概率及其意义--教学设计(江文彬)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《25.2.1概率及其意义》教学设计
黄山市歙县武阳中学江文彬
一.内容和内容解析
内容:人教版九年级上册“25.1随机事件的概率”(第二课时:概率及其意义)
内容解析:
不确定现象大量存在于自然界和人类社会中,概率正是研究这种现象、揭示其统计规律并帮助我们形成决策的数学工具.随着现代科学技术的发展,概率在自然科学、社会科学和工农业生产中得到越来越广泛的应用.掌握概率的基本知识和思想方法已成为现代社会公民的必备素养,因此它是初中数学的一个重要内容,也是数学研究的一个重要分支.
本节内容是“概率及其意义”,是在学生学习了必然事件、随机事件、不可能事件知识的基础上的进一步研究. 本节课将学习从定量的角度去刻画随机事件发生可能性大小的概念——概率.教材这样编排其主要意图有二:1.遵从概率的产生规律,从概率的古典定义开始探究,学生易于接受,同时符合学生的认知规律.2.为后面学习列举法求概率及用频率估计概率奠定基础,起到承上启下的作用. 因此本节课的教学重点是概率的意义以及学会运用分析的方法在较为简单的问题情境下计算概率.
二.目标和目标解析
目标:
1.知识与技能:了解概率的概念,理解随机事件的概率公式,会用分析的方法计算简单随机事件的概率.
2.过程与方法:通过对现实生活中的“抛掷硬币”、“投掷骰子”、“转转盘”等问题的探究, 感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法,体验数学活动与现实生活的联系.
3.情感、态度与价值观:培养学生的协作能力和探究能力,激发学生的好奇心和求知欲,提升学生的数据分析和数学建模两大核心素养.
目标解析:
1.通过分析实际生活中随机事件发生可能性的大小来认识概率是反映随机事件发生可能性大小的量.
2.经历动手操作、想象、归纳和总结等活动理解等可能事件,并掌握等可能事件概率的一般求法,能够应用到实际生活当中去.
3.在探究概率的过程中,培养学生的动手能力、协作能力和探究能力,发展他们的概率观念和应用意识,同时激发他们的好奇心和求知欲,培养他们勇于探索的精神、交流与合作的精神.
三.教学问题诊断分析
学生已经理解了随机事件发生的可能性有大有小,本节课用一个数值去刻画这个大小,就是概率.概率的意义具有一定的抽象性,从定性到定量的转化,学生需要一个较长时期的认识过程,对概率的认识和理解会随着学生自身年龄的增长以及知识面和生活经验的延伸而发展.
对于抛硬币和掷骰子的试验,计算相关事件的概率对学生来说是比较容易接受的,但学生容易忽略对求概率方法适用范围的判断.目前,求概率时试验要满足以下条件:(1)每一次试验中,可能出现的结果只有有限种;(2)每一次试验中,各种结果出现的可能性相等.例如:从男女学生数量不等的班级里随机的抽取一名学生是男学生的概率,有同学认为所抽取的要么是男同学要么是女同学,抽到男女同学的结果都有可能发生,因而抽到男同学的概
率等于抽到女同学的概率为2
1. 四.重难点分析
教学重点:1.概率的定义. 2.求简单随机事件发生的概率.
教学难点:对机会均等的结果的理解.
五.教学支持条件分析
为了加大课堂容量和学生的思维活动量,根据现代教学理论,本节课采用多媒体课件展示,利用EXCEL 软件进行了数据分析以及借助FLASH 软件制作频率折线图,这使得原本杂乱无章不便分析的数据直观化、形象化。通过数形结合,图表并用,让学生在生动具体的情境中感悟知识的发生和发展过程,优化学生的认知结构.
六.教学策略分析
教师引导学生经历问题的提出、概念的形成、概念的理解、概念的应用等基本过程,引导学生进行观察、思考、归纳、概括、运用等活动,把重点放在知识的形成过程上,帮助学生循序渐进的理解概率的意义.
根据本节课概念教学的特点,一方面借助多媒体课件,呈现直观、形象的实例背景,激发学习兴趣,启迪学生思维. 另一方面,围绕着学生的兴趣需要,以学生为本设置问题,从激励学生主动思考与探究入手,使教学更富有生动性、互动性与探究性,让学生亲历知识的发生、发展和形成过程的同时,更好地为实现教学目标服务.
七.教学过程分析
(一)创设情境 引入概率
阅读教材136页,并完成下列问题:
1.抛掷一枚硬币有个可能的结果:“ 出现正面 ”和“ 出现反面 ”。由于硬币质地均匀,所以这两个结果出现的可能性各占50% 的机会,50% 这个数表示事件“出现正面”发生的可能性的大小。
2.表示 一个事件发生的可能性 ,叫做该事件的概率.
如,抛掷一枚硬币,“出现正面”的概率为21,可记为P (出现正面)=2
1. 设计意图:通过回顾上一课时的问题,在学生已经知道随机事件发生的可能性有大有小的基础上,设疑引入本节课的内容,就是用数字来刻画随机事件发生的可能性大小,直至教学目标,学生很容易接受,同是也使前面的知识得到巩固.
(二)思考探究,获取新知
上述例子可以经过分析很快地得出概率,但是实际中,许多问题是要进行重复试验、观察频率稳定值的办法来解决的,一起回顾做过的几个游戏及其试验结果,见表25.2.1.
表25.2.1 做过的几个实验及其试验结果
2、 指导学生计算概率,完成表25.2.1的第五列填空,并对比第三列的对应值。
3、 重点分析第四行:关注的结果个数为 1 ,所有机会均等的结果个数为 6 ,而不要
错误理解“掷得‘6’”为结果个数是 6 ,“6”是一个事件而不是结果的个数。
从中发现,几个动手实验观察到的频率值也可以开动脑筋分析出来,当然,最关键的有两点:
(1)要清楚我们关注的是哪个或哪些结果;(2)要清楚所有机会均等的结果。
(3)P(关注的结果)=个数
所有机会均等的结果的关注的结果个数 如P (掷得“6”)=
61,读作:掷得 等于6
1. 概率值的解释: 1. 掷得“6”的概率等于
6
1表示什么意思?让学生充分讨论. 2. 学生讨论后,教师与学生共同分析掷得“6”的概率等于61的意思,然后让学生做投掷骰子试验,一旦掷到“6”,就算完成了1次试验. 每位学生做10次,然后把结果记录下来,模仿表2(见下图)做好试验记录.
3. 把各小组学生的试验结果汇总到一张表上,然后计算全班试验的平均值,看看平均
几次才有1次掷得“6”?