[理学]理论力学8-点的合成运动-土木

合集下载

理论力学_点的合成运动_点的加速度合成定理_

理论力学_点的合成运动_点的加速度合成定理_

8-4 点的加速度合成定理三种加速度(相对于三种运动,瞬时量)绝对加速度动点相对静系运动的加速度相对加速度动点相对动系运动的加速度牵连加速度牵连点的加速度8-4点的加速度合成定理a a r a e a动点--M 点定系--OXYZ动系--O ˊXˊYˊZˊ牵连点—动系O ˊXˊYˊZˊ上M 点M O r r r ''=+r x i y j z k '''''''=++为常矢量,,其中考虑到考虑到则M a O dr v r x i y j z k x i y j z k dt '''''''''''''==++++++eO O edv dv a a dt dt ''===r rr dv dv a dt dt==点的加速度合成定理—当牵连运动为平动时,动点在某瞬时的绝对加速度等于它在该瞬时的牵连加速度与相对加速度的矢量和。

2222222222o M a d r d r d x d y d z a i j k dt dt dt dt dt '''''''==+++a e r a a a =+上式中每一个矢量都有大小和方向两个要素,因此上式总共包含有12个要素,其中若仅有两个要素是未知的,则此矢量式可解。

由于加速度包括沿轨迹切线方向的切向加速度和沿主法线方向的法向加速度两个分量,所以在最一般的情况下练习1凸轮在水平面上向右作减速运动,如图所示。

设凸轮半v a径为R,图示瞬时的速度和加速度分别为和。

求杆AB在图示位置时的加速度。

解:取动点和动系动点:顶杆AB上的A点动系:固结凸轮上的参考系绝对运动:铅垂方向直线运动相对运动:半圆周运动牵连运动:水平直线平移8该瞬时杆AB 的速度方向向上练习1—速度分析绝对速度:大小未知,方向沿杆AB 向上牵连速度:,方向水平向右相对速度:大小未知,方向沿凸轮圆周的切线根据速度合成定理ϕϕsin sin e r vv v ==a v e v r v e v v =练习1—加速度分析绝对加速度:大小未知,方向沿直线AB 牵连加速度:,沿水平方向相对加速度法向分量:,沿着,指向半圆板圆心相对加速度切向分量:大小未知,垂直于,假设指向右下a a e a e a a OA OA O。

理论力学 第八章

理论力学 第八章

x o ' = x o ' (t ) 牵连运动方程 y o ' = y o ' ( t ) = ( t )
动系与定系之间的坐标变换关系
x = xO′ + x′ cos y′sin y = yO′ + x′ sin + y′ cos
沿半径为r的圆 例8-1 点M相对于动系 Ox′y′ 沿半径为 的圆 相对于动系 周以速度v作匀速圆周运动 圆心为O 作匀速圆周运动(圆心为 周以速度 作匀速圆周运动 圆心为 1 ) ,动系x′y′ O Oxy 以匀角速度ω绕点 作定轴转动, 相对于定系 以匀角速度 绕点O作定轴转动, 绕点 作定轴转动 如图所示。 重合, 重合。 如图所示。初始时x′y′ 与 与 重合 O Oxy 重合,点M与O重合。 的绝对运动方程。 求:点M的绝对运动方程。 的绝对运动方程
. 已知: 已知 ω, OA, = r, OO1 = l, OA水平 求: ω1 = ?
解:
1.动点:滑块A . 动系:摇杆AB 2. 运动分析 绝对运动:绕O点的圆周运动
相对运动:沿O1B的直线运动 牵连运动:绕O1轴定轴转动
√ √ √
3.
ve = va sin = ωr
r
2 2
l +r ve r2ω ∴ω1 = = 2 2 O A l +r 1
4. 绝对运动方程 vt vt x = x′ cos y′ sin = r1 cos r cosωt r sin r sin ωt y = x′ sin + y′ cos = r1 cos vt sin ωt + r sin vt co-3 用车刀切削工件的直径端面,车刀刀尖 M沿水平轴 作往复运动,如图所示。设oxy为定坐 沿水平轴x作往复运动 沿水平轴 作往复运动,如图所示。 为定坐 标系,刀尖的运动方程为 x = bsin (ωt ) 。工件以 标系, 逆时针转向转动。 等角速度 ω逆时针转向转动。 求:车刀在工件圆端面上切出的痕迹。 车刀在工件圆端面上切出的痕迹。

[理学]理论力学8—点的合成运动-土木_OK

[理学]理论力学8—点的合成运动-土木_OK
9
8.2 点的速度合成定理
处理具体问题时应注意: (1) 选取动点、动参考系和定参考系。
动点和动系应分别选择在两个不同的刚体上。
动点和动系的选择应使相对运动的轨迹简单直观。
在有的机构中,一个构件上总有一个点被另一个构件 所约束。这时,以被约束的点作为动点,在约束动点 的构件上建立动系,相对运动轨迹便是约束构件的轮 廓线或者约束动点的轨道。
20
vr1 2vcos30 17.32(m/ s)
(2) 求A相对于B的速度,以A为动点,动系固连于B艇。
ve2
OA
50
v
5m / s

va2 10m / s
vr2 ve22 vr22 11.2m / s
tan ve2 5 0.5
va2 10
2634‘
R
B
Ve2
Φ=30°
(2) 应用速度合成定理时,可利用速度平行四边形中的 几何关系解出未知数。也可以采用投影法:即等式10左 右两边同时对某一轴进行投影,投影的结果相等。
8.2 点的速度合成定理
通常选动点和动系主要有以下几种情况: 1. 有一个很明显的动点,在题中很容易发现;
2. 有一个不变的接触点,可选该点为动点;
解:以凸轮圆心C为动
点,静系取在地面上,动 系取在顶杆上,动点的速 度合成矢量图如图。
va ve vr
ve va cos e cos 45
va
ve
vr
2 e
16
2
例6 AB杆以速度v1向上作平动,CD杆斜向上以速度v2作平动, 两条杆的夹角为a,求套在两杆上的小环M的速度。 解 取M为动点,AB为动坐标系,相对速度、牵连速度如图。
O

理论力学第八章点的合成运动

理论力学第八章点的合成运动

3
实例三
描述一个长杆在平面内同时作直线运动和回转运动的合成运动,讨论合成运动对 杆心运动特性的影响。
合成运动中的矢量操作
在合成运动中,我们经常需要进行矢量的加法、减法和乘法等操作。这些操作可以帮助我们推导、计算和分析 合成运动的各种特性。
合成运动的应用及展望
应用
合成运动的概念和原理广泛应用于物理学、工程学和运动学等领域,为我们理解和解决复杂 的运动问题提供了有力的工具。
点的合成运动的基本概念
点的合成运动是指多个点以各自不同的速度和方向同时运动,并在同一时间 到达相对位置的运动方式。它是合成运动的基本形式之一。
合成运动的示意图和公式推导
示意图
通过示意图展示合成运动的过程和结果,帮助加深 理解。
公式推导
推导合成运动的公式,使我们能够定量描述和计算 合成运动的各个特性。
质点运动的合成运动
质点的合成运动是指质点在运动过程中,同时具有平移运动和旋转运动的一 种复杂运动形式。在合成运动中,质点的运动轨迹会呈现出特定的形态和规 律。
质点合成运动实例分析
1
实例一
分析一个小球在倾斜平面上同时进行滚动和滑动的合成运动,探讨其运动规律和 性质。
2
实例二
研究一个弹射体在水平飞行过程中受到重力和空气阻力合成运动的影响,揭示合 成运动对物体运动轨迹的影响。
理论力学第八章点的合成 运动
欢迎大家来到本次关于理论力学第八章点的合成运动的精彩演讲。在本次演 讲中,我们将深入探讨合成运动的定义、基本概念、示意图与公式推导,以 及质点运动的合成运动等内容。
合成运动的定义
合成运动是指由多个简单的运动相结合而成的复杂运动。它将两个或多个运 动矢量合成为一个合成矢量,从而形成全新的运动方式。

理论力学一第八章试题

理论力学一第八章试题

一、概念题1.动点的牵连速度是指该瞬时牵连点的速度,它所相对的坐标系是( )。

① 动坐标系 ② 不必确定的③ 定坐标系 ④ 都可以2.点的速度合成定理v a = v e + v r 的适用条件是( )。

① 牵连运动只能是平动 ② 各种牵连运动都适合③ 牵连运动只能是转动 ④ 牵连运动为零3.两曲柄摇杆机构分别如图(a )、(b )所示。

取套筒A为动点,则动点A 的速度平行四边形( )。

① 图(a )、(b )所示的都正确② 图(a )所示的正确.,图(b )所示的不正确③ 图(a )所示的不正确.,图(b )所示的正确④ 图(a )、(b )所示的都不正确4.图示偏心凸轮如以匀角速度ω绕水平轴O 逆时针转动,从而推动顶杆AB 沿铅直槽上下移动,AB 杆的延长线通过O 点。

若取凸轮中心C 为动点,动系与顶杆AB 固连,则动点C 的相对运动轨迹为( )。

① 铅直直线② 以O 点为圆心的圆周③ 以A 点为圆心的圆周④ 无法直接确定5.在图示机构中,已知s = a + b sin ωt ,且φ = ωt (其中a 、b 、ω均为常数),杆长为L ,若取小球A 为动点,动系固连于物块B ,定系固连于地面,则小球A 的牵连速度v e 的大小为( );相对速度v r 的大小为( )。

① L ω ② b ωcos ωt③ b ωcos ωt + L ωcos ωt④ b ωcos ωt + L ω6.图示偏心轮摇杆机构中,ω、α为已知,要求摇杆的角加速度α1,应取( )。

① 杆上的M 为动点,轮为动系② 轮上的M 为动点,杆为动系 ③ 轮心C 为动点,杆为动系④ 轮心C 为动点,轮为动系7.如图所示,直角曲杆以匀角速度ω绕O 轴转动,套在其上的小环M 沿固定直杆滑动。

取M 为动点,直角曲杆为动系,则M 的( )。

① v e ⊥CD ,a C ⊥CD② v e ⊥OM ,a C ⊥CD③ v e ⊥OM ,a C ⊥OMα α18.平行四边形机构如图。

理论力学第8章,点的合成运动

理论力学第8章,点的合成运动

速度合成定理
始末状态
8.2
1 定理推导
速度合成定理
运动合成
M’
绝对运动
牵连运动
相对运动
8.2
1 定理推导
速度合成定理
由矢径的关系 除以时间取极限 速度合成定理
MM '' MM ' M ' M ''
MM '' MM ' M ' M '' lim lim lim t 0 t 0 t t 0 t t
目的:牵连点,AB上C点的速度
作 业
P195
7-17 7-19
谢 谢
8.3
加速度合成定理
科氏加速度方向的判断:
(2)从相对速度方向开始,顺着牵连角速度转90度
8.3
加速度合成定理
例3. 摆动导杆机构,已知AB匀速转动,求CD杆的角加速度?
目的:基本使用过程
8.3
加速度合成定理
练习
练习1. (P197 7-26)求小环的速度和加速度。(85分)
目的:熟悉
速度分析
用ADAMS来表示牵连点的运动
思考题. (p194 7-11 ) 求销钉M的速度?(100分)
动画
目的:同用。
8 点的合成运动
0 引言 1 三种运动 2 速度合成定理
3 加速度合成定理
8.3
加速度合成定理
1 加速度合成定理
说明:
加速度比速度更麻烦。速度只有1项,加速度可能存 在向心加速度和切向加速度2项。
注意:牵连点—动系上与动点重合的点。
8.2
速度合成定理
例1 机构如图。三角块移动速度为V,求BC的速度。

点的合成运动

点的合成运动

种位移之间的关系为
MM'' =MM' + M' M''
目录
刚体的运动\点的合成运动
将上式两边分别除以Δt ,并取Δt→0 时的极限,得
y Ox
lim lim lim MM
MM
M M
t0 t
t0 t
t0 t
式在中绝:对lit运m0动M中Mt 的 表速示度动,点称在为瞬动时点t的、
y
vr
va
系相固结的物体的运动,因而是指一个刚体的运动,它可以是平移、
转动或其他复杂的运动。
目录
刚体的运动\点的合成运动
1.2 点的速度合成定理
以图示桥式起重机为例,研究
y Ox
绝对运动、相对运动和牵连运动三
者速度之间的关系。设在瞬时t,动 点在位置M。假如动点不作相对运
y
M''
动,则经Δt时间后,动点随动系运
理论力学
刚体的运动\点的合成运动
点的合成运动
在研究刚体的平面运动之前,先介绍点的合成运动的有关概念 及点的速度合成定理,这既是研究点的运动的又一种方法,又是研 究刚体复杂运动的基础。
1.1 点的合成运动的概念
在不同的物体上观察同一物体的运动时,会得出不同的结果。 例如,当火车行驶时,在车厢上观察车轮上一点的运动是圆周运动, 在地面上观察则是复杂的曲线运动,若在车轮上观察则是静止的。 因此,在研究一个物体的运动时,必须指明是相对于哪个物体而言, 即必须选定参考体或参考系。在工程上如果没有特别的说明,都是 以地面作为参考系。
目录
刚体的运动\点的合成运动 【例6.5】 凸轮机构(如图)中,导
杆AB可在铅垂管D内上下滑动,其下端 与凸轮保持接触。凸轮以匀角速度ω绕O 轴逆时针转动,在图示瞬时OA=a ,凸轮

理论力学点的合成运动

理论力学点的合成运动

例 8-4 曲柄OA以匀角速度 w绕O轴转动,其上
套有小环 M,而小环 M又在固定的大圆环上运动,大 圆环的半径为 R。
试求当曲柄与水平线成的角 j ωt 时,小环 M
的绝对速度和相对曲柄 OA 的相对速度。
A
M w
R
O
j
C
解:(1)选择动点及 动系: 小环M为动点,动系固连在 OA上。
(2)分析三种运动:绝 对运动为圆周运动,相对运 动为沿OA的直线运动,牵连 运动为定轴转动。
y
OA杆转动的角速度为
O
wOA
ve OC
ve 2r
3u 6r
y
wOA B
j va vr
A
r ve C
x
u x
8.3 牵连运动是平动时点的加速度合成定理
在图8-9中,设 Oxyz为定系,Oxyz为动系且作平
动,M为动点。动点M在动系中的坐标为 x、y 、z, 动系单位矢量为 i、 j、k。动系平动,i、j、k 的
Oxyz 作某种运动,在瞬时t,动系连同相对轨迹AB在
定系中的I位置,动点则在曲线 AB
上的 M 点。经过时间间 隔 t ,动系运动到定系 中的II位置,动点运动到
点 M。 如果在动系上观
察点M 的运动,则它沿 曲线 AB 运动到点 M2。
z B
M2
vr
z
M O
A
O I
x
va
M B
ve M1
z
O x A
例 8-1 汽车以速度 v1 沿直线的道路行驶,雨滴 以速度 v2 铅直下落,试求雨滴相对于汽车的速度。
v1
解: 因为雨滴相对运动的汽车有运动,所以本题 为点的合成运动问题,可应用点的速度合成定理求解。

3理论力学 第八章点的合成运动解析

3理论力学 第八章点的合成运动解析

? ? tg ?1 v?
v平
[例8-2] 曲柄摆杆机构
φ
已知:OA= r , ? , OO1=l 图示瞬时OA? O
求:摆杆O1B角速度? 1
解:取套筒A点为动点,摆杆O1B为动系.基座为静系。
绝对速度va = r ?
相对速度vr = ?
方向? OA 方向//O1B
牵连速度ve = ?
方向? O1B
由速度合成定理 va ? vr ? ve 作出速度平行四边形 如图示。
r
ve ? va sin? ? r? ?
r2? l2
又?ve ? O1 A?? 1,
? ? 1 ? Ov1eA?
1? r 2 ?l2
r 2?
r2?
l2
?
r
r 2?
2 ? l2


[例8-3]圆盘凸轮机构
已知:OC=e , R ? 3e , ? (匀角速度)
vr
va
A veva
B
aa
ar
va
A
Baen
ae?
练习三
解:
A
?
?
o
B
A
? ?
o
ve ? OB??
va
B
vr
动系:OA杆; 动点:滑块B
A
? ?
arn
o
aen ? OB?? 2
ar?
B
aa
a?e ? OB??
[例8-1] 桥式吊车。 已知:小 车水平运行,速度为v平, 物块A相对小车垂直上升 的速度为v? 。求物块A的运 行速度。
一、实例 : M点运动
地面: 摆线, 车箱: 圆。
二、复合运动的一般模型

8理论力学

8理论力学

线运动.
D
动系的牵连运动—沿x轴的直线平动. vD
va= ve + vr va = r ve = vD= v
v 解得: va sin
v r sin
16
例题8-7.平底凸轮机构如图
示. 凸轮 O 的半径为R,偏心 距OA = e,以匀角速度 绕 B O 转动,并带动平底从动杆 BCD运动. 试求该瞬时杆 BCD的速度.
动系O—x´y´
e x´

A的绝对运动—以B为中心 l 为 半径的园运动.
x A的相对运动—沿凸轮O边缘的曲线运动.
牵连运动—动系随凸轮O且角速度为的定轴转动.
牵连点—凸轮O上被AB杆的A端盖住的A´点且随凸轮
O作角速度为的定轴转动.
va= ve + vr va = l AB
解得:
AB
e l
22
ve = rsin
将它表示成转角的函数.
B
D
C e O A
26
解:取偏心园凸轮的 B
D
中心C为动点.
建立静系O—x y和 动系A—x´y´
y
ve va
C e vr
O
A

x

C的绝对运动—以O为中心为e半径的园运动.
C的相对运动—平行于 y´ 轴的直线运动.
牵连运动—动系沿水平直线作往复平动.
va= ve + vr
长 r,以匀角速1转动.试分析滑
O2
块A的运动.
5
O
例题8-3.曲柄导杆机构
的运动由滑块 A带动,已
B
C
知OA= r且转动的角速
A
度为.试分析滑块 A的

理论力学-点的合成运动

理论力学-点的合成运动

第六章点的合成运动一、是非题1、不论牵连运动的何种运动,点的速度合成定理v a=v e+v r皆成立。

()2、在点的合成运动中,动点的绝对加速度总是等于牵连加速度与相对加速度的矢量和。

()3、当牵连运动为平动时,相对加速度等于相对速度对时间的一阶导数。

()4、用合成运动的方法分析点的运动时,若牵连角速度ωe≠0,相对速度υr≠0,则一定有不为零的科氏加速度。

()5、若将动坐标取在作定轴转动的刚体上,则刚体内沿平行于转动轴的直线运动的动点,其加速度一定等于牵连加速度和相对加速度的矢量和。

()6、刚体作定轴转动,动点M在刚体内沿平行于转动轴的直线运动,若取刚体为动坐标系,则任一瞬时动点的牵连加速度都是相等的。

()7、当牵连运动定轴转动时一定有科氏加速度。

()8、如果考虑地球自转,则在地球上的任何地方运动的物体(视为质点),都有科氏加速度。

()二、选择题1、长L的直杆OA,以角速度ω绕O轴转动,杆的A端铰接一个半径为r的圆盘,圆盘相对于直杆以角速度ωr,绕A轴转动。

今以圆盘边缘上的一点M为动点,OA为动坐标,当AM垂直OA时,点M的相对速度为。

①υr=Lωr,方向沿AM;②υr=r(ωr-ω),方向垂直AM,指向左下方;③υr=r(L2+r2)1/2ωr,方向垂直OM,指向右下方;④υr=rωr,方向垂直AM,指向在左下方。

2、直角三角形板ABC,一边长L,以匀角速度ω绕B轴转动,点M以S=Lt的规律自A向C运动,当t=1秒时,点M的相对加速度的大小αr= ;牵连加速度的大小αe = ;科氏加速度的大小αk = 。

方向均需在图中画出。

①Lω2;②0;③3Lω2;④23 L ω2。

3.圆盘以匀角速度ω0绕O 轴转动,其上一动点M 相对于圆盘以匀速u 在直槽内运动。

若以圆盘为动系,则当M 运动到A 、B 、C 各点时,动点的牵连加速度的大小 ,科氏加速度的大小 。

①相等;②不相等;③处于A ,B 位置时相等。

理论力学运动学知识点总结

理论力学运动学知识点总结

理论力学运动学知识点总结第一篇:理论力学运动学知识点总结运动学重要知识点一、刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动。

2.刚体平行移动。

·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。

·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。

·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。

3.刚体绕定轴转动。

• 刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。

• 刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。

• 角速度ω表示刚体转动快慢程度和转向,是代数量,以用矢量表示。

,当α与ω。

角速度也可• 角加速度表示角速度对时间的变化率,是代数量,同号时,刚体作匀加速转动;当α 与ω异号时,刚体作匀减速转动。

角加速度也可以用矢量表示。

• 绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。

速度、加速度的代数值为。

• 传动比。

一、点的运动合成知识点总结1.点的绝对运动为点的牵连运动和相对运动的合成结果。

• 绝对运动:动点相对于定参考系的运动;• 相对运动:动点相对于动参考系的运动;• 牵连运动:动参考系相对于定参考系的运动。

2.点的速度合成定理。

• 绝对速度:动点相对于定参考系运动的速度;• 相对速度:动点相对于动参考系运动的速度;• 牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。

3.点的加速度合成定理。

• 绝对加速度:动点相对于定参考系运动的加速度;• 相对加速度:动点相对于动参考系运动的加速度;• 牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度;• 科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。

• 当动参考系作平移或 = 0,或与平行时,= 0。

点的合成运动

点的合成运动
第八章
点的合成运动
在此之前,我们研究点的运动时,都是相对于某 一个参考系(定系)而言。但在有些问题中,往往需 要同时在两个不同的参考系中来描述同一点的运动, 而其中一个参考系相对于另一参考系也在运动。
为此,引入动点,动系,定系。并研究同一动点 相对 于两个不同参考系的运动之间的关系。
2013年8月6日
计算有何影响?
2013年8月6日
理论力学CAI
20
选择方法一
动系
动点
2013年8月6日
理论力学CAI
21
选择方法二
动系
动点
2013年8月6日
理论力学CAI
22
动点、动系和定系的选择原则
1. 动点是个确定的点。
2. 动点与动系必须分别选在两个不同的物体上,动点
与动系间有相对运动。
3. 动点相对动系的相对运动轨迹易于直观判断。
例题
已知:AB匀角速度转动。 求:M在导槽EF及BC中运动的速度与加速度。
E
B
C M

A
l F D
2013年8月6日
理论力学CAI
35
y
vB
B
ve
M
E
vM
C
速度分析:
x 动点—M点 动系—BC杆

A
vr
D
l

F
ve = vB = l
v M = ve v r
y : vM = ve sin = l sin x : 0 = vr ve cos
相对轨迹,相对速度vr,相对加速度ar。
2013年8月6日 理论力学CAI
7
牵连运动(entangled motion) :

理论力学8

理论力学8
摇杆绕固定轴O1来回摆动。设曲柄长OA=r,两轴间距离OO1 l
求曲柄在水平位置瞬时,摇杆O1B绕O1轴的角速度1及滑块A相
对摇杆O1B的相对速度。
运动学/点的合成运动
解:
选取动点: OA 上的A点 动系: O1B 定系: 基座
运 绝对运动:圆周运动 动 分 相对运动:直线运动 析 牵连运动:定轴转动 :
运动学/点的合成运动
另一方面,在实际问题中,不仅要在固联在地面上
的参考系上还要在相对于地面运动着的参考系上观察和
研究物体的运动。下面先看几个例子。
沿直线轨道纯滚动 的圆轮,研究轮缘上A 点的运动,对于地面上 的观察者,是旋轮线轨 迹,对站在轮心上的观 察者是圆。
A点的运动可看成随轮心的平移与绕轮心转动的合成。
运动学/点的合成运动
MM MM1 M1M 将上式两边同时除以t并取 t0得
lim MM lim MM1 t 0 t t 0 t
lim
M1M
t 0 t
va ve vr
即:在任一瞬时动点的绝对速度等于牵连速度与相对速
度的矢量和,这就是点的速度合成定理。
点的速度合成定理是瞬时矢量式,共包括大小‚方向 六个元素,已知任意四个元素,就能求出其它两个。
运动学/点的合成运动
例如,直管OB以匀角速度绕定轴O转动,小球M
以速度u在直管OB中作相对的匀速直线运动,如图示。 将动坐标系固结在OB管上,以小球M为动点。随着动 点M的运动,牵连点在动坐标系中的位置在相应改变。 设小球在t1、t2瞬时分别到达M1、M2位置,则动点的 牵连速度分别为
ve1 OM1
运动学/点的合成运动
第八章
点的合成运动
在前两章中研究点和刚体的运动时,认为地球( 参考体)固定不动,将坐标系(参考系)固连于地面。 因此,点和刚体的运动是相对固定参考系而言的。

理论力学 点的合成运动

理论力学 点的合成运动

例1. 梯子 AB 长 L , 重 P,一端 B 靠在光滑的铅垂墙上, 另一端 A 放在摩擦系数为 f 的水平地面上,问梯子与水 平线所成的倾角 多大时,梯子能处于平衡?
y
解:
对象:梯子 P , NB , NA , FAmax
B
P m NA RAmax
分析力:
NB
L 列方程: m A ( F ) N B L sin P cos 0 2
摩擦角和自锁现象
2.利用摩擦角判断物体是否平衡的两条规律
全约束力的作用线范围
0 m
m

m
R
若某接触面上的主动力的合力作用线在摩 擦角的范围之内,则不论此力有多大,物体 将永远平衡。--自锁现象
螺旋千斤顶 tg 1 f
m
f 0.1
5 43
例2. 已知排挡齿轮宽为 b,自重忽略不计,能在直径为 d 的轴上左右滑动。若齿轮与轴之间的摩擦系数为 f,求不 使齿轮被卡住,水平推力 P 的作用线离轴线的距离 a 的 y 范围。
解:
对象:排挡齿轮
d
NA A
P
a FA b
B m
分析力: P , NB , NA , FB , FA
FB NB
x
列方程:


Y N N 0 Y P F F 0
A B A B
RBmax
d mA ( F ) P(a ) N Bb FB d 0 2 FB fN B 摩擦定律: FA fN A
由式得 NA = NB 代入式
b a 2f
由式得 FA = FB = P/2 齿轮平衡
B A RBAmax RAmax RAmax RBAx 画封闭力三角形:

点的合成运动中动点\动系的选取原则和方法

点的合成运动中动点\动系的选取原则和方法

点的合成运动中动点\动系的选取原则和方法摘要系统阐述点的合成运动中动点、动系的四条选取原则及各类问题中动点和动系的选取方法,并列举实例加以分析说明。

关键词合成运动;动点;动系;选择点的合成运动是理论力学的运动学部分的重点,同时也是难点,对初学的大学生和部分青年教师来讲,都是不太容易理解和掌握的。

在合成运动理论中,首先要选定一个动点,它可以是抽象为点的刚体,也可以是运动刚体上的某一确定点。

然后选定两个坐标系:定系和动系,通常把固结在地球上的坐标系选为定系,固结在其他相对于地球运动的参考体上的坐标系选为动系。

最后再分析三种运动:绝对运动、相对运动和牵连运动。

这其中,选取合适的动点、动系最为关键,它是解题技巧中最重要的,也是难以确定的。

动点、动系选择得合适,三种运动分析就很简单,速度分析和加速度分析也就顺理成章。

选取动点、动系一般应遵循如下四条原则:1)动点与动系不能选在同一物体上。

动点相对于动系是运动的,若选在同一物体上,就没有相对运动。

2)动系固结在相对于定系运动的物体上。

3)动点的相对运动轨迹要清楚,容易判断,从而便于确定相对速度和相对加速度的方位。

4)动点在运动过程中必须是系统中同一个确定的点。

它可以是抽象为点的刚体,也可以是运动刚体上的某一确定点。

下面针对几种不同问题,归纳出动点、动系的选取方法,并列举实例加以分析说明。

学生只要记住这些机构的特点和相应的动点、动系的选择方法,并针对具体题目应用即可。

1两物体之间通过小圆环相互连接可选小圆环为动点,动系固结在其中一运动物体上。

图1 图2如图1所示的运动机构中,小环M套在直杆OA与直角曲杆OBC上。

选小环M为动点,动系固结在绕O轴转动的直角曲杆OBC上,注意动系不能选在OA 杆上,因为OA杆相对地面不动。

则绝对运动为沿OA的直线运动,相对运动为沿BC的直线运动,牵连运动为杆OBC的定轴转动。

速度分析如图所示。

2运动机构中的不同情况一杆状构件(甲)的一端始终与另一物体(乙)的轮廓相接触。

理论力学:第6章 点的合成运动

理论力学:第6章 点的合成运动

·1·第6章 点的合成运动6.1 主要内容6.1.1 点的绝对运动、相对运动和牵连运动1.定系和动系若存在两个有相对运动的坐标系,则可指定其中一个为定系,另一个即为动系。

但工程上一般以固定在地面上的坐标系为定系,相对于定系运动着的坐标系称为动系。

2.动点和牵连点动点为研究的对象,牵连点是动点在动系上的重合点,随动点的相对运动而变,是动系上的点,不同瞬时,有不同的牵连点。

3.三种运动的关系动点相对于定系的运动定义为绝对运动;动点相对于动系的运动定义为相对运动;动系相对于定系的运动定义为牵连运动。

本章的主要任务就是建立这三者之间的定量关系,从而用来解决工程实际某些运动分析问题。

6.1.2 点的速度合成定理动点的绝对速度等于它的牵连速度与相对速度的矢量和。

这就是点的速度合成定理。

a e r =+v v v6.1.3 牵连运动为平移时,点的加速度合成定理当牵连运动为平移时,动点的绝对加速度等于牵连加速度与相对加速度的矢量和。

a e r =+a a a6.1.4 牵连运动为转动时,点的加速度合成定理当牵连运动为转动时,动点的绝对加速度等于牵连加速度、相对加速度与科氏加速度的矢量和,这就是牵连运动为转动时点的加速度合成定理。

a e r C =++a a a a其中r C v a ⨯=ω2。

当取平动动系时0=e ω;0=C a 。

6.2 基本要求1.掌握运动合成与分解的基本概念和方法,准确理解本章阐述的若干概念。

2.明确动点与动系的选择原则,能在具体问题中恰当地选择动点与动系,并正确地分析三种运动。

3.熟练掌握点的速度合成定理和牵连运动为平动时的加速度合成定理及其应用。

4.掌握科氏加速度的概念和计算,准确应用牵连运动为转动时的加速度合成定理及其应用。

6.3 重点讨论应用点的合成运动理论解决实际问题时,其关键是正确地选择动点和动系。

选择原则因具体情况不同而略有区别。

常见的问题有三种题型。

1.两个独立运动的物体,研究两者的相对运动。

《理论力学》第三章点的合成运动(三)

《理论力学》第三章点的合成运动(三)
求:摆杆O1B角速度1
解:A-动点,O1B-动系,基座-静系。
绝对速度va = r
相对速度vr = ? 牵连速度ve = ?
由速度合成定理 va= vr+ ve
sin
r
r 2 l
2
,ve
va
sin

r 2
r2 l2
又ve
O1
A1
,1

ve O1 A

1 r 2 l2
A
cR

O

u
x

r 2
r 2 l2

r
r
2
2
l
2


[例] 圆盘凸轮机构
已知:OC=e , R 3e , (匀角速度)
图示瞬时, OCCA 且 O,A,B三点共线。 求:从动杆AB的速度。
解:动点A,动系-圆盘, 静系-基座。 绝对速度 va = ? 待求,方向//AB 相对速度 vr = ? 未知,方向CA
例图示平面机构,已知:OA=r,0为常数,BC=DE, BD=CE=L,求:图示位置,杆BD的角速度和角加速度。
解: 动点:A点(OA杆)
动系:BC杆
va ve vr
D
E
大小: 方向:
??
B
600 A
vr
300 C
0 O
根据速度合成定理 va ve vr va
ve
做出速度平行四边形, 如图示
E
投至y轴:
0 O aa
aa ae
si
n (
300 ae n aa aen ) sin
sin 60 0
sin 30 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.1 相对运动·牵连运动·绝对运动
(1) 动点相对于定参考系的速度、加速度和轨迹, 称为动点的绝对速度va、绝对加速度aa和绝对轨迹。
(2) 动点相对于动参考系的速度、加速度和轨迹, 称为动点的相对速度vr、相对加速度ar和相对轨迹 。
由于动参考系的运动是刚体的运动而不是一个点 的运动,所以除非动参考系作平动,否则其上各点的 运动都不完全相同。因为动参考系与动点直接相关的 是动参考系上与动点相重合的那一点(牵连点),因此 定义:
第8章
点的合成运动
8.1 相对运动·牵连运动·绝对运动 8.2 点的速度合成定理 8.3 点的加速度合成定理
8.1 相对运动·牵连运动·绝对运动
y y' v
M
x'
o' o
x
相对于某一参考体的运动可由相对于其它参考体的几个运动 组合而成,称这种运动为合成运动。
8.1 相对运动·牵连运动·绝对运动
习惯上把固定在地球上的坐标系称为定参考系, 以oxy坐标系表示;固定在其它相对于地球运动的参考 体上的坐标系称为动参考系,以o'x'y'坐标系表示。
OC

ve OA

v sinq
a
OC
C
ve
v
va
A
B
vr
Oq
vC

OC OC

a b v sinq
a
例5 图示平底顶杆凸轮机构,顶杆AB可沿导轨上下平动,偏心凸
轮以等角速度绕O轴转动,O轴位于顶杆的轴线上,工作时顶
杆的平底始终接触凸轮表面,设凸轮半径为R,偏心距OC=e ,
OC 与水平线的夹角为a,试求当a =45°时,顶杆AB的速度。
解:以凸轮圆心C为动 点,静系取在地面上,动 系取在顶杆上,动点的速 度合成矢量图如图。
va ve vr
ve va cosa e cos 45
va vr ve 的方向
va ve vr
8.2 点的速度合成定理
va ve vr
即:动点在某一瞬时的绝对速 度等于它在该瞬时的牵连速度 与相对速度的矢量和。这就是 点的速度合成定理。
8.2 点的速度合成定理
处理具体问题时应注意: (1) 选取动点、动参考系和定参考系。
动点和动系应分别选择在两个不同的刚体上。

ve va sin r sin
ve O1A1
r 2
(l 2 r2 )
O1
O1A
(l
2

r2
)

1

r 2
l2 r2
例3 水平直杆AB在半径为r的固定圆环上以匀速u竖直下落,如图。 试求套在该直杆和圆环交点处的小环M的速度。
解:以小环M为动点,定系取在地面上,动系取在AB杆上, 动点的速度合成矢量图如图。
例1 如图所示,偏心距为e、半径为R的凸轮,以匀角速度 绕O
轴转动,杆AB能在滑槽中上下平动,杆的端点A始终与凸轮接触, 且OAB成一直线。求在图示位置时,杆AB的速度。
解:选取杆AB的端点A作为研究 的动点,动参考系随凸轮一起绕 O轴转动。
va ve vr
tan q ve
va
va
ve cotq
va ve vr
A
sin ve
u

va

ve
s in

u
s in
M

r O
ve
vr B va
例4 求图示机构中OC杆端点C的速度。其中v与θ已知,且设
OA=a, AC=b。
解:取套筒A为动点,动系与
vC
OC固连,分析A点速度,有
va ve vr
ve va sinq v sinq

OA e OA
e
B
vr
va
q
A
ve

q
C
O
e
例2 刨床的急回机构如图所示。曲柄OA的角速度为,通过滑块
A带动摇杆O1B摆动。已知OA=r,OO1=l,求当OA水平时O1B的角
速度1。
B
解: 应选取滑块A作为研究的动点,把
动参考系固定在摇杆O1B上。
O
va
ve

vr

A
va ve vr
在动参考系上与动点相重合的那一点(牵连点)的 速度和加速度称为动点的牵连速度(用ve表示)和牵连 加速度(用ae表示) 。
如果没有牵连运动,则动点的相对运动就是它的绝 对运动;
如果没有相对运动,则动点随同动参考系所作的运 动就是它的绝对运动;
动点的绝对运动既取决于动点的相对运动,也决定 于动参考系的运动即牵连运动,它是两种运动的合 成。
例 度 绕
如图杆长l,绕O轴以角速
转动,圆盘半径为r,
o 轴以角速度 转动。
ve2
求圆盘边缘 M1 和 M2 点的牵 M 2
ae2
ve1
ae1
o

连速度和加速度。
o M1
解:静系取在地面上,动系

取在杆上,则
ve1 (l r)
ae1 (l r) 2 ve2 l 2 r 2
重点要弄清楚牵 连点的概念
ae2 l 2 r 2 2
8.2 点的速度合成定理
矢量 CC1 CC CC1
由矢量合成的关系可知
CC1 CC CC1
将上式两瑞同除以 t 并让 t 0
取极限,则得
lim CC1 lim CC lim CC1 t 0 t t 0 t t 0 t
8.2 点的速度合成定理
通常选动点和动系主要有以下几种情况: 1. 有一个很明显的动点,在题中很容易发现; 2. 有一个不变的接触点,可选该点为动点; 3. 没有不变的接触点,此时应选相对轨迹容易确 定的点为动点;
4. 必须选某点为动点,而动系要取两次; 5. 根据题意,必须取两次动点和动系; 6. 两个不相关的动点,可根据题意来确定;
用点的合成运动理论分析点的运动时,必须选定两 个参考系,区分三种运动: (1) 动点相对于定参考系的运动,称为绝对运动; (2) 动点相对于动参考系的运动,称为相对运动; (3) 动参考系相对于定参考系的运动,称为牵连运动。
8.1 相对运动·牵连运动·绝对运动
定参考系
牵连运动
动参考系
动点
一点、二系、三运动
动点和动系的选择应使相对运动的轨迹简单直观。
在有的机构中,一个构件上总有一个点被另一个构件 所约束。这时,以被约束的点作为动点,在约束动点 的构件上建立动系,相对运动轨迹便是约束构件的轮 廓线或者约束动点的轨道。
(2) 应用速度合成定理时,可利用速度平行四边形中的 几何关系解出未知数。也可以采用投影法:即等式左 右两边同时对某一轴进行投影,投影的结果相等。
相关文档
最新文档