《旋转》单元测试题

合集下载

旋转单元测试试题及答案

旋转单元测试试题及答案
答案:B.
第13题.如图,已知四边形 ,是关于点 成中心对称图形,试判定四边形 的形状.并说明理由.
答案:解:是平行四边形,理由如下:
四边形 是关于点 成中心对称图形.

四边形 是平行四边形.
第14题. 在等边三角形、平行四边形、矩形和圆这四个图形中,即是轴对称图形,又是中心对称图形的有( )
A.1个B.2个C.3个D.4个
A.矩形、菱形、正方形都是中心对称图形,对角线的交点是对称中心
B.中心对称的对称中心只有一个,而轴对称图形的对称轴可能不只一条
C.中心对称图形一定是轴对称图形
D.正方形有4条对称轴,一个对称中心
答案:C.
第20题.把图中的各三角形绕 边中点 ,旋转 ,画出得到的图形,并说明拼成了一个什么图形?分析它的对称性.
答案:B.
第32题. 下列文字中属于中心对称图形的有( )
A.干B.中C.我D.甲
答案:B.
第33题. 下图中是中心对称图形的是( )
A.A和BB.B和CC.C和DD.都是
答案:B.
第34题.如图 与 关于 点成中心对称.则 _______ , ______, ________.
答案:=, , .
第35题.已知四边形 和点 ,作四边形 使四边形 和四边形 交于点 成中心对称.
A.只能作一个B.能作三个C.能作无数个D.不存在
答案:A.
第24题. 已知 及边 上一点 ,画出 以点 为对称中心的对称图形.
答案:略.
第25题. 等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的有( )
A.1个B.2个C.3个D.4个
答案:B.
第26题. 下列各图中,不是中心对称图形的是( )

旋转单元测试题及答案

旋转单元测试题及答案

旋转单元测试题及答案一、选择题1. 旋转的定义是什么?A. 绕某一点转动B. 沿直线平移C. 缩放D. 反射2. 旋转变换不改变图形的哪些性质?A. 形状B. 大小C. 面积D. 所有选项3. 旋转对称图形在旋转多少度后能与自身重合?A. 90度B. 180度C. 360度D. 任意角度二、填空题4. 一个图形绕着某一点旋转____度后,与原图形重合,这个点称为图形的______。

5. 在平面直角坐标系中,若将点P(x, y)绕原点O(0, 0)逆时针旋转θ度,旋转后的坐标为______。

三、简答题6. 请简述旋转的性质,并给出一个生活中的例子。

7. 解释什么是旋转对称图形,并给出一个例子。

四、计算题8. 在平面直角坐标系中,点A(3, 4)绕原点O(0, 0)顺时针旋转90度,求旋转后点A的新坐标。

9. 若一个图形在旋转对称变换下,其旋转中心为点P(1, 2),旋转角度为120度,请画出旋转后的图形。

五、论述题10. 论述旋转在几何证明中的应用,并给出一个具体的几何证明例子。

答案:一、1. A2. D3. C二、4. 180,旋转中心5. (-y, x)三、6. 旋转的性质包括保持图形的形状和大小不变,旋转中心到图形上任意两点的距离相等。

生活中的例子包括门的开关,地球的自转等。

7. 旋转对称图形是指在旋转一定角度后能与自身重合的图形,例如等边三角形。

四、8. 点A的新坐标为(4, -3)。

9. 根据旋转对称图形的定义,旋转后的图形与原图形形状相同,位置不同,具体图形需根据题目要求绘制。

五、10. 旋转在几何证明中常用于证明图形的全等或相似,例如利用旋转证明两个三角形全等。

具体例子需根据题目要求给出。

人教版九年级上册数学《旋转》单元测试题(附答案)

人教版九年级上册数学《旋转》单元测试题(附答案)

人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、单选题1.如图,在ABC ∆中,90,4,3C AC BC ︒∠===,将ABC ∆绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则,B D 两点间的距离为( )A B .C .3 D 2.如图,Rt △ABC 中,∠ACB =90°,线段BC 绕点B 逆时针旋转α°(0<α<180)得到线段BD ,过点A 作AE ⊥射线CD 于点E ,则∠CAE 的度数是( )A .90﹣αB .αC .902α- D .2α3.下列图案是中心对称图形的是( )A .B .C .D .4.直角坐标系中,点()2,3-与()2,3-关于( )A .原点中心对称B .Y 轴轴对称C .X 轴轴对称D .以上都不对5.如果点()A 3,a -是点()B 3,4-关于原点的对称点,则a 的值是( )A .-4B .4C .4或-4D .无法确定6.平面直角坐标系中,线段OA 的两个端点的坐标分别为O (0,0),A (-3,5),将线段OA 绕点O 旋转180°到O 'A 的位置,则点'A 的坐标为( )A .(3,-5)B .(3,5)C .(5,-3)D .(-5,-3)7.如图,将△ABC 绕顶点C 逆时针旋转得到△A′B′C′,且点B 刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则∠A′BA 等于( )A .30°B .35°C .40°D .45°8.如图,△ABC 与△A ′B ′C ′关于点O 成中心对称,则下列结论不成立的是( )A .点A 与点A ′是对称点B .BO =B ′OC .AB ∥A ′B ′D .∠ACB =∠C ′A ′B ′9.己知点(A ,将点A 绕原点O 顺时针旋转60后的对应点为1A ,将点1A 绕原点O 顺时针旋转60后的对应点为2A ,依此作法继续下去,则点2012A 的坐标是( )A .(-B .(1,C .(1,--D .()2,0-10.已知点A(-3,a)是点B(3,-4)关于原点的对称点,那么a 的值的是( )A .-4B .4C .4或-4D .不能确定11.下列图形中,旋转60后可以和原图形重合的是 ( )A .正三角形B .正方形C .正五边形D .正六边形12.如图,△ABC 中,∠A =90∘,∠C =30∘,BC =12cm ,把△ABC 绕着它的斜边中点P 逆时针旋转90∘至△DEF 的位置,DF 交BC 于点H .△ABC 与△DEF 重叠部分的面积为( )cm 2.A .8B .9C .10D .12二、填空题 13.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过12分钟旋转了________. 14.如图所示的四个两两相联的等圆,是我国“一汽”生产的大众汽车的车牌标志,右边的三个圆环可以看做是左边的圆环经过________ 得到的.15.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知8AB AC cm ==,将MED 绕点()A M 逆时针旋转60后(图2),两个三角形重叠(阴影)部分的面积约是________2cm (结果精确到0.1 1.73≈).16.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是第1个图案经过平移而得,那么第2017个图案中有白色六边形地面砖________块.三、解答题17.如图,将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,BC的延长线交DE于F,连接BD,若BC=2EF,试证明△BED是等腰三角形.18.某居民小区搞绿化,小区的居民们把一块矩形垃圾场地清理干净后,准备建几个花坛,老张说:花坛应该有圆有方;老李说:花坛和整个矩形空地应该成中心对称图案,这样比较漂亮.你能设计一个让大家都满意的方案吗?试试看(将你设计的方案画在下面的矩形方框中).19.如图1所示,某产品的标志图案,要在所给的图形图2中,把A,B,C三个菱形通过一种或几种变换,使之变为与图1一样的图案:(1)请你在图2中作出变换后的图案(最终图案用实线表示);(2)你所用的变换方法是________(在以下变换方法中,选择一种正确的填到横线上,也可以用自己的话表述).①将菱形B 向上平移;②将菱形B 绕点O 旋转120;③将菱形B 绕点O 旋转180.20.如图,四边形ABCD 是平行四边形,AC 是对角线,将ADC 绕点A 逆时针旋转90后得到''AD C ,若32ACB ∠=,2BC =,求'C AD ∠的度数及'AD 的长.21.()1如图1,在正方形网格中,每个小正方形的边长均为1个单位.将ABC 向绕点C 逆时针旋转90,得到A B C ''',请你画出A B C '''(不要求写画法).() 2如图2,已知点O 和ABC ,试画出与ABC 关于点O 成中心对称的图形.22.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,ABC 的三个顶点都在格点上(每个小方格的顶点叫格点).()1建立直角坐标系,使点B的坐标为()2,2-,则点A的坐标为________;-,点C的坐标为()5,2()2画出ABC绕点P顺时针旋转90后的111A的坐标为________.A B C并写出点123.如图,△ABC由△EDC绕C点旋转得到,B、C、E三点在同一条直线上,∠ACD=∠B,求证:△ABC 是等腰三角形.24.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B 交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.参考答案一、单选题1.如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为( )AB .C . D【答案】A【解析】【分析】先利用勾股定理计算出AB ,再在Rt △BDE 中,求出BD 即可;【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=5,∵△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,∴AE=AC=4,DE=BC=3,∴BE=AB-AE=5-4=1,在Rt △DBE 中,故选A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.ABC ∆90,4,3C AC BC ︒∠===ABC ∆A C AB E B D ,B D 3=2.如图,Rt △ABC 中,∠ACB =90°,线段BC 绕点B 逆时针旋转α°(0<α<180)得到线段BD ,过点A 作AE ⊥射线CD 于点E ,则∠CAE 的度数是( )A .90﹣αB .αC .D . 【答案】C【解析】【分析】 先利用旋转的性质得,,再根据等腰三角形的性质和三角形内角和定理得到然后利用互余表示出,从而利用互余可得到的度数. 【详解】线段绕点逆时针旋转()得到线段,,,,, ,, ,.故选:. 902α-2αCBD α∠=BC BD =1902BCD α∠=︒-ACE ∠CAE ∠BC B α︒0180α<<BD ∴CBD α∠=BC BD =∴BCD BDC ∠=∠∴()111809022BCD αα∠=︒-=︒-90ACB ∠=︒∴1190909022ACE BCD αα⎛⎫∠=︒-∠=︒-︒-=⎪⎝⎭AE CE ⊥∴190902CAE ACE α∠=︒-∠=︒-C【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.3.下列图案是中心对称图形的是( )A .B .C .D .【答案】A【解析】【分析】根据中心对称图形的概念求解.【详解】A .是中心对称图形.故本选项正确;B .不是中心对称图形.故本选项错误;C .不是中心对称图形.故本选项错误;D .不是中心对称图形.故本选项错误.故选A .【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合. 4.直角坐标系中,点与关于( )A .原点中心对称B .Y 轴轴对称C .X 轴轴对称D .以上都不对【答案】A【解析】【分析】观察点A 与点B 的坐标,依据关于原点对称的点,横坐标与纵坐标都互为相反数可得答案.【详解】 ()2,3-()2,3-根据题意,易得点(-2,3)与(2,-3)的纵横坐标互为相反数,则这两点关于原点中心对称.故选:A .【点评】本题考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,注意掌握关于原点对称的点,横坐标与纵坐标都互为相反数5.如果点是点关于原点的对称点,则的值是( )A .-4B .4C .4或-4D .无法确定 【答案】B【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x ,y)关于原点O 的对称点是P′(-x ,-y),求出即可.【详解】∵点A(-3,a)是点B(3,-4)关于原点的对称点,∴a=4.故选:B .【点评】此题主要考查了关于原点对称点的坐标性质,熟练掌握相关性质是解题关键.6.平面直角坐标系中,线段OA 的两个端点的坐标分别为O (0,0),A (-3,5),将线段OA 绕点O 旋转180°到O 的位置,则点的坐标为( )A .(3,-5)B .(3,5)C .(5,-3)D .(-5,-3) 【答案】A【解析】试题分析:∵线段OA 绕原点O 顺时针旋转180°,得到OA ′,∴点A 与点A ′关于原点对称, ()A 3,a -()B 3,4-a 'A 'A而点A的坐标为(-3,5),∴点A′的坐标为(3,-5).故选A.7.如图,将△ABC绕顶点C逆时针旋转得到△A′B′C′,且点B刚好落在A′B′上,若∠A=25°,∠BCA′=45°,则∠A′BA等于()A.30°B.35°C.40°D.45°【答案】C【解析】【分析】首先根据旋转的性质以及三角形外角的性质得出∠BCA′+∠A′=∠B′BC=45°+25°=70°,以及∠BB′C=∠B′BC=70°,再利用三角形内角和定理得出∠ACA′=∠A′BA=40°.【详解】解:∵∠A=25°,∠BCA′=45°,∴∠BCA′+∠A′=∠B′BC=45°+25°=70°,∵CB=CB′,∴∠BB′C=∠B′BC=70°,∴∠B′CB=40°,∴∠ACA′=40°,∵∠A=∠A′,∠A′DB=∠ADC,∴∠ACA′=∠A′BA=40°.故选C.【点评】此题考查旋转的性质以及三角形的外角的性质和三角形内角和定理等知识,解题关键根据已知得出∠ACA′=40°.8.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′【答案】D【解析】【分析】根据中心对称的性质对各选项分析判断后利用排除法求解.【详解】观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选D.【点评】本题考查了中心对称,熟悉中心对称的性质是解题的关键.9.己知点,将点绕原点顺时针旋转后的对应点为,将点绕原点顺时针旋转后的对应点为,依此作法继续下去,则点的坐标是( ) A .B .C .D .【答案】B【解析】【分析】 根据图形旋转的规律得出每旋转6次坐标一循环,求出点的坐标与点坐标相同,进而可得出答案.【详解】解:将点A 绕原点O 顺时针旋转60后的对应点为A ,将点A 绕原点O 顺时针旋转60后的对应点为A ,依此作法继续下去,得出每旋转=6次坐标一循环,得出20126=335余2,即点A 的坐标与点A 坐标相同,即可得出点A 与点A 关于x 轴对称,A 点坐标为所以B 选项是正确的.【点评】此题主要考查了坐标与图形的旋转与规律问题,解答此题的关键是明确图形旋转的变化规律每旋转6次坐标一循环.10.已知点A(-3,a)是点B(3,-4)关于原点的对称点,那么a 的值的是( )A .-4B .4C .4或-4D .不能确定【答案】B【解析】【分析】(A A O 601A 1A O 602A 2012A (-(1,(1,-()2,0-2012A 2A o 11o 2∴36060÷201222∴2平面直角坐标系中任意一点P(x ,y),关于原点的对称点是(-x ,-y),由此即可解答.【详解】∵点A(-3,a)是点B(3,-4)关于原点的对称点,∴a=4.故选B.【点评】本题考查了关于原点对称的点坐标的关系,熟记平面直角坐标系中任意一点P(x ,y),关于原点的对称点是(-x ,-y)是解题的关键.11.下列图形中,旋转后可以和原图形重合的是 ( )A .正三角形B .正方形C .正五边形D .正六边形【答案】D【解析】【分析】根据旋转对称图形性质求出各图的中心角,度数若为60°,即为正确答案.【详解】 A:正三角形旋转的最小角为:,故选项错误; B:正方形旋转的最小角为:,故选项错误; C:正五边形旋转的最小角为:,故选项错误; D:正六边形旋转的最小角为:,故选项正确. 所以答案为D 选项.【点评】本题主要考查了旋转对称图形,熟练掌握相关概念是解题关键.12.如图,△ABC 中,∠A =90∘,∠C =30∘,BC =12cm ,把△ABC 绕着它的斜边中点P 逆时针旋转90∘至△DEF 603601203︒=︒360904︒=︒360725︒=︒360606︒=︒的位置,DF交BC于点H.△ABC与△DEF重叠部分的面积为()cm2.A.8 B.9 C.10 D.12【答案】B【解析】【分析】BC=6,再根据旋转的性质得PF=PC=6,∠FPC=90°,∠F=∠C=30°,如图,由点P为斜边BC的中点得到PC=12PF=2√3;在Rt△CPM中计算出根据含30度的直角三角形三边的关系,在Rt△PFH中计算出PH=√33PC=2√3,且∠PMC=60°,则∠FMN=∠PMC=60°,于是有∠FNM=90°,FM=PF-PM=6-2√3,则在PM=√33Rt△FMN中可计算出MN=1FM=3-√3,FN=√3MN=3√3-3,然后根据三角形面积公式和利用△ABC与△DEF2重叠部分的面积=S△FPH-S△FMN进行计算即可.【详解】解:如图,∵点P为斜边BC的中点,BC=6,∴PB=PC=12∵△ABC 绕着它的斜边中点P 逆时针旋转90°至△DEF 的位置,∴PF=PC=6,∠FPC=90°,∠F=∠C=30°,在Rt △PFH 中,∵∠F=30°,∴PH=√33PF=√33×6=2√3, 在Rt △CPM 中,∵∠C=30°,∴PM=√33PC=√33×6=2√3,∠PMC=60°, ∴∠FMN=∠PMC=60°,∴∠FNM=90°,而FM=PF-PM=6-2√3,在Rt △FMN 中,∵∠F=30°,∴MN=12FM=3-√3, ∴FN=√3MN=3√3-3,∴△ABC 与△DEF 重叠部分的面积=S △FPH -S △FMN=12×6×2√3-12(3-√3)(3√3-3)=9(cm 2).故选B .【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.二、填空题13.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过分钟旋转了________. 12【答案】【解析】【分析】先求出时钟上的分针匀速旋转一分钟时的度数为6°,再求20分钟分针旋转的度数.【详解】∵时钟上的分针匀速旋转一周的度数为360°,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360÷60=6°,那么20分钟,分针旋转了12×6°=72°.故答案为:72°.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.14.如图所示的四个两两相联的等圆,是我国“一汽”生产的大众汽车的车牌标志,右边的三个圆环可以看做是左边的圆环经过________ 得到的.【答案】平移【解析】【分析】观察本题中图案的特点,根据平移的定义作答.【详解】解:观察“一汽”生产的大众汽车的车牌标志,可知右边的三个圆环可以看做是左边的圆环经过平移得到的.【点评】考查图形的四种变换方式:对称、平移、旋转、位似.对称有轴对称和中心对称,轴对称的特点是一个图形绕着一条直线对折,直线两旁的图形能够完全重合;中心对称的特点是一个图形绕着一点旋转180后与另一个图形完全重合,它是旋转变换的一种特殊情况;平移是将一个图形沿某一直线方向移动,得到的新图形与原图形的形状、大小和方向完全相同;旋转是指将一个图形绕72112着一点转动一个角度的变换;位似的特点是几个相似图形的对应点所在的直线交于一点.观察时要紧扣图形变换特点,认真判断.15.将一副三角板按如图位置摆放,使得两块三角板的直角边和重合.已知,将绕点逆时针旋转后(图),两个三角形重叠(阴影)部分的面积约是________(结果精确到).【答案】【解析】【分析】设BC,AD 交于点G,过交点G 作GFLAC 与AC 交于点F,根据AC=8,就可求出GF 的长,从而求解.【详解】解:如图设BC 、AD 交于点G,过交点G 作GF ⊥AC 与AC 交于点F,设FC=x,则GF=FC=x,旋转角为60,即可得∠FAG=60,AF=GFcot ∠FAG=x. 所以则x=1AC MD 8AB AC cm ==MED ()A M 6022cm 0.1 1.73≈20.3o o ∴3所以=8(.故答案为:20.3.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:1定点-旋转中心;2旋转方向;3旋转角度.16.如图所示,第个图案是由黑白两种颜色的六边形地面砖组成的,第个,第个图案可以看成是第个图案经过平移而得,那么第个图案中有白色六边形地面砖________块.【答案】8070【解析】【分析】根据图形规律可得第n个图形的白色六边形地砖的数量为2+4n,然后将2017代入求解即可.【详解】解:第1个图形的白色六边形地砖的数量为:2+4=6块;第2个图形的白色六边形地砖的数量为:2+4×2=10块;第3个图形的白色六边形地砖的数量为:2+4×3=14块;······第n个图形的白色六边形地砖的数量为:2+4n块;则第个图案中有白色六边形地面砖为2+4×2017=8070块.故答案为:8070.【点评】本题【点评】图形规律题.SAGC12⨯⨯2123120172017三、解答题17.如图,将Rt △ABC 绕直角顶点A 逆时针旋转90°得到△ADE ,BC 的延长线交DE 于F ,连接BD ,若BC =2EF ,试证明△BED 是等腰三角形.【答案】见解析【解析】【分析】根据直角三角形的两锐角互余,以及对顶角相等,旋转的性质,即可证得是的垂直平分线,据此即可证得.【详解】证明:∵将Rt △ABC 绕直角顶点A 逆时针旋转90°得到△ADE ,∴DE =BC ,∠ADF =∠ABC ,∵BC =2EF ,∴DF =EF ,∴DE =2EF ,∵在直角△ABC 中,∠ABC+∠ACB =90°,又∵∠ABC =∠ADE ,∴∠ACB+∠ADE =90°.∵∠FCD =∠ACB ,∴∠FCD+∠ADE =90°,∴∠CFD =90°,BF DE∴BF⊥DE,∵EF=FD,∴BF垂直平分DE,∴BD=BE,∴△BDE是等腰三角形.【点评】本题考查了旋转的性质、等腰三角形的判定、线段垂直平分线的判定和性质,熟练掌握各定理是解题的关键.18.某居民小区搞绿化,小区的居民们把一块矩形垃圾场地清理干净后,准备建几个花坛,老张说:花坛应该有圆有方;老李说:花坛和整个矩形空地应该成中心对称图案,这样比较漂亮.你能设计一个让大家都满意的方案吗?试试看(将你设计的方案画在下面的矩形方框中).【答案】见解析【解析】【分析】根据题目要求画出图形, 注意花坛和整个矩形空地应该成中心对称图案.【详解】如图所示:【点评】此题主要考查了利用旋转设计图案以及中心对称图形定义, 利用中心对称图形的性质设计是解题关键.19.如图所示,某产品的标志图案,要在所给的图形图中,把,,三个菱形通过一种或几种变换,使之变为与图一样的图案:(1)请你在图中作出变换后的图案(最终图案用实线表示);(2)你所用的变换方法是________(在以下变换方法中,选择一种正确的填到横线上,也可以用自己的话表述).①将菱形向上平移;②将菱形绕点旋转;③将菱形绕点旋转.【答案】(1)详见解析;(2)③.【解析】【分析】首先分析①②的不同,变化前后,A 、C 的位置不变,只有B 的位置由O 的下方变为0的上方,据此即可作出判断.【详解】解:(1)观察分析②的不同,变化前后,A 、C 的位置不变,而B 的位置由由O 的下方变为O 的上方,进而可得两者对应点的连线交于点O,即进行了中心对称变化,变换方法是将菱形B 绕点O 旋转180,可作图得:(2)变换方法是将菱形B 绕点O 旋转180°,即③.故答案为:③.【点评】本题考查几何变化的运用与作图,注意观察时要紧扣图形变换特点,认真判断其几何变化类型.12A B C 12B B O 120B O 18020.如图,四边形是平行四边形,是对角线,将绕点逆时针旋转后得到,若,,求的度数及的长.【答案】,.【解析】【分析】先由平行四边形的性质求出∠DAC ,再由旋转的性质求出结论.【详解】在平行四边形ABCD 中,AD ∥BC ,AD =BC ,∴∠DAC =∠ACB =32°,由旋转的性质得∠C 'AD =90°﹣∠DAC =58°,∴AD '=AD =BC =2.【点评】本题是旋转的性质,主要考查了平行四边形的性质,旋转的性质,解答本题的关键是用旋转的性质得到对应边相等,对应角线段.21.如图,在正方形网格中,每个小正方形的边长均为个单位.将向绕点逆时针旋转,得到,请你画出(不要求写画法).如图,已知点和,试画出与关于点成中心对称的图形.【答案】详见解析.【解析】【分析】(1)根据旋转的性质得出旋转后A ,B 两点对应坐标,即可得出答案;ABCD AC ADC A 90''AD C 32ACB ∠=2BC ='C AD ∠'AD 58C AD ∠='2AD '=()111ABC C 90A B C '''A B C '''() 22O ABC ABCO(2)根据中心对称图形的性质,连接AO ,BO ,CO ,并延长,使OA ″=OA ,C ″O =CO ,B ″O =BO ,再连接A ″B ″,B ″C ″,A ″C ″即可.【详解】(1)(2)如图所示:【点评】本题主要考查了坐标与图形的性质以及中心对称图形的性质,根据已知得出对应点的位置是解题的关键.22.在如图的方格纸中,每个小方格都是边长为个单位的正方形,的三个顶点都在格点上(每个小方格的顶点叫格点).建立直角坐标系,使点的坐标为,点的坐标为,则点的坐标为________; 画出绕点顺时针旋转后的并写出点的坐标为________.【答案】 .【解析】【分析】1ABC ()1B ()5,2-C ()2,2-A ()2ABC P 90111A B C 1A ()4,4-()1,5(1)根据点B、C的坐标作出直角坐标系,然后写出点A的坐标;(2)分别作出点A、B、C绕点P顺时针旋转90°后的点,然后顺次连接,写出点A1的坐标.【详解】(1)坐标系如图所示:点A坐标为(-4,4);(2)所作图形如图所示:点A1的坐标为(1,5).故答案为(-4,4);(1,5).【点评】本题考查了根据旋转变换作图,解答本题的关键是根据坐标系的性质作出直角坐标系,根据网格结构作出对应点的坐标.23.如图,△ABC由△EDC绕C点旋转得到,B、C、E三点在同一条直线上,∠ACD=∠B,求证:△ABC 是等腰三角形.【答案】见解析【解析】【分析】由旋转的性质可知∠D=∠B,再根据已知条件证明AC∥DE,进而证明∠ACB=∠A,所以△ABC是等腰三角形.【详解】证明:由旋转知∠D=∠B,∵∠ACD=∠B,∴∠ACD=∠D,AC∥DE,∴∠ACB=∠E,又∵∠A=∠E,∴∠ACB=∠A,∴△ABC是等腰三角形.【点评】本题考查了旋转的性质以及等腰三角形的判定,对于旋转的性质用到最多的是:旋转前、后的图形全等.24.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B 交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.【答案】(1)BE=DF;(2)四边形BC1DA是菱形.【解析】【分析】(1)由AB=BC得到∠A=∠C,再根据旋转的性质得AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,则可证明△ABE≌△C1BF,于是得到BE=BF(2)根据等腰三角形的性质得∠A=∠C=30°,利用旋转的性质得∠A1=∠C1=30°,∠ABA1=∠CBC1=30°,则利用平行线的判定方法得到A1C1∥AB,AC∥BC1,于是可判断四边形BC1DA是平行四边形,然后加上AB=BC1可判断四边形BC1DA是菱形.【详解】(1)解:BE=DF.理由如下:∵AB=BC,∴∠A=∠C,∵△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,∴AB=BC=BC1,∠A=∠C=∠C1,∠ABE=∠C1BF,在△ABE和△C1BF中,∴△ABE≌△C1BF,∴BE=BF(2)解:四边形BC1DA是菱形.理由如下:∵AB=BC=2,∠ABC=120°,∴∠A=∠C=30°,∴∠A1=∠C1=30°,∵∠ABA1=∠CBC1=30°,∴∠ABA1=∠A1,∠CBC1=∠C,∴A1C1∥AB,AC∥BC1,∴四边形BC1DA是平行四边形.又∵AB=BC1,∴四边形BC1DA是菱形【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的判定方法.。

人教版九年级上学期数学《旋转》单元测试题(附答案)

人教版九年级上学期数学《旋转》单元测试题(附答案)
轴对称图形的特性:关于某直线对称的两个图形是全等的;图形的对应点连线段被同一条直线垂直平分;对应线段或延长线与对称轴交于一点.
二、填空题(每小题3分,共24分)
11.请写出一个是中心对称图形的几何图形的名称:.
[答案]平行四边形(答案不唯一).
[解析]
解:平行四边形是中心对称图形.
故答案可为:平行四边形.
三、解答题(共66分)
19.如图,A C是正方形A B C D的对角线,△A B C经过旋转后到达△AEF的位置.
(1)指出它 旋转中心;
(2)说出它的旋转方向和旋转角是多少度;
(3)分别写出点A,B,C的对应点.
20.如图,已知四边形A B C D,画四边形A1B1C1D1,使它与四边形A B C D关于C点中心对称.
答案:D.
点睛:此类题目综合考查了旋转、平移及轴对称的特性:
旋转的特性:不改变图形的形状和大小;经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.对应角相等,对应线段也相等.
平移的特性:平移只改变图形的位置,不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等.
14.如图,在4×4的正方形网格中,每个小正方形的边长均为1,将△AOB绕点O逆时针旋转90°得到△COD,则旋转过程中形成的阴影部分的面积为________.
15.如图,将等边 绕顶点A顺时针方向旋转,使边A B与A C重合得 , 的中点E的对应点为F,则 的度数是_______.
16.如图所示,已知抛物线C1,抛物线C2关于原点中心对称.如果抛物线C1的解析式为y= (x+2)2-1,那么抛物线C2的解析式为:___________________________

旋转单元测试卷

旋转单元测试卷

《旋转》单元测试卷(满分:150分,时间:120分钟)一、选择题(本大题,有7小题,每小题3分,共21分)1、在下列图形中,既是轴对称图形,又是中心对称图形的是()A. 直角三角形B. 正五边形C. 正方形D. 等腰梯形2、下列图案中不是中心对称图形的是()A.B.C.D.3、如图1,点D是等边△ABC内一点,如果△ABD绕点A逆时针旋转后能与△ACE重合则∠DAE的度数是()A、45°B、60°C、90°D、120°4、如图,四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=30°,若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是( )A.30°B.45°C.60°D.90°5、在平面直角坐标系中,将线段OA绕原点O逆时针旋转90°,记点A(-A1,则A1的坐标为()A.B.C.(1)-D.(1,-图2图16、如图,P是正三角形ABC内的一点,且P A=6,PB=8,PC=10.若将△P AC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离和∠APB的大小()A.6,120°B.6,150°C.8,150°D.8,120°P'第6题第7题7、如图,四边形ABCD中,AC,BD是对角线。

△ABC是等边三角形。

∠ADC=30°,AD=3,BD=5,则CD的长为()A.B.4C. D.4.5二、填空题(本大题有10小题,每小题4分,共40分)8、平面直角坐标系内一点P(-2,3)关于原点的对称点的坐标是。

9、如图是一个等腰直角三角形经过若干次旋转而生成的,则每次旋转的角度最小。

第9题第10题10、如图,△ABC是等边三角形,点P是△ABC内一点。

△APC按逆时针方向旋转后与△AP'B重合,则旋转中心是,最小旋转角等于°11、正方形OABC的边长为1,该正方形绕点O逆时针旋转45°后,点B的坐标为。

人教版九年级上册数学《旋转》单元测试题含答案

人教版九年级上册数学《旋转》单元测试题含答案
解:在直角坐标系中,将点(﹣2,3)关于原点的对称点是(2,﹣3),再向左平移2个单位长度得到的点的坐标是(0,﹣3),
故选C.
考点:1.关于原点对称的点的坐标;2.坐标与图形变化-平移.
6.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,△ABC绕着点B逆时针旋转90°到△A'BC'的位置,则AA'的长为( )
D、因为点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,所以△ODE绕点C顺时针旋转60°得到△OBC,所以D选项错误.
故选C
【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正六边形和等边三角形的性质.
5. 在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )
二、填空题(本大题共4小题,每小题5分,满分20分)
11.已知a<0,则点P(﹣a2,﹣a+1)关于原点的对称点P′在第_____象限.
12.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则∠BDC的度数为_____度.
13.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,Rt△AB'C'可以看作是由Rt△ABC绕点A逆时针方向旋转60°得到的,则线段B'C的长为______.
数.
七、(本题满分12分)
22.如图, 口ABCD中,AB⊥AC,AB=1,BC= ,对角线BD、AC交于点O.将直线AC绕点O顺时针旋转分别交BC、AD于点E、F.
(1)试说明 旋转过程中,AF与CE总保持相等;

人教版数学九年级上册《旋转》单元测试题(附答案)

人教版数学九年级上册《旋转》单元测试题(附答案)
15.如图,直线y=﹣ x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,求点B′的坐标.
16.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB等于_____.
17.在平面直角坐标系中,点A坐标为(-2,4),与原点的连线OA绕原点顺时针转90°,得到线段OB,连接线段AB,若直线y=kx-2与△OAB有交点,则k的取值范围是____.
三、解答题
19.不同的“基本图形”的旋转可能具有相同的旋转效果.如图,点O是六个正三角形的公共顶点,这个图案可以看作是哪个“基本图形”以点O为旋转中心经过怎样旋转组合得到的?
20.如果把钟表的时针在任一时刻所在的位置作为起始位置,那么时针旋转出一个平角及一个周角,至少需要多长时间?
21.如图,△ABC绕点O旋转后,顶点A 对应点为A′,试确定旋转后的三角形.
( )
A.105°B.115°C.120°D.135°
【答案】C
【解析】
试题分析:∵DE=DF,∠EDF=30°,∴∠DEF= (180°﹣∠EDF)=75°,∴∠DEC=105°,∵∠C=45°,∴∠CDE=180°﹣45°﹣105°=30°,∴∠BDN=120°,故选C.
考点:旋转的性质.
10.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为()
2.点A的坐标为(2,3),则点A关于原点的对称点A′的坐标为()

九年级上册数学《旋转》单元测试附答案

九年级上册数学《旋转》单元测试附答案
6.如图图形中,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
7.已知点A(a,﹣1)与B(2,b)是关于原点O的对称点,则()
A.a=﹣2,b=﹣1B.a=﹣2,b=1C.a=2,b=﹣1D.a=2,b=1
8.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()
A 黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)
9.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()
A. B. C. D.
10.如图,将△ABC绕点A逆时针旋转100°,得到△ADE,若点D在线段BC的延长线上,则∠B的大小为( )
A. B. C. D.
二.填空题(共8小题)
21.如图,△ABC中,AD是中线,将△ACD旋转后与△EBD重合.
(1)旋转中心是点,旋转了度;
(2)如果AB=7,AC=4,求中线AD长的取值范围.
22.如图,在△ABC中,∠C=90°,AC=2cm,AB=3cm,将△ABC绕点B顺时针旋转60°得到△FBE,求点E与点C之间的距离.
23.如图,△A1AC1是由△ABC绕某点P按顺时针方向旋转90°得到的,△ABC的顶点坐标分A(﹣1,6),B(﹣5,0),C(﹣5,6).
A. 点AB. 点BC. 点CD. 点D
【答案】C
【解析】
【分析】
旋转前后对应点的连线段的垂直平分线的交点是旋转中心.
【详解】由旋转的性质可得,旋转前后对应点的连线段的垂直平分线交于一点,如图所示
故选C.
【点睛】本题考查的是旋转中心,熟练掌握旋转中心的性质是解题的关键.

初三旋转单元测试题及答案

初三旋转单元测试题及答案

初三旋转单元测试题及答案一、选择题(每题2分,共10分)1. 若点A(1,2)绕原点顺时针旋转90°后,其坐标变为:A. (2,1)B. (-2,1)C. (1,-2)D. (-2,-1)2. 一个正方形绕中心点旋转90°后,其形状:A. 变成圆形B. 变成长方形C. 保持不变D. 变成椭圆形3. 若一个图形绕某点旋转180°后,其形状和位置:A. 发生变化B. 形状不变,位置改变C. 形状和位置都不变D. 形状改变,位置不变4. 一个正六边形绕其中心点旋转多少度后,能与自身完全重合?A. 30°B. 45°C. 60°D. 90°5. 一个图形绕某点旋转后,其面积:A. 变大B. 变小C. 不变D. 无法确定二、填空题(每题2分,共10分)6. 若点P(-3,4)绕原点逆时针旋转180°后,其坐标变为______。

7. 一个等腰直角三角形绕其直角顶点旋转90°后,其形状变为______。

8. 一个圆绕圆心旋转任意角度,其______不变。

9. 若一个图形绕某点旋转后,其对应点的连线都经过该点,并且对应点到旋转中心的距离相等,则该图形绕该点旋转的角度为______。

10. 一个图形绕某点旋转后,其对应线段的夹角等于旋转角,该性质称为______。

三、解答题(每题5分,共20分)11. 已知点A(2,3),点B(-1,-2),求点A绕点B顺时针旋转45°后的坐标。

12. 一个边长为4的正方形,绕其中心点顺时针旋转45°后,求正方形的一个顶点的新坐标。

13. 已知一个等边三角形ABC,其中A(0,0),B(1,√3),C(-1,√3),求三角形绕点A逆时针旋转60°后的顶点坐标。

14. 解释什么是旋转对称图形,并给出一个例子。

四、综合题(每题10分,共20分)15. 若一个图形绕某点旋转θ度后,其面积和周长都不变,试证明该图形为圆。

《旋转》单元测试

《旋转》单元测试

ABFDCEB AFDEC《旋转》单元测试姓名________得分______ 考试时间100分钟,满分120分一选择题 (每题3分,共30分)1.下列图形中,不是旋转图形的是( )2.观察下列图案,其中旋转角最大的是( )3.如图,将正方形图案绕中心O 旋转180°后,得到的图案是( )4.下列命题中的真命题是 ( ) (A)全等的两个图形是中心对称图形. (B)关于中心对称的两个图形全等. (C)中心对称图形都是轴对称图形. (D)轴对称图形都是中心对称图形. 5、下列说法不正确的是( ) A 、 中心对称图形一定是旋转对称图形 B 、轴对称图形一定是中心对称图形C 、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分D 、在平移过程中,对应点所连的线段也可能在一条直线上 6、图1可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是( )A .900B .600C .45D .3007、下列图形中既是轴对称图形,又是中心对称图形的是( ) A 、平行四边形 B 、等边三角形 C 、正方形 D 、直角三角形8、如图2,面积为12cm 2的△ABC 沿BC 方向平移至△DEF 的位置,平移的距离是边BC 长的两倍,则图中的四边形ACED 的面积为( )A 、24cm 2B 、36cm 2C 、48cm 2D 、无法确定9.4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示, 那么她所旋转的牌从左起是( )A .第一张、第二张B .第二张、第三张C .第三张、第四张D .第四张、第一张(1) (2)10、如图3,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转900得到△DCF ,连结EF ,若∠BEC=600,则∠EFD 的度数为( ) A 、100B 、150C 、200D 、250图2图3ABBBACCCABACEDABCB'A'二填空题 (每题4分共24分)11.如图11-1所示,P 是等边△ABC 内一点,△BMC 是由△BPA 旋转所得,则∠PBM =_____________.12.P (5,2),则P 点关于x 轴对称点坐标为_________;关于y 轴对称点坐标为_________;关于原点的对称点坐标为_______________.13.如图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“________________”交通标志(不画图案,只填含义).14、如图4,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠A 'DC=900,则∠A 的度数是__________。

九年级上册数学《旋转》单元测试卷(含答案)

九年级上册数学《旋转》单元测试卷(含答案)

人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题(每小题3分,共36分)1.下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是A .B .C .D . 2.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为 A .30° B . 90° C .120° D .180°3.如图,直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕点C 顺时针旋转90°至三角板A′B′C′的位置后,再沿CB 方向向左平移,使点B′落在原三角板ABC 的斜边AB 上,则三角板A′B′C′平移的距离为( )A. 6 cmB. 4 cmC. (6-23)cmD. (43-6)cm4.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( ) A .点M B .格点N C .格点P D .格点Q5.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45 后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A.22,22⎛⎫-⎪⎪⎝⎭B.(1,0)C.22,22⎛⎫--⎪⎪⎝⎭D.(0,1)-6.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)( )A.∠EAB=30°B.∠EAB=45°C.∠EAB=60°D.∠EAB=75°7.如图,边长相等的两个正方形ABCD和OEFG,若将正方形OEFG绕点O按逆时针方向旋转150°,两个正方形的重叠部分四边形OMCN的面积( )A.不变B.先增大再减小C.先减小再增大D.不断增大8.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B的落点依次为B1,B2,B3,…,则B2 019的坐标为( )A.(1010,0) B.(1310.5,32) C.(1345,32) D.(1346,0)9.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A 、B 、C 的距离分别为3、4、5,则PAB △的面积为( )A .10B .8C .6D .310.如图,正方形ABCD 的边长为2,点E ,F 分别在边AD ,CD 上,若∠EBF =45°,则△EDF 的周长等于( )A .22B .3C .4D .4211.如图,将一个三角板ABC ∆,绕点A 按顺时针方向旋转60︒,得到ADE ∆,连接BE ,且2AC BC ==,90ACB ∠=︒,则线段BE =( )A .62-B .6C .2D .112.如图,△ABC 中,∠A=30°,∠ACB=90°,BC=2,D 是AB 上的动点,将线段CD 绕点C 逆时针旋转90°,得到线段CE ,连接BE ,则BE 的最小值是( )A.3-1 B.32C.3D.2二、填空题(每小题3分,共18分)13.一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为__________.14.将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)15.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.16.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B 按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.17.已知两个完全相同的直角三角形纸片△ABC 、△DEF ,如图1放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC 绕点F 按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC 恰有一边与DE 平行的时间为__________s18.如图,正方形ABCD 的对角线AC 与BD 相交于点E ,正方形EFGH 绕点E 旋转,直线FB 与直线CH 相交于点P ,若2,75AB DBP ︒=∠=,则2DP 的值是____.三、解答题(共46分)19.(6分)△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)作△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1.(2)将△ABC 向右平移3个单位,作出平移后的△A 2B 2C 2.(3)若点M 是平面直角坐标系中直线AB 上的一个动点,点N 是x 轴上的一个动点,且以O 、A 2、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.20.(8分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是________;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有()个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.21、(8分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.22.(8分)如图1,点B在线段CE上,Rt△ABC≌Rt△BAC∠=︒,1∠=∠=︒,30ABC CEFCEF,90BC=.(1)点F到直线CA的距离是_________;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;=时,求OF的长.②如图2,在旋转过程中,线段CF与AB交于点O,当OE OB23.(8分)如图,正方形ABCD中,点P从点A出发沿AD边向点D运动,到达点D停止.作射线CP,将CP绕着点C逆时针旋转45°,与AB边交于点Q,连接PQ(1)画图,完善图形.(2)三条线段DP,PQ,BQ之间有无确定的数量关系?请说明理由.⊥于H.若线段CP的最大值为4,求点H运动的路径长.(3)过点C作CH PQ24.(8分)在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(6,0)A ,点(0,8)B .以A 点为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点,,O B C 的对应点分别为,,D E F ,记旋转角为(090)αα︒︒<<.(1)如图①,当30α︒=时,求点D 的坐标;(2)如图②,当点E 落在AC 的延长线上时,求点D 的坐标;(3)当点D 落在线段OC 上时,求点E 的坐标(直接写出结果即可).参考答案一、选择题(每小题3分,共36分)1.下列图形是我国国产品牌汽车的标识,其中是中心对称图形的是A.B.C.D.【答案】C【解析】A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选C.【点睛】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后两部分重合.2.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C.【点睛】本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.3.如图,直角三角板ABC的斜边AB=12 cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为()A. 6 cmB. 4 cmC. (6-23)cmD. (43-6)cm【答案】C【分析】根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再利用勾股定理列式求出AC,然后求出AB′,过点B′作B′D⊥AC交AB于D,然后解直角三角形求出B′D即可.【解析】∵AB=12cm,∠A=30°,∴BC=12AB=12×12=6cm,由勾股定理得,AC=22AB BC-=22126-=63cm, ∵三角板ABC绕点C顺时针旋转90°得到三角板A′B′C′, ∴B′C′=BC=6cm,∴AB′=AC-B′C′=63-6,过点B′作B′D⊥AC交AB于D,则B′D=33AB′=33×(63-6)=(6-23)cm.故选C.【点睛】本题考查了平移的性质,旋转变换的性质,解直角三角形,熟练掌握各性质是解题的关键,作出图形更形象直观.4.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是() A.点M B.格点N C.格点P D.格点Q【答案】B【分析】此题可根据旋转前后对应点到旋转中心的距离相等来判断所求的旋转中心.【解析】如图,连接N和两个三角形的对应点;发现两个三角形的对应点到点N的距离相等,因此格点N就是所求的旋转中心;故选B.【点睛】熟练掌握旋转的性质是确定旋转中心的关键所在.5.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,那么点2019A 的坐标是( )A .2222⎛- ⎝⎭B .(1,0)C .22,22⎛-- ⎝⎭ D .(0,1)-【答案】A【分析】根据旋转的性质分别求出点A 1、A 2、A 3、…的坐标,继而发现8次为一个循环,用2019除以8,看余数即可求得答案. 【解析】四边形OABC 是正方形,且OA 1=,()A 0,1∴,将正方形OABC 绕点O 逆时针旋转45︒后得到正方形111OA B C ,∴由勾股定理得:点A 1的横坐标为22,点A 1的纵坐标为22,122A ∴⎝⎭, 继续旋转则()2A 1,0,322A ⎝⎭,A 4(0,-1),A 522⎛ ⎝⎭,A 6(-1,0),A 72222⎛⎫- ⎪ ⎪⎝⎭,A 8(0,1),A 92222⎛ ⎝⎭,......,发现是8次一循环,所以20198252÷= (3)∴点2019A 的坐标为22,22⎛⎫- ⎪ ⎪⎝⎭,故选A .【点睛】本题考查了旋转的性质,规律题——点的坐标的变化规律,通过分析正确得出坐标的变化规律是解题的关键.6.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)( )A.∠EAB=30°B.∠EAB=45°C.∠EAB=60°D.∠EAB=75°【答案】C【分析】由旋转的性质和平行线的判定依次判断,可求解.【解析】当∠EAB=30°时.∵∠CAB=90°,∴∠CAE=60°=∠E,∴AC∥DE,故A不合题意;当∠EAB=45°,∴∠BAD=45°=∠B,∴BC∥AD,故B不合题意;当∠EAB=60°时,三角尺不存在一组边平行.当∠EAB=75°时,如图,延长AB交DE于点M,∴∠BAD=15°,∴∠EMA=∠D+∠MAB=45°=∠ABC,∴BC∥DE.故选C.【点睛】本题考查了旋转的性质,平行线的判定,熟练运用旋转的性质是本题的关键.7.如图,边长相等的两个正方形ABCD和OEFG,若将正方形OEFG绕点O按逆时针方向旋转150°,两个正方形的重叠部分四边形OMCN的面积( )A.不变B.先增大再减小C.先减小再增大D.不断增大【答案】A【分析】根据正方形性质得出∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,求出∠BOM=∠CON,根据ASA证△BOM≌△CON,推出两个正方形的重叠部分四边形OMCN的面积等于S△BOC=14S正方形ABCD,即可得出选项.【解析】∵四边形ABCD、四边形OEFG是两个边长相等正方形,∴∠BOC=∠EOG=90°,∠OBC=∠OCD=45°,OB=OC,∴∠BOC-∠COM=∠EOG-∠COM,即∠BOM=∠CON,∵在△BOM和△CON中BOM CONOB OCOBM OCN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOM≌△CON,∴两个正方形的重叠部分四边形OMCN的面积是S△COM+S△CNO=S△COM+S△BOM=S△BOC=14S正方形ABCD,即不论旋转多少度,阴影部分的面积都等于14S正方形ABCD,故选A.【点睛】本题考查了正方形性质和全等三角形的性质和判定的应用,关键是求出△BOM≌△CON,即△BOM得面积等于△CON的面积.8.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2019次,点B的落点依次为B1,B2,B3,…,则B2 019的坐标为( )A.(1010,0) B.(1310.5,3C.(1345,3D.(1346,0)【答案】D【分析】连接AC ,根据条件可以求出AC ,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2019=336×6+3,因此点3B 向右平移1344(即3364 )即可到达点2019B ,根据点3B 的坐标就可求出点2019B 的坐标.【解析】连接AC ,如图所示.∵四边形OABC 是菱形,∴OA =AB =BC =OC .∵∠ABC =60°,∴△ABC 是等边三角形.∴AC =AB .∴AC =OA .∵OA =1,∴AC =1.由图可知:每翻转6次,图形向右平移4.∵2019=336×6+3,∴点B 3向右平移1344(即336×4)到点B 2019.∵B 3的坐标为(2,0),∴B 2019的坐标为(1346,0),故选:D【点睛】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.9.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A 、B 、C 的距离分别为3、4、5,则PAB △的面积为( )A .10B .8C .6D .3【答案】D【分析】将△BPC 绕点B 逆时针旋转60°得△BEA ,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE 为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP 中,AE=5,延长BP ,作AF ⊥BP 于点FAP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF的长,根据三角形的面积公式即可得到结论.【解析】∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=12AP=32,∴△PAB的面积=12PB•AF=12×4×32=3,故选:D.【点睛】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.10.如图,正方形ABCD的边长为2,点E,F分别在边AD,CD上,若∠EBF=45°,则△EDF的周长等于( )A.22B.3 C.4 D.42【答案】C【分析】根据正方形的性质得AB=BC,∠BAE=∠C=90°,根据旋转的定义,把把△ABE绕点B顺时针旋转90°可得到△BCG,根据旋转的性质得BG=BE,CG=AE,∠GBE=90°,∠BAE=∠C=90°,∠EBG=∠ABC=90°,于是可判断点G在CB的延长线上,接着利用“SAS”证明△FBG≌△EBF,得到EF=CF+AE,然后利用三角形周长的定义得到答案.【解析】∵四边形ABCD为正方形,∴AB=BC,∠BAE=∠C=90°,∴把△ABE 绕点B 顺时针旋转90°可得到△BCG ,如图,∴BG =BE ,CG =AE ,∠GBE =90°,∠BAE =∠C =90°,∴点G 在DC 的延长线上,∵∠EBF =45°,∴∠FBG =∠EBG ﹣∠EBF =45°,∴∠FBG =∠FBE ,在△FBG 和△EBF 中,BF =BF ,∠FBG =∠FBE ,BG =BE∴△FBG ≌△FBE (SAS ),∴FG =EF ,而FG =FC +CG =CF +AE ,∴EF =CF +AE ,∴△DEF 的周长=DF +DE +CF +AE =CD +AD =2+2=4,故选:C .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和正方形的性质. 11.如图,将一个三角板ABC ∆,绕点A 按顺时针方向旋转60︒,得到ADE ∆,连接BE ,且2AC BC ==,90ACB ∠=︒,则线段BE =( )A .62-B .6C .2D .1【答案】A【分析】连接BD ,延长BE 交AD 于点F ,根据旋转性质可知AB=AD ,∠DAB=60°,∠AED=90°,AE=DE=AC=BC=2,由此得出△ABD 为等边三角形,然后进一步通过证明△BAE ≅△BDE 得出∠ABE=∠DBE ,根据等腰三角形“三线合一”可知BF ⊥AD ,且AF=DF ,由此利用勾股定理分别计算出AB 、BF 的长,最后通过BE=BF −EF 进一步计算即可得出答案.【解析】如图,连接BD ,延长BE 交AD 于点F ,由旋转可知,AB=AD ,∠DAB=60°,∠AED=90°,AE=DE=AC=BC=2,∴△ABD为等边三角形,∴AB=BD,在△BAE与△BDE中,∵AE=DE,BA=BD,BE=BE,∴△BAE≅△BDE(SSS),∴∠ABE=∠DBE,根据等腰三角形“三线合一”可得BF⊥AD,且AF=DF,∵AC=BC=2,∠ACB=90°,∴AB=222222+=,∴AB=BD=AD=22,∴AF=2,∴BF=226AB AF-=,∵∠AED=90°,AE=DE,∴∠FAE=45°,∵BF⊥AD,∴∠FEA=45°,∴EF=AF=2,∴BE=BF−EF=62-,故选:A.【点睛】本题主要考查了旋转的性质、全等三角形性质及判定和勾股定理与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.12.如图,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的动点,将线段CD绕点C逆时针旋转90°,得到线段CE,连接BE,则BE的最小值是()A.3-1 B.32C.3D.2【答案】A【分析】过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90°得到CH,连接HE,延长HE交AB 的延长线于点J;通过证明△CKD≌△CHE (ASA),进而证明所构建的四边形CKJH是正方形,所以当点E 与点J重合时,BE的值最小,再通过在Rt△CBK中已知的边角条件,即可求出答案.【解析】如图,过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90°得到CH,连接HE,延长HE交AB 的延长线于点J ;∵将线段CD 绕点C 逆时针旋转90° ,得到线段CE ∴∠DCE=∠KCH = 90°∵∠ECH=∠KCH - ∠KCE ,∠DCK =∠DCE-∠KCE ∴∠ECH =∠DCK又∵CD= CE ,CK = CH ∴在△CKD 和△CHE 中90ECH DCK CK CHDKC EHC ∠=∠=⎧∠=∠=︒⎪⎨⎪⎩∴△CKD ≌△CHE (ASA) ∴∠CKD=∠H=90°,CH=CK ∴∠CKJ =∠KCH =∠H=90°∴四边形CKJH 是正方形 ∴CH=HJ=KJ=C'K∴点E 在直线HJ 上运动,当点E 与点J 重合时,BE 的值最小∵∠A= 30° ∴∠ABC=60°在Rt △CBK 中, BC= 2, ∴勾股定理得:CK =3,BK= = 1∴KJ = CK =3,所以BJ = KJ-BK=31-;BE 的最小值为31-.故选A.【点睛】本题主要考查了以线段旋转为载体的求线段最短问题,正方形的构建是快速解答本题的关键.二、填空题(每小题3分,共18分)13.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转α(0°<α<90°),使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为__________.【答案】15°或45°.【解析】分情况讨论:①当DE⊥BC时,∠BAD=75°,∴α=90°﹣∠BAD=15°;②当AD⊥BC时,∠BAD=45°,即α=45°.故答案为:15°或45°.【点睛】本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.14.将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)【答案】2﹣1.【解析】∵四边形ABCD为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,∴CF=,∠CFDE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF﹣CD=﹣1.故答案为﹣1.【考点】本题主要考查了以正方形旋转为载体的求线段长度.15.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.【答案】(﹣2,﹣2).【解析】作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).【考点】本题主要考查了以等边三角形和坐标系旋转为载体的求点的坐标.16.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B 按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.【答案】y=x﹣1.【解析】∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣2,令y=0,则x=1,∴A(,0),B(0,﹣1),∴OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO+∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△AFE(AAS),∴AE=OB=1,EF=OA=,∴F(,﹣),设直线BC的函数表达式为:y=kx+b,∴,∴,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.【考点】本题主要考查了以线段旋转和一次函数为载体的求解析式.17.已知两个完全相同的直角三角形纸片△ABC、△DEF,如图1放置,点B、D重合,点F在BC上,AB 与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为___________s【答案】3秒或12秒或15秒【解析】①如图(2),当AC∥DE时,∵AC∥DE,∴∠ACB=∠CHD=90°.∵∠E=30°,∴∠D=60°,∴∠HFD=90°-60°=30°,∴t=30°÷10°=3.②如图3,当BC∥DE时,∵BC∥ED,∴∠BFE=∠E=30°,∴∠BFD=30°+90°=120°,∴t=120°÷10=12.③如图4,当BA ∥ED 时,延长DF 交DA 于G .∵∠E=30°,∴∠D=60°,∵BA ∥ED ,∴∠BGD=180°-∠D=120°,∴∠BFD=∠B+∠BGF=30°+120°=150°,∴t=150°÷10°=15. 故答案为3秒或12秒或15秒【点睛】本题主要考查平行线的性质.分三种不同的情况讨论,解题的关键是画出三种情况的图形.18.如图,正方形ABCD 的对角线AC 与BD 相交于点E ,正方形EFGH 绕点E 旋转,直线FB 与直线CH 相交于点P ,若2,75AB DBP ︒=∠=,则2DP 的值是____. 【答案】53+【分析】如图,设EF 交AB 于M ,EH 交BC 于N ,PF 交EH 于O ,作PT ⊥AD 于T 交BC 于R .首先证明∠CPB =90°,求出DT ,PT 即可解决问题.【解析】如图,设EF 交AB 于M ,EH 交BC 于N ,PF 交EH 于O ,作PT ⊥AD 于T 交BC 于R .∵四边形ABCD 是正方形,∴AC ⊥BD ,AE =EB ,∠EAM =∠EBN =45°,∵四边形EFGH 是正方形,∴∠MEN =∠AEB =90°,∴∠AEM =∠BEN ,∴△AEM ≌△BEN (ASA ),∴AM =BN ,EM =EN ,∠AME =∠BNE ,∵AB =BC ,EF =EH ,∴FM =NH ,BM =CN ,∵∠FMB =∠AME ,∠CNH =∠BNE ,∴∠FMB =∠CNH ,∴△FMB ≌△HNC (SAS ),∴∠MFB =∠NHC ,∵∠EFO +∠EOF =90°,∠EOF =∠POH ,∴∠POH +∠PHO =90°,∴∠OPH =∠BPC =90°, ∵∠DBP =75°,∠DBC =45°,∴∠CBP =30°,∵BC =AB =2,∴由勾股定理:PB 3PR =12PB 3RC =12, ∵∠RTD =∠TDC =∠DCR =90°,∴四边形TDCR 是矩形,∴TD =CR =12,TR =CD =AB =2, 在Rt △PDT 中,PD 2=DT 2+PT 2=2213()(25232++=+故答案为53+【点睛】本题考查全等三角形的判定和性质,旋转变换,正方形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于常考题型.三、解答题(共46分)19.(6分)△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)作△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1.(2)将△ABC 向右平移3个单位,作出平移后的△A 2B 2C 2.(3)若点M 是平面直角坐标系中直线AB 上的一个动点,点N 是x 轴上的一个动点,且以O 、A 2、M 、N 为顶点的四边形是平行四边形,请直接写出点N 的坐标.【答案】(1)、(2)答案见解析;(3)当OA2为平行四边形的边时,N点坐标为(﹣3,0)或(2,0),当OA2为平行四边形的对角线时,N点坐标为(3,0).【分析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点A1、B1、C1,从而得到△A1B1C1.(2)利用网格特点和平移的性质画出点A、B、C的对应点A2、B2、C2,从而得到△A2B2C2.(3)讨论:当OA2为平行四边形的边时,利用平行四边形的判定和点平移的坐标特征确定N点坐标;当OA2为平行四边形的对角线时,利用平行四边形的性质和点平移的坐标特征确定N点坐标.【解析】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)当OA2为平行四边形的边时,N点坐标为(﹣3,0)或(2,0),当OA2为平行四边形的对角线时,N点坐标为(3,0).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质和平行四边形的判定.20.(8分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是________;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形,其中真命题的个数有()个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【答案】(1)B;(2)(1)(3)(5);(3)C;(4)见解析【分析】(1)根据旋转对称图形的定义进行判断;(2)先分别求每一个图形中的旋转角,然后再进行判断;(3)根据旋转对称图形的定义进行判断;(4)利用旋转对称图形的定义进行设计.【解析】解:(1)矩形、正五边形、菱形、正六边形都是旋转对称图形,但正五边形不是中心对称图形,故选:B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为:(1)(3)(5).(3)①中心对称图形,旋转180°一定会和本身重合,是旋转对称图形;故命题①正确;②等腰三角形绕一个定点旋转一定的角度α(0°<α≤180°)后,不一定能与自身重合,只有等边三角形是旋转对称图形,故②不正确;③圆具有旋转不变性,绕圆心旋转任意角度一定能与自身重合,是旋转对称图形;故命题③正确;即命题中①③正确,故选:C.(4)图形如图所示:【点睛】本题考查旋转对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21、(8分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.【答案】(1)证明见试题解析;(2)①证明见试题解析;②△DEP为等腰直角三角形.【分析】:(1)由旋转的性质得到∠BCP=∠DCQ,即可证明△BCP≌△DCQ;(2)①由全等的性质和对顶角相等即可得到答案;②由等边三角形的性质和旋转的性质求出∠EPD=45°,∠EDP=45°,即可判断△DEP的形状.【解析】(1)∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,∵BC=CD,∠BCP=∠DCQ,PC=QC,∴△BCP≌△DCQ;(2)①如图b, ∵△BCF≌DCQ, ∴∠CBF=∠EDF, 又∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ②∵△BCP为等边三角形,∠BCP=60°,∴∠PCD=30°,又CP=CD,∠CPD=∠CDP=75° ,又∠BPC=-60° ,∠CDQ=60°,∴∠EPD=45°,∠EDP=45°,∴△DEP为等腰直角三角形.【考点】1.四边形综合题;2.正方形的性质;3.旋转的性质;4.全等三角形的判定与性质;5.综合题.22.(8分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF ,90ABC CEF ∠=∠=︒,30BAC ∠=︒,1BC =.(1)点F 到直线CA 的距离是_________;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. ①请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)该图形的面积为_________;②如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE OB =时,求OF 的长.【答案】(1)1;(2)12π;(3)23OF = 【分析】(1)根据直角三角形的性质和全等三角形的性质可得∠ACF =∠ECF =30°,即CF 是∠ACB 的平分线,然后根据角平分线的性质可得点F 到直线CA 的距离即为EF 的长,于是可得答案;(2)①易知E 点和F 点的运动轨迹是分别以CF 和CE 为半径、圆心角为30°的圆弧,据此即可画出旋转后的平面图形;在图3中,先解Rt △CEF 求出CF 和CE 的长,然后根据S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )即可求出阴影面积;②作EH ⊥CF 于点H ,如图4,先解Rt △EFH 求出FH 和EH 的长,进而可得CH 的长,设OH=x ,则CO 和OE 2都可以用含x 的代数式表示,然后在Rt △BOC 中根据勾股定理即可得出关于x 的方程,解方程即可求出x 的值,进一步即可求出结果.【解析】(1)∵30BAC ∠=︒,90ABC ∠=︒,∴∠ACB =60°,∵Rt △ABC ≌Rt △CEF ,∴∠ECF =∠BAC =30°,EF =BC =1,∴∠ACF =30°,∴∠ACF =∠ECF =30°,∴CF 是∠ACB 的平分线,∴点F 到直线CA 的距离=EF =1;故答案为:1;(2)①线段EF 经旋转运动所形成的平面图形如图3中的阴影所示:在Rt △CEF 中,∵∠ECF =30°,EF =1,∴CF =2,CE 3由旋转的性质可得:CF=CA =2,CE=CG 3,∠ACG =∠ECF =30°,∴S 阴影=(S △CEF +S 扇形ACF )-(S △ACG +S 扇形CEG )=S 扇形ACF -S 扇形CEG =2230330236036012πππ⨯⨯-=; 故答案为:12π;②作EH ⊥CF 于点H ,如图4,在Rt △EFH 中,∵∠F =60°,EF =1, ∴13,2FH EH ==∴CH =13222-=, 设OH=x ,则32OC x =-,222222334OE EH OH x x =+=+=+⎝⎭, ∵OB=OE ,∴2234OB x =+, 在Rt △BOC 中,∵222OB BC OC +=,∴2233142x x ⎛⎫++=- ⎪⎝⎭, 解得:16x =,∴112263OF =+=. 【点睛】本题考查了旋转的性质和旋转作图、全等三角形的性质、角平分线的性质、扇形面积公式、勾股定理和解直角三角形等知识,涉及的知识点多,综合性较强,熟练掌握上述知识、灵活应用整体思想和方程思想是解题的关键.23.(8分)如图,正方形ABCD 中,点P 从点A 出发沿AD 边向点D 运动,到达点D 停止.作射线CP ,将CP 绕着点C 逆时针旋转45°,与AB 边交于点Q ,连接PQ(1)画图,完善图形.(2)三条线段DP ,PQ ,BQ 之间有无确定的数量关系?请说明理由.(3)过点C 作CH PQ ⊥于H .若线段CP 的最大值为4,求点H 运动的路径长.【解析】(1)画图,如图1.(2)DP ,PQ ,BQ 之间有确定的数量关系,PQ DP BQ =+.理由如下:如图1,∵ABCD 是正方形,∴可将DCP ∆绕点C 逆时针旋转90°到BCM ∆. ∴DCP BCM ∆∆≌,90PCM ∠=︒.∴DP BM =,CP CM =,190D ∠=∠=︒.∴Q ,B ,M 在同一条直线上.∵45PCQ ∠=︒,∴45MCQ ∠=︒.∴PCQ MCQ ∠=∠.∵CQ CQ =,∴()SAS PCQ MCQ ∆∆≌.∴PQ MQ =. ∴PQ DP BQ =+.(3)如图2,由(2),2M ∠=∠.∵3190∠=∠=︒,∴(AAS)PCH MCB ∆∆≌.∴CH CB =.当点P 还在点A 处时,CP 是正方形的对角线,此时最长.即正方形的对角线为4. ∴正方形的边长22CB =∴22CH =当点P 从A 到点D 时,点H 从点B 沿圆弧到点D ,圆心角90BCD ∠=︒.∴点H 运动的路径长为1224CB ππ⨯⋅=.。

九年级上学期数学《旋转》单元检测题含答案

九年级上学期数学《旋转》单元检测题含答案

九年级上册数学《旋转》单元测试卷(满分120分,考试用时120分钟)一、选择题1.时钟上的分针匀速旋转一周需要 60min,则经过 5min,分针旋转了( )A . 10°B . 20°C . 30°D . 60°2.如图,在△A B C 中,∠C A B =65°,将△A B C 在平面内绕点A 旋转到△A B 'C '的位置.若∠C A B '=25°则∠AC C ''的度数为()A . 25°B . 40°C . 65°D . 70°3.如图,香港特别行政区区徽中的紫荆花图案,该图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为( )A . 45°B . 60°C . 72°D . 108°4.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△A B C 经过平移后得到△A 1B 1C 1,若A C 上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为( )A . (2.8,3.6)B . (﹣2.8,﹣3.6)C . (3.8,2.6)D . (﹣3.8,﹣2.6)5.已知下列命题,其中正确的个数是( )(1)关于中心对称的两个图形一定不全等;(2)关于中心对称的两个图形是全等形;(3)两个全等的图形一定关于中心对称.A . 0个B . l个C . 2个D . 3个6.在下列图案中,既是轴对称又是中心对称图形的是( )A .B .C .D .7.已知点A (1,2),点A 关于原点的对称点是A 1,则点A 1的坐标是( )A . (-1,-2)B . (-2,1)C . (2,-1)D . (-1,2)8.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为( )A . 重合B . 关于x轴对称C . 关于y轴对称D . 宽度不变,高度变为原来的一半9.观察下面图案,在(A )(B )(C )(D )四幅图案中,能通过图案(1)平移得到的是( )A .B .C .D .10.将绕点旋转得到,则下列作图正确的是( )A .B .C .D .二、填空题11.如图,已知△A B C ,D 是A B 上一点,E是B C 延长线上一点,将△A B C 绕点C 顺时针方向旋转,恰好能与△ED C 重合.若∠A =33°,则旋转角为_____°.12.在平面直角坐标系中,已知点P0的坐标为(2,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是_____.13.若点A (1,2)与点B (m,﹣2)关于原点对称,则m=_____.14.若点P(﹣m,3﹣m)关于原点的对称点在第四象限,则m满足_____.15.如图,在的正方形格纸中,有一个以格点为顶点的,请你找出格纸中所有与成轴对称且也以格点为顶点的三角形,这样的三角形共有个.16.如图,已知∠MON=30°,B 为OM上一点,B A ⊥ON于A ,四边形A B C D 为正方形,P为射线B M上一动点,连结C P,将C P绕点C 顺时针方向旋转90°得C E,连结B E,若A B =4,则B E的最小值为_____.17.如图,▱A B C D 绕点A 逆时针旋转32°,得到▱A B ′C ′D ′,若点B ′与点B 是对应点,若点B ′恰好落在B C 边上,则∠C =_____.18.如图,正方形A EFG与正方形A B C D 的边长都为1,正方形A EFG绕正方形A B C D 的顶点A 旋转一周,在此旋转过程中,线段D F的长取值范围为_____.三、解答题19.如图,将△A B C 绕顶点C 逆时针旋转得到△A ′B ′C ,且点B 刚好落在A ′B ′上,若∠A =25°,∠BC A ′=45°,求∠A ′B A 的度数.20.如图所示:已知∠A B C =120°,作等边△A C D ,将△A C D 旋转60°,得到△C D E,A B =3,B C =2,求B D 和∠A B D .21.有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.22.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A 的最小旋转角是度,它中心对称图形.图形B 的最小旋转角是度,它中心对称图形.图形C 的最小旋转角是度,它中心对称图形.图形D 的最小旋转角是度,它中心对称图形.图形E的最小旋转角是度,它中心对称图形.23.如图,将△OA B 绕点O逆时针旋转80°得到△OC D ,点A 与点C 是对应点.(1)画出△OA B 关于点O对称的图形(保留画图痕迹,不写画法);(2)若∠A =110°,∠D =40°,求∠A OD 的度数.24.在Rt△A B C 中,∠A C B =90°,A C =B C =3,点D 是斜边A B 上一动点(点D 与点A 、B 不重合),连接CD ,将C D 绕点C 顺时针旋转90°得到C E,连接A E,D E.(1)求△A D E的周长的最小值;(2)若C D =4,求A E的长度.25.如图,Rt△A B C 中,∠C = 90°,把Rt△A B C 绕着B 点逆时针旋转,得到Rt△D B E,点E在A B 上.(1)若∠B D A = 70°,求∠B A C 的度数.(2)若B C = 8,A C = 6,求△A B D 中A D 边上的高.参考答案一、选择题1.时钟上的分针匀速旋转一周需要 60min,则经过 5min,分针旋转了( )A . 10°B . 20°C . 30°D . 60°[答案]C[解析][分析]钟表的分针匀速旋转一周需要60分,分针旋转了360°;求经过6分,分针的旋转度数,列出算式,解答出即可.[详解]根据题意知,分针旋转一周(360°)需要60min,则分针每分钟旋转=6°,∴经过5min,分针旋转了5×6=30°,故选:C .[点睛]本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°是解答本题的关键.2.如图,在△A B C 中,∠C A B =65°,将△A B C 在平面内绕点A 旋转到△A B 'C '的位置.若∠C A B '=25°则∠AC C ''的度数为()A . 25°B . 40°C . 65°D . 70°[答案]D[解析]分析:由旋转的性质结合已知易得∠C A C ′=∠B A B ′=∠C A B -∠C A B ′=65°-25°=40°,A C =A C ′,由此可得∠A C C ′=∠A C ′C =70°.详解:∵△A B ′C ′是由△A B C 绕点A 旋转得到的,∴∠C A C ′=∠B A B ′,A C =A C ′,∵∠B A B ′=∠B A C -∠C A B ′=65°-25°=40°,∴∠C A C ′=40°,∴∠A C C ′=∠A C ′C =(180°-40°)=70°.故选D .点睛:熟悉“旋转的性质,并能结合已知条件得到A C =A C ′,∠C A C ′=∠B A B ′=40°”是解答本题的关键.3.如图,香港特别行政区区徽中的紫荆花图案,该图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为( )A . 45°B . 60°C . 72°D . 108°[答案]C[解析]由题意得360º÷5=72º.故选C .4.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△A B C 经过平移后得到△A 1B 1C 1,若A C 上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为( )A . (2.8,3.6)B . (﹣2.8,﹣3.6)C . (3.8,2.6)D . (﹣3.8,﹣2.6)[解析][分析]根据平移的性质得出,△A B C 的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.[详解]∵A 点坐标为:(1,1),A 1(-3,-4),∴△A B C 向左平移了4个单位,向下平移了5个单位,∴点P(1.2,1.4)平移后的对应点P1为:(-2.8,-3.6),∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为:(2.8,3.6).故选A .[点睛]此题主要考查了旋转的性质以及平移的性质,根据已知得出平移的方式是解题关键.关于原点对称的两个点横纵坐标均为互为相反数的关系.5.已知下列命题,其中正确的个数是( )(1)关于中心对称的两个图形一定不全等;(2)关于中心对称的两个图形是全等形;(3)两个全等的图形一定关于中心对称.A . 0个B . l个C . 2个D . 3个[答案]B[解析]试题解析:关于中心对称的两个图形一定是全等形,所以(1)错误,(2)正确;(3)两个全等的图形位置可以是任意的,不一定是中心对称的,所以真命题只有一个.故选B .6.在下列图案中,既是轴对称又是中心对称图形的是( )A .B .C .D .[答案]C[解析]根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.[详解]A 、既不是轴对称图形又不是中心对称图形,故不符合题意;B 、是轴对称图形,不是中心对称图形,故不符合题意;C 、既是轴对称图形又是中心对称图形,符合题意;D 、是中心对称图形,不是轴对称图形,故不符合题意,故选C .[点睛]本题考查了中心对称图形与轴对称图形的概念.熟练掌握相关定义是解题的关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.已知点A (1,2),点A 关于原点的对称点是A 1,则点A 1的坐标是( )A . (-1,-2)B . (-2,1)C . (2,-1)D . (-1,2)[答案]A[解析]根据关于原点的对称点,横坐标互为相反数、纵坐标互为相反数,知点 A (1, 2)关于原点对称点的坐标是(−1,-2),故选A .8.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为( )A . 重合B . 关于x轴对称C . 关于y轴对称D . 宽度不变,高度变为原来的一半[答案]C[解析]根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.[详解]解:图案的每个“顶点”的纵坐标保持不变,横坐标分别乘-1,则对应点的横坐标互为相反数,纵坐标相同,所以,所得图案与原图案关于y轴对称.故选:C .[点睛]本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.9.观察下面图案,在(A )(B )(C )(D )四幅图案中,能通过图案(1)平移得到的是( )A .B .C .D .[答案]C[解析][分析]把一个图形整体沿某一直线方向移动,得到的新图形与原图形的形状和大小完全相同.[详解]解:因为平移不改变图形的形状和大小,只改变图形的位置,所以在(A )(B )(C )(D )四幅图案中,能通过图案(1)平移得到的是C 选项的图案.故选:C .[点睛]本题考查平移的性质,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.10.将绕点旋转得到,则下列作图正确的是( )A .B .C .D .[答案]D[解析][分析]把一个图形绕某一点O转动一个角度的图形变换叫做旋转.[详解]解:观察选项中的图形,只有D 选项为△A B O绕O点旋转了180°.[点睛]本题考察了旋转的定义.二、填空题11.如图,已知△A B C ,D 是A B 上一点,E是B C 延长线上一点,将△A B C 绕点C 顺时针方向旋转,恰好能与△ED C 重合.若∠A =33°,则旋转角为_____°.[答案]82°[解析][分析]设∠B =x,根据旋转的旋转得C B =C D ,∠C D E=∠B =x,∠A =∠E=33°,∠B C D 的度数等于旋转角的度数,再利用三角形外角性质得∠B C D =x+33°,接着证明∠C D B =∠B =x,则利用三角形内角和得到x+x+33°+x=180°,然后求出x后计算x+33°即可得到旋转角的度数.[详解]解:设∠B =x,∵△A B C 绕点C 顺时针方向旋转,恰好能与△ED C 重合,∴C B =C D ,∠C D E=∠B =x,∠A =∠E=33°,∠B C D 的度数等于旋转角的度数,∴∠B C D =∠C D E+∠E=x+33°,在△B C D 中,∵C B =C D ,∴∠C D B =x,∴x+x+33°+x=180°,解得x=49°,∴旋转角的度数为49°+33°=82°.故答案为82°.[点睛]本题考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.在平面直角坐标系中,已知点P0的坐标为(2,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是_____.[答案](﹣2,2).[解析][分析]利用旋转的性质得到OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,利用含30度的直角三角形求出OH、P3H,从而得到P3点坐标.[详解]解:如图,∵点P0的坐标为(2,0),∴OP0=OP1=2,∵将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O 按逆时针方向旋转60°得点P3,∴OP2=2OP1=OP3=4,∠xOP2=∠P2OP3=60°,作P3H⊥x轴于H,OH=OP3=2,P3H=OH=2,∴P3(-2,2).故答案为(-2,2).[点睛]本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.13.若点A (1,2)与点B (m,﹣2)关于原点对称,则m=_____.[答案]-1[解析][分析]根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.[详解]根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.[解答]∵点A (1,2)与点B (m,-2)关于原点对称,∴m=-1.故答案为:-1.[点睛]本题考查的是关于原点对称,熟练掌握关于原点对称的点的坐标是解题的关键.14.若点P(﹣m,3﹣m)关于原点的对称点在第四象限,则m满足_____.[答案]0<m<3[解析][分析]根据题意判断出点P在第二象限,再根据第二象限内点的坐标特点可得关于m的不等式组,再解不等式组即可.[详解]解:∵点P(﹣m,3﹣m)关于原点的对称点在第四象限,∴点P在第二象限,∴,解得:0<m<3,故答案为:0<m<3.[点睛]本题考查关于原点对称的点的坐标,以及平面直角坐标系中各象限内点的坐标符号,关键是掌握四个象限内点的坐标符号.15.如图,在的正方形格纸中,有一个以格点为顶点的,请你找出格纸中所有与成轴对称且也以格点为顶点的三角形,这样的三角形共有个.[答案]5[解析]与△A B C 成轴对称且也以格点为顶点的三角形有5个,分别为△B C D ,△B FH,△A D C ,△A EF,△C GH.16.如图,已知∠MON=30°,B 为OM上一点,B A ⊥ON于A ,四边形A B C D 为正方形,P为射线B M上一动点,连结C P,将C P绕点C 顺时针方向旋转90°得C E,连结B E,若A B =4,则B E的最小值为_____.[答案]2+2[解析]如图所示,将B C 绕着点C 顺时针旋转90°得FC ,作直线FE交OM于H,则∠B C F=90°,B C =FC , ∵将C P绕点C 按顺时针方向旋转90°得C E,∴∠PC E=90°,PC =EC ,∴∠B C P=∠FC E,在△B C P和△FC E中,B C =FC ,∠B C P=∠FC E,PC =EC ,∴△B C P≌△FC E(SA S),∴∠C B P=∠C FE,又∵∠B C F=90°,∴∠B HF=90°,∴点E在直线FH上,即点E的轨迹为直线FH,∵B H⊥EF,∴当点E与点H重合时,B E=B H最短,∵当C P⊥OM时,Rt△B C P中,∠C B P=30°,∴C P=B C =2,B P= C P=2,又∵∠PC E=∠C PH=∠PHE=90°,C P=C E,∴正方形C PHE中,PH=C P=2,∴B H=B H+PH=2+2,即B E的最小值为2+2,故答案为:2+2.点睛:本题主要考查了正方形的性质,勾股定理,全等三角形的判定与性质以及垂线段最短的综合运用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等以及垂线段最短进行判断.17.如图,▱A B C D 绕点A 逆时针旋转32°,得到▱A B ′C ′D ′,若点B ′与点B 是对应点,若点B ′恰好落在B C 边上,则∠C =_____.[答案]106°[解析][分析]根据旋转的性质得出A B =A B ′,∠B A B ′=32°,进而得出∠B 的度数,再利用平行四边形的性质得出∠C 的度数.[详解]解:∵平行四边形A B C D 绕点A 逆时针旋转30°,得到平行四边形A B ′C ′D ′(点B ′与点B 是对应点,点C ′与点C 是对应点,点D ′与点D 是对应点),∴A B =A B ′,∠B A B ′=32°,∴∠B =∠A B ′B =(180°﹣32°)÷2=74°,∴∠C =180°﹣74°=106°.故答案为:106°.[点睛]本题考查旋转的性质以及平行四边形的性质,根据已知得出∠B =∠A B ′B =74°是解题关键.18.如图,正方形A EFG与正方形A B C D 的边长都为1,正方形A EFG绕正方形A B C D 的顶点A 旋转一周,在此旋转过程中,线段D F的长取值范围为_____.[答案]≤D F≤+1[解析][分析]由题意可求A F=,且点F是以A 为圆心,为半径的圆上一点,即可求D F的取值范围.[详解]解:∵正方形A EFG与正方形A B C D 的边长都为1∴A F=∴点F是以A 为圆心,为半径的圆上一点∴当F,D ,A 三点共线且D 在线段A F之间时,D F最短为﹣1当F,D ,A 三点共线且A 在线段D F之间时,D F最长为+1∴-1≤D F≤+1故答案为-1≤D F≤+1[点睛]本题考查旋转的性质,正方形的性质,解题关键是利用点F的轨迹求D F的取值范围.三、解答题19.如图,将△A B C 绕顶点C 逆时针旋转得到△A ′B ′C ,且点B 刚好落在A ′B ′上,若∠A =25°,∠BC A ′=45°,求∠A ′B A 的度数.[答案]40°[解析][分析]先利用旋转的性质得∠A ′=∠A =25°,∠A B C =∠B ′,C B =C B ′,再利用等腰三角形的性质得∠B ′=∠C B B ′,则根据三角形外角性质得∠C B B ′=70°,所以∠B ′=∠A B C =70°,然后利用平角定义计算∠A ′B A 的度数.[详解]∵△A B C 绕顶点C 逆时针旋转得到△A ′B ′C ,且点B 刚好落在A ′B ′上,∴∠A ′=∠A =25°,∠A B C =∠B ′,C B =C B ′,∴∠B ′=∠C B B ′,∵∠C B B ′=∠A ′+∠B C A ′=25°+45°=70°,∴∠B ′=70°,∴∠A B C =70°,∴∠A ′B A =180°﹣70°﹣70°=40°.[点睛]本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.20.如图所示:已知∠A B C =120°,作等边△A C D ,将△A C D 旋转60°,得到△C D E,A B =3,B C =2,求B D 和∠A B D .[答案]B D =5.∠B A D =60°[解析][分析]先根据等边三角形的性质得∠A D C =∠A C D =60°,由于∠A B C =120°,根据四边形内角和得到∠B A D +∠B C D =180°,则∠B A D +∠B C A =120°,再根据旋转的性质得∠B A D =∠EC D ,D B =D E,∠B D E=60°,A B =C E,于是有∠B C A +∠EC D +∠A C D =180°,得到B 、C 、E在同一条直线上,接着证明△B D E为等边三角形得到∠D B E=60°,所以∠B A D =∠A B C ﹣∠D B E=60°,B D =B E=B C +C E=B C +A B =5.[详解]∵△A C D 是等边三角形,∴∠A D C =∠A C D =60°,∵∠A B C =120°,∴∠B A D +∠B C D =180°,∴∠B A D +∠B C A =120°,∵△A B D 绕点D 按顺时针方向旋转60°后到△EC D 的位置,∴∠B A D =∠EC D ,D B =D E,∠B D E=60°,A B =C E,∴∠B C A +∠EC D =120°,∴∠B C A +∠EC D +∠A C D =180°,∴B 、C 、E在同一条直线上.∵D B =D E,∠B D E=60°,∴△B D E为等边三角形,∴∠D B E=60°,∴∠B A D =∠A B C ﹣∠D B E=60°,∴B D =B E=B C +C E=B C +A B =3+2=5.[点睛]本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质.21.有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.[答案]答案见解析[解析][分析]思路1:先将图形分割成两个矩形,找出各自的对称中心,过两个对称中心做直线即可;思路2:先将图形补充成一个大矩形,分别找出图中两个矩形各自的对称中心,过两个对称中心做直线即可.[详解]如图所示,有三种思路:[点睛]本题需利用矩形的中心对称性解决问题.22.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A 的最小旋转角是度,它中心对称图形.图形B 的最小旋转角是度,它中心对称图形.图形C 的最小旋转角是度,它中心对称图形.图形D 的最小旋转角是度,它中心对称图形.图形E的最小旋转角是度,它中心对称图形.[答案](1)详见解析;(2)60,是;72,不是;72,不是;120,不是;90,是.[解析][分析](1)一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.[详解]解:(1)如图所示,(2)图形A 的最小旋转角是60°,它是中心对称图形.图形B 的最小旋转角是72°,它不是中心对称图形.图形C 的最小旋转角是72°,它不是中心对称图形.图形D 的最小旋转角是120°,它不是中心对称图形.图形E的最小旋转角是90°,它是中心对称图形.故答案为:60,是;72,不是;72,不是;120,不是;90,是.[点睛]本题考查中心对称图形以及旋转对称图形,常见的中心对称图形有平行四边形、圆形、正方形、长方形等等.23.如图,将△OA B 绕点O逆时针旋转80°得到△OC D ,点A 与点C 是对应点.(1)画出△OA B 关于点O对称的图形(保留画图痕迹,不写画法);(2)若∠A =110°,∠D =40°,求∠A OD 的度数.[答案](1)详见解析;(2)50°[解析][分析](1)延长A O到A ′,使OA ′=O A ,延长B O到B ′,使OB ′=O B ,则△OA ′B ′满足条件;(2)根据旋转的性质得∠A OC =80°,∠C =∠A =110°,再利用三角形内角和计算出∠C OD ,然后计算∠A OC ﹣∠C OD 即可.[详解]解:(1)如图,△OA ′B ′为所作.(2)∵△OA B 绕点O逆时针旋转80°得到△OC D ,∴∠A OC =80°,∠C =∠A =110°,∴∠C OD =180°﹣110°﹣40°=30°,∴∠A OD =∠A OC ﹣∠C OD =80°﹣30°=50°.[点睛]本题考查作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.24.在Rt△A B C 中,∠A C B =90°,A C =B C =3,点D 是斜边A B 上一动点(点D 与点A 、B 不重合),连接CD ,将C D 绕点C 顺时针旋转90°得到C E,连接A E,D E.(1)求△A D E的周长的最小值;(2)若C D =4,求A E的长度.[答案](1)6+;(2)3﹣或3+[解析][分析](1)根据勾股定理得到A B = A C =6,根据全等三角形的性质得到A E=B D ,当D E最小时,△A D E的周长最小,过点C 作C F⊥A B 于点F,于是得到结论;(2)当点D 在C F的右侧,当点D 在C F的左侧,根据勾股定理即可得到结论[详解]解:(1)∵在Rt△A B C 中,∠A C B =90°,A C =B C =3∴A B = A C =6,∵∠EC D =∠A C B =90°,∴∠A C E=∠B C D ,在△A C E与△B C D 中,,∴△A C E≌△B C D (SA S),∴A E=B D ,∴△A D E的周长=A E+A D +D E=A B +D E,∴当D E最小时,△A D E的周长最小,过点C 作C F⊥A B 于点F,当C D ⊥A B 时,C D 最短,等于3,此时D E=3,∴△A D E的周长的最小值是6+3;(2)当点D 在C F的右侧,∵C F=A B =3,C D =4,∴D F=,∴A E=B D =B F﹣D F=3﹣;当点D 在C F的左侧,同理可得A E=B D =3+,综上所述:A E的长度为3﹣或3+.[点睛]本题考查旋转的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.25.如图,Rt△A B C 中,∠C = 90°,把Rt△A B C 绕着B 点逆时针旋转,得到Rt△D B E,点E在A B 上.(1)若∠B D A = 70°,求∠B A C 的度数.(2)若B C = 8,A C = 6,求△A B D 中A D 边上的高.[答案](1)∠B A C =50°;(2)[解析]解:(1) 由旋转得△A C B ≌△D EB∴B D = B A∴∠B A D =∠B D A =∴∠A B D =∴∠A B C =∠A B D =∵∠C =∴∠B A C =·········································································· 5分(2) ∵B C = 8,A C = 6,∠C =∴∵∠D EB =∠C =且B E=B C = 8,D E ="A C " = 6∴A E =" A B " – B E = 2在Rt△D EA 中,设A D 边上的高为h∴∴······················································· 10分。

九年级上册数学《旋转》单元检测题(含答案)

九年级上册数学《旋转》单元检测题(含答案)

人教版数学九年级上学期《旋转》单元测试(满分120分,考试用时120分钟)一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是( )A. B. C. D.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为( )A. B. C. D.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点( )A. B. C. D.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为( )A. 3B.C. 4D.6.已知点是点关于原点的对称点,则的值为( )A. 6B. -5C. 5D. ±67.如图,已知与关于点成中心对称图形,则下列判断不正确的是( )A. ∠ABC=∠A'B'C'B. ∠BOC=∠B'A'C'C. AB=A'B'D. OA=OA'8.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有( )A. 2条B. 3条C. 4条D. 5条9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是( )A. B. C. D.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A. 2种B. 3种C. 4种D. 5种11.下列所给的正方体的展开图中,是中心对称图形的是图( )A. ①②③B. ①②④C. ②③④D. ①②③④12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为( )A. 11B. 12C. 4+5D. 4+13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为( )A. (1, 2)B. (2, 1)C. (1, 1)D. (2, 2)14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到( )A. B. C. D.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.18.对于平面图形上的任意两点,,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点,,保持,我们把这种对应点连线相等的变换称为“同步变换”.对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形.请你用这种瓷砖拼出三种不同的图案.使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.23.如图,已知,绕点逆时针旋转得到,恰好在上,连接.(1)与有何关系?并说明理由;线段与在位置上有何关系?为什么?24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.参考答案一、选择题(共14 小题,每小题 3 分,共42 分)1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是()A. B. C. D.【答案】D【解析】试题分析:根据图形,由规律可循.从左到右是顺时针方向可得到第四个图形是D.故选D.考点: 生活中的旋转现象.2.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】B【解析】试题分析:根据轴对称图形和中心对称图形的定义可得选项B正确.故选B.考点:1.轴对称图形;2.中心对称图形.3.已知平面直角坐标系中的三个点,,,将绕点按顺时针方向旋转度,则点的对应点的坐标为()A. B. C. D.【答案】D【解析】【分析】把△ABO绕点O按顺时针方向旋转45°,就是把它上面的各个点按顺时针方向旋转45度.点A 在第二象限的角平分线上,且OA=,正好旋转到y轴正半轴.则A点的对应点A1的坐标是(0,).【详解】∵A的坐标是(-1,1),∴OA=,且A1在y轴正半轴上,∴A1点的坐标是(0,).故选:D.【点睛】考查了坐标与图形变化-旋转,解答本题要能确定A的位置,只有这样才能确定点A的对应点A1的位置,求出坐标.4.在平面直角坐标系中,点绕原点顺时针旋转后得到点()A. B. C. D.【答案】A【解析】【分析】设A(,1),过A作AB⊥x轴于B,于是得到AB=1,OB=,根据边角关系得到∠AOB=30°,由于点(,1)绕原点顺时针旋转60°,于是得到∠AOA′=60°,得到∠A′OB=30°,于是结论即可求出.【详解】设A(,1),过A作AB⊥x轴于B,则AB=1,OB=,∴tan∠AOB===,∴∠AOB=30°,∵点(,1)绕原点顺时针旋转60°,∴∠AOA′=60°,∴∠A′OB=30°,∴点(,1)绕原点顺时针旋转60°后得到点是(,-1),故选:A.【点睛】考查了坐标与图形的变换-旋转,特殊角的三角函数,正确的画出图形是解题的关键.5.如图,在中,,,,由绕点顺时针旋转得到,其中点与点、点与点是对应点,连接,且、、在同一条直线上,则的长为()A. 3B.C. 4D.【答案】A【解析】【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′进行计算.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A、B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°-30°=30°,∴B′A=B′C=1,∴AA′=AB′+A′B′=2+1=3.故选:A.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.6.已知点是点关于原点的对称点,则的值为()A. 6B. -5C. 5D. ±6【答案】C【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,结合题意可得ab的值,代入a+b可得答案.【详解】根据题意,有点A(a,-3)是点B(-2,b)关于原点O的对称点,则a=-(-2)=2,b=-(-3)=3,则a+b=3+2=5.故选:C.【点睛】考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.7.如图,已知与关于点成中心对称图形,则下列判断不正确的是()A. ∠ABC=∠A'B'C'B. ∠BOC=∠B'A'C'C. AB=A'B'D. OA=OA'【答案】B【解析】【分析】根据中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,来求解即可.【详解】因为△ABC与△A′B′C′关于点O成中心对称图形,所以可得∠ABC=∠A′B′C′,AB=A′B′,OA=OA',故选:B.【点睛】考查了中心对称的定义,解题的关键是熟记中心对称的定义.也可用三角形全等来求解.8.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形,能满足条件的线段有()A. 2条B. 3条C. 4条D. 5条【答案】C【解析】试题分析:直接利用轴对称图形的性质分别得出符合题意的答案.解:如图所示:能满足条件的线段有4条.故选:C.考点:利用轴对称设计图案.9.观察下列四个图案,它们分别绕中心旋转一定的角度后,都能和原来的图形重合,其中旋转的角度最大的是()A. B. C. D.【答案】A【解析】【分析】求出各旋转对称图形的最小旋转角度,再比较即可.【详解】A选项:最小旋转角度==120°;B、最小旋转角度==90°;C、最小旋转角度==72°;D、最小旋转角度==60°;综上可得:旋转的角度最大的是A.故选:A.【点睛】考查了旋转对称图形中旋转角度的确定,求各图形的最小旋转角度时,关键要看各图形可以被平分成几部分,被平分成n部分,旋转的最小角度就是.10.如图,在的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A. 2种B. 3种C. 4种D. 5种【答案】C【解析】试题分析:利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.解:如图所示:组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.点评:此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键.【此处有视频,请去附件查看】11.下列所给的正方体的展开图中,是中心对称图形的是图()A. ①②③B. ①②④C. ②③④D. ①②③④【答案】B【解析】【分析】根据中心对称图形的概念(在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点)求解.【详解】根据中心对称图形的概念可是:①②④是中心对称图形;而③不是中心对称图形.故选:B.【点睛】考查了中心对称图形的概念.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点就叫做中心对称点.12.如图,矩形的边,分别在坐标轴上,且点的坐标为,将矩形沿轴正方向平移个单位,得到矩形,再以点为旋转中心,把矩形顺时针方向旋转,得到矩形″″″″″,″,″,″,则点所经过的路线为″的长为()A. 11B. 12C. 4+5D. 4+【答案】D【解析】【分析】利用平移变换和弧长公式计算.【详解】此题平移规律是(x+4,y),照此规律计算可知点B平移的距离是5个单位长度.把矩形O′A′B′C′顺时针方向旋转90°,点B′走过的路程是半径为5,圆心角是90度的弧长为,所以点B所经过的路线为B⇒B′⇒B″的长为4+.故选:D.【点睛】考查图形的平移变换和弧长公式的运用.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.如图,三个顶点的坐标分别为,,,将绕点按顺时针方向旋转,得到,则点的坐标为()A. (1, 2)B. (2, 1)C. (1, 1)D. (2, 2)【答案】B【分析】直接利用旋转的性质得出对应点位置进而得出答案;【详解】∵A(-2,5),B(-5,1),C(-2,1),∴AC=4,AC∥y轴,∵△ABC绕点C按顺时针方向旋转90°,得到△DEC,∴∠DCE=∠ACB=90°,CD=AC=4,∴B,C,D三点在一条直线上,∴D(2,1),故选:B.【点睛】考查了旋转变换以及扇形面积求法,正确得出对应点位置是解题关键.14.下面、、、四个图形中的哪个图案可以通过旋转图案①得到()A. B. C. D.【答案】B【解析】【分析】根据旋转的性质旋转变化前后,图形的相对位置不变,注意时针与分针的位置关系,分析选项.【详解】根据旋转的性质(旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等)可得:图案①顺时针旋转90°得到B.故选B.【点睛】考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.二、填空题(共6 小题,每小题 3 分,共18 分)15.一个图形绕某一点旋转后与另一个图形重合,则这两个图形成________,这个点叫________.【答案】(1). 中心对称(2). 对称中心【分析】根据中心对称图形的概念求解.【详解】一个图形绕某一点旋转180°后与另一个图形重合,则这两个图形成中心对称,这个点叫对称中心.故答案是:中心对称,对称中心.【点睛】考查了中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.16.如图,在网格中有一个四边形和两个三角形.①请你画出这三个图形关于点成中心对称的图形;②将原图和画出后的图形看成一个整体图形,它有________条对称轴;它至少旋转________度后与自身重合.【答案】(1)详见解析,(2)4,90【解析】【分析】(1)将图形的各顶点与点O连线并延长相同长度找对应点,然后顺次连接得中心对称图形;(2)根据轴对称的性质,找对称轴,只要连接两组对应点,作出对应点所连线段的两条垂直平分线.【详解】(1)如图所示,共有4条对称轴;(2)4条对称轴,这个整体图形至少旋转90度.故答案为:4,90.【点睛】考查了轴对称图形和旋转变换图形的方法,注意,做这类题时,掌握旋转与轴对称的性质是解决问题17.在平面直角坐标系中,若与点关于原点对称,则点在第________象限.【答案】四【解析】【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出点P的坐标,再根据各象限内点的坐标特征解答.【详解】∵P(m,n)与点Q(-2,3)关于原点对称,∴m=2,n=-3,∴点P的坐标为(2,-3),∴点P在第四象限.故答案是:四.【点睛】考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.18.对于平面图形上的任意两点,,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点,,保持,我们把这种对应点连线相等的变换称为“同步变换”.对于三种变换:①平移、②旋转、③轴对称,其中一定是“同步变换”的有________(填序号).【答案】①【解析】【分析】根据平移变换、旋转变换和轴对称变换的性质,依据“同步变换”的定义判断可得.【详解】平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的所有点平移的方向和距离都相等,故平移变换一定是“同步变换”;若将线段PQ绕点P旋转,则PP′=0,而QQ′≠0,故旋转变换不一定是“同步变换”;将相对于直线倾斜的线段PQ经过该直线的轴对称变换,所得PP′≠QQ′,故轴对称变换不一定是“同步变换”,故答案是:①.【点睛】考查几何变换的类型,熟练掌握平移变换、旋转变换和轴对称变换的性质是解题的关键.19.在图中,是由基本图案多边形旋转而成的,它的旋转角为________.【答案】【解析】【分析】由于图形是基本图案多边形ABCDE旋转而成的,根据图形可以得到旋转形成的图形是一个正六边形,由此即可确定旋转角的度数.【详解】∵图形是基本图案多边形ABCDE旋转而成的,而根据图形知道旋转形成的图形是一个正六边形,∴它的旋转角是:60°.【点睛】考查了旋转的性质,主要利用了旋转角的定义和正六边形的性质解决问题.20.如图,将绕点逆时针方向旋转,得到,看点的坐标为,则点坐标为________.【答案】【解析】【分析】利用旋转的性质得OB′=OB=2,A′B′=AB=1,∠BOB′=90°,∠OB′A′=∠OBA=90°,然后利用第二象限内点的坐标特征写出点A′坐标.【详解】∵A(2,1),∴AB=1,OB=2,∵△AOB绕点O逆时针方向旋转90°,得到△A′OB′,∴OB′=OB=2,A′B′=AB=1,∠B OB′=90°,∠OB′A′=∠OBA=90°,∴点A′坐标为(-1,2).故答案是:(-1,2).【点睛】考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.三、解答题(共4 小题,每小题10 分,共40 分)21.如图所示,是一块边长为的正方形瓷砖,其中瓷砖的阴影部分是半径为的扇形.请你用这种瓷砖拼出三种不同的图案.使拼成的图案既是轴对称图形又是中心对称图形,把它们分别画在下面边长为的正方形中(要求用圆规画图).【答案】见解析.【解析】【分析】图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形.【详解】既轴对称图形又中心对称的图形如图所示.答案不唯一.【点睛】考查了运用旋转,轴对称方法设计图案的问题.关键是熟悉有关图形的对称性,利用中心对称性拼图.22.如图所示,每个小正方形的边长为个单位长度,作出关于原点对称的并写出、、的坐标.【答案】见解析.【解析】【分析】根据直角坐标系中,关于原点对称的两个点的坐标特点是:横坐标,纵坐标都互为相反数,根据点的坐标就确定原图形的顶点的对应点,进而即可作出所求图形.【详解】解:根据图形可知:,,,各点关于原点对称的点的坐标分别是:,,,然后连接点再依次连接可得所求图形.【点睛】考查了关于原点对称的知识,要求学生会画图,会表示点的坐标.关键是掌握关于原点对称的两个点的坐标特点是:横坐标,纵坐标都互为相反数,根据点的坐标就可以画出对称图形.23.如图,已知,绕点逆时针旋转得到,恰好在上,连接.(1)与有何关系?并说明理由;线段与在位置上有何关系?为什么?【答案】(1)互补;(2).【解析】【分析】(1)根据旋转的性质可得∠BAC=∠DAE=90°,然后表示出∠CAE,再根据∠BAE=∠BAC+∠CAE列式整理即可得解;(2)根据旋转的性质可得∠BAD=∠CAE,AB=AD,AC=AE,再利用等腰三角形两底角相等表示出∠B、∠ACE,然后求出∠BCE=90°,根据垂直的定义即可得解.【详解】解:与互补.理由如下:由旋转的性质知:,∴,∵,∴,因此与互补;线段.理由如下:由旋转知:,,,∴,,∴,∵,∴,∴,∴.【点睛】考查了旋转的性质,等腰三角形两底角相等的性质,垂直的定义,熟练掌握旋转的性质是解题的关键.24.如图所示的网格中,每个小方格都是边长为的小正方形,,把绕点按顺时针旋转后得到,请画出这个三角形并写出点的坐标;以点为位似中心放大,得到,使放大前后的面积之比为,请在下面网格内出.【答案】见解析.【解析】【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(2)利用位似图形的性质进而得出对应点位置即可得出答案.【详解】如图所示:,即为所求,点的坐标为:;如图所示:.【点睛】考查了位似变换和旋转变换,解题关键是正确得出对应点位置.。

旋转单元测试题

旋转单元测试题

第二十三章 旋转检测题(时间:90分钟,分值:100分)一、 选择题(每小题3分,共30分)1.下面图形中,既是轴对称图形又是中心对称图形的是( )2.下列图形中,是中心对称图形的有( )A .4个B .3个C .2个D .1个 3.在平面直角坐标系中,已知点,若将绕原点逆时针旋转得到,则点在平面直角坐标系中的位置是在( )A.第一象限B.第二象限C.第三象限D.第四象限 4.已知0a <,则点(2,1a a --+)关于原点的对称点 在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.已知点、点关于原点对称,则的值为( ) A.1 B.3 C.-1 D.-3 6.下列命题中是真命题的是( )A.全等的两个图形是中心对称图形B.关于中心对称的两个图形全等C.中心对称图形都是轴对称图形D.轴对称图形都是中心对称图形7.四边形ABCD 的对角线相交于O ,且AO BO CO DO ===,则这个四边形( ) A.仅是轴对称图形 B.仅是中心对称图形 C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形,又不是中心对称图形 8.如图所示,A 、B 、C 三点在正方形网格线的交点处.若将△绕着点A 逆时针旋转到如图位置,得到△,使三点共线,则的值为( )A. 1B.223 C.310D. 29.如图所示,在正方形中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在 上, 则的长是( )A . 1B .2C .3D .4 10.如图,在正方形网格中,将△绕点旋转后得到△,则下列旋转方式中,符合题意的是( ) A.顺时针旋转90° B.逆时针旋转90° C.顺时针旋转45° D.逆时针旋转45° 二、填空题(每小题3分,共24分) 11.如图所示,把一个直角三角尺绕着角的顶点顺时针旋转,使得点落在的延长线上的点处,则∠的度数为_____ .12.正方形是中心对称图形,它绕它的中心旋转一周和原来的图形重合________次.13.如图所示,ABC △与DEF △关于O 点成中心对称.则AB _______DE , ∥______,AC =________.14.边长为的正方形绕它的顶点旋转,顶点所经过的路线长为______.15.等边三角形绕着它的三边中线的交点旋转至少______度,能够与本身重合. 16. 点(34)P -,关于原点对称的点的坐标为________. 17.已知点与点关于原点对称,则的值是_______.18.直线3y x =+上有一点,则点 关于原点的对称点为________.三、解答题(共46分) 19.(8分)如图所示,在△中,90OAB ∠=︒,6OA AB ==,将OAB ∆ 绕点O沿逆时针方向旋转90︒得到11OA B ∆.(1)线段1OA 的长是 ,1AOB ∠的度数是 ; (2)连接1AA ,求证:四边形11OAA B 是平行四边形.A BO E DFC 第13题图20.(8分)找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.21.(8分)如图所示,网格中有一个四边形和两个三角形. (1)请你画出三个图形关于点的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请你写出这个整体图形对称轴的条数; 这个整体图形至少旋转多少度与自身重合? 22.(6分)如图所示,已知是△的中线,画出以点为对称中心,与△•成中心对称的三角形.23.(8分)图①②均为76 的正方形网格,点A B C 、、在格点上.(1)在图①中确定格点D ,并画出以 为顶点的四边形,使其为轴对称图形.(画出一个即可)(2)在图②中确定格点E ,并画出以为顶点的四边形,使其为中心对称图形.(画出一个即可) 24.(8分)如图所示,将正方形中的△绕对称中心 旋转至△的位置,,交于.请猜想与有怎样的数量关系?并证明你的结论.D BA C 第22题图 O第20题图第21题图O第24题图GADE FONM第二十三章 旋转检测题参考答案1.C 解析:选项A 、B 是中心对称图形但不是轴对称图形,选项C 既是中心对称图形又是 轴对称图形,选项D 是轴对称图形但不是中心对称图形.2.B 解析:第一、二、三个图形都是中心对称图形,第四个图形不是中心对称图形.3.C 解析:已知点在第一象限,旋转后,则点应在第三象限.4.D 解析:∵ 当时,点在第二象限,∴ 点关于原点的对称点 在第四象限.5.D 解析:由点、点关于原点对称知,所以6.B 解析:由中心对称图形和轴对称图形的定义知,选项B 正确.7.C 解析:因为AO BO CO DO ===,所以四边形ABCD 是矩形.8.D 解析:过B 点作BD ⊥于点,由图可知,即=2. 9.C 解析:由题意知,,又由,知△≌△,所以.10.B 解析:根据图形可知:将△绕点逆时针旋转90°可得到△.故选B . 11.解析:由题意得∠,,所以∠.12.4 解析:正方形的两条对角线的夹角为,且对角线分正方形所成的4个小三角形都全等.13.=,EF ,DF 14.4π 解析:∵ ∴ 顶点绕顶点旋转所经过的路径是个半圆弧,所以顶点所经过的路线长为4π 15.12016.(34)-, 解析:两个点关于原点对称时,它们的坐标符号相反,所以点的坐标为(34)-,.17.2 解析:∵ 点与点关于原点对称,∴ 3,1b a ==-,∴ 2a b +=. 18.(,) 解析:将点代入3y x =+,得6n =,∴ 对称点为().19.(1)6,135°;(2)证明:11190AOA OA B ∠=∠=︒,∴11//OA A B . 又11OA AB A B ==,∴四边形11OAA B 是平行四边形. 20.解:图中的旋转中心就是该图的几何中心,即点O.该图绕旋转中心O旋转90180270360,,,,都能与原来的图形重合,因此,它是一个中心对称图形.21.解:(1)如图所示.(2)2条对称轴,这个整体图形至少旋转.22.解:(1)延长,且使,点关于的对称点为,点关于的对称点为;(2)连接. 则△为所求作的三角形(如图所示). 23.解:(1)如图①所示;(2)如图②所示.24.解:.证明如下: 在正方形中,为对角线,为对称中心,∴.∵ △为△绕点旋转所得,∴,∴ .在 △和△中,∴ △≌△,∴.D'AB ('C )AC ('B )第22题答图第21题答图O。

九年级上学期数学《旋转》单元测试题(附答案)

九年级上学期数学《旋转》单元测试题(附答案)
[点睛]此题考查了旋转的性质以及全等三角形的判定与性质,此题难度适中,注意掌握旋转前后图形的对应关系和数形结合思想的应用是解题的关键.
4.下列对下图的形成过程叙述正确的是()
A.它可以看作是一只小狗绕图案的中心位置旋转 , , 形成的
B.它可以看作是相邻两只小狗绕图案的中心位置旋转 形成的
C.它可以看作是相邻两只小狗绕图案的某条对称轴翻折而成的
A.2种B.3种C.4种D.5种
7.如图, 、 分别是正方形 的边 、 上的点, , 、 相交于点 .下列结论: ; ; 与 成中心对称.其中,正确的结论有()
A.0个B.1个C.2个D.3个
8.如图,在 中, , , 是 内一点,且 , , ,则 等于()
A.105°B.120°C.135°D.150°
[点睛]本题主要考查了全等三角形的判定与性质和正方形的性质,解本题的要点在于证明△B AF≌△A DE,从而判断,得出答案.
8.如图,在 中, , , 是 内一点,且 , , ,则 等于()
A.105°B.120°C.135°D.150°
[答案]C
[解析]
[分析]
把△APC绕点C逆时针旋转90°得到△B D C,根据旋转的性质可得△PC D是等腰直角三角形,B D=AP,∠APC=∠B D C,根据等腰直角三角形的性质求出PD,∠PD C=45°,然后利用勾股定理逆定理判断出△PB D是直角三角形,∠PD B=90°,再求出∠B D C即可得解.
A.(-3, -4)B.(3, 4)C.(4, 3)D.(-4, -3)
4.下列对下图的形成过程叙述正确的是()
A.它可以看作是一只小狗绕图案的中心位置旋转 , , 形成的
B.它可以看作是相邻两只小狗绕图案的中心位置旋转 形成的

第23章 旋转单元测试试题(含解析)

第23章 旋转单元测试试题(含解析)

人教版九年级上册第23章旋转单元测试(时间100分钟,总分100分)一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4 C.3 D.33.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70° B.35° C.40° D.50°4. 如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格5. 如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=()A.2 B.3 C.4 D.1.56.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′7. 如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()A.45° B.60° C.90° D.120°8. 如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD 交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对 B.2对 C.3对 D.4对9. 如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30° B.60° C.90° D.120°10. 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC 的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1二、填空(共8个小题,每题3分,共24分)11.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E 的对应点为F,则∠EAF的度数是.12. △ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是.13.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.14. 如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°.15.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.16. 如图,在边长为1的小正方形网格中,将△ABC绕某点旋转到△A'B'C'的位置,则点B 运动的最短路径长为.17. 如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.18. 如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2,其中正确结论是(填序号)三、解答题(前3题每题7分,后三题分别为8、8、9分,共46分)19.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点 A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.20. 如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A是旋转中心,那么点B经过旋转后,点B旋转到什么位置?21.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;(2)连结AD,交OC于点E,求∠AEO的度数.22. 将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC 与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.23.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45∘,将△ADF绕点A顺时针旋转90∘后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.24.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN 的形状及此时PM=PN还成立吗?不必说明理由。

人教版数学九年级上册第23章《旋转》单元检测试卷及答案解析

人教版数学九年级上册第23章《旋转》单元检测试卷及答案解析

第23章《旋转》单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是()2.以下图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()3.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转 C.对称和平移 D.旋转和平移4.已知点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,则a+b 的值为()A.1 B.5 C.6 D.45.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.60°B.72°C.90°D.144°7.如图,将△OAB 绕点O 逆时针旋转80°,得到△OCD ,若∠A=2∠D=100°,则∠α的度数是( )A .50°B .60°C .40°D .30°8.在平面直角坐标系xOy 中,A 点坐标为(3,4),将OA 绕原点O 顺时针旋转180°得到OA′,则点A′的坐标是( )A .(﹣4,3)B .(﹣3,﹣4)C .(﹣4,﹣3)D .(﹣3,4)9.如图,将Rt △ABC (其中∠B=30°,∠C=90°)绕点A 按顺时针方向旋转到△AB1C1的位置,使得点B 、A 、B1在同一条直线上,那么旋转角等于( )B 1C 1C BAA .30°B .60°C .90°D .180° 10.如图,在△ABC 中,∠AB=90°,将△ABC 绕点A 顺时针旋转90°,得到△ADE ,连接BD ,若AC=3,DE=1,则线段BD 的长为( )E DCB AA .5B .3C .4D .10二、填空题(共6小题,每小题3分,共18分)11.如图,△ABC 中,∠C =30°,将△ABC 绕点A 顺时针旋转60°得△ADE ,AE 与BC 交于F ,则∠AFB =_______°.12如图,把Rt △ABC 绕点A 逆时针旋转44°,得到Rt △AB′C′,点C′恰好落在边AB 上,连接BB′,则∠BB′C′=图11B'C'CBA图1213.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为.14.如图,直线y=﹣33x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是.15.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.16.在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为.三、解答题(共8题,共72分)17.(本题8分)如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?18.(本题8分)将下图所示的图形面积分成相等的两部分.(图中圆圈为挖去部分)19.(本题8分)19.(8分)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.20.(本题8分)如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?21.(本题8分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴,垂足为A.(1)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(2)△O′A′B′与△OAB关于原点对称,写出点B′、A′的坐标.22.(本题10分)当m为何值时(1)点A(2,3m)关于原点的对称点在第三象限;(2)点B(3m﹣1,0.5m+2)到x轴的距离等于它到y轴距离的一半?23.(本题10分)直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?24.(本题12分)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB 绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.第23章《旋转》单元测试卷解析一、选择题1.【答案】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选:C2.【答案】以图的右边缘所在的直线为轴将该图形向右翻转180°后,黑圆在右上角,再按顺时针方向旋转180°,黑圆在左下角.故选:A.3.【答案】根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.4.【答案】∵点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,∴a=2014,b=﹣2013,则a+b的值为:2014﹣2013=1.故选:A.5.【答案】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5,∴点M(m,n)在第一象限,故选A.6.【答案】如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.故选:B.7.【答案】∵将△OAB绕点O逆时针旋转80°,∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α,∠D=100°∵∠A=2∠D=100°,∴∠D=50°∵∠C+∠D+∠DOC=180°,∴100°+50°+80°﹣α=180°解得α=50°,故选A8.【答案】根据题意得,点A关于原点的对称点是点A′,∵A点坐标为(3,4),∴点A′的坐标(﹣3,﹣4).故选B.9.【答案】∵B、A、B1在同一条直线上,∴∠BAB1=180°,∴旋转角等于180°.故选D.10.【答案】由旋转的性质可知:BC=DE=1,AB=AD,∵在RT△ABC中,AC=3,BC=1,∠ACB=90°,∴由勾股定理得:10又旋转角为90°,∴∠BAD=90°,∴在RT △ADB 中,即:BD 的长为故:选A二、填空题11.【答案】90º12.【答案】∵Rt △ABC 绕点A 逆时针旋转40°得到Rt △AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=12(180°﹣∠BAB′)=12(180°﹣44°)=68°, ∵∠AC′B′=∠C=90°,∴B′C′⊥AB ,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.13.【答案】∵AO=32,BO=2,∴AB=52,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2016的横坐标为:2016÷2×6=6048.∴点B2016的纵坐标为:2. ∴点B2016的坐标为:(6048,2).故答案为:(6048,2).14.【答案】令y=0x+2=0,解得令x=0,则y=2,∴点A (0),B (0,2),∴OB=2,∴∠BAO=30°,∴AB=2OB=2×2=4,∵△AOB 绕点A 顺时针旋转60°后得到△AO′B′,∴∠BAB′=60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(4).故答案为:(4).15.【答案】∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.16.【答案】如图所示:在直角△OBC 中,OC=12AC=12BC=1cm ,则(cm ),则(cm ).故答案为:cm .三、解答题17.【答案】这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.18.【答案】如图:19.【答案】解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-720.【答案】(1)证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.21.【答案】(1)如图,点C的坐标为(﹣2,4);(2)点B′、A′的坐标分别为(﹣4,﹣2)、(﹣4,0).22.【答案】(1)∵点A(2,3m),∴关于原点的对称点坐标为(﹣2,﹣3m),∵在第三象限,∴﹣3m<0,∴m>0;(2)由题意得:①0.5m +2=12(3m ﹣1),解得:m=52;②0.5m +2=﹣12(3m ﹣1),解得:m=﹣34.23.【答案】(1)点P 关于原点的对称点P'的坐标为(2,1); (2)OP '=(a )动点T 在原点左侧,当1TO OP '=时,△P'TO 是等腰三角形,∴点1T,0),(b )动点T 在原点右侧,①当T2O=T2P'时,△P'TO 是等腰三角形,得:2T (54,0),②当T3O=P'O 时,△P'TO 是等腰三角形,得:3T,0),③当T4P'=P'O 时,△P'TO 是等腰三角形,得:点T4(4,0).综上所述,符合条件的t 的值为,54,4.24.【答案】(1)如图1所示过点B 作BC ⊥OA ,垂足为C .图1∵△OAB 为等边三角形,∴∠BOC=60°,OB=BA .∵OB=AB ,BC ⊥OA ,∴OC=CA=1.在Rt △OBC中,BCOC =,∴∴点B 的坐标为(1.(2)如图2所示:(A 1)图2yx O B 1CB A∵点B1与点A1的纵坐标相同,∴A1B1∥OA .①如图2所示:当a=300°时,点A1与点B1纵坐标相同.如图3所示:A 1图3yxO B 1CBA当a=120°时,点A1与点B1纵坐标相同.∴当a=120°或a=300°时,点A1与点B1纵坐标相同.(3)如图2所示:由旋转的性质可知A1B1=AB=2,点B 的坐标为(1,2), ∴点B1的坐标为(﹣1.如图3所示:由旋转的性质可知:点B1的坐标为(1.∴点B1的坐标为(﹣11.【素材积累】司马迁写《史记》汉朝司马迁继承父业,立志著述史书。

人教版数学九年级上册《旋转》单元测试题(含答案)

人教版数学九年级上册《旋转》单元测试题(含答案)
15.如图,直线y=﹣ x+4与x轴、y轴分别交于A,B两点,把△AOB绕点A按逆时针旋转90°后得到△AO1B1,则点B1的坐标是_____.
16.如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=_____(提示:可连接BE)
A.1∶ B.1∶2C. ∶2D.1∶
7.(2016黑龙江省牡丹江市)如图,在平面直角坐标系中,A(﹣8,﹣1),B(﹣6,﹣9),C(﹣2.﹣9),D(﹣4,﹣1).先将四边形ABCD沿x轴翻折,再向右平移8个单位长度,向下平移1个单位长度后,得到四边形A1B1C1D1,最后将四边形A1B1C1D1,绕着点A1旋转,使旋转后的四边形对角线的交点落在x轴上,则旋转后的四边形对角线的交点坐标为( )
∴△ABP≌△CBP′(SAS),∴AP=P′C,
∵P′A:P′C=1:3,∴AP=3P′A,连接PP′,
则△PBP′是等腰直角三角形,
∴∠BP′P=45°,PP′= PB,
∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,
∴△APP′是直角三角形,
设P′A=x,则AP=3x,根据勾股定理,PP′= = = x,
A.1∶ B.1∶2C. ∶2D.1∶
【答案】B
【解析】
【详解】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,
在△ABP和△CBP′中,∵BP=BP′,∠ABP=∠CBP′,AB=BC,
5.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《旋转》单元测试题
(时间:120分钟满分:120分)
一、选择题(本大题共10小题,每题3分,共30分)
1。

下列生活中的现象,
①升降电梯从底楼升到顶楼;②闹钟的钟摆的运动;③DVD片在光驱中运行;④水龙头被拧开时的运动。

属于旋转的有()个
A。

1 [WB]B。

2
C。

3[DW]D。

4
2。

与原图形相比,下列说法正确的是()
A。

旋转后的图形的位置一定改变
B。

旋转后的图形的位置一定不变
C。

旋转后的图形的位置可能不变
D。

旋转后的图形的位置和形状都发生变化
[TS(][JZ]T5"H]图1
3。

如图1,将△ABC绕着点C顺时针旋转60°后得到△A′B′C,若∠A=40°,∠B=110°,则∠BCA′的度数是()
A。

100°[DW]B。

90°
C。

70°[DW]D。

110°
4。

下列四张扑克牌中,属于中心对称的图形是()5。

下列英文字母是中心对称图形,但不是轴对称图形的是()
A。

N[DW]B。

D
C。

W[DW]D。

O
[TS(][JZ]T5"H]图2
6。

如图2,将△ABC绕点C顺时针旋转40°,得△A′CB′,若AC⊥A′B′,则∠BAC等于()A。

80°[DW]B。

70°
C。

60°[DW]D。

50°
[TS(][JZ]T5"H]图3
7。

图3是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为()A。

4[]33[DW]B。

[]33
C。

2[]33[DW]D。

4
[TS(][JZ]T5"H]图4
8。

如图4,在等边△ABC中,点D,E分别是边AB,AC的中点。

将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()
A。

矩形[DW]B。

菱形
C。

正方形[DW]D。

梯形
9。

如图5,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是()
图5
A。

(1,1)[DW]B。

(1,2)
C。

(1,3)[DW]D。

(1,4)
10。

如图6,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()图6
A。

[SX(]3[]4[SX)][DW]B。

[SX(][KF
(S][]2[KF)]-1[]2[SX)]
C。

[KF(S][]2[KF)]-1[DW]D。

1+[KF(S][]2[KF)]
二、填空题(本大题共8小题,每题3分,共24分)
11。

将一个正三角形绕着其重心,至少旋转[CD#4]度可以和原来的图形重合。

[TS(][JZ]T5"H]图7
12。

如图7,将△APB绕点B按逆时针旋转90°后得到△A1P1B。

若BP=2,则线段PP1的长为[CD#4]。

13。

如图8,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方
向旋转α度(0<α≤180°)得到四边形OA′B′C′,此时直线OA′,直线B′C′分别与射线BC相交于P,Q。

在四边形OABC旋转过程中,若BP=[SX
(]1[]2[SX)]BQ,则点P的坐标为[CD#4]。

[TS(][JZ]T5"H]图8
14。

在四边形ABCD中,AB=CD,要使四边形ABCD是中心对称图形,只需添加一个条件,这个条件可以是[CD#4](只要填写一种情况)。

[TS(][JZ]T5"H]图9
15。

如图9,等边△ABC中,AB=4,D是BC的中点,将△ABD绕点A逆时针旋转60°得△ACE,那么线段DE的长为[CD#4]。

16。

已知点M(2a-b,3)与点N(-6,a+b)关于原点中心对称,则a-b=[CD#4]。

17。

如图10,以数轴的单位长线段为边作一个矩形,以数轴的原点为旋转中心,将过原点的对角线逆时针旋转,使对角线的另一端点落在数轴负半轴的点A处,则点A表示的数是[CD#4]。

[TS(][JZ]T5"H]图10
18。

把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为[CD#4]。

三、解答题(本大题共66分)
19。

(6分)如图11,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A。

(1)画出将△OAB绕原点逆时针旋转90°后所得的△COD(点A的对应点是点C,点B的对应点是点D),并写出点C,D的坐标;
(2)作△OAB关于原点O的中心对称图形△OA2B2,写出对称点A2,B2的坐标。

图11
图12
(6分)如图12,在Rt△OAB中,∠OAB=90°,20。

OA=AB=6,将△OAB绕点O沿逆时针旋转90°得到△OA1B1,解答下列各题。

(1)线段OA1的长是[CD#4],∠AOB1的度数是[CD#4];
(2)连接AA1,求证:四边形OAA1B1是平行四边形。

(8分)如图13,在Rt△ABC中,∠ACB=90°,21。

点D,F分别在AB,AC上,CF=CB。

连接CD,把线段CD绕点C按顺时针旋转90°后得CE,连接EF。

(1)求证:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度数。

22。

(8分)在3×3的正方形网格中,每个网格
都有三个小正方形被涂黑。

(1)在图14中将一个空白部分的小正方形涂黑,使其余空白部分是轴对称图形但不是中心对称图形;
(2)在图15中将两个空白部分的小正方形涂黑,使其余空白部分是中心对称图形但不是轴对称图形。

T5”]图14 图15
23。

(8分)如图16,二次函数y=ax2+bx的图象经过点A(4,0),B(2,2),连接OB,AB。

(1)求a,b;
(2)将△OAB绕点O按顺时针旋转135°得到△OA′B′,则线段A′B′的中点P的坐标为[CD#4],并判断点P是否在此二次函数的图象上,说明你的理由。

[JZ]
图16
24。

(10分)如图17,已知正方形ABCF中,点D在对角线AC上,将△ABD绕顶点B沿顺时针旋转90°后得到△CBE。

(1)求∠DCE的度数;
(2)[JP3]当AB=4,AD[DK]∶DC=1[DK]∶3时,求DE的长。

[JP]
图17
25。

(10分)如图18,在△ABC中,∠BAC=90°,AB=AC=2[]2。

(1)点D是BC边上一点,且BD=1,将射线AD绕点A逆时针旋转45°得到射线AE,交BC于点E,求DE的长。

(2)若将(1)中的条件“点D是BC边上一点”改为点D是直线BC上一点,其他条件不变,在(1)的条件下,如何求DE的长,请画出图形,并直接写出结果。

[TS(][JZ]T5"H]图18
26。

(10分)如图19,△ABC是等腰直角三角形,AB=2[]2,D为斜边BC上的一点(D与B,C均不重合),连接AD,把△ABD绕点A按逆时针旋转后得到△ACE,连接DE,设BD=x。

(1)求证:∠DCE=90°;
(2)当△DCE的面积为1。

5时,求x的值;
(3)试问△DCE的面积是否存在最大值,若存在,请求出这个最大值,并指出此时x的取值,若不存在,请说明理由。

相关文档
最新文档