,∴x1=52,x2=23.18.(23-24九年级上·江苏盐城·阶段练习)如图,平面直角坐标系中有一个△ABC.(1)利用网格,只用无刻度的直尺作出△ABC的外接圆的圆心点O;(2)△ABC的外接圆的圆心坐标是;(3)该圆圆心到弦AC的距离为;(4)△ABC最小覆盖圆的半径为.【答案】(1)见解析(2)5,2(3)10(4)10【分析】本题考查了三角形外心的性质,等腰三角形三线合一,勾股定理,熟练掌握以上知识点并利用数形结合思想是解题的关键.(1)根据三角形外心的性质,分别作AB与BC的垂直平分线,两直线相交于点O,则O点即是△ABC的外接圆的圆心;(2)根据(1)所求,可由坐标系直接得到答案;(3)取AC的中点P,连接OP,根据等腰三角形三线合一可知OP⊥AC,利用勾股定理求出OP即为所求;(4)利用勾股定理求出CP即可.【详解】(1)解:分别作AB与BC的垂直平分线,两直线相交于点O,则O点即是△ABC的外接圆的圆心,如图即为所求:(2)解:由(1)可知,O点坐标为5,2故答案为:5,2.(3)解:取AC的中点P,连接OP,如图,OA=OC则OP⊥AC∵OP=12+32=10∴该圆圆心到弦AC的距离为10故答案为:10.(4)解:由图可知,最小覆盖圆的半径为CP长如图所示,可知CP为所求,利用网格CP=12+32=10故答案为:10.19.(22-23九年级上·江苏泰州·阶段练习)如图,已知AB、MD是⊙O的直径,弦CD⊥AB于E.(1)若CD=16cm,OD=10cm,求BE的长:(2)若∠M=∠D,求∠D的度数.【答案】(1)4cm(2)30°【分析】本题主要考查垂径定理,勾股定理以及圆周角定理,熟练掌握性质定理是解题的关键.(1)由垂径定理求出DE的长,再根据勾股定理求出答案即可;(2)根据圆周角定理求得∠D=1∠BOD,再根据两锐角互余的性质得到答案.2【详解】(1)解:∵弦CD⊥AB,CD=16cm,CD=8cm,∴CE=DE=12在Rt△OED中,OE=OD2-DE2=102-82=6cm,∴BE=OB-OE=10-6=4cm;∠BOD,(2)解:∵∠M=∠D,∠M=12∠BOD,∴∠D=12∵∠D+∠BOD=90°,∠D=30°.20.(24-25九年级上·江苏宿迁·阶段练习)关于x的方程x2-m+4x+3m+3=0.(1)求证:不论m取何值,方程总有两个实数根;(2)若该方程有两个实数根x1,x2,且x1+1=3,求m的值.x2+1【答案】(1)证明见详解(2)m=-54【分析】本题考查一元二次方程根的情况与判别式关系,一元二次方程根与系数的关系,熟记一元二次方程判别式与方程根的情况联系、一元二次方程根与系数的关系是解决问题的关键.(1)根据一元二次方程根的情况与判别式的关系,只要判定Δ≥0即可得到答案;(2)根据一元二次方程根与系数的关系得到x1+x2=m+4,x1x2=3m+3,将x1+1=3展开,代入x2+1求解即可.【详解】(1)证明:a=1,b=-m+4,c=3m+3,∴Δ=m+42≥0,=m-22-4×1×3m+3∴不论m取何值,方程总有两个实数根;(2)解:x1+1=3,x2+1x1x2+x1+x2+1=3,对于方程x2-m+4x+3m+3=0,可得x1+x2=m+4,x1x2=3m+3,∴m+4+3m+3+1=3,解得:m=-5 4.21.(24-25九年级上·全国·单元测试)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的边AB的长为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.【答案】(1)当羊圈的边AB的长为16m或20m时,能围成一个面积为640m2的羊圈(2)羊圈的面积不能达到650m2,理由见解析【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键.(1)设羊圈的边AB的长为xm,则边BC的长为72-2xm根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解.【详解】(1)解:设羊圈的边AB的长为xm,则边BC的长为72-2xm,根据题意,得x72-2x=640,化简,得x2-36x+320=0,解方程,得x1=16,x2=20,当x1=16时,72-2x=40,当x2=20时,72-2x=32.答:当羊圈的边AB的长为16m或20m时,能围成一个面积为640m2的羊圈.(2)不能,理由如下:根据题意,得x72-2x=650,化简,得x2-36x+325=0,∵b2-4ac=-362-4×325=-4<0,∴该方程没有实数根.∴羊圈的面积不能达到650m222.(22-23八年级下·浙江宁波·期末)冬季来临,某超市以每件35元的价格购进某款棉帽,并以每件58的价格出售.经统计,10月份的销售量为256只,12月份的销售量为400只.(1)求该款棉帽10月份到12月份销售量的月平均增长率;(2)经市场预测,下个月份的销售量将与12月份持平,现超市为了减少库存,采用降价促销方式,调查发现,该棉帽每降价1元,月销售量就会增加20只.当该棉帽售价为多少元时,月销售利润达8400元?【答案】(1)25%(2)【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)设该款棉帽10月份到12月份销售量的月平均增长率为x,可列出关于x的一元二次方程,解之取其符合题意的值,即可得出结论;(2)设该款棉帽售价为y元,则每件的销售利润为y-25元,利用月销售利润=每件的销售利润×月销售量,可列出关于y的一元二次方程,解之取其符合题意的值,即可得出结论.【详解】(1)解:设该款棉帽10月份到12月份销售量的月平均增长率为x,根据题意得:2561+x 2=400,解得:x 1=0.25=25%,x 2=-2.25(不符合题意,舍去)答:该款棉帽10月份到12月份销售量的月平均增长率为25%.(2)设该棉帽售价为y 元,则每件的销售利润为y -35 元,月销售量为400+2058-y =1560-20y 件根据题意得:y -35 1560-20y =8400解得:y 1=50,y 2=63(不符合题意,舍去).答:该款棉帽售价为元时,月销售利润达8400元.23.(22-23九年级上·江苏连云港·阶段练习)如图,AB 为⊙O 的直径,BC 是圆的切线,切点为B ,OC 平行于弦AD,(1)求证:DC 是⊙O 的切线;(2)直线AB 与CD 交于点F ,且DF =4,AF =2,求⊙O 的半径.【答案】(1)见解析(2)3【分析】(1)连接OD ,根据切线的性质得到OB ⊥BC ,证明△DOC ≌△BOC ,根据切线的性质得到∠ODC =∠OBC =90°,根据切线的判定定理证明结论;(2)设⊙O 的半径为r ,根据勾股定理列出方程,解方程求出⊙O 的半径.【详解】(1)证明:连接OD ,∵BC 是⊙O 的切线,∴OB ⊥BC ,∵OC ∥AD ,∴∠BOC =∠OAD ,∠DOC =∠ODA ,∵OA =OD ,∴∠ODA =∠OAD ,∴∠DOC =∠BOC ,在△DOC 和△BOC 中,OD =OB∠DOC =∠BOC OC =OC,∴△DOC ≌△BOC (SAS ),∴∠ODC =∠OBC =90°,∴OD ⊥CD ,∵OD 是⊙O 的半径,∴DC 是⊙O的切线;(2)解:设⊙O 的半径为r ,则OF =OA +AF =r +4,在Rt △ODF 中,OD 2+DF 2=OF 2,即r 2+42=(r +2)2,解得:r =3,∴⊙O 的半径为3.【点睛】本题考查的是切线的判定和性质,全等三角形的判定和性质,平行线的性质,勾股定理的,熟记经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.24.(24-25九年级上·江苏宿迁·阶段练习)如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根是另一个根的3倍,那么称这样的方程为“三倍根方程”.例如,方程x 2-4x +3=0的两个根是1和3,则这个方程就是“三倍根方程”.(1)下列方程是三倍根方程的是;(填序号即可)①x 2-2x -3=0;②x 2-3x =0;③x 2+8x +12=0.(2)如果关于x 的方程x 2-8x +c =0是“三倍根方程”,求c 的值;(3)如果点p ,q 在反比例函数y =3x的图象上,那么关于的x 方程px 2-4x +q =0是“三倍根方程”吗?请说明理由.(4)如果关于x 的一元二次方程ax 2+bx +c =0a ≠0 是“3倍根方程”,那么a 、b 、c 应满足的关系是.(直接写出答案)【答案】(1)③(2)c =12;(3)方程px 2-4x +q =0是“三倍根方程”;见解析(4)3b 2-16ac =0【分析】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a.也考查了一元二次方程的解和解一元二次方程.(1)分别求出①②③三个方程的根,然后根据题中所给定义可进行求解;(2)根据“三倍根方程”的定义设关于x 的方程x 2-8x +c =0的两个根为x 1,3x 1,进而根据一元二次方程根与系数的关系及方差的解可进行求解;(3)方程px 2-4x +q =0化为方程px 2-4x +3p =0,解方程求得方程的根,根据“三倍根方程”的定义即可求出答案;(4)根据“三倍根方程”的概念得到原方程可以改写为a x -t x -3t =0,解方程即可得到结论.【详解】(1)解:由x 2-2x -3=0可得:x 1=-1,x 2=3,不满足“三倍根方程”的定义;由x 2-3x =0可得:x 1=0,x 2=3,不满足“三倍根方程”的定义;由x 2+8x +12=0可得:x 1=-2,x 2=-6,满足“三倍根方程”的定义;故答案为:③;(2)解:设关于x 的方程x 2-8x +c =0的两个根为x 1,3x 1,由一元二次方程根与系数的关系可知:x 1+3x 1=8,3x 12=c ,∴x 1=2,c =12;(3)解:∵点p ,q 在反比例函数y =3x的图象上,∴q =3p ,∴方程px 2-4x +q =0化为方程px 2-4x +3p=0,整理得px -3 px -1 =0,解得x 1=3p ,x 2=1p,∴方程px 2-4x +q =0是“三倍根方程”;(4)解:根据“三倍根方程”的概念设一元二次方程ax 2+bx +c =0(a ≠0)的两个根为t 和3t .∴原方程可以改写为a x -t x -3t =0,∴ax 2+bx +c =ax 2-4atx +3at 2,∴b =-4at c =3at 2 .解得3b 2-16ac =0.∴a ,b ,c 之间的关系是3b 2-16ac =0.故答案为:3b 2-16ac =0.25.(23-24九年级上·江苏无锡·期中)如图1,平行四边形ABCD 中,AB =8,BC =4,∠ABC =60°.点P为射线BC 上一点,以BP 为直径作⊙O 交AB 、DC 于E 、F 两点.设⊙O 的半径为x .(1)如图2,当⊙O 与DP 相切时,x =.(2)如图3,当点P 与点C 重合时,①求线段CE 长度;②求阴影部分的面积;(3)当⊙O 与平行四边形ABCD 边所在直线相切时,求x 的值;【答案】(1)4(2)①23;②2π3-3(3)x =-12+83或43【分析】(1)由平行四边形的性质可得:AB ∥CD ,AB =CD =8,得出∠DCP =∠ABC =60°,再由切线的性质可得DP ⊥BP ,得出∠CDP =30°,利用30°所对的直角边等于斜边的一半,可得CP =12CD =4,推出⊙O 的直径BP =8,即可得出答案;(2)①运用勾股定理即可求得答案;②如图2,连接OE ,利用圆周角定理可得出∠BOE =2∠BCE =60°,过点E 作EH ⊥OB 于H ,则∠OEH =30°,利用勾股定理可求得EH =3,再运用扇形面积公式和三角形面积公式即可求得答案;(3)分两种情况:①当⊙O 与直线CD 相切时,由切线性质可得∠OFC =90°,进而可得OB =OF =x ,OC =4-x ,CF =12(4-x ),再由勾股定理建立方程求解即可;②当⊙O 与直线AD 相切时,如图4,过点O 作OT ⊥AD 于T ,连接AC ,则OT =OB =x ,证明四边形ACOT 是矩形,即可得出答案【详解】(1)解:如图1,∵四边形ABCD 是平行四边形,AB =8,BC =4,∠ABC =60°.∴AB ∥CD ,AB =CD =8,∴∠DCP =∠ABC =60°,∵⊙O 与DP 相切,∴DP ⊥BP ,∴∠CPD =90°,∴∠CDP =90°-∠DCP =30°,∴CP =12CD =4,∴⊙O 的半径x =4,(2)解:①∵点P 与点C 重合,∴BC 为⊙O 的直径,∴∠BEC =90°,∴∠BCE =90°-∠CBE =30°,∴BE =12BC =2,在Rt △BCE 中,CE =BC 2-BE 2=42-22=23,②如图2,连接OE ,∵BE =BE,∴∠BOE =2∠BCE =60°,过点E 作EH ⊥OB 于H ,则∠OEH =30°,∴OH =12OE =1,∴EH =OE 2-OH 2=22-12=3,∴S 阴影=S 扇形OBE -S △OBE=60π×22360-12×2×3=2π3-3;(3)解:①当⊙O 与直线CD 相切时,如图3,∴OF ⊥CD ,∴∠OFC =90°,∵∠OCF =∠ABC =60°,∴∠COF =30°,∴CF =12OC ,∵OB =OF =x ,∴OC =4-x ,CF =124-x ,∵CF 2+OF 2=OC 2,∴124-x2+x 2=4-x 2,解得:x =-12+83或x =-12-83(舍去),②当⊙O 与直线AD 相切时,如图4,过点O 作OT ⊥AD 于T ,连接AC ,则OT =OB =x ,取AB 的中点G ,连接CG ,∴BG =AG =12AB =4=BC ,∵∠ABC =60°,∴△BCG 是等边三角形,∴CG =BC =4=AG ,∴∠BAC =∠ACG =30°,∴∠ACB =90°∴AC =82-42=43,∴∠ACO =90°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠TOC =∠DTO =∠ATO =90°=∠ACO ,∴四边形ACOT 是矩形,∴x =OT =AC =43;综上所述,x =-12+83或43;【点睛】本题是圆的综合题,考查了圆的性质,圆周角定理,勾股定理,平行四边形的性质,矩形的判定和性质,切线的性质等,运用数形结合思想和分类讨论思想是解题关键.26.(23-24九年级上·江苏南京·阶段练习)【问题提出】我们知道:同弧或等弧所对的圆周角都相等,且等于这条弧所对的圆心角的一半,那么,在一个圆内同一条弦所对的圆周角与圆心角之间又有什么关系呢?【初步思考(1)如图1,AB 是⊙O 的弦,∠AOB =100°,点P 1、P 2分别是优弧AB 和劣弧AB 上的点,则∠AP 1B =°,∠AP 2B =°;(2)如图2,AB 是⊙O 的弦,圆心角∠AOB =m °(m <180°),点P 是⊙O 上不与A 、B 重合的一点,求弦AB 所对的圆周角∠APB 的度数为;(用m 的代数式表示)【问题解决】(3)如图3,已知线段AB ,点C 在AB 所在直线的上方,且∠ACB =135°,用尺规作图的方法作出满足条件的点C 所组成的图形(①直尺为无刻度直尺;②不写作法,保留作图痕迹);【实际应用】(4)如图4,在边长为12的等边三角形ABC 中,点E 、D 分别是边AC 、BC 上的动点,连接AD 、BE ,交于点P ,若始终保持AE =CD ,当点E 从点A 运动到点C 时,PC 的最小值是.【答案】(1)50,130;(2)180°-m 2°;(3)见解析;(4)43【分析】(1)根据圆周角定理即可求出∠AP 1B =50°,根据圆内接四边形即可求出∠AP 2B =130°;(2)分P 在优弧AB 上和P 在劣弧AB 上两种情况分类讨论即可求解;(3)作线段AB 的垂直平分线,以AB 为直径作圆,交垂直平分线于点O ,以点O 为圆心,以OA 为半径作圆,则AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形;(4)先证明△ACD ≌△BAE ,得到∠BAP +∠ABP =60°,∠APB =120°,根据(3)问点P 的运动轨迹是AB,∠AOB =120°,连接CO ,证明△OAC ≌△OBC ,进而得到∠ACO =∠BCO =30°,∠AOC =∠BOC =60°∠OAC =∠OBC =90°,根据勾股定理求出OP =OB =43OC =83,根据PC ≤OC -OP ,可得PC ≥43,即可求出PC 的最小值为43.【详解】解:(1)∠AP 1B =12∠AOB =12×100°=50°,∠AP 2B =180°-∠APB =180°-50°=130°.故答案为:50,130;(2)当P 在优弧AB 上时,∠APB =12∠AOB =m 2 °;当P 在劣弧AB 上时,∠APB =180°-m 2 °;故答案为:m 2 °或180°-m 2 °(3)如图AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形.证明:∵AB 为⊙P 的直径,∴∠AOB =90°,在⊙O 中,∵点C 在AB 上,由(2)得∠ACB =180°-∠AOB 2=135°,∴AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形;(4)解:如图,∵△ABC 为等边三角形,∴AB =BC =AC ,∠BAC =∠ACB =60°,∵AE =CD ,∴△ACD ≌△BAE ,∴∠CAD =∠ABE ,∵∠BAP +∠ABP =∠BAP +∠CAD =∠BAC =60°,∴∠APB =120°,∴点P 的运动轨迹是AB ,∴∠AOB =120°.连接CO ,∵OA =OB ,CA =CB ,OC =OC ,∴△OAC ≌△OBC ,∴∠ACO =∠BCO =30°,∠AOC =∠BOC =60°,∴∠OAC =∠OBC =90°,在Rt △OBC 中,设OB =x x >0 ,则OC =2x ,根据勾股定理得2x 2-x 2=122,解得x =43,∴OC =2x =83,OP =OB =43,∵PC ≤OC -OP ,∴PC ≥43,∴PC的最小值为43.故答案为:43.【点睛】本题考查了圆周角定理及其推论,圆内接四边形的性质,全等三角形的判定与性质,勾股定理,三角形三边关系等知识,综合性强,难度较大,解题时要熟知相关知识,注意在解决每一步时都要应用上一步结论进行解题.。
浙教版2022-2023学年九年级上数学期中培优测试卷(解析版)
浙浙教版2022-2023学年九年级上数学期中培优测试卷(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列函数中,是二次函数的是()A.y=5x B.y=x2C.y=2x+1D.2y=x【答案】B 【解析】A. y=5x是反比例函数,故此选项错误;B. y=x2是二次函数,故此选项正确;C. y=2x+1是一次函数,故此选项错误;D. 2y=x是正比例函数,故此选项错误.故答案为:B.2.台球盒中有7个红球与1个黑球,从中随机摸出一个台球,则下列描述符合的是() A.一定摸到黑球B.不可能摸到黑球C.很可能摸到黑球D.不大可能摸到黑球【答案】D【解析】∵台球盒中有7个红球与1个黑球,∴从中随机摸出一个台球,摸出黑球的可能性很小,即不大可能摸到黑球.故答案为:D.3.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,−3).则△ABC的外心坐标应是()A.(0,0)B.(1,0)C.(2,−1)D.(−2,−1)【答案】D【解析】∵B点坐标为(2,1),C点坐标为(2,-3),∴直线BC∥x轴,∴直线BC的垂直平分线为直线y=-1,∵外心是三角形三条边的垂直平分线的交点,∴△ABC外心的纵坐标为-1,设△ABC的外心为P(a,-1),∴PA2=a2+(−1−3)2=a2+16=PB2=(a−2)2+(−1−1)2=a2−4a+8,∴a2+16=a2−4a+8,解得a=−2,∴△ABC外心的坐标为(-2,-1),故答案为:D.4.在不透明的袋子中装有黑、白两种球共50个,这些球除颜色外都相同,随机从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则袋子中黑球的个数约为()A.20个B.30个C.40个D.50个【答案】A【解析】设袋子中有n个黑球,根据题意得n50=0.4,解得:n=20,故答案为:A.5.如图,⊙O中的半径为1,△ABC内接于⊙O.若∠A=50°,∠B=70°,则AB的长是()A.32B.√3C.√2D.32√3【答案】B【解析】如图,连接OA、OB,过点O作OD⊥AB,∵∠A=50°,∠B=70°,∴∠C=180°−50°−70°=60°,∴∠AOB=2∠C=120°,∵OA=OB,∴△AOB是等腰三角形,∴∠AOD=12∠AOB=60°,AD=BD=12AB,∴∠DAO=30°,∴OD=12,AD=√OA2−OD2=√12−(12)2=√32,∴AB=2AD=√3.故答案为:B.6.已知二次函数y=x2−4x−1,当1<x≤5时,对应的函数值y不可能是()A.−5B.−4C.4D.5【答案】D【解析】将抛物线解析式化为顶点式:y=x2−4x−1=(x−2)2−5,∴抛物线开口向上,且顶点坐标为(2,-5),∵1<x≤5,∴y的最小值为-5,当x=1时,y=-4;当x=5时,y=4,∴y的取值为−5≤y≤4,故y不可能的值为5.故答案为:D.7.用48米木料制作成一个如图所示的“目”形长方形大窗框(横档EF,GH也用木料).其中AB∥EF∥GH∥CD,要使窗框ABCD的面积最大,则AB的长为()A .6米B .8米C .12米D .4√3米【答案】A【解析】设AB 的长为x 米,则AD 的长为48−4x2米,由矩形面积公式得:S 矩形ABCD =AD•AB =x×48−4x2=﹣2x 2+24x =﹣2(x ﹣6)2+72,∵48﹣4x >0, ∴x <12, ∴0<x <12, ∵﹣2<0,∴当x =6时,矩形的面积有最大值. 故答案为:A. 8.已知△ ABC 和△ ADE 都是等腰直角三角形,∠ACB =∠ADE =90° , AC =2√2 , AD =1 , F 是 BE 的中点.若将△ ADE 绕点 A 旋转一周,则线段 AF 长度的取值范围是( )A .4−√22≤AF ≤4+√22B .2≤AF ≤3C .4−√22≤AF ≤3D .2−√22≤AF ≤2+√22【答案】A【解析】根据旋转的特性,画出E 点旋转一圈的轨迹,如图:结合图形可知:①当E 落在E′位置时,AF 最大,∵△ABC 和△ADE 都是等腰直角三角形,∠ACB=∠ADE=90∘,AC=2 √2 ,AD=1, ∴AB= √AB 2+BC 2 =4, AE=AE '= √AD 2+DE 2 = √2 , BE '=AB−AE′=4− √2 , ∵F 是BE′的中点,∴BF= 12 BE′= 4−√22 , AF=AB−BF=4− 4−√22 = 4+√22;②当E 落在E″位置时,AF 最小,∵BE″=AB+AE″=4+ √2 ,且F 是BE″的中点,∴BF= 12BE″=4+√22,AF=AB−BF=4− 4+√22= 4−√22.综合①②可知:4−√22⩽AF⩽4+√22故答案为:A.9.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=-1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a-b+c>2.其中正确的结论的个数是()A.1B.2C.3D.4【答案】C【解析】①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x= b2a=﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确;③∵b=2a,∴2a﹣b=0,所以③错误;④∵x=﹣1时,y>0,∴a﹣b+c>0,所以④正确.故答案为:C10.如图,点A,B,C均在坐标轴上,AO=BO=CO=1,过A,O,C作⊙D,E是⊙D上任意一点,连结CE, BE,则CE2+BE2的最大值是()A.4B.5C.6D.4+√2【答案】C【解析】当BE为三角形BCE的斜边的时候 C E 2 + B E 2有最大值∴EC⊥x轴,∵AO⊥x轴∴AO=EC=1则BE2=BC2+CE2=5C E 2 + B E 2=1+5=6故答案选C。
浙教版九年级数学下册培优练习附答案:3.2简单几何体的三视图
3.2简单几何体的三视图一、选择题(共15小题)A.正方体B.圆锥C.球D.圆柱1.下列四个几何体中,主视图、左视图、俯视图都是圆的几何体是2.如图,桌面上有一个一次性纸杯,它的主视图应是3. 下列水平放置的四个几何体中,主视图与其它三个不相同的是4. 下面简单几何体的左视图是! AA. Eb C. nnd5. 有。
个相同的立方体搭成的几何体如图所示,则它的主视图是6.下列四个立体图形中,主视图为圆的是.:■B. pp D. FPnD.B. D.A.B.C.B.8. 如图是一个由若干个棱长为|的正方体构成的几何体的三视图,则构成这个几何体的体积为■'.9. 如图几何体的主视图是A.C. Em10. 如图,由三个小立方体搭成的几何体的俯视图是11.如图所示的支架是由两个长方形构成的组合体,则它的主视图是主视圏 左视囹俯视囹A.C.B.正面A. I —D.C. D.A. B.12.由、个相同的立方体搭成的几何体如图,则它的主视图是A.C.13. 有一篮球如图放置,其主视图为14. 由:个相同小立方体搭成的几何体如图所示,则它的主视图是兔视方向A.D.D.C.D.4觇力向B.A.C. D.15. 若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这 一堆方便面共有■:.A. •-桶B.桶C 」桶 D. |】桶二、填空题(共15小题)16. _________________________________ 如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是 •,则该几何体俯视图的面积是 .17. 一个几何体,是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图所示,要摆成这样的图形,至少需用 __________________________ 块小正方 体.主视图18. 一个几何体的三视图如图所示(其中标注的 长),则这个几何体的体积是 _______________ .ab—厂。
2023年九年级数学下册中考综合培优测试卷:圆的综合题【含答案】
2023年九年级数学下册中考综合培优测试卷:圆的综合题一、单选题1.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为( )A .B .C .D .18552245951252.如图,在以AB 为直径的半圆O 中,C 是它的中点,若AC=2,则△ABC 的面积是( )A .1.5B .2C .3D .43.如图, 、 分别是 的直径和弦,且 , ,交 于点AD AC ⊙O ∠CAD =30°OB ⊥AD AC B ,若 ,则 的长为( )OB =3BCA .B .3C .D .3233334.如图,直线AB 与⊙O 相切于点A ,弦CD ∥AB ,若⊙O 的直径为5,CD=4,则弦AC 的长为( )A .4B .C .5D .6255.如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=88°,则∠BCD 的度数是( )A .88°B .92°C .106°D .136°6.如图,AB 是⊙O 的直径, ,∠COD =38°,则∠AEO 的度数是( )BC =CD =DEA .52°B .57°C .66°D .78°7.将圆心角为90°,面积为4π的扇形围成一个圆锥的一个侧面,所围成圆锥的底面半径为( )A .1B .2C .3D .48.如图,△ABC 的三个顶点都在⊙O 上,∠BAC 的平分线交BC 于点D ,交⊙O 于点E ,则与△ABD 相似的三角形有( )A .3个B .2个C .1个D .0个9.如图,已知点A ,B 在⊙O 上,⊙O 的半径为3,且△OAB 为正三角形,则 的长为( )ABA .B .π2C .D .3π2x 1=−163(舍去),x 2=010.如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧弧AB 上任意一点(与点B 不重合),则∠BPC的度数为( )A.30°B.45°C.60°D.90°AB=AC11.如图所示,在⊙O中,,∠A=30°,则∠B=( )A.150°B.75°C.60°D.15°⊙O ABCDE AE CD∠AOC12.如图,与正五边形的两边,相切于A,C两点,则的度数是( )108°120°144°150°A.B.C.D.二、填空题13.如图,已知∠OCB=20°,则∠A= 度.14.如图①,在边长为8的等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,若将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC的边AC,BC相切,则图①中CE的长为 cm.15.如图,△ABC 内接于⊙O ,D 是弧BC 的中点,OD 交BC 于点H ,且OH=DH ,连接AD ,过点B 作BE ⊥AD 于点E ,连接EH ,BF ⊥AC 于M ,若AC=5,EH= ,则AF= .3216.如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为(5,0),顶点D 在 ⊙O 上运动,则正方形面积最大时,正方形与⊙O 重叠部分的面积是 .17.已知⊙O 是以坐标原点为圆心,半径为1,函数y=x 与⊙O 交与点A 、B ,点P (x ,0)在x 轴上运动,过点P 且与OA 平行的直线与⊙O 有公共点,则x 的范围是 .18.若一个圆锥的侧面展开图是一个半径为10cm ,圆心角为144°的扇形,则该圆锥的底面半径为 cm .三、综合题19.如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB ,延长CD 交BA 的延长线于点E .(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)20.如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长交BC的延长线于点F,且BF=BD.(1)求证:AC为⊙O的切线;(2)若CF=1,tan∠EDB=2,求⊙O的半径.21.如图,已知ʘO是Rt△ABC的外接圆,点D是ʘO上的一个动点,且C,D位于AB的两侧,联结AD,BD,过点C作CE⊥BD,垂足为E。
九年级数学-一元二次方程组的专项-培优易错试卷练习题含详细答案
九年级数学一元二次方程组的专项培优易错试卷练习题含详细答案一、一元二次方程1.已知:关于x的方程x2-4mx+4m2-1=0.(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2【答案】(1) 有两个不相等的实数根(2)周长为13或17【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;当m=3时,原方程为x2﹣12x+35=0,解得:x1=5,x2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.综上所述:此三角形的周长为13或17.点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x=5求出m值.2.解方程:233230 2121x xx x⎛⎫⎛⎫--=⎪ ⎪--⎝⎭⎝⎭.【答案】x=15或x=1【解析】【分析】设321xyx=-,则原方程变形为y2-2y-3=0, 解这个一元二次方程求y,再求x.【详解】解:设321xyx=-,则原方程变形为y2-2y-3=0.解这个方程,得y1=-1,y2=3,∴3121x x =--或3321xx =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.3.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC 和△DEF ,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF的斜边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合). (1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC ,编制了如下问题,请你回答: ①∠FCD 的最大度数为 ; ②当FC ∥AB 时,AD= ;③当以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形,且FC 为斜边时,AD= ; ④△FCD 的面积s 的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC 的长,即可得到AD 的长. (2)①当点E 与点C 重合时,∠FCD 的角度最大,据此求解即可.②过点F 作FH ⊥AC 于点H ,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F 作FH ⊥AC 于点H ,AD=x ,应用含30度角直角三角形的性质把FC 用x 来表示,根据勾股定理列式求解.④设AD=x ,把△FCD 的面积s 表示为x 的函数,根据x 的取值范围来确定s 的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.4.已知:关于的方程有两个不相等实数根.(1)用含的式子表示方程的两实数根;(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.∴由求根公式,得.∴或(II),∴.而,∴,.由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k(k-3)=9>0,再利用求根公式即可求出方程的两根即可;(2)有(1)可知方程的两根,再有条件x1>x2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系.请你解答下列问题:5.由图看出,用水量在m吨之内,水费按每吨1.7元收取,超过m吨,需要加收.6.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7. 【解析】 【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解. 【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克 (2)由题意得:()()()()410010214010960x x x x +-++-= 解之得:12x =,27x =经检验,12x =,27x =均符合题意 答:x 的值为2或7. 【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.7.已知关于x 的一元二次方程()220x m x m -++=(m 为常数)(1)求证:不论m 为何值,方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值及方程的另一个根. 【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0. 【解析】 【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根; (2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可. 【详解】 (1)证明:△=(m+2)2−4×1⋅m=m 2+4, ∵无论m 为何值时m 2≥0, ∴m 2+4≥4>0, 即△>0,所以无论m 为何值,方程总有两个不相等的实数根. (2)设方程的另一个根为t ,()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0, 所以m=0,即m 的值为0,方程的另一个根为0. 【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.8.已知关于x 的一元二次方程()2204mmx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根;(2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)134x +=,234x =. 【解析】 【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可. 【详解】(1)由题意得:24b ac ∆=- =()22404mm m+->,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得1x =,2x =. 【点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.9.设m 是不小于﹣1的实数,关于x 的方程x 2+2(m ﹣2)x+m 2﹣3m+3=0有两个不相等的实数根x 1、x 2,(1)若x 12+x 22=6,求m 值;(2)令T=121211mx mx x x +--,求T 的取值范围. 【答案】(1)m=5172-;(2)0<T≤4且T ≠2. 【解析】 【分析】由方程方程由两个不相等的实数根求得﹣1≤m <1,根据根与系数的关系可得x 1+x 2=4﹣2m ,x 1•x 2=m 2﹣3m+3;(1)把x 12+x 22=6化为(x 1+x 2)2﹣2x 1x 2=6,代入解方程求得m 的值,根据﹣1≤m <1对方程的解进行取舍;(2)把T 化简为2﹣2m ,结合﹣1≤m <1且m≠0即可求T 得取值范围. 【详解】∵方程由两个不相等的实数根, 所以△=[2(m ﹣2)]2﹣4(m 2﹣3m+3) =﹣4m+4>0,所以m <1,又∵m 是不小于﹣1的实数, ∴﹣1≤m <1∴x 1+x 2=﹣2(m ﹣2)=4﹣2m ,x 1•x 2=m 2﹣3m+3; (1)∵x 12+x 22=6, ∴(x 1+x 2)2﹣2x 1x 2=6,即(4﹣2m )2﹣2(m 2﹣3m+3)=6 整理,得m 2﹣5m+2=0 解得m=;∵﹣1≤m <1 所以m=. (2)T=+=====2﹣2m .∵﹣1≤m<1且m≠0所以0<2﹣2m≤4且m≠0即0<T≤4且T≠2.【点睛】本题考查了根与系数的关系、根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.10.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.【答案】(1)m≤4;(2)3≤m≤4.【解析】试题分析:(1)根据判别式的意义得到△=(-6)2-4(2m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.试题解析:(1)根据题意得△=(-6)2-4(2m+1)≥0,解得m≤4;(2)根据题意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤4,所以m的范围为3≤m≤4.11.关于x的一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.【答案】(1)k<4且k≠2.(2)m=0或m=8 3 .【解析】分析:(1)由题意,根据一元二次方程的定义和一元二次方程根的判别式列出关于k的不等式组,解不等式组即可求得对应的k的取值范围;(2)由(1)得到符合条件的k的值,代入原方程,解方程求得x的值,然后把所得x的值分别代入方程x2+mx-1=0即可求得对应的m的值.详解:(1)∵一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根,∴△=16-8(k-2)=32-8k>0且k-2≠0.解得:k<4且k≠2.(2)由(1)可知,符合条件的:k=3,将k=3代入原方程得:方程x 2-4x+3=0, 解此方程得:x 1=1,x 2=3.把x=1时,代入方程x 2+mx-1=0,有1+m-1=0,解得m=0. 把x=3时,代入方程x 2+mx-1=0,有9+3m-1=0,解得m=83-. ∴m=0或m=83-.点睛:(1)知道“在一元二次方程20?(0)ax bx c a ++=≠中,当△=240b ac ->时,方程有两个不相等的实数根;当△=240b ac -=时,方程有两个相等的实数根;△=240b ac -<时,方程没有实数根”是正确解答第1小题的关键;(2)解第2小题时,需注意相同的根存在两种情况,解题时不要忽略了其中任何一种情况.12.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值. 解:22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+= 22()(4)0m n n ∴-+-=, 0,40m n n ∴-=-=, 4,4n m ∴==.根据你的观察,探究下面的问题:(1)己知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3) 若己知24,6130a b ab c c -=+-+=,求a b c -+的值.【答案】(1)2(2)6(3)7 【解析】 【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x 与y 的值,即可求出x ﹣y 的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a 与b 的值,根据边长为正整数且三角形三边关系即可求出c 的长;(3)由a ﹣b =4,得到a =b +4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b 与c 的值,进而求出a 的值,即可求出a ﹣b +c 的值. 【详解】(1)∵x 2+2xy +2y 2+2y +1=0 ∴(x 2+2xy +y 2)+(y 2+2y +1)=0∴(x+y)2+(y+1)2=0∴x+y=0 y+1=0解得:x=1,y=﹣1∴x﹣y=2;(2)∵a2+b2﹣6a﹣8b+25=0∴(a2﹣6a+9)+(b2﹣8b+16)=0∴(a﹣3)2+(b﹣4)2=0∴a﹣3=0,b﹣4=0解得:a=3,b=4∵三角形两边之和>第三边∴c<a+b,c<3+4,∴c<7.又∵c是正整数,∴△ABC的最大边c的值为4,5,6,∴c 的最大值为6;(3)∵a﹣b=4,即a=b+4,代入得:(b+4)b+c2﹣6c+13=0,整理得:(b2+4b+4)+(c2﹣6c+9)=(b+2)2+(c﹣3)2=0,∴b+2=0,且c﹣3=0,即b=﹣2,c=3,a=2,则a﹣b+c=2﹣(﹣2)+3=7.故答案为7.【点睛】本题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解答本题的关键.13.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB边向B点以1 cm/s的速度移动,点Q从B点沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为42cm ?(3)△PBQ的面积能否为10 cm2若能,求出时间;若不能,请说明理由.【答案】(1) 2或4秒2 cm;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为2cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的面积为8 cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)× 2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的面积为8 cm2;(2)设x秒后,PQ=42 cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为42 cm;(3)设经过y秒,△PBQ的面积等于10 cm2,S△PBQ=12×(6-y)× 2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4× 10=-4< 0,∴△PBQ的面积不会等于10 cm2.【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.14.如图,一艘轮船以30km/h的速度沿既定航线由南向北航行,途中接到台风警报,某台风中心正以10km/h的速度由东向西移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离AB=300km.(1)如果这艘船不改变航向,那么它会不会进入台风影响区?(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?(3)假设轮船航向不变,轮船航行速度不变,求受到台风影响的时间为多少小时?【答案】(1)如果这艘船不改变航向,那么它会进入台风影响区.(2)经过1515就会进入台风影响区;(3)215小时. 【解析】 【分析】(1)作出肯定回答:这艘轮船不改变航向,那么它能进入台风影响区.(2)首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.(3)将轮船刚好进入台风影响区和刚好离开台风影响的两个时间节点相减,即能得出受影响的时间长.【详解】解:(1)如图易知AB′=300﹣10t ,AC′=400﹣30t ,当B′C′=200时,将受到台风影响,根据勾股定理可得:(300﹣10t )2+(400﹣30t )2=2002,整理得到:t 2﹣30t +210=0,解得t =15±15,由此可知,如果这艘船不改变航向,那么它会进入台风影响区.(2)由(1)可知经过(15﹣15)h 就会进入台风影响区;(3)由(1)可知受到台风影响的时间为:15+15﹣(15﹣15)=215 h .【点睛】此题主要考查了一元二次方程的应用以及勾股定理等知识,根据题意得出关于x 的等式是解题关键.15.如图,在四边形 ABCD 中, AD //BC , C 90∠=︒ , BC 16=, DC 12= , AD 21= ,动点P 从点D 出发,沿线段 DA 的方向以每秒2个单位长的速度运动;动点Q 从点 C 出发,在线段 CB 上以每秒1个单位长的速度向点 B 运动;点P ,Q 分别从点D ,C 同时出发,当点 P 运动到点 A 时,点Q 随之停止运动,设运动的时间为t 秒).(1)当 t 2=时,求 BPQ 的面积;(2)若四边形ABQP 为平行四边形,求运动时间 t .(3)当 t 为何值时,以 B 、P 、Q 为顶点的三角形是等腰三角形?【答案】(1)S 84=;(2)t 5= ;(3)7t 2=或163. 【解析】【分析】(1)过点P 作PM BC ⊥于M ,则PM=DC ,当t=2时,算出BQ ,求出面积即可;(2)当四边形ABQP 是平行四边形时,AP BQ =,即212t 16t -=-,解出即可;(3)以 B 、P 、Q 为顶点的三角形是等腰三角形,分三种情况,①PQ BQ =,②BP BQ =,③PB PQ =分别求出t 即可.【详解】解 :(1)过点P 作PM BC ⊥于M ,则四边形PDCM 为矩形.∴PM DC 12==,∵QB 16t =-,当t=2时,则BQ=14,则1S QB PM 2=⨯=12×14×12=84; (2)当四边形ABQP 是平行四边形时,AP BQ =, 即212t 16t -=-:解得:t 5=∴当t 5=时,四边形ABQP 是平行四边形.(3)由图可知,CM=PD=2t ,CQ=t ,若以B 、P 、Q 为顶点的三角形是等腰三角形,可以分为以下三种情况:①若PQ BQ =,在Rt PMQ 中,222PQ 12t =+,由22PQ BQ =得()2221216t t +=- 解得:7t 2= ; ②若BP BQ =,在Rt PMB 中,()222PB 16212t =-+,由22PB BQ ?=得()()222 1621216t t -+=- ,即2332t 1440t -+=,此时,()232431447040=--⨯⨯=-<△ ,所以此方程无解,所以BP BQ ≠ ;③若PB PQ =,由22PB PQ ?=得()2222 12162t 12t +=-+ ,得116 3t=,216t=(不合题意,舍去);综上所述,当7t2=或163时,以B、P、Q为顶点的三角形是等腰三角形.【点睛】本题是对四边形即可中动点问题的考查,熟练掌握动点中线段的表示、平行四边形和等腰三角形的性质及判断是解决本题的关键,难度适中.。
2023年九年级数学下册中考综合培优测试卷:二次函数与一次函数的综合应用【含答案】
2023年九年级数学下册中考综合培优测试卷:二次函数与一次函数的综合应用一、单选题1.新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(为y =x 2−x +c c 常数)在的图象上存在两个二倍点,则的取值范围是( )−2<x <4c A .B .C .D .−2<c <14−4<c <94−4<c <14−10<c <942.已知直线 过一、二、三象限,则直线 与抛物线 的交点y =kx +2y =kx +2y =x 2−2x +3个数为( ) A .0个B .1个C .2个D .1个或2个3.抛物线 (其中b ,c 是常数)过点A (2,6),且抛物线的对称轴与线段y =x 2+bx +c ( )有交点,则c 的值不可能是( ) y =2x−11≤x <3A .5B .7C .10D .144.函数y=ax+b 和y=ax 2+bx+c 在同一直角坐标系内的图象大致是( )A .B .C .D .5.已知0<x <1,10<y <20,且y 随x 的增大而增大,则y 与x 的关系式不可以是( )A .y =10x+10B .y =﹣10(x﹣1)2+20C .y =10x 2+10D .y =﹣10x+206.在同一坐标系中,函数y=ax 2与y=ax+a (a <0)的图象的大致位置可能是( )A .B .C .D .7.对于题目“一段抛物线L :y=﹣x (x﹣3)+c (0≤x≤3)与直线l :y=x+2有唯一公共点,若c 为整数,确定所有c 的值,”甲的结果是c=1,乙的结果是c=3或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确8.将二次函数 的图象在x 轴上方的部分沿x 轴翻折后,所得新函数的图象如图y =−x 2+2x +3所示.当直线 与新函数的图象恰有3个公共点时,b 的值为( )y =x +bA . 或B . 或 −214−3−134−3C . 或D . 或 214−3134−39.已知抛物线 与直线 相交,若 ,则 的取值范围是( y 1=−2x 2+2y 2=2x +2y 1>y 2x ).A .B .x >−1x <0C .D . 或 −1<x <0x >0x <−110.给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y= x 2的切线;14②直线x=﹣2与抛物线y= x 2 相切于点(﹣2,1);14③若直线y=x+b 与抛物线y= x 2相切,则相切于点(2,1);14④若直线y=kx﹣2与抛物线y= x 2相切,则实数k= .142其中正确命题的是( )A .①②④B .①③C .②③D .①③④11.一次函数与二次函数的图象交点( )y =2x +1y =x 2−4x +3A .只有一个B .恰好有两个C .可以有一个,也可以有两个D .无交点12.将抛物线y=x 2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是( )A .(0,3)或(﹣2,3)B .(﹣3,0)或(1,0)C .(3,3)或(﹣1,3)D .(﹣3,3)或(1,3)二、填空题13.如图,在平面直角坐标系中,抛物线 交y 轴于点A ,直线AB 交x 轴正半轴于y =x 2−2x +2点B ,交抛物线的对称轴于点C ,若 ,则点C 的坐标为 .OB =2OA14.函数 与 的图象如图所示,有以下结论:① ,②y =x 2+bx +c y =x b 2−4c >0 ,③ ,④当 时, .则正确的个数为 b +c +1=03b +c +6=01<x <3x 2+(b−1)x +c <0个.15.已知一次函数y 1=kx+m (k≠0)和二次函数y 2=ax 2+bx+c (a≠0)部分自变量和对应的函数值如表:x…﹣10245…y1…01356…y2…0﹣1059…当y2>y1时,自变量x的取值范围是 .y=ax2+c y=mx+n A(−1,p)B(3,q)16.如图,抛物线与直线交于,两点,则不等式ax2+mx+c<n的解集是 .17.如图,在平面直角坐标系xOy中,直线y1=kx+m(k≠0)的抛物线y2=ax2+bx+c(a≠0)交于点A(0,4),B(3,1),当y1≤y2时,x的取值范围是 .y=ax+b(a<0,b>0)18.如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90°后,与x轴相交于点C,我们将图像过点A,B,C的二次函数叫做与这个一次函y=−kx+k(k>0)数关联的二次函数.如果一次函数的关联二次函数是y=mx2+2mx+c m≠0(),那么这个一次函数的解析式为 .三、综合题19.如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x轴的正半轴上,点B在第一象限.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P 运动的时间是t 秒.将线段BP 的中点绕点P 按顺时针方向旋转60°得点C ,点C 随点P 的运动而运动,连接CP 、CA .过点P 作PD ⊥OB 于D 点(1)直接写出BD 的长并求出点C 的坐标(用含t 的代数式表示)(2)在点P 从O 向A 运动的过程中,△PCA 能否成为直角三角形?若能,求t 的值.若不能,请说明理由;(3)点P 从点O 运动到点A 时,点C 运动路线的长是多少?20.如图,函数 的图象与函数 ( )的图象相交于点P (3,k ),Q 两点.y =2x y =ax 2−3a ≠0(1) = , = ;a k (2)当 在什么范围内取值时, > ;x 2x ax 2−3(3)解关于 的不等式: >1.x |ax 2−3|21.如图,抛物线与 轴交于 , 两点,点 , 分别位于原点的y =3+3x 2+bx +c x A B A B 左、右两侧, ,过点 的直线与 轴正半轴和抛物线的交点分别为 , , BO =3AO =3B y C D .BC =3CD(1)求 , 的值;b c (2)求直线 的函数解析式;BD 22.如图,抛物线y=-x 2+bx+c 的图像过点A(-1,0)、C(0,3),顶点为M 。
2023年九年级数学下册中考数学综合培优测试卷:一次函数图像与几何变换【含答案】
2023年九年级数学下册中考数学综合培优测试卷:一次函数图像与几何变换一、单选题1.在平面直角坐标系中,把直线y=3x 向左平移2个单位长度,平移后的直线解析式是( )A .y=3x+2B .y=3x-2C .y=3x+6D .y=3x-62.若一次函数y=2x-3的图象平移后经过点(3,1),则下列叙述正确的是( )A .沿x 轴向右平移3个单位长度B .沿x 轴向右平移1个单位长度C .沿x 轴向左平移3个单位长度D .沿x 轴向左平移1个单位长度3.在平面直角坐标系中,将直线沿y 轴向下平移6个单位后,得到一条新的直线,该直y =−32x +3线与x 轴的交点坐标是( )A .B .C .D .(0,3)(−2,0)(4,0)(6,0)4.已知直线向下平移2个单位长度后得到直线,且直线与直线关于l 1:y =kx +3l 2l 2l 3:y =−x +1y 轴对称,则k 的值为( ).A .B .1C .2D .3−15.在平面直角坐标系中,将函数 的图象向上平移6个单位长度,则平移后的图象与x 轴的y =3x 交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)6.把直线y=-x+1向上平移3个单位长度后得到的直线的解析式为( )A .y=-x+4B .C .y=x+4D .y=x-27.将直线沿x 轴向左平移3个单位得到直线L ,则直线L 的解析式是( )y =2x +5A .y =2x +2B .y =2x +8C .y =2x -1D .y =2x +118.对于一次函数y =﹣2x+4,下列结论错误的是( )A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是(2,0)C .函数的图象向下平移4个单位长度得y =﹣2x 的图象D .若两点A(x 1,y 1),B(x 2,y 2)在该函数图象上,且x 1<x 2,则y 1<y 29.将一次函数y =﹣3x 的图象沿y 轴向下平移4个单位长度后,所得图象的函数表达式为( )A .y =﹣3(x ﹣4)B .y =﹣3x +4C .y =﹣3(x +4)D .y =﹣3x ﹣410.在平面直角坐标系中,将直线 先关于 轴作轴对称变换,再将所得直线关于y =−3x +4x y 轴作轴对称变换,则经两次变换后所得直线的表达式是( )A .B .C .D .y =4x−3y =−4x +3y =3x +4y =−3x−411.将直线向上平移2个单位长度,则平移后的直线所对应的函数解析式为( )y =−2x +3A .B .C .D .y =−2x +1y =−4x +5y =−2x +5y =−4x +112.将直线向上平移5个单位长度后得到直线,则下列关于直线的说y =x +1y =kx +b y =kx +b 法错误的是( )A .函数图象经过第一、二、三象限B .函数图象与轴的交点在轴的正半轴x xC .点在函数图象上(−2,4)D .随的增大而增大y x 二、填空题13.直线 +3的图像是由正比例函数 图像向 (填上或下)平移 y =3x 个单位得到或由正比例函数 图像向 (填左或右)平移 个单位得到可以得到的一条直线14.直线 沿 轴平移3个单位,则平移后直线与 轴的交点坐标为 .y =2x−1y y 15.在平面直角坐标系中,把直线y=2x 向左平移1个单位长度,平移后的直线解析式是 .16.将正比例函数y=﹣2x 的图象沿y 轴向上平移5个单位,则平移后所得图象的解析式是 .17.如图,在平面直角坐标系中,A (1,0),B (3,0),点C 在第一象限,∠ABC=90°,AC=25,直线l 的关系式为: .将△ABC 沿x 轴向左平移,当点C 落在直线l 上时,线段AC 扫y =−x−3过的面积为 平方单位.18.已知直线与直线关于y 轴对称,当时,,当y 1=ax +b(a ≠0)y 2=kx +5(k ≠0)x >−52y 1>0时,,则直线 .x >52y 2<0y 1=三、综合题19.如图,直线 与 轴、 轴交于点 、 ,直线 与 轴l 1:y =2x +1x y D A l 2:y =mx +4x y 轴分别交于点 、 ,两直线相交于点 .C B P(1,b)(1)求 , 的值; b m (2)求 的值;S △PDC −S △PAB (3)垂直于 轴的直线 与直线 , 分别交于点 , ,若线段 的长为x x =a l 1l 2M N MN 2,求 的值.a 20.如图,直线y =kx +4的图象与y 轴交于点A ,与x 轴交于点B (2,0),直线AF 交x 轴负半轴于点F ,且OF =2OA .(1)求出k 的值为 ,直线AF 的解析式为 ;(2)若将直线AB 沿y 轴向下平移,平移后的直线恰好经过C (﹣3,0),与y 轴相交于点D ,且直线CD 与直线AF 交于点E ,求点E 的坐标.21.如图,一次函数 的图象与反比例函数( 为常数且 )的图象相交于y =x +5y =kx k k ≠0 , 两点.A(−1,m)B(1)求反比例函数的表达式;(2)将一次函数 的图象沿 轴向下平移 个单位 ,使平移后的图象与反y =x +5y b (b >0)比例函数的图象有且只有一个交点,求 的值.y =kx b 22.已知反比例函数与正比例函数 相交于 .y 1=kx y 2=x A(2,2)(1)求 值.k (2)画出反比例函数的图象.(3)当 时,直接写出 的范围?y 1>y 2x (4)根据图象,解不等式 .kx <x−323.背景知识:已知两直线 , ,若 ,则m :y 1=k 1x +b 1n :y 2=k 2x +b 2(k 1k 2≠0)m ⊥n ;若 ,则 .k 1k 2=−1m//n k 1=k 2应用:在平面直线坐标系 中,直线 交x 轴于点C ,交y 轴于点D ,若 xoy l 1:y =x−1l 2⊥l 1于点 ,交y 轴于点A ,交x 轴于点B.P(2,1)(1)求直线 的表达式; l 2(2)求 的面积;△ABC (3)若将直线 向下平移 个单位,得到新的直线 ,交y 轴于点E ,交直线 于点F ,l 1q l 3l 2使得 ,求 的值.S △AEF =16q 24.已知:如图1,在平面直角坐标系中,一次函数y = x+3交x 轴于点A ,交y 轴于点B ,点C34是点A 关于y 轴对称的点,过点C 作y 轴平行的射线CD ,交直线AB 与点D ,点P 是射线CD 上的一个动点.(1)求点A ,B 的坐标.(2)如图2,将△ACP 沿着AP 翻折,当点C 的对应点C′落在直线AB 上时,求点P 的坐标. (3)若直线OP 与直线AD 有交点,不妨设交点为Q(不与点D 重合),连接CQ ,是否存在点P ,使得S △CPQ =2S △DPQ ,若存在,请求出对应的点Q 坐标;若不存在,请说明理由.答案解析部分1.【答案】C 2.【答案】B 3.【答案】B 4.【答案】B 5.【答案】B 6.【答案】A 7.【答案】D 8.【答案】D 9.【答案】D 10.【答案】D 11.【答案】C 12.【答案】B13.【答案】y=3x ;上;3;y=3x ;左;114.【答案】(0,2)或(0, )−415.【答案】y=2x+216.【答案】y =-2x+517.【答案】4018.【答案】或2x +55+2x19.【答案】(1)解:∵点 在直线 上,∴ ,P(1,b)l 1:y =2x +1b =2×1+1=3∵ 在直线 上,∴ ,∴P(1,3)l 2:y =mx +43=m +4m =−1(2)解:∵直线 与 轴、 轴交于点 、 ,l 2:y =−x +4x y D A ∴ ,,A(0,1)D(−12,0)∵直线 与 轴、 轴分别交于点 、 ,l 2:y =−x +4x y C B ∴ , ,B(0,4)C(4,0)∴S △PDC −S △PAB =12DC ⋅y P −12AB ⋅x P =12×(12+4)×3−12×(4−1)×1=214(3)解:设直线 与直线 , 分别交于点 , , x =a l 1l 2M N 当 时, ;当 时, ,x =a y M =2a +1x =a y N =4−a ∵ ,∴ ,解得或 ,MN =2|2a +1−(4−a)|=2a =13a =53所以 的值为 或 a 135320.【答案】(1)-2;y =+412x (2)解:∵直线AB 沿y 轴向下平移,平移后的直线恰好经过C (﹣3,0), ∴设直线DC 的解析式为y =﹣2x+d ,把C (﹣3,0)代入得d =﹣6,∴直线DC 的解析式为y =﹣2x﹣6.解得,{y =−2x−6y =12x +4{x =−4y =2∴E (﹣4,2).21.【答案】(1)解:由题意,将点 代入一次函数 得: A(−1,m)y =x +5m =−1+5=4∴A(−1,4)将点 代入得: ,解得 A(−1,4)y =k x k−1=4k =−4则反比例函数的表达式为;y =−4x (2)解:将一次函数 的图象沿 轴向下平移 个单位得到的一次函数的解析式为 y =x +5y b y =x +5−b 联立{y =x +5−by =−4x 整理得: x 2+(5−b)x +4=0一次函数 的图象与反比例函数 的图象有且只有一个交点∵y =x +5−b y =−4x 关于x 的一元二次方程 只有一个实数根∴x 2+(5−b)x +4=0 此方程的根的判别式 ∴Δ=(5−b)2−4×4=0解得 b 1=1,b 2=9则b 的值为1或9.22.【答案】(1)解:∵反比例函数y 1= 与正比例函数y 2=x 相交于A (2,2).kx ∴k=2×2=4(2)解:描出点(1,4),(2,2),(4,1), 用平滑的曲线连接,画出反比例函数的图象如图,(3)解:由图象可知,当0<x<2和x<-2时,y1>y2.(4)解:观察图象,直线y=x向下平移3个单位,与反比例函数的交点为(4,1)和(-1,-4),∴不等式 <x-3的解集为:-1<x <0和x >4.kx 23.【答案】(1)解:由 ,得 ,l 1:y =x−1k 1=1 , ,∵l 2⊥l 1∴k 2⋅k 1=−1,∴k 2=−1设 ,把 代入解析式得:b=3,l 2:y =−x +b P(2,1) ;∴l 2:y =−x +3(2)解:由图象可得:, 与x 轴交于点B 、C , 令y=0,则有 ∵l 2:y =−x +3l 1:y =x−1∴B(3,0),C(1,0),又 与y 轴交于点A , 令x=0,则有 ,∵l 2:y =−x +3∴A(0,3) OA=3,BC=2, ;∴∴S △ABC =12BC ⋅OA =3(3)解: 将直线 向下平移 个单位,得到新的直线 ,∵l 1q l 3 ,令x=0则 , ,∴l 3:y =x−1−q y =−1−q ∴E(0,−1−q) ,∴AE =3−(−1−q)=4+q 交直线 于点F , 解得,∵l 3l 2∴{y =−x +3y =x−1−q {x =4+q 2y =2−q 2 , ,∵S △AEF =12AE ⋅F x =16∴12×(4+q)⋅4+q 2=16解得 (不符题意,舍去).q 1=4,q 2=−12 .∴q =424.【答案】(1)解:令x=0,则y=3,∴B (0,3),令y=0,则 x+3=0,34∴x=﹣4,∴A (﹣4,0);(2)解:∵点C 是点A 关于y 轴对称的点, ∴C (4,0),∵CD ⊥x 轴,∴x=4时,y=6,∴D (4,6),∴AC=8,CD=6,AD=10,由折叠知,AC'=AC=8,∴C'D=AD﹣AC'=2,设PC=a ,∴PC'=a ,DP=6﹣a ,在Rt △DC'P 中,a2+4=(6﹣a )2,∴a= ,83∴P (4, );83(3)解:设P (4,m ), ∴CP=m ,DP=|m﹣6|,∵S △CPQ =2S △DPQ ,∴CP=2PD ,∴2|m﹣6|=m ,∴m=4或m=12,∴P (4,4)或P (4,12),∵直线AB 的解析式为y= x+3①,34当P (4,4)时,直线OP 的解析式为y=x ②,联立①②解得,x=12,y=12,∴Q (12,12),当P (4,12)时,直线OP 解析式为y=3x ③,联立①③解得,x= ,y=4,43∴Q ( ,4),43。
2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题【含答案】
2023年九年级数学下册中考综合培优测试卷:二次函数的实际应用-几何问题一、单选题1.在平面直角坐标系中,已知点M ,N 的坐标分别为,若抛物线(−1,3),(3,3)与线段MN 只有一个公共点,则的取值范围是( )y =x 2−2mx +m 2−m +2m A .或B .或−1⩽m <07−17<m⩽7+17−1⩽m <0m >7−17C .或D .m <07−172<m⩽7+172−1⩽m⩽7+1722.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .3.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以 cm/s 的速度沿AB 方向运2动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC CB 方向运动到点B .设△APQ 的→面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是( )A.B.C.D.4.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数y=的图象与两坐标轴所围成的图形最接近的面积是( )14(x−4)2A.5B.C.4D.17﹣4π2255.已知如图,抛物线y=-x2-2x+3交x轴于A、B两点,顶点为C,CH⊥AB交x轴于H,在CH右侧的抛物线上有一点P,已知PQ⊥AC,垂足为Q,当∠ACH=∠CPQ时,此时CP的长为()A.B.C.D.4522521692096.如图,抛物线y=ax2+2ax-3a(a>0)与x轴交于A,B顶点为点D,把抛物线在x轴下方部分关于点B作中心对称,顶点对应D’,点A对应点C,连接DD’,CD’,DC,当△CDD’是直角三角形时,a的值为( )A . ,B . ,C . ,D . , 12321332133312337.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE﹣ED﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是()A .AE=6cmB .sin∠EBC =45C .当0<t≤10时,D .当t=12s 时,△PBQ 是等腰三角形y =25t 28.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A . cm 2B . cm 2C . cm 2D . cm 2332392327239.如图, 在平面直角坐标系中放置 , 点 .现将 沿Rt △ABC ,∠ABC =90∘A(3,4)△ABC x 轴的正方向无滑动翻转,依次得到 连续翻转 14 次, 则经过 △A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3… 三顶点的抛物线解析式为( )△A 14B 14C 14A .B .y =−35(x−51)(x−55)y =−512(x−51)(x−55)C .D .y =−35(x−55)(x−60)y =−512(x−55)(x−60)10.用一根长为50 cm 的铁丝弯成一个长方形,设这个长方形的一边长为x (cm ),它的面积为y (cm 2),则y 与x 之间的函数关系式为( )A .y =-x 2+50x B .y =x 2-50x C .y =-x 2+25xD .y =-2x 2+2511.如图,点E ,F ,G ,H 分别是正方形ABCD 边AB ,BC ,CD ,DA 上的点,且AE =BF =CG =DH.设A 、E 两点间的距离为x ,四边形EFGH 的面积为y ,则y 与x 的函数图象可能为( )A .B .C .D .12.已知一个直角三角形的两边长分别为a 和5,第三边长是抛物线y=x²-10x+21与x 轴交点间的距离,则a 的值为( )4141A.3B.C.3或D.不能确定二、填空题ABCD BC=8,AB=6E CD C,D CE13.如图,矩形中,,点为边上一动点(不与重合)、以CEFG CE:CG=3:4BF,ОOE OE为边向外作矩形,且,连接点是线段BF的中点.连接,则的最小值为 .A(3,3)B(0,2)A y=x2+bx−9AB14.如图,已知点,点,点在二次函数的图象上,作射线AB A45°C C,再将射线绕点按逆时针方向旋转,交二次函数图象于点,则点的坐标为 15.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为 .16.在综合实践活动中,同学们借助如图所示的直角墙角(两边足够长),用24m长的篱笆围成一个矩形花园ABCD,则矩形花园ABCD的最大面积为 m2.17.用一段长为的篱笆围成一个一边靠墙的矩形养鸡场,若墙长,则这个养鸡场最大面积24m 10m 为 .m 218.在第一象限内作射线OC ,与x 轴的夹角为60°,在射线OC 上取一点A ,过点A 作AH ⊥x 轴于点H ,在抛物线y=x 2(x >0)上取一点P ,在y 轴上取一点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是 三、综合题19.如图,为美化校园环境,某校计划在一块长方形空地上修建一个长方形花圃.已知AB=20m ,BC=30m ,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为 米,花圃的面x 积为 ( ).S m 2(1)求 关于 的函数关系式;S x (2)如果通道所占面积是184 ,求出此时通道的宽 的值;m 2x (3)已知某园林公司修建通道每平方米的造价为40元,花圃每平方米的造价是60元,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过花圃宽的 ,则通道宽为13多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?20.如图,在平面直角坐标系xOy 中,点A 是反比例函数y= (x >0,m >1)图象上一点,m 3−m 2x 点A 的横坐标为m ,点B (0,﹣m )是y 轴负半轴上的一点,连接AB ,AC ⊥AB ,交y 轴于点C ,延长CA 到点D ,使得AD=AC ,过点A 作AE 平行于x 轴,过点D 作y 轴平行线交AE 于点E .(1)当m=3时,求点A 的坐标;(2)DE= ,设点D 的坐标为(x ,y ),求y 关于x 的函数关系式和自变量的取值范围;(3)连接BD ,过点A 作BD 的平行线,与(2)中的函数图象交于点F ,当m 为何值时,以A 、B 、D 、F 为顶点的四边形是平行四边形?21.如图,矩形ABCD 的四个顶点在正△EFG 的边上,已知正△EFG 的边长为2,记矩形ABCD 的面积为S ,边长AB 为x 。
九年级数学中考复习训练题(培优14)
九年级数学中考复习训练题(培优14)1.点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为()A.﹣(a+1)B.﹣(a﹣1)C.a+1 D.a﹣12.下列说法错误的是()A.平行四边形的对边相等 B.正方形既是轴对称图形、又是中心对称图形C.对角线相等的四边形是矩形 D.对角线互相垂直的平行四边形是菱形3.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是()A.长方体B.四棱锥C.三棱锥D.圆锥4.已知线段a,b,c,如果a:b:c=1:2:3,那么:的值是()A.:B.:C.:D.:5.方程2x2﹣1=6x的两根为x1、x2,则x1+x2等于()A.B.C.﹣3 D.36.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(m,n)在函数y=图象上的概率是()A.B.C.D.7.3﹣2tan60°=.8.一位作家先用m天写完了一部小说的上集,又用n天写完下集,这部小说上下集共120万字,这位作家平均每天的写作量为万字.9.如图,人字梯AB,AC的长都为2米,当α=50°时,人字梯顶端离地面的高度AD是米(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).10.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,使点A落在AE 上的G 点,并使折痕经过点B ,折痕BF 与AE 交于点H ,点F 在AD 上,若DE =5,则AH 的长为 .11.直径为8的⊙O 中,弦AB =4cm ,则弦AB 所对的圆周角是----- 12.如图12,AB 是⊙O 的直径,C 是的中点,CE ⊥AB 于 E ,BD 交CE 于点F .若CD ﹦6, AC ﹦8,则⊙O 的半径为 ,CE 的长是 .13.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC 的度数.14.如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 是的中点,E 为OD 延长线上一点,且∠CAE =2∠C ,AC 与BD 交于点H ,与OE 交于点F .(1)求证:AE 是⊙O 的切线; (2)若DH =9,tan C =,求直径AB 的长.15.如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,过OA 上的点P 作PD ⊥AC ,交CB 的延长线于点D ,交AB 于点E ,点F 为DE 的中点,连接BF .2B图12(1)求证:BF与⊙O相切;(2)若AP=OP,cos A=,AP=4,求BF的长.16.去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售,为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:a=20%(10﹣x),下表是某4个月的销售记录,每月销售量y(万件)与该月销售价x(元/件)之间成一次函数关系(6≤x<9).月份…二月三月四月五月…销售价… 6 7 7.6 8.5 …x(元/件)…30 20 14 5 …该月销售量y(万件)(1)求y与x的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x定为多少时,该月纯收入最大?(纯收入=销售总金额﹣成本+政府当月补贴)17.【操作与发现】如图①,在正方形ABCD中,点N,M分别在边BC、CD上.连接AM、AN、MN.∠MAN=45°,将△AMD绕点A顺时针旋转90°,点D与点B重合,得到△ABE.易证:△ANM≌△ANE,从而可得:DM+BN=MN.【实践探究】(1)在图①条件下,若CN=6,CM=8,则正方形ABCD的边长是.(2)如图②,在正方形ABCD中,点M、N分别在边DC、BC上,连接AM、AN、MN,∠MAN =45°,若,求证:M是CD的中点.【拓展】(3)如图③,在矩形ABCD中,AB=6,AD=8,点M、N分别在边DC、BC上,连接AM、AN,已知∠MAN=45°,BN=2,则DM的长是.18.如图1,在平面直角坐标系中,直线与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上的一动点(不与点A、B 重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m.①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为9∶10?若存在,直接写出m的值;若不存在,请说明理由.。
九年级上册数学 期末试卷(培优篇)(Word版 含解析)
九年级上册数学 期末试卷(培优篇)(Word 版 含解析)一、选择题1.有一组数据5,3,5,6,7,这组数据的众数为( ) A .3B .6C .5D .72.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:33.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14C .16D .194.抛物线223y x x =++与y 轴的交点为( ) A .(0,2)B .(2,0)C .(0,3)D .(3,0)5.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 6.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定 7.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=8.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ) A .平均分不变,方差变大 B .平均分不变,方差变小 C .平均分和方差都不变D .平均分和方差都改变9.二次函数y =x 2﹣2x +1与x 轴的交点个数是( ) A .0B .1C .2D .310.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣2 11.下表是二次函数y =ax 2+bx +c 的部分x ,y 的对应值: x… ﹣1﹣120 121322523 …y … 2 m﹣1﹣74 ﹣2 ﹣74﹣1 142 …可以推断m 的值为( ) A .﹣2B .0C .14D .212.抛物线y =(x ﹣2)2+3的顶点坐标是( ) A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)二、填空题13.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cosD =________.14.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.15.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm .16.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.17.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.18.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.19.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.20.如图,O 半径为2,正方形ABCD 内接于O ,点E 在ADC 上运动,连接BE ,作AF ⊥BE ,垂足为F ,连接CF .则CF 长的最小值为________.21.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…22.如图,圆形纸片⊙O 半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.23.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.24.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)三、解答题25.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,连接BD .(1)求证:DE 是⊙O 的切线; (2)若BD =3,AD =4,则DE = .26.如图,在平面直角坐标系中,抛物线()20y ax bx c a =++≠ 的顶点为()2,0A -,且经过点()5,9B -与y 轴交于点C ,连接AB ,AC ,BC .(1)求抛物线对应的函数表达式;(2)点P 为该抛物线上点C 与点B 之间的一动点.①若15PAB ABC S S ∆∆=,求点P 的坐标. ②如图②,过点B 作x 轴的垂线,垂足为D ,连接AP 并延长,交BD 于点M ,连接BP延长交AD 于点N .试说明()DN DM DB +为定值.27.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y (件)与销售单价 x (元)之间满足一次函数关系,其图象如图所示. (1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?28.(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC 中,,90AB AC BAC ∠==,D 是ABC 外一点,且AD AC =,求BDC ∠的度数.若以点A为圆心,AB 为半径作辅助A ,则C 、D 必在A 上,BAC ∠是A 的圆心角,而BDC ∠是圆周角,从而可容易得到BDC ∠=________.(2)(问题解决)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=,25BDC ∠=,求BAC ∠的度数.(3)(问题拓展)如图3,,E F是正方形ABCD的边AD上两个动点,满足AE DF.连接交于点,连接CF交BD于点G,连接BE交于点H,若正方形的边长为2,则线段DH长度的最小值是_______.29.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了四次测试,测试成绩如表(单位:环):第一次第二次第三次第四次甲9887乙10679(1)根据表格中的数据,分别计算甲、乙两名运动员的平均成绩;(2)分别计算甲、乙两人四次测试成绩的方差;根据计算的结果,你认为推荐谁参加省比赛更合适?请说明理由.30.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?31.(1)如图①,AB为⊙O的直径,点P在⊙O上,过点P作PQ⊥AB,垂足为点Q.说明△APQ∽△ABP;(2)如图②,⊙O的半径为7,点P在⊙O上,点Q在⊙O内,且PQ=4,过点Q作PQ 的垂线交⊙O于点A、B.设PA=x,PB=y,求y与x的函数表达式.32.如果一个直角三角形的两条直角边的长相差2cm,面积是242cm,那么这个三角形的两条直角边分别是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据众数的概念求解.【详解】这组数据中5出现的次数最多,出现了2次,则众数为5.故选:C.【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.2.D解析:D【解析】【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键. 3.D解析:D【解析】【分析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即ADEABC的面积的面积=2213:=19.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.4.C解析:C【解析】【分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,∴抛物线与y轴的交点为(0,3),故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.5.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.6.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.7.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890++=,x x289+=-,x x222++=-+,x x8494x+=,所以()247故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.8.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.9.B解析:B【解析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函数y=x2-2x+1的图象与x轴有一个交点.故选B.10.D解析:D【解析】x2=4,x=±2.故选D.点睛:本题利用方程左右两边直接开平方求解.11.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.12.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.二、填空题13.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2 =6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.14.【解析】【分析】在OA上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB时,CP最小,由相似求出的最小值即可.【详解】解:如图,在OA上取使,∵,∴,在△和△QOC中,,解析:455【解析】【分析】在OA上取'C使'OC OC=,得'OPC OQC≅,则CQ=C'P,根据点到直线的距离垂线段最短可知当'PC⊥AB时,CP最小,由相似求出C'P的最小值即可.【详解】解:如图,在OA上取'C使'OC OC=,∵90AOC POQ∠=∠=︒,∴'POC QOC∠=∠,在△'POC和△QOC中,''OP OQPOC QOCOC OC=⎧⎪∠=∠⎨⎪=⎩,∴△'POC≌△QOC(SAS),∴'PC QC=∴当'PC最小时,QC最小,过'C点作''C P⊥AB,∵直线l:28y x=+与坐标轴分别交于A,B两点,∴A坐标为:(0,8);B点(-4,0),∵'4OC OC OB===,∴22228445AB OA OB++=''4AC OA OC=-=.∵'''OB C Psin BAOAB AC∠==,''445C P=,∴4''55C P=∴线段CQ【点睛】本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.15.4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.16.【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,解析:4 9【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是49,故答案为:49.【点睛】此题考查几何概率,解题关键在于掌握运算法则.17.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数解析:3k<【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.1a,b=-,c k=方程有两个不相等的实数根,241240b ac k∴∆=-=->,3k∴<.故答案为:3k<.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2). 解析:(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12,∴点A ′的坐标是(2×12,4×12),即(1,2).故答案为(1,2). 19.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB ===PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,BC =,∴AB ===∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴OC ===∴2CP OC OP =-=2.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.20.【解析】【分析】先求得正方形的边长,取AB 的中点G ,连接GF ,CG ,当点C 、F 、G 在同一直线上时,根据两点之间线段最短,则CF 有最小值,此时即可求得这个值.【详解】如图,连接OA 、OD ,取解析:51-【解析】【分析】先求得正方形的边长,取AB 的中点G ,连接GF ,CG ,当点C 、F 、G 在同一直线上时,根据两点之间线段最短,则CF 有最小值,此时即可求得这个值.【详解】如图,连接OA 、OD ,取AB 的中点G ,连接GF ,CG ,∵ABCD 是圆内接正方形,2OA OD ==∴90AOD ∠=︒,∴()222222AD OA OD =+==,∵AF ⊥BE ,∴90AFB ∠=︒,∴112GF AB ==, 2222125CG BG BC =+=+=,当点C 、F 、G 在同一直线上时,CF 有最小值,如下图:51,51.【点睛】本题主要考查了正方形的性质,勾股定理,直角三角形斜边上的中线的性质,根据两点之间线段最短确定CF 的最小值是解决本题的关键.21.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可. 详解:∵抛物线y=ax2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax 2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x=0+22=1; 点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x 轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x 轴的交点,关键是熟练掌握二次函数的对称性.22.16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和. 【详解】 解:如解析:16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB ,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如图,点A 为上面小正方形边的中点,点B 为小正方形与圆的交点,D 为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD 为等腰直角三角形,∵⊙O 半径为 52,根据垂径定理得:∴OD=CD=522=5, 设小正方形的边长为x ,则AB=12x , 则在直角△OAB 中,OA 2+AB 2=OB 2,即()()22215=522x x ⎛⎫++ ⎪⎝⎭, 解得x=2,∴四个小正方形的面积和=242=16⨯.故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.23.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、解析:1 4【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=14.故答案为14.【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.24.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.三、解答题25.(1)见解析;(2)125【解析】【分析】(1)连接OD ,如图,先证明OD ∥AE ,再利用DE ⊥AE 得到OD ⊥DE ,然后根据切线的判定定理得到结论;(2)证明△ABD ∽△ADE ,通过线段比例关系求出DE 的长.【详解】(1)证明:连接OD∵AD 平分∠BAC∴∠BAD =∠DAC∵OA =OD∴∠BAD =∠ODA∴∠ODA =∠DAC∴OD ∥AE∴∠ODE +∠E =180°∵DE ⊥AE∴∠E =90°∴∠ODE =180°-∠E =180°-90°=90°,即OD ⊥DE∵点D 在⊙O 上∴DE 是⊙O 的切线.(2)∵AB 是⊙O 的直径,∴∠ADB=90°,∵AD 平分∠BAC ,∴∠BAD=∠DAE ,在△ABD 和△ADE 中,==BDA DEA BAD DAE ∠∠⎧⎨∠∠⎩,∴△ABD ∽△ADE , ∴AB BD AD DE=,∵BD =3,AD =4,∴DE=345⨯=125. 【点睛】 本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键.26.(1)244y x x =++;(2)①点P 的坐标为()13,1P -,()24,4P -;②()27DN DM DB +=,是定值.【解析】【分析】(1)设函数为()()220y a x a =+≠,把()5,9B -代入即可求解;(2)①先求出直线AB 解析式,求出C’点,得到ABC S ∆,再求出PAB S ∆,设点()2,44P x x x ++,过P 作y 轴的平行线交AB 于点P',得到()',36P x x --,根据三角形面积公式得()()213644332x x x ⎡⎤⨯---++⨯=⎣⎦,解出x 即可求解; ②过P 作x 轴的垂线,垂足为点E ,设AE t =,表示出()22,P t t --,故2PE t =,根据//PE BD ,得APE AMD ∆∆,故PE DM AE DA =,即23t DM t =,得到3DM t =.再过P 作BD 的垂线,垂足为点F ,根据 相似三角形的性质得到93DN t =+,可得()DN DM DB +的值即为定值.【详解】(1)解:设()()220y a x a =+≠,把点()5,9B -代入,得()2952a =-+,解得1a =, ∴该抛物线对应的函数表达式为()22244y x x x =+=++.(2)①设直线AB 的函数表达式为y kx b =+,把()2,0A -,()5,9B -代入,得0295k b k b =-+⎧⎨=-+⎩,解得36k b =-⎧⎨=-⎩. ∴直线AB 的函数表达式为36AB y x =--.设直线AB 与y 轴交于点'C ,则点()'0,6C -,∴'10CC =.()15210152ABC S ∆=⨯-⨯=,1115355PAB ABC S S ∆∆==⨯=. 设点()2,44P x x x ++,过P 作y 轴的平行线交AB 于点P',则()',36P x x --, ∴()()213644332x x x ⎡⎤⨯---++⨯=⎣⎦, 13x =-,24x =-,所以点P 的坐标为()13,1P -,()24,4P -.②过P 作x 轴的垂线,垂足为点E ,设AE t =,则()22,P t t--,2PE t =, 由//PE BD ,得APE AMD ∆∆,PE DM AE DA =,即23t DM t =,故3DM t =. 过P 作BD 的垂线,垂足为点F , 由//PF ND ,得BPFBND ∆∆,BF DB PF DN =,即2993t t DN -=-,故93DN t =+. 所以()()939273DN DM DB t t+=+=+,是定值.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质,相似三角形的判定与性质.27.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b +⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.28.(1)45;(2)25°;(3)51-【解析】【分析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.(2)由A 、B 、C 、D 共圆,得出∠BDC =∠BAC ,(3)根据正方形的性质可得AB =AD =CD ,∠BAD =∠CDA ,∠ADG =∠CDG ,然后利用“边角边”证明△ABE 和△DCF 全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS ”证明△ADG 和△CDG 全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB =90°,取AB 的中点O ,连接OH 、OD ,根据直角三角形斜边上的中线等于斜边的一半可得OH =12AB =1,利用勾股定理列式求出OD ,然后根据三角形的三边关系可知当O 、D 、H 三点共线时,DH 的长度最小.【详解】 (1)如图1,∵AB =AC ,AD =AC ,∴以点A为圆心,点B、C、D必在⊙A上,∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,∴∠BDC=12∠BAC=45°,故答案是:45;(2)如图2,取BD的中点O,连接AO、CO.∵∠BAD=∠BCD=90°,∴点A、B、C、D共圆,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°;(3)在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,AB CDBADCDAAE DF⎧⎪∠∠⎨⎪⎩===,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,AD CDADG CDGDG DG⎧⎪∠∠⎨⎪⎩===,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB =180°−90°=90°,取AB 的中点O ,连接OH 、OD ,则OH =AO =12AB =1,在Rt △AOD 中,OD =根据三角形的三边关系,OH +DH >OD ,∴当O 、D 、H 三点共线时,DH 的长度最小,最小值=OD−OH .【点睛】本题主要考查了圆的综合题,需要掌握垂径定理、圆周角定理、等腰直角三角形的性质以及勾股定理等知识,难度偏大,解题时,注意辅助线的作法.29.(1)甲的平均成绩是8,乙的平均成绩是8,(2)推荐甲参加省比赛更合适.理由见解析.【解析】【分析】(1)根据平均数的计算公式即可得甲、乙两名运动员的平均成绩;(2)根据方差公式即可求出甲、乙两名运动员的方差,进而判断出荐谁参加省比赛更合适.【详解】(1)甲的平均成绩是:(9+8+8+7)÷4=8,乙的平均成绩是:(10+6+7+9)÷4=8,(2)甲的方差是:()()()()22229-8+8-8+8-8+7-148⎡⎤⨯⎣⎦=12, 乙的方差是:()()()()2222-8+6-8+7-8+9-814⎡⎤⨯⎣⎦10=52. 所以推荐甲参加省比赛更合适.理由如下:两人的平均成绩相等,说明实力相当;但是甲的四次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加省比赛更合适.【点睛】本题考查了方差、算术平均数,解决本题的关键是掌握方差、算术平均数的计算公式.30.(1)1502y x =-+(2)当x 为10时,超市每天销售这种玩具可获利润2250元(3)当x 为20时w 最大,最大值是2400元 【解析】【分析】(1)根据题意列函数关系式即可;(2)根据题意列方程即可得到结论;(3)根据题意得到()213024502w x =--+,根据二次函数的性质得到当30x <时,w 随x 的增大而增大,于是得到结论.【详解】 (1)根据题意得,1502y x =-+; (2)根据题意得,()1405022502x x ⎛⎫+-+= ⎪⎝⎭, 解得:150x =,210x =,∵每件利润不能超过60元,∴10x =,答:当x 为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,()211405030200022w x x x x ⎛⎫=+-+=-++ ⎪⎝⎭()213024502x =--+, ∵102a =-<, ∴当30x <时,w 随x 的增大而增大, ∴当20x时,2400w =增大,答:当x 为20时w 最大,最大值是2400元. 【点睛】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.31.(1)见解析;(2)56y x=【解析】【分析】(1)根据圆周角定理可证∠APB =90°,再根据相似三角形的判定方法:两角对应相等,两个三角形相似即可求证结论;(2)连接PO ,并延长PO 交⊙O 于点C ,连接AC ,根据圆周角定理可得∠PAC =90°,∠C =∠B ,求得∠PAC =∠PQB ,根据相似三角形的性质即可得到结论.【详解】(1)如图①所示:∵AB 为⊙O 的直径∴∠APB =90°又∵PQ ⊥AB∴∠AQP =90°∴∠AQP =∠APB又∵∠PAQ =∠BAP∴△APQ ∽△ABP .(2)如图②,连接PO ,并延长PO 交⊙O 于点C ,连接AC .∵PC 为⊙O 的直径∴∠PAC =90°又∵PQ ⊥AB∴∠PQB =90°∴∠PAC =∠PQB又∵∠C =∠B (同弧所对的圆周角相等)∴△PAC ∽△PQB ∴=PA PC PQ PB又∵⊙O 的半径为7,即PC =14,且PQ =4,PA =x ,PB =y ∴144x y= ∴56y x=. 【点睛】 本题考查相似三角形的判定及其性质,圆周角定理及其推论,解题的关键是综合运用所学知识.32.一条直角边的长为 6cm ,则另一条直角边的长为8cm .【解析】【分析】可设较短的直角边为未知数x ,表示出较长的边,根据直角三角形的面积为24列出方程求正数解即可.【详解】解:设一条直角边的长为xcm ,则另一条直角边的长为(x+2)cm .根据题意列方程,得1(2)242x x •+=. 解方程,得:x 1=6,x 2=8-(不合题意,舍去).∴一条直角边的长为 6cm ,则另一条直角边的长为8cm .【点睛】本题考查一元二次方程的应用;用到的知识点为:直角三角形的面积等于两直角边积的一半.。
九年级数学下册2023年中考专题培优训练:不等式与不等式组【含答案】
九年级数学下册2023年中考专题培优训练:不等式与不等式组一、单选题1.下列说法不正确的是( )A .不等式的解集是B .不等式的整数解有无数个32x ->5x >3x <C .不等式的整数解是0D .是不等式的一个解33x +<0x =23x <2.已知,则下列结论成立的是( )x y <A .B .C .D .77x y ->-55x y ->-2121x y +>+22x y >3.一元一次不等式x+1>2的解在数轴上表示为( )A .B .C .D .4.关于 的不等式 的非负整数解共有( )个x 1230x ->A .3B .4C .5D .65.若关于x 的不等式2x+a≤0只有两个正整数解,则a 的取值范围是( )A .﹣6≤a≤﹣4B .﹣6<a≤﹣4C .﹣6≤a <﹣4D .﹣6<a <﹣46.若a <b ,则下列各式正确的是( )A .3a >3bB .﹣3a >﹣3bC .a﹣3>b﹣3D .33a b >7.如图表示的是关于 的不等式 ≤ 的解集,则 的取值是( )x 2x a --1a A . ≤-1B . ≤-2C . =-1D . =-2a a a a 8.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃9.不等式组 的解集在数轴上表示为( )21112x x -≤⎧⎨+>-⎩A .B .C.D.10.若 是关于x 的不等式 的一个解,则a 的取值范围是( )3x =2()x x a >-A .B .C .D .32a <32a >32a ≤32a ≥11.关于x 的一元一次不等式3x>6的解都能满足下列哪一个不等式的解( )A .4x-9<xB .-3x+2<0C .2x+4<0D .122x <12.老张从一个鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条 元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )2a b+A .a >b B .a <bC .a =bD .与a 和b 的大小无关二、填空题13.不等式组 的解集为 .23x x >-⎧⎨≤⎩14.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是 .15.a >b ,且c 为实数,则ac 2 bc 2.(用数学符号填空)16.不等式3x﹣2≥4(x﹣1)的所有非负整数解的和为 .17.对于任意实数m 、n ,定义一种运运算m ※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是 三、解答题18.解不等式组 ,并求它的整数解.64325213x x x x +≥-⎧⎪+⎨->-⎪⎩19.今年中考期间,我县部分乡镇学校的九年级考生选择在一中、二中的学生宿舍住宿,某学校将若干间宿舍分配给该校九年级一班的女生住宿,已知该班女生少于25人,若每个房间住4人,则剩下3人没处住;若每个房间住6人,则空一间房,并且还有一间房有人住但住不满。
浙教版2022-2023学年九年级上数学期中培优测试卷(一)(解析版)
浙教版2022-2023学年九年级上数学期中培优测试卷(一)(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.抛物线y =x 2−2x −1的图象向左平移2个单位,再向上平移3个单位,所得图象的解析式为( ) A .y =x 2−6x +10 B .y =x 2+2x +2 C .y =x 2−6x +4 D .y =x 2−2x −4 【答案】B【解析】∵y=x 2-2x-1=(x-1)2-2,∴将抛物线y=(x-1)2-2的图象向左平移2个单位,再向上平移3个单位,所得图象的解析式为y=(x-1+2)-2+3=(x+1)2+1=x 2+2x+2. 故答案为:B.2.如图,已知在⊙O 中,BC 是直径,AB =DC ,则下列结论不一定成立的是( )A .OA =OB =AB B .∠AOB =∠CODC .AB⌢=DC ⌢D .O 到AB 、CD 的距离相等 【答案】A【解析】A 、∵BC 是直径,∴OB=OC=OA=OD ,故A 符合题意; B 、在△AOB 和△COD 中,{OA =OD OB =OC AB =CD∴△AOB ≌△COD (SSS ),∴∠AOB=∠COD ,故B 不符合题意; C 、∵∠AOB=∠COD , ∴AB⌢=DC ⌢,故C 不符合题意; D 、∵AB ⌢=DC ⌢, ∴AB=CD ,∴点O 到AB ,CD 的距离相等,故D 不符合题意;、 故答案为:A.3.如图所示的是一圆弧形拱门,其中路面AB =2m ,拱高CD =3m ,则该拱门的半径为( )A .53mB .2mC .83mD .3m【答案】A 【解析】∵CD 为拱高,∴CD 过圆心,且CD ⊥AB ,∴AD=BD=12AB =1,在CD 上圆心为O ,连结OA , ∴OA=OC ,CD=3, 设OA=x ,OD=3-x ,在Rt △OAD 中,AD 2+OD 2=OA 2,即12+(3−x)2=x 2,解得x =53,∴该拱门的半径为53m . 故选择A .4.如图,正方形ABCD 内接于⊙O ,若随意抛出一粒石子在这个圆面上,则石子落在正方形ABCD 内概率是( )A .12πB .π2C .2πD .√2π【答案】C【解析】连接AC ,∵正方形ABCD , ∴AB=BC ,∠B=90°, ∴AC 是圆O 的直径; 设AB=BC=x ,∴正方形ABCD 的面积为x 2,∴AC =√AB 2+BC 2=√x 2+x 2=√2x , ∴圆O 的半径为√22x , ∴圆O的面积为π(√22x)2=πx 22,∴石子落在正方形ABCD 内的概率为x 2πx 22=2π. 故答案为:C.5.如图.将扇形AOB 翻折,使点A 与圆心O 重合,展开后折痕所在直线l 与AB ⌢交于点C ,连接AC .若OA =2,则图中阴影部分的面积是( )A.2π3−√32B.2π3−√3C.π3−√32D.π3【答案】B【解析】连接CO,且直线l与AO交于点D,如图所示,∵扇形AOB中,OA=2,∴OC=OA=2,∵点A与圆心O重合,∴AD=OD=1,CD⊥AO,∴cos∠COD=ODOC =12,∴∠COD=60°,由勾股定理得:CD=√OC2−OD2=√3,∵S扇形AOC =60°360°×π×22=23π,S△AOC=12AO⋅CD=12×2×√3=√3,∴S阴影=S扇形AOC−S△AOC=23π−√3故答案为:B.6.已知二次函数y=x2+bx+c,当x>0时,函数的最小值为﹣3,当x≤0时,函数的最小值为﹣2,则b 的值为()A.6B.2C.﹣2D.﹣3【答案】C【解析】∵二次函数y=x2+bx+c的开口向上,当x>0时,函数的最小值为-3,当x≤0时,函数的最小值为-2,∴该函数图象的对称轴所在直线在y轴的右侧,∴−b2>0,4×1×c−b24×1=−3,且x=0时,y=c=-2,∴b<0,4×(−2)−b24=−3,解得b=±2,∴b=−2.故答案为:C.7.如图,⊙O是△ABC的外接圆,且AB=AC,∠BAC=36°,在弧AB上取点D(不与点A,B重合),连接BD,AD,则∠BAD+∠ABD的度数是()A.60°B.62°C.72°D.73°【答案】C【解析】连接CD,则∠BAD=∠BCD ,∠ABD=∠ACD , ∵AB=AC ,∴∠ABC=∠ACB , 又∠BAC=36°,∴∠ACB= 180°−36°2=72° , ∴∠BAD+∠ABD=∠BCD+∠ACD=∠ACB=72°. 故答案为:C.8.如图,二次函数y =ax 2+bx +c 的图象的对称轴为x =−12,且经过点(﹣2,0),(x 1,y 1),(x 2,y 2),下列说法正确的是( )A .bc >0B .当x 1>x 2≥﹣12时,y 1>y 2C .a =2bD .不等式ax 2+bx +c <0的解集是﹣2<x <32【答案】B【解析】由图象可得,a >0,c <0,x =−b 2a =−12则b >0, 则bc <0,故选项A 错误;∵该函数图象开口向上,该函数的对称轴为x =﹣12, ∴x≥﹣12时,y 随x 的增大而增大, 当x 1>x 2≥﹣12时,y 1>y 2,故选项B 正确; ∵该函数的对称轴为x =﹣12,∴−b2a =﹣12,化简得b =a ,故选项C 错误;∵图象的对称轴为x =﹣12,且经过点(﹣2,0), ∴图象与x 轴另一个交点为(1,0),不等式ax 2+bx +c <0的解集是﹣2<x <1,故选项D 错误; 故答案为:B. 9.如图,⊙o 的半径为5,点p 到圆心o 的距离为√10,如果过点p 作弦,那么长度为整数值的弦的条数为( )A.3B.4C.5D.6【答案】C【解析】连结OP,过P弦AB⊥OP,连结OA在直角△OAP中,AP=√OA2−OP2=√25−10=√15,则AB=2√15,故过P的弦a的范围是:2√15≤a≤10,则a的整数值是:8,9,10.∵a=8,9时弦各有2条。
九年级数学上册培优题一元二次方程
一元二次方程一、选择题1、一元二次方程042=++c x x 中,c >0,该方程的根的情况是: ( )A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .不能确定2、如果关于x 的方程 kx 2 -2x -1=0有两个实数根,那么k 的取值范围是 ( )A .01≠-≥k k 且B .01≠->k k 且C .1≥kD .1>k3、下列方程中,无实数根的方程是( )A .012=+xB . 02=+x xC . 012=-+x xD . 02=-x x4、k 为实数,则关于x 的方程01)12(2=-+++k x k x 的根的情况是( )A .有两个不相等的实数根;B ..有两个相等的实数根;C .没有实数根;D .无法确定.5、关于x 的方程(3-a )x 2-2x +1=0有实数根,则a 满足 ( )A . a ≠3B . a ≥2C . a >2且a ≠3D . a ≥2且a ≠37、关于x 的方程(a -5)2x -4x -1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a≥1且a ≠5D .a ≠58、一元二次方程042=-x 的解是( ).A .2,221-==x xB .2-=xC .2=xD .0,221==x x7、已知方程x 2-3 2 x +1=0,求作一个一元二次方程使它的根分别是原方程各根的倒数,则这个一元二次方程是( )A .x 2+3 2 x +1=0B .x 2+3 2 x -1=0C .x 2-3 2 x +1=0D .x 2-3 2 x -1=08、m 是方程x 2+x -1=0的根,则式子m 3+2m 2+2009的值为( )A .2008B .2009C .2010D .20119.若a 为方程100)17(2=-x 的一根,b 为方程(y -3)2=17的一根,且a 、b 都是正数,则a -b 的值为( )A .13B .7C . -7D . -1310、若关于x 的一元二次方程0)1(22=-+-k x x k 的一个根为1,则k 的值为 ( )A .-1B .0C .1D .0或111、用配方法解方程x 2-2x -5=0时,原方程应变形为( )A .(x +1)2=6B . (x -1)2=6C . (x +2)2=9D . (x -2)2=912、已知m 是方程x 2-2x -5=0的一个根,则2m 2-4m 的值是A .5B .10C .-5D .-1013、一元二次方程x 2=2x 的根为( )A .2=xB .0=xC .2±=x D. 2,021==x x14、一元二次方程042=-x 的解是( ).A .2,221-==x xB .2-=xC .2=xD .0,221==x x15、方程032=-x 的根是 ( )A .3=xB .3,321-==x xC .3=x D .3,321-==x x 16、一元二次方程032=-x x 的解是( )A .0=xB .31,321==x x C .0,321==x x D .0=x 17、方程12)12(-=-x x x 的解是 ( )A .21=xB . 31,021==x xC . 21,021==x x D . 1=x 18、已知一元二次方程2x 2+5x -1=O 的两根为( )A .25 B . 25- C . 21 D . 21- 19、根据下列表格中的对应值,•判断方程02=++c bx ax (a ≠0,a ,b ,c 为常数)的根的个数是( )A .0B .1C .2D .1或220、下列哪一个数与方程1693=-x 的根最接近( )A .2B .3C .4D .521、商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( )A .256)1(2892=-xB .289)1(2562=-xC .256)21(289=-xD .289)21(256=-x22、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2450张相片,如果全班有x 名学生,根据题意,列出方程为( )A .2450)1(=-x xB . 2450)1(=+x xC . 2450)1(2=+x xD . 23、 下列命题:①若b =2a +21c ,则一元二次方程02=++c bx ax 必有一根为-2; ②若ac<0,则方程02=++a bx cx 有两个不等实数根;③若042=-ac b ,则方程02=++a bx cx 有两个相等实数根.其中正确的个数是( )A .O 个B .l 个C .2个D .3 个21、设a ,b 是方程020092=-+x x 的两个实数根,则b a a ++22的值为( )A .2006B .2007C .2008D .2009 22、若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .024、下列方程是关于x 的一元二次方程的是( ) x 6.17 6.18 6.19 6.20 y=ax 2+bx +c 0.02 -0.01 0.02 0.04 24502)1(=-x xA .02=xB .2)1(x x x =-C .12=x xD .1)1(2=-x 25、若x =3是方程x 2-3mx +6m =0的一个根,则m 的值为 ( )A .1B . 2C .3D .426、已知1=x 是关于x 的一元二次方程01)1(22=-+-x k x k 的根,则常数k 的值为___.27、用配方法解方程x 2+x -1=0,配方后所得方程是( )A .(x -12)2=34B .(x +12)2=34C .(x +12)2=54D .(x -12)2=54 28、一元二次方程x 2=2x 的根为( )A .2B .OC .l 或2D .O 或229、对于一元二次方程ax 2+bx +c =O(a ≠0),下列说法:①若c +c =-1,则方程ax 2+bx +c =O 一定有一根是x =1;②若c =a 3,b =2a 2,则方程ax 2+bx +c =O 有两个相等的实数根;③若a <0,b <0,c >0,则方程cx 2+bx +a =0必有实数根;④若ab-bc =0且c <-l ,则方程cx 2+bx +a =0的两实数根一定互为相反数.其中正确的结论是( )A .①②③④B .①②④C .①③D .②④30、已知x =2是关于x 的一元二次方程ax 2-3bx -5=0的一个根,则4a -6b 的值是( )A .4B .5C .8D .1031、对于一元二次方程ax 2+bx +c =O(a ≠0),下列说法:①若a +c =0,方程ax 2+bx +c =O 必有实数根;②若b 2+4ac <0,则方程ax 2+bx +c =O 一定有实数根;③若a -b +c =0,则方程ax 2+bx +c =O 一定有两个不等实数根;④若方程ax 2+bx +c =O 有两个实数根,则方程cx 2+bx +a =0一定有两个实数根.其中正确的是( )A .①②B .①③C .②③D .①③④32、下列关于 x 的一元二次方程中,有两个不相等的实数根的方程是( )A .0122=-+x xB .01442=+-x xC .032=+-x xD . 042=+x二、填空题1、已知关于x 的方程x 2+kx -3=0一个根是-2,则k 的值为 .2、已知m 、n 是方程020*******=+-x x 的两根,则)20052004(2+-n n 与)20052004(2+-m m 的积是3、把)14(2+-x x 化为k h x ++2)((其中h 、k 是常数)的形式是 __4、方程x 2-2x -1=0的两个实数根分别为x 1,x 2,则(x 1-1)(x 2-1)=5、若方程04)(3)(22222=-+++y x y x ,则=+22y x . 6、方程x x =-2的解是 .7、若方程0522=--kx x 的一个根是-1,则k = .8、已知m ,n 是方程0122=--x x 的两根,且8)763)(42(22=--+-n n a n m ,则a 的值等于 .9、等腰△ABC 两边的长分别是一元二次方程0652=+-x x 的两个解,则这个等腰三角形的周长是10、已知x =2是方程02232=-a x 的一个根,则2a +1= . 11、解方程:x 2=3x ,x = .12、已知关于x 的一元二次方程,(m -1)x 2+x +1=0,有实数根,则m 的取值范围是 .13、已知关于x 的一元二次方程ax 2-5x +1=0有两个不相等的实数根,则a 的取值范围是_____.14、拟已知关于x 的一元二次方程02)1(2=+--x k x k 有解,求k 的取值范围 .三、解答题1、已知:关于x 的方程041)1(22=++-m x m x (1)当m 取何值时,方程有两个实数根?(2)为m 选取一个合适的整数,使得方程有两个不相等的整数根,并求出这两个根。
人教版九年级上册数学同步培优第二十一章 一元二次方程 一元二次方程
14.根据一元二次方程根的定义,解答下列问题: 一个三角形两边的长分别为3 cm和7 cm,第三边的长为a cm
,且整数a满足a2-10a+21=0,求这个三角形的周长. 解:由题意可得4<a<10.(第一步) ∵a是整数,∴a可取5,6,7,8,9.(第二步) 当a=5时,a2-10a+21=52-10×5+21≠0,故a=5不是方
返回
2.以下是关于x的一元二次方程的是( D )
A.x2-
1 x2
=2
B.ax2+bx+c=0
C.3x2-2xy+y2=0 D. x-122=0
返回
3.已知关于x的方程(m+2)x|m|+2x-1=0. (1)当m为何值时,原方程是一元一次方程?
解:由题意得,当m=0时,2x+1=0是一元一次方程; 当m+2=0,即m=-2时,2x-1=0是一元一次方程; 当m=±1时,(m+2)x|m|+2x-1=0是一元一次方程. 综上可知,当m=-2,0,±1时,原方程是一元一次方程.
程的根.
同理可知a=6,a=8,a=9都不是方程的根,只有a=7是
方程的根.(第三步)
∴这个三角形的周长是3+7+7=17(cm). 上述过程中,第一步的根据是_三__角__形__任__意__两__边__之__和__大__于____ _第__三__边__,__任__意__两__边__之__差__小__于__第__三__边______,第三步应用了 _分__类__讨__论_____的数学思想,确定a的值的根据是 _方__程__根__的__定__义___.
人教 九年级上
第二十一章 一元二次方程
21.1 一元二次方程
习题链接
提示:点击 进入习题
1 见习题 2 D
6D
九年级数学上培优试题
九年级数学上培优试题(一)一、 选择题(每小题3分,共30分)1.下列说法不正确的是( )A .一组邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .对角线互相垂直的矩形是正方形D .有一个角是直角的平行四边形是正方形 2.(2011年江苏无锡)菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补 3.(2012年湖南张家界)顺次连接矩形四边中点所得的四边形一定是( ) A .正方形 B .矩形 C .菱形 D .等腰梯形4.(2012年江苏宜昌)如图,在菱形ABCD 中,AB =5,∠BCD =120°,则△ABC 的周长等于( )A .20B .15C .10D . 55.如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AB =2,则矩形的对角线AC 的长是( )A .2B .4C . 2 3D .4 3 6.(2013年陕西)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130ADC ∠︒,则AOE ∠的大小为() A .75° B .65° C .55° D .50°7.(2013年江苏苏州)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC=4,则四边形CODE 的周长( )A . 4B . 6C . 8D . 108.(2013山东泰安)如图,在矩形ABCD 中,AB=2,BC=4, 对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接 CE ,则CE 的长为( )A. 3B.3.5C.2.5D.2.8 9.如图,将一个长为,宽为的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A . B . C . D .DCBA(1) (2)10.(2013山西)如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( ) A .B .C .D .二、填空题(每小题3分,共24分)11.(2011年江苏淮安)在四边形ABCD 中,AB =DC ,AD =BC .请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是___ _______(写出一种即可).12.(2011年江苏南京)如图,菱形ABCD 的边长是2 cm ,E 是AB 的中点,且DE ⊥AB ,则菱形ABCD 的面积为___ _____cm 2.13.(2012年吉林长春)如图, ABCD 的顶点B 在矩形AEFC 的边EF 上,点B 与点E ,F 不重合,若△ACD 的面积为3,则图中阴影部分两个三角形的面积和为_ _____.第9题图第5题图第4题图 第6题图第7题图 ABCDE O第8题图第12题图第13题图14.(2013贵州省毕节市)我们把顺次连接四边形四条边的中点所得的四边形叫中点四边形.....。
11.黄金分割九年级数学下册培优训练含答案
黄金分割九年级数学下册 培优训练一、选择题1、已知,P 是线段AB 上的点,且AP 2=BP •AB ,那么AP :AB 的值是( )A .B .C .D .2、如果C 是线段AB 的黄金分割点C ,并且AC >CB ,AB =1,那么AC 的长度为( )A .B .C .D .3、“黄金分割”是一条举世公认的美学定律,例如在摄影中,人们常依据黄金分割进行构图,使面画整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版,要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置( )A .①B .②C .③D .④4、有以下命题:①如果线段d 是线段a ,b ,c 的第四比例项,则有;②如果点C 是线段AB 的中点,那么AC 是AB 、BC 的比例中项;③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项;④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =﹣1.其中正确的判断有( )A .1个B .2个C .3个D .4个5、一本书的宽与长之比为黄金比,书的宽为14cm ,则它的长为( ) A .(757+)cm B .(2175-)cm C .(757-)cm D .(7521-)cm6、若点C 是线段AB 的黄金分割点()AC BC >,且AB 的长8cm ,则AC 的长为( )A .51cm -B .()251cm -C .()451cm -D .()651cm - 7、如果一个矩形的宽(即短边)与长(即长边)之比是215-,那么这个矩形称为黄金矩形.如图,矩形ABCD 是黄金矩形,点E 、F 、G 、H 分别为线段AD 、BC 、AB 、EF 的中点,则图中黄金矩形的个数是( )A .5个B .4个C .3个D .2个8、如图,扇子的圆心角为x °,余下扇形的圆心角为y °,x 与y 的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x 为( ).A. 144°B. 135°C. 136°D. 108°9、美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到美的效果,她应穿的高跟鞋的高度大约为( )A .4cmB .6cmC .8cmD .10cm10、如图,矩形ABCD 中,已知点M 是线段AB 的黄金分割点,且AM >BM ,AD =AM ,FB =BM ,EF 和GM 把矩形ABCD 分成四个小矩形,其面积分别用S 1,S 2,S 3,S 4表示,EF 与MG 相交与点N ,则以下结论:①N 是GM 的黄金分割点,②S 1=S 4,③23S S =512-, 正确的有( )A .①②③B .①③C .③D .①②二、填空题11、据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为___ ____℃(精确到1℃).12、已知点P 是线段AB 的黄金分割点(AP >BP ),若AP =2,则BP = .13、如图,电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体.若舞台AB 的长为20 m ,则主持人应走到离A 点至少_______m 处最合适.(结果精确到0.1 m)14、我们知道古希腊时期的巴台农神庙(Parthenom Temple)的正面是一个黄金矩形.若已知黄金矩形的长等于6,则这个黄金矩形的宽约等于_______.(精确到0.1)15、已知点C 是线段AB 的黄金分割点,若AB =4,则AC =16、如图,已知P 是线段AB 的黄金分割点,且PA >PB ,若S 1表示PA 为一边的正方形的面积,S 2表示长是AB ,宽是PB 的矩形的面积,则S 1 S 2.(填“>”“=”或“<”) 17、实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A ,N ,M ,B ,若AM 2=BM▪AB ,BN 2=AN▪AB ,则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”,当b ﹣a =4时,m ﹣n = .三、解答题18、如图,C 是线段AB 的黄金分割点,BC >AC ,D ,E 分别是AC ,BC 的中点.(1)C 是线段DE 的黄金分割点吗?请说明理由;(2)若线段AB 的长为100cm ,请你求出线段DC 的长.19、如图所示,矩形ABCD 是黄金矩形(即BC AB =215 ≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形?20、在△ABC 中,AB=AC ,∠A=36°,把像这样的三角形叫做黄金三角形.(1)请你设计三种不同的分法,将黄金三角形ABC 分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.(2)如图4中,BF 平分∠ABC 交AC 于F ,取AB 的中点E ,连接 EF 并延长交 BC 的延长线于M .试判断CM 与AB 之间的数量关系?只需说明结果,不用证明.答:CM 与AB 之间的数量关系是 .黄金分割九年级数学下册 培优训练(答案)一、选择题1、已知,P 是线段AB 上的点,且AP 2=BP •AB ,那么AP :AB 的值是( )A .B .C .D .解:设AB 为1,AP 为x ,则BP 为1﹣x ,∵AP 2=BP •AB ,∴x 2=(1﹣x )×1解得x 1=,x 2=(舍去).∴AP :AB =. 故选:A .2、如果C 是线段AB 的黄金分割点C ,并且AC >CB ,AB =1,那么AC 的长度为( )A .B .C .D .解:∵C 是线段AB 的黄金分割点C ,AC >CB ,∴AC =AB =,故选:C .3、“黄金分割”是一条举世公认的美学定律,例如在摄影中,人们常依据黄金分割进行构图,使面画整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版,要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置( B )A .①B .②C .③D .④4、有以下命题:①如果线段d 是线段a ,b ,c 的第四比例项,则有; ②如果点C 是线段AB 的中点,那么AC 是AB 、BC 的比例中项;③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项;④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =﹣1.其中正确的判断有( )A .1个B .2个C .3个D .4个【解答】①如果线段d 是线段a ,b ,c 的第四比例项,则有;说法正确; ②如果点C 是线段AB 的中点,≠,故AC 不是AB 、BC 的比例中项;说法错误;③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项;说法正确;④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =﹣1;说法正确;综上可得:①③④正确,共3个.故选:C .5、一本书的宽与长之比为黄金比,书的宽为14cm ,则它的长为( A )A .(757)cmB .(215-C .(757)cmD .(521)cm6、若点C 是线段AB 的黄金分割点()AC BC >,且AB 的长8cm ,则AC 的长为( C )A .512cmB .)251cmC .()451cmD .)651cm7、如果一个矩形的宽(即短边)与长(即长边)之比是215-,那么这个矩形称为黄金矩形.如图,矩形ABCD 是黄金矩形,点E 、F 、G 、H 分别为线段AD 、BC 、AB 、EF 的中点,则图中黄金矩形的个数是( )A .5个B .4个C .3个D .2个【解析】∵矩形ABCD 是黄金矩形.点E 、F 、G 、H 分别为线段AD 、BC 、AB 、EF 的中点,∴图中黄金矩形有矩形AEGH ,矩形GHFB ,故选:C .8、如图,扇子的圆心角为x °,余下扇形的圆心角为y °,x 与y 的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x 为( ).A. 144°B. 135°C. 136°D. 108°【解析】由扇子的圆心角为x °,余下扇形的圆心角为y °,黄金比为0.6,根据题意得:x :y=0.6=3:5,又∵x+y=360,则x=360×=135,故选:B.9、美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值是0.60,为尽可能达到美的效果,她应穿的高跟鞋的高度大约为( C )A .4cmB .6cmC .8cmD .10cm10、如图,矩形ABCD 中,已知点M 是线段AB 的黄金分割点,且AM >BM ,AD =AM ,FB =BM ,EF 和GM 把矩形ABCD 分成四个小矩形,其面积分别用S 1,S 2,S 3,S 4表示,EF 与MG 相交与点N ,则以下结论:①N 是GM 的黄金分割点,②S 1=S 4,③23S S =512-, 正确的有( D )A .①②③B .①③C .③D .①②二、填空题11、据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为___23 ____℃(精确到1℃).12、已知点P 是线段AB 的黄金分割点(AP >BP ),若AP =2,则BP = .【解答】解:根据黄金分割定义,得AP 2=AB •BP4=(BP +2)•BPBP 2+2BP ﹣4=0解得BP =﹣1±(﹣1﹣舍去)∴BP =﹣1 故答案为﹣1.13、如图,电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体.若舞台AB 的长为20 m ,则主持人应走到离A 点至少__7.6 _____m 处最合适.(结果精确到0.1 m)14、我们知道古希腊时期的巴台农神庙(Parthenom Temple)的正面是一个黄金矩形.若已知黄金矩形的长等于6,则这个黄金矩形的宽约等于___3.7 ____.(精确到0.1)15、已知点C 是线段AB 的黄金分割点,若AB =4,则AC = 252-或625-16、如图,已知P 是线段AB 的黄金分割点,且PA >PB ,若S 1表示PA 为一边的正方形的面积,S 2表示长是AB ,宽是PB 的矩形的面积,则S 1 S 2.(填“>”“=”或“<”)【解答】解:∵P 是线段AB 的黄金分割点,且PA >PB ,∴PA 2=PB •AB , 又∵S 1表示PA 为一边的正方形的面积,S 2表示长是AB ,宽是PB 的矩形的面积,∴S 1=PA 2,S 2=PB •AB ,∴S 1=S 2.故答案为:=.17、实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别为A ,N ,M ,B ,若AM 2=BM▪AB ,BN 2=AN▪AB ,则称m 为a ,b 的“大黄金数”,n 为a ,b 的“小黄金数”,当b ﹣a =4时,m ﹣n = 458- .三、解答题18、如图,C 是线段AB 的黄金分割点,BC >AC ,D ,E 分别是AC ,BC 的中点.(1)C 是线段DE 的黄金分割点吗?请说明理由;(2)若线段AB 的长为100cm ,请你求出线段DC 的长.解:(1)∵C 是线段AB 的黄金分割点∴BC 2=AC •AB,∵D,E 分别是AC,BC 的中点,∴CD=21AC,CE=21BC,DE=21AB, ∴CE 2=DC •DE, ∴C 是线段DE 的黄金分割点 (2)∵BC=215-AB=50(5-1),∴AC=100-50(5-1)=150-505, ∵D 是AC 的中点, ∴DC=(75-255)cm19、如图所示,矩形ABCD 是黄金矩形(即BCAB =215-≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形?【解析】矩形ABFE 是黄金矩形.理由如下:因为AB AE =ABED AB AD AB ED AD -=- =21512151)15)(15()15(21152-=-+=-+-+=-- 所以矩形ABFE 也是黄金矩形.20、在△ABC 中,AB=AC ,∠A=36°,把像这样的三角形叫做黄金三角形.(1)请你设计三种不同的分法,将黄金三角形ABC 分割成三个等腰三角形,使得分割成的三角形中含有两个黄金三角形(画图工具不限,要求画出分割线段;标出能够说明不同分法所得三角形的内角度数,不要求写画法,不要求证明.分别画在图1,图2,图3中)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.(2)如图4中,BF 平分∠ABC 交AC 于F ,取AB 的中点E ,连接 EF 并延长交 BC 的延长线于M .试判断CM 与AB 之间的数量关系?只需说明结果,不用证明.答:CM 与AB 之间的数量关系是 .解:(1)(2)CM=AB。
九年级上册数学培优试题
九年级上册数学培优试题1.已知关于x的一元二次方程x2﹣ax+a﹣1=0.(1)求证:方程总有两个实数根;(2)若该方程有一实数根大于3,求a的取值范围.2.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a >0,b>0时,∵+b≥0,∴a+b≥2,当且仅当a=b时取等号.请利用上述结论解决以下问题:(1)当x>0时,x+的最小值为;当x<0时,x+的最大值为.(2)当x>0时,求y=的最小值.3.如图,在△ABC中,AC=BC=11,∠C=90°,点D在AC上,且AD=,点P、Q 同时从点D出发,以相同的速度分别沿射线DC、射线DA运动,以PQ为边向AC上方作正方形PQEF.当点P到达C点时,点Q同时停止运动,设PQ=x,正方形PQEF与△ABC重叠部分的面积为S.(1)填空;当点E在AB上时,PQ的长为;(2)求S关于x的函数解析式,并直接写出自变量x的取值范围.4.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.5.新能源汽车已逐渐成为人们的交通工具.某品牌新能源汽车经销商对新上市的A汽车在1月份至3月份的销售情况进行统计,发现A汽车1月份的销量为20辆,3月份的销量为45辆.(1)求A汽车销量的月平均增长率.(2)为了扩大A汽车的市场占有量,提升A汽车的销售业绩,该公司决定采取适当的降价措施(降价幅度不超过售价的10%),经调查发现,当A汽车的销售单价定为12万元时,平均每月的售量为30辆,在此基础上,若A汽车的销售单价每降1万元,平均每月可多售出10辆.若销售额要达到440万元,则每辆A汽车需降价多少万元?6.最近,山东淄博凭借烧烤爆红网络,无数“撸串”爱好者纷纷涌入淄博,甲、乙两个旅行团计划自驾游淄博.两个旅行团计划同一天出发,沿着不同的路线旅行至相同目的地.甲旅行团走A路线,全程1600千米,乙旅行团走B路线,全程2000千米,由于B 路线高速公路较多,乙旅行团平均每天行驶路程是甲旅行团的倍,结果甲旅行团旅行天数比乙旅行团多1天.(1)求甲、乙两个旅行团计划旅行多少天.(2)甲、乙两旅行团开始各有20人参团,甲旅行团计划每人每天的平均花费为500元,而甲旅行团实际又加入了a人(a>0),经统计,甲旅行团每增加1人,每人每天的平均花费将减少20元;乙旅行团人数不变,每人每天的平均花费始终为400元.若两个旅行团旅行天数与各自原计划天数一致,且甲旅行团的总花费比乙旅行团总花费多16000元,求a的值.7.为建设美丽城市,改造老旧小区.某市2021年投入资金1000万元,2023年投入资金1440万元.现假定每年投入的资金年增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2023年老旧小区改造的平均费用为每个小区80万元.2024年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金的年平均增长率保持不变,那么该市在2024年最多可以改造多少个老旧小区?8.火炮射程的远近主要与炮弹发射初速度和发射角度有关,假设在这两个因素都固定的前提下(忽略空气阻力、炮口与底面的高度等其他因素),某科研机构对新研制的火炮(如图1)进行测试,射击时,炮弹飞行的竖直高度y(单位:百米)与水平距离x(单位:百米)近似满足二次函数关系.在某次测试时,以炮口为坐标原点,以火炮和山丘M所在水平线为x轴,建立如图2所示的平面直角坐标系,经观测发现,当炮弹飞行的水平距离是12百米时,达到最大高度是2.88百米;山丘M位于火炮正前方,山丘M顶部距炮口的水平距离为8百米,山丘高为2.3百米;(1)求出满足炮弹飞行轨迹的函数关系式;(2)判断炮弹是否能够越过山丘,并请说明理由;(3)若在山丘另一侧点N处设置一目标物(假设火炮、山丘、目标物在同一水平线上);炮弹的最大杀伤半径为2百米,则目标物应该设置在距山丘顶部水平距离d为多少百米范围内,才能使射击有效?9.已知二次函数y=ax2+bx+c的图象交于x轴于点A(﹣1,0),B(5,0),交y轴于点C (0,2).(1)求二次函数的表达式.(2)若点P(m,y1),Q(m+2,y2)在该二次函数的图象上,当y1>y2>0时,求m的取值范围.10.如图是一个宣传广告牌,其上部是抛物线的一部分AED,下部是一个矩形支架ABCD,矩形支架的长BC为4m,高AB为1.5m.该广告牌的最大高度为3.5m,以BC所在的直线为x轴,线段BC的垂直平分线所在的直线为y轴,建立如图的平面直角坐标系.(1)直接写出抛物线的解析式(不要求写出自变量x的取值范围);(2)现需要在广告牌上张贴一幅矩形MNPQ宣传画,边MN在广告牌矩形支架的边AD 上,顶点Q在抛物线AED上;①宣传画按如图(2)方式张贴,顶点P也在抛物线AED上.若宣传画刚好是一个正方形,求宣传画的周长;②宣传画按如图(3)方式张贴,顶点P在y轴上,点M到点A的距离不小于0.5m,求宣传画周长l的取值范围.11.如图,抛物线y=ax2﹣2x+c与x轴相交于A、B两点,与y轴相交于点C,点A在点B 的左侧,A(﹣1,0),C(0,﹣3),P是抛物线对称轴上的点.(1)求抛物线的函数表达式;(2)如图1,若点D是直线BC下方抛物线上的动点,求四边形ACDB的面积最大值;(3)当点P关于直线BC的对称点Q落在抛物线上时,求点Q的横坐标;(4)如图2,点E是抛物线的顶点,直线CE交x轴于点F,若点G是线段EF上的一个动点,是否存在以点O,F,G为顶点的三角形与△ABC相似.若存在,请直接写出点G的坐标;若不存在,请说明理由.12.如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y 轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.点E为边OA(不包括O、A两点)上一动点过点E作x轴的垂线l交CD于点F,交AC于点M,交抛物线于点P.(1)求抛物线的解析式;(2)连结PD,在抛物线上是否存在点P,使得四边形PMAD为平行四边形,若存在,请求出点P的坐标;若不存在,请说明理由;(3)连结PC,当P在CD上方的抛物线部分时,若以P、C、F为顶点的三角形和△AEM 相似,试求点E的坐标,并判断此时△PCM的形状.13.已知抛物线L:y=a(x﹣1)2+4(a≠0)经过点A(﹣1,0).(1)求抛物线L的函数表达式;(2)将抛物线向下平移m(m>0)个单位长度得到新抛物线G.若新抛物线G与坐标轴有两个交点,求m的值;(3)M,N为抛物线L上两点(点M在点N的右侧),点M到对称轴的距离为2个单位长度,点N到对称轴的距离为5个单位长度,P为抛物线L上点M,N之间(含点M,N)的一点个动点,求点P的纵坐标y P的取值范围.14.已知抛物线G:y=ax2﹣2ax+a+m(a,m均为常数,且a≠0),G交y轴于点C(0,﹣3),点P在抛物线G上,连接CP,且CP平行于x轴.(1)用a表示m,并求抛物线G的对称轴及P点坐标;(2)当抛物线G经过(﹣1,3)时,求G的表达式及其顶点坐标;(3)如果把横、纵坐标都是整数的点叫做“整点”.如图,当a>0时,若抛物线G位于线段CP下方的部分与线段CP所围成的区域内(不含边界)恰有5个“整点”,求a的取值范围.15.如图,抛物线y=x2+bx+c经过点A(﹣1,0),点B(3,0),顶点为C,点D在抛物线上,且∠ACD=∠BAC.(1)求抛物线的解析式;(2)如图(1),求点D的坐标;(3)如图(2),点E是线段AC上(不与A、C重合)的动点,连接DE,∠DEF=∠CAB,边EF交x轴于点F,设点F的横坐标为t,求t的取值范围.16.如图,在平面直角坐标系中,抛物线y=ax2+bx+5与x轴交于A(1,0)、D(6,5)两点,(1)求这条抛物线所对应的函数表达式;(2)点P在这条抛物线上,且不与A、D两点重合,过点P作x轴的垂线与射线AD交于点Q,过点Q作QF平行于x轴,点F在点Q的右侧,以QF、QP为邻边作矩形QPEF.设矩形QPEF的周长为d,点P和点E的横坐标分别为m和m+2.①求这条抛物线的对称轴将矩形QPEF的面积分为1:3两部分时m的值.②求d与m之间的函数关系式及d随m的增大而减小时d的取值范围.17.某市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果篮莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y 元/千克,y关于x的函数解析式为:y=且第12天的售价为32元/十克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W元(利润=销售收入﹣成本).(1)m=,n=;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的前20天中(不包含第20天),当天利润不低于870元的共有多少天?18.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax﹣3a与x轴交于点A、B两点(点A在点B的左侧),与y轴交于点C,且OC=OB.(1)直接写出a的值;(2)如图1,点P为第一象限的抛物线上一点,且满足∠BCP=∠ACO,求点P的坐标;(3)如图2,点Q为第四象限的抛物线上一点,直线BQ交y轴于点M,过点B作直线NB∥AQ,交y轴于点N,当Q点运动时,线段MN的长度是否会变化?若不变,求其值;若变化,求变化范围.19.如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是抛物线的顶点.(1)求抛物线的解析式.(2)点N是y轴负半轴上的一点,且ON=,点Q在对称轴右侧的抛物线上运动,连接QO,QO与抛物线的对称轴交于点M,连接MN,当MN平分∠OMD时,求点M 的坐标.(3)直线BC交对称轴于点E,P是坐标平面内一点,请直接写出△PCE与△ACD全等时点P的坐标.20.已知:经过点A(﹣2,﹣1),B(0,﹣3).(1)求函数解析式;(2)平移抛物线使得新顶点为P(m,n)(m>0).①倘若S△OPB=3,且在x=k的右侧,两抛物线都上升,求k的取值范围;②P在原抛物线上,新抛物线与y轴交于Q,∠BPQ=120°时,求P点坐标.。
九年级数学培优3(有答案)
九年级数学培优33、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B )A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切B 、外切C 、内切或外切D 、不能确定11、若|x|=x ,则-x 一定是( D )A 、正数B 、非负数C 、负数D 、非正数 若|x|=x,则X 是零或正数, -X 则为零或负数,即为非正数。
所以,要选D 。
12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为024、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32 C 、y ≥32或y<0 D 、0<y ≤3228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129.下列图形中既是中心对称图形,又是轴对称图形的是( A ) A 、线段 B 、正三角形 C 、平行四边形 D 、等腰梯形 29、已知dcb a =,下列各式中不成立的是( C ) A 、dc b ad c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc39.△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( D ) A 、a ≤6 B 、b<6 C 、c>6 D 、a 、b 、c 中有一个等于638、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则(C ) A 、a ≤6 B 、b<6 C 、c>6 D 、a 、b 、c 中有一个等于642、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C ) A 、x>2 B 、x>-2 C 、x<2 D 、x<-244、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B ) A 、1个 B 、2个 C 、3个 D 、无数个 49、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-53、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±23 54、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个14、(2009黄石)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图3所示, 下列结论:①abc >0 ②2a+b <0 ③4a -2b+c <0 ④a+c >0, 其中正确结论的个数为( C )39.已知二次函数c bx ax y ++=2的图象如图所示,下列结论:①0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )。
九年级数学上册-一元二次方程(选择题)专题培优训练100题【含答案】
一、单选题1.若x=1是关于x的一元二次方程x2+mx﹣3=0的一个根,则m的值是()A.﹣2B.﹣1C.1D.22.下列方程是一元二次方程的是()A.3x2−6x+2B.x2−y+1=0C.x2=4D.1x+x2=2 3.若x=5是方程x2﹣6x+k=0的一个根,则此方程的另一个根是()A.1B.2C.3D.44.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k<13B.k>- 1 3C.k<13且k≠0D.k>- 13且k≠05.将一元二次方程x2﹣4x﹣7=0配方,所得的方程是()A.(x﹣2)2=11B.(x﹣2)2=3C.(x+2)2=11D.(x+2)2=36.在下列方程中,是一元二次方程的是()。
A.3(x−2)+x=1B.x2+2x=1x C.2x2=1−3x D.x2−x3+3=0 7.一元二次方程x2+x-1=0根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断8.一元二次方程4x2﹣2x+ 14=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断9.已知关于x的一元二次方程mx2+2x+1=0有两个不相等的实数根,则m的取值范围是()A.m≤1B.m<1C.m≤1,且m≠0D.m<1,且m≠010.用配方法方程x2+6x﹣5=0时,变形正确的方程为()A.(x+3)2=14B.(x﹣3)2=14C.(x+6)2=4D.(x﹣6)2=411.下列一元二次方程中常数项为0的是()A.x2+x=1B.2x2﹣x+2=0C.3(x2+x)=3x+1D.﹣x2+x=x212.一元二次方程x2+3=2x的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根13.下列选项中的方程,是一元二次方程的为()A.x+ 1x2=1B.x2+2y﹣3=0C.3x2=1D.x3﹣2x+1=014.一元二次方程x2+4x+5=0的根的情况是()A.无实数根B.有一个实根C.有两个相等的实数根D.有两个不相等的实数根15.用配方法解方程x2+8x﹣9=0时,此方程可变形为()A.(x+4)2=7B.(x+4)2=25C.(x+4)2=9D.(x+4)2=﹣716.一元二次方程x2−2x−3=0的二次项系数、一次项系数、常数项分别是() A.1,−2,−3B.1,−2,3C.1,2,3D.1,2,−3 17.一元二次方程4x2−2x+14=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断18.下列方程中是关于x的一元二次方程的是()A.x2+ 3x=0B.y2﹣3x+2=0C.x2=5x D.x2﹣4=(x+1)219.下列方程是一元二次方程的是()A.2x+1=0B.x2=3C.y+x=1D.−1x−2x2=4 20.如果2是一元二次方程x2=c的一个根,那么常数c是()A.2B.-2C.4D.-421.下列关于x的方程:①ax2+bx+c=0;②x2+1x2−3=0;③x2−4+x5=0;④3x=x2.其中是一元二次方程的有()A.1个B.2个C.3个D.4个22.关于x一元二次方程x2-kx-6=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定根的情况23.已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是()A.1B.-1C.0D.无法确定24.方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,2,3B.1,2,﹣3C.1,﹣2,3D.﹣1,﹣2,3 25.用配方法解一元二次方程x2+8x+7=0,则方程可化为()A.(x+4)2=9B.(x﹣4)2=9C.(x+8)2=23D.(x﹣8)2=9 26.方程x2−4=0的解是()A.x1=2,x2=−2B.x=0C.x1=x2=2D.x1=x2=−227.一元二次方程x2+2x=0的根是()A.x1=0,x2=2B.x1=0,x2=﹣2C.x1=1,x2=﹣2D.x1=1,x2=228.方程x2=x的解是()A.x=1B.x=0C.x1=1,x2=0D.x1=﹣1,x2=029.一元二次方程2021x2−x+2021=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定30.关于x的一元二次方程x2−2x+k=0有两个相等的实数根,则k的值为()A.1B.-1C.2D.-231.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间既周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的12,设人行通道的宽度为x千米,则下列方程正确的是()A.(2﹣3x)(1﹣2x)=1B.12(2﹣3x)(1﹣2x)=1C.14(2﹣3x)(1﹣2x)=1D.14(2﹣3x)(1﹣2x)=232.为了促使药品及医用耗材的价格回归合理水平,减轻群众就医负担,国家近几年大力推进带量采购制度改革,在改革推进的过程中,某药品经过两次降价,每瓶零售价由100元降为81元,已知两次降价的百分率都为x,那么x满足的方程是()A.100(1−x)2=81B.100(1+x)2=81C.100x2=81D.100(1−x%)2=8133.方程(x﹣1)(x﹣2)=1的根是()A.x1=1,x2=2B.x1=﹣1,x2=﹣2C.x1=0,x2=3D.以上都不对34.用配方法解方程x²-4x-1=0,方程应变形为()A.(x+2)2=3B.(x+2)²=5C.(x-2)²=3D.(x-2)²=535.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,若我们规定一个新数i,使其满足i2=﹣1(即x2=﹣1方程有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=(﹣1)•i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么,i+i2+i3+i4+…+i2016+i2017的值为()A.0B.1C.﹣1D.i36.若方程x2﹣4x﹣3=0的两实根为x1、x2,则x1+x2的值为()A.﹣3B.3C.﹣4D.437.函数y=x2−2px+2p2+2p−1的最小值是()A.−3B.−2C.−1D.038.方程(x+0.5)(x−2)=0的根为()A.x1=2,x2=−0.5B.x1=−2,x2=0.5C.x1=2,x2=0.5D.x1=−2,x2=−0.539.某县第一中学学校管理严格、教师教学严谨、学生求学谦虚,三年来中考数学A等级共728人.其中2016年中考的数学A等级人数是200人,2017年、2018年两年中考数学A等级人数的增长率恰好相同,设这个增长率为x,根据题意列方程,得()A.200(1+x)2=728B.200+200(1+x)+200(1+x)2=728 C.200+200x+200x2=728D.200(1+2x)=72840.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有实数根,则k 的取值范围是( )A .k≥-1且k≠0B .k≥-1C .k≤1D .k≤1且k≠041.二元二次方程组{(x +1)(y +2)=0y =x 2的解的个数是( )A .1B .2C .3D .442.中国正在布局以5G 等为代表的战略性新兴产业,据统计2020年我国已建成5G 基站a 万座,计划2022年基站数量达到b 万座,如果每年的平均增长率为x ,则以下关系正确的是( ) A .a (1+x )=b B .b (1-x )=a C .a (1+2x )=bD .a (1+x )=b43.已知关于x 的一元二次方程(a ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则a 的取值范围是( ) A .a >2B .a <2C .a <2且a≠1D .a <﹣244.若关于x 的方程x 2+3x+a=0有一个根为﹣1,则另一个根为( )A .-2B .2C .4D .-345.若a>0,b<0,c<0则方程ax 2+bx+c=0的根的情况为( )A .有两个同号的实数根B .有两个异号的实数根,且负根的绝对值大C .有两个异号的实数根,且正根的绝对值大D .无实数根46.已知一元二次方程 x 2−3x +1=0 的两根为 x 1 , x 2 ,则 x 12−5x 1−2x 2 的值为( )A .-7B .-3C .2D .547.某种植基地2017年蔬菜产量为80吨,预计2019年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( ). A .80(1+x)2=100 B .100(1−x)2=80 C .80(1+2x)2=100D .80(1−x)2=10048.设x 1,x 2是方程2x 2﹣6x+3=0的两根,则x 12+x 22的值是( )A .15B .12C .6D .349.下列方程中,一元二次方程是( ) A .x 2+ 1x2 =0B .(2x ﹣1)(x+2)=1C .ax 2+bx=0D .3x 2﹣2xy ﹣5y 2=050.已知两个整数a,b,有2a+3b=31,则ab的最大值是()A.35B.40C.41D.4251.某文化衫经过两次涨价,每件零售价由81元提高到100元.已知两次涨价的百分率都为x,根据题意,可得方程()A.81(1+x)2=100B.81(1﹣x)2=100C.81(1+x%)2=100D.81(1+2x)=10052.某县为发展教育事业,加强了对教育经费的投入,2020年投入3000万元,预计2022年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000+3000(1+x)+3000(1+x)2=500053.某企业因春节放假,二月份产值比一月份下降20%,春节后生产呈现良好上升势头,四月份比一月份增长15%,设三、四月份的月平均增长率为x,则下列方程正确的是()A.2(1−20%)(1+x)=1+15%B.(1+15%)(1+x)2=1−20%C.2(1+15%)(1+x)=1−20%D.(1−20%)(1+x)2=1+15%54.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为300元的药品进行连续两次降价后为243元,设平均每次降价的百分率为x,则下面所列方程正确的是(A.300(1﹣x)2=243B.243(1﹣x)2=300C.300(1﹣2x)=243D.243(1﹣2x)=30055.关于x的方程ax2−(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1−x1x2+x2=1−a,则a的值是()A.1B.-1C.1或-1D.256.设m,n分别为一元二次方程x2+2x-1=0的两个实数根,则m +n+mn的值为()A.-3B.3C.-2D.257.有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中,错误的是…….()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;B.如果方程M有两根符号相同,那么方程N的两根符号也相同;C.如果5是方程M的一个根,那么是方程N的一个根;D.如果方程M和方程N有一个相同的根,那么这个根必是58.下列方程中没有实数根的是()A.x2+2x+1=0B.x2﹣x+2=0C.x2+2x=0D.2x2﹣x﹣1=059.若a−b+c=0,则一元二次方程ax2−bx+c=0(a≠0)必有一根是()A.0B.1C.-1D.无法确定60.由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第2题图)A DCB PN M l九年级数学培优练习题1、二次函数542+-=x x y 中,已知1≤x ≤4,则y 的取值围是 。
2、如图,正方形ABCD 的边长与等腰直角三角形PMN 的腰长均为4cm ,且AB 与MN 都在直线l 上,开始时点B 与点M 重合.让正方形沿直线向右平移,直到A 点与N 点重合为止,设正方形与三角形重叠部分的面积为y(cm 2),MB 的长度为x(cm),则y 与x 之间的函数关系的图象大致是 【 】3、若抛物线2(1)y x b x c =+-+经过点(12)P b --,,则b c +的值为 ;如果3b =,则此条抛物线的顶点坐标为 。
4、如图, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自变量t 的取值围,当t 为何值时,S 的值最大;x九年级数学培优练习题1、如图,直线MN 和EF 相交于点O ,∠EOF =60°,AO =2,∠AOE =20°。
设点A 关于EF 的对称点是B ,点B 关于MN 的对称点是C ,则A 、C 两点间的距离为 。
2、如图,在直角坐标系中,A 点的坐标为(3,0),B 点坐标为(0,4),把线段AB 绕原点顺时针方向旋转,使AB 与y 轴平行,则A 点的坐标为 。
3、抛物线bx x y 2322+-=与x 轴的两个不同交点是O 、A ,顶点B 在直线x y 33=上,则关于△OAB 是 三角形。
4、如图,从等边三角形ABC 一点P 向三边作垂线,PQ =6,PR =8,PS =10,则△ABC 的面积是 。
5、如图①,OABC 是一放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4.(1)在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D 、E 两点的坐标;(2)图②,若AE 上有一动点P (不与A 、E 重合)自A 点沿AE 方向向E 点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t 秒(0<t <5),过P 点作ED 的平行线交AD 于点M ,过点M 作AE 的平行线交DE 于点N .求四边形PMNE 的面积S 与时间t 之间的函数关系式;当t 取何值时,S 有最大值?最大值是多少?(3)在(2)的条件下,当t 为何值时,以A 、M 、E 为顶点的三角形为等腰三角形,并求出相应时刻点M 的坐标.A MN OFE九年级第二学期数学培优练习题 11、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系.则线段BC 所表示的y 与x 之间的函数关系式 ,自变量x 的取值围是 。
2、如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD =60°,BP =1,CD =32,则△ABC 的边长为 。
3、把两块含有30o的相同的直角三角尺按如图所示摆放,使点C 、B 、E 在同一直线上,连结CD ,若AC =6cm ,则△BCD 的面积是 cm 2.4、如图,第(1)个多边形由正三角形“扩展”而来,边数记为3a ,第(2)个多边形由正方形“扩展”而来,边数记为4a ,…,依此类推,由正n 边形“扩展”而来的多边形的边数记为n a (n ≥3).则5a 的值是 ,当3451111n a a a a +++⋅⋅⋅+的结果是197600时,n 的值 。
5、三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km .如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是――――――――――――――――――――――――――――――――( ) A.1 B.2 C.3 D.46、如图,在平面直角坐标系中,已知△AOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把△AOP 绕着点A 按逆时针方向旋转,使甲队到达小镇用了6小时,途中停顿了1小时甲队比乙队早出发2小时,但他们同时到达乙队出发 2.5小时后追上甲队乙队到达小镇用了4小时,平均速度是6km /h1 2 3 4 5 6 时间(h )24 0 4.5 12路程(km )AB CDOy /km 90012 x /h4CAD60° A(1) (2) (3) (4) …… ABDE边AO 与AB 重合,得到△ABD 。
(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使△OPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由。
7、如图,抛物线2y x =与直线12y x =相交于O ,A 两点,点P 沿着抛物线从点A 出发,按横坐标大于点A 的横坐标方向运动,PS ∥x 轴,交直线OA 于点S ,PQ ⊥x 轴,SR ⊥x 轴,垂足为Q ,R .(1)当点P 的横坐标为2时,回答下面问题:①求S 点的坐标.②求通过原点,且平分矩形PQRS 面积的直线解析式. (2)当矩形PQRS 为正方形时,求点P 的坐标。
九年级第二学期数学培优练习题31、如图,AB 是⊙O 的直径,PB ,PC 分别切⊙O 于点B ,C ,如果∠ACE =380,那么∠P 的度数是_________2、已知一元二次方程()()02222=-+-+-ab a x a b x b ab 有两个相等的图1xy BAODP图2xy BAO实数根,那么ba 11+=_________ 3、已知分式方程13213+-=++x xx bx x ,若此方程有增根,那么此时b 的值是_________4、如图,在边长为6的正方形ABCD 中,点F 在CD 上,且有CF ∶FD=1∶2,若AG ⊥BF ,垂足为G ,延长AG 交BC 于E ,那么AE 的长是_________5、如图①、②,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切。
将这个游戏抽象为数学问题,如图②。
已知铁环的半径为25cm ,设铁环中心为O ,铁环钩与铁环相切点为M ,铁环与地面接触点为A ,∠MOA =α,且cos α=54。
(1)求点M 离地面AC 的高度MB 的长; (2)设人站立点C 与点A 的水平距离 AC 等于55 cm ,求铁环钩MF 的 长度。
6、市园林局为了对机场路的一段公路进行绿化,计划购买A 、B 两种风景树共900棵。
A 、B 两种树的相关信息如下表:项目树种单价(元/棵) 成活率 A 80 92% B10098%若购买A 种树x 棵,购树所需的总费用为y 元。
(1)求y 与x 之间的函数关系式;(2)若购树的总费用为82000元,则购A 种树不少于多少棵?(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A 、B 两种树各多少棵?此时最低费用为多少元?7、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处.AB CMFOα 图②图①(1)直接写出点E 、F 的坐标;(2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. 8、如图,抛物线24y x x =+与x 轴分别相交于点B 、O ,它的顶点为A ,连接AB ,把AB 所的直线沿y 轴向上平移,使它经过原点O ,得到直线l ,设P 是直线l 上一动点。
(1)求点A 的坐标;(2)以点A 、B 、O 、P 为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3)设以点A 、B 、O 、P 为顶点的四边形的面积为S ,点P 的横坐标为x ,当462682S +≤≤+时,求x 的取值围。
九年级第二学期数学培优练习题41、已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如右图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是―――――――――――――――――――――【 】2、如图,C ,D 是以AB 为直径的半圆上的三等分点,圆半径为R ,则与阴影部分面积相等的圆的周长为_________(第28题)ly x-1-2-4-3-1-2-4-312435123O P M O M ' M P A . O M ' M P B . OM ' M P C . O M ' M P D .3、 Rt △ABC 中,∠C= Rt ∠,AB =5,sinA ,sinB 是方程0752=+-m x x 的两实根,那么AB 边上的高为_________,m 的值是_________4、小骑车从甲地出发到达乙地后立即按原路返回甲地,出发后距甲地的路程y (km)与时间x (h)的函数图像如图所示.⑴小在路上停留______h ,他从乙地返回时骑车的速度为________km /h ;⑵小王在距甲地路程15km 的地方与小同时出发,按相同路线前往乙地,当他到达乙地停止行动时,小已返回到甲、乙两地的中点处。
已知小王距甲地的路程y (km )与时间x (h )成一次函数关系.①则y 与x 的函数关系式为 ;②利用函数图象,判断小王与小在途中共相遇 次,第一次相遇的时间为 (h )5、某仓库甲、乙、丙三辆运货车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙四最少,乙车的运输量为每小时6吨,下图是从早晨上班开始库存量y (吨)与时间x (小时)的函数图象,OA 段只有甲、丙车工作,AB 段只有乙、丙车工作,BC 段只有甲、乙工作. ⑴从早晨上班开始,库存每增加2吨,需要几小时? ⑵问甲、乙、丙三辆车,谁是进货车,谁是出货车?⑶若甲、乙、丙三车一起工作,一天工作8小时,仓库的库存量有什么变化?6、如图,在直角坐标系xOy 中,每个网格的边长都是单位1,圆心为M (-4,0)的⊙M 被y 轴截得的弦长BC = 6. (1)求⊙M 的半径长;(2)把⊙M 向下平移6个单位,再向右平移8个单位得到⊙N ;请画出⊙N ,观察图形写出点N 的坐标,并判断⊙M 与⊙N 的位置关系,说明理由; (3)画出一个“以点D (6,0)为位似中心,将⊙N 缩小为原来的12”的⊙P .CBxyMoC (-1,0)A (0,2)B x y O7、在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点A (0,2),点C (-1,0),如图所示;抛物线22y ax ax =+-经过点B .(1)求点B 的坐标; (2)求抛物线的解析式;(3)在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.九年级第二学期数学培优练习题61、如图,在△ABC 中,∠ACB =︒90,AC =2,BC =3. D 是BC 边上一点,直线DE ⊥BC 于D ,交AB 于E ,CF ∥AB 交直线DE 于F 。