第23章 旋转单元测试卷(含答案)
旋转单元测试试题及答案
第13题.如图,已知四边形 ,是关于点 成中心对称图形,试判定四边形 的形状.并说明理由.
答案:解:是平行四边形,理由如下:
四边形 是关于点 成中心对称图形.
.
四边形 是平行四边形.
第14题. 在等边三角形、平行四边形、矩形和圆这四个图形中,即是轴对称图形,又是中心对称图形的有( )
A.1个B.2个C.3个D.4个
A.矩形、菱形、正方形都是中心对称图形,对角线的交点是对称中心
B.中心对称的对称中心只有一个,而轴对称图形的对称轴可能不只一条
C.中心对称图形一定是轴对称图形
D.正方形有4条对称轴,一个对称中心
答案:C.
第20题.把图中的各三角形绕 边中点 ,旋转 ,画出得到的图形,并说明拼成了一个什么图形?分析它的对称性.
答案:B.
第32题. 下列文字中属于中心对称图形的有( )
A.干B.中C.我D.甲
答案:B.
第33题. 下图中是中心对称图形的是( )
A.A和BB.B和CC.C和DD.都是
答案:B.
第34题.如图 与 关于 点成中心对称.则 _______ , ______, ________.
答案:=, , .
第35题.已知四边形 和点 ,作四边形 使四边形 和四边形 交于点 成中心对称.
A.只能作一个B.能作三个C.能作无数个D.不存在
答案:A.
第24题. 已知 及边 上一点 ,画出 以点 为对称中心的对称图形.
答案:略.
第25题. 等边三角形、正方形、菱形和等腰梯形这四个图形中,是中心对称图形的有( )
A.1个B.2个C.3个D.4个
答案:B.
第26题. 下列各图中,不是中心对称图形的是( )
【5套打包】呼和浩特市初三九年级数学上(人教版)第二十三章旋转检测试卷(含答案)
人教版九年级上册第二十三章旋转单元测试卷一、单选题1.下列电视台的台标中,是中心对称图形的是()A. B. C. D.2.如图的四个图形中,由基础图形通过平移、旋转或轴对称这三种变换都能得到的是()A. B. C. D.3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A. 线段B. 直角三角形C. 等边二角形D. 平行四边形4.在平面直角坐标系内,点(-1,2)关于原点对称的点的坐标是()A. (2,-1)B. (1,2)C. (1,-2)D. (-1,-2)5.在平面直角坐标系中,点的坐标为,以原点为中心,将点顺时针旋转得到点,则点的坐标为()A. B. C. D.6.如图,的斜边在轴上,,含角的顶点与原点重合,直角顶点在第二象限,将绕原点顺时针旋转后得到,则点的对应点的坐标是()A. B.C. D.二、填空题7.如图,正方形ABCD的边长为4,点E是CD的中点,AF平分∠BAE交BC于点F,将△ADE 绕点A顺时针旋转90°得△ABG,则CF的长为________.8.如图所示的图案是由全等的图形拼成的,其中AD=0.5cm,BC=1cm,则AF=________cm.9.如图,正方形ABCD可以看作由什么“基本图形”经过怎样的变化形成的?________.三、作图题10.如图,4×6的正方形网格中,每个小正方形的顶点称为格点,A,B,C均为格点。
在下列各图中画出四边形ABCD,使点D也为格点,且四边形ABCD分别符合下列条件:(1)是中心对称图形(画在图1中)(2)是轴对称图形(画在图2中)(3)既是轴对称图形,又是中心对称图形(画在图3中)11.如图,请在图中按要求解答下面问题①作出三角形ABC关于直线l对称的三角形A1B1C1;②作出将三角形ABC绕着点B顺时针旋转90度得到的三角形A2BC212.已知:在平面直角坐标系中,的三个顶点的坐标分别为,,.①画出关于原点成中心对称的,并写出点的坐标;②画出将绕点按顺时针旋转所得的.13.已知在图(1)与图(2)中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上.(1)将关于点对称,在图(1)中画出对称后的图形,并涂黑;(2)将△OAB先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑。
第23章_旋转单元测试A卷(含答案)
第23章旋转单元测试题2一、选择题(每小题3分,共33分)1.下列正确描述旋转特征的说法是()A.旋转后得到的图形与原图形形状与大小都发生变化.B.旋转后得到的图形与原图形形状不变,大小发生变化.C.旋转后得到的图形与原图形形状发生变化,大小不变.D.旋转后得到的图形与原图形形状与大小都没有变化.2.下列描述中心对称的特征的语句中,其中正确的是()A.成中心对称的两个图形中,连接对称点的线段不一定经过对称中心B.成中心对称的两个图形中,对称中心不一定平分连接对称点的线段C.成中心对称的两个图形中,对称点的连线一定经过对称中心,但不一定被对称中心平分D.成中心对称的两个图形中,对称点的连线一定经过对称中心,且被对称中心平分3.右边的图案是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.①⑤B.②④C.③⑤D.②⑤4.下列图形中即是轴对称图形,又是旋转对称图形的是()A.(l)(2)B.(l)(2)(3)C.(2)(3)(4)D.(1)(2)(3(4)5.下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。
A.5个 B.2个 C.3个 D.4个6.在平面直角坐标系中,点P(2,—3)关于原点对称的点的坐标是()A.(2,3) B.(—2,3) C.(—2,—3) D.(—3,2)7.将图形按顺时针方向旋转900后的图形是( )8.将一图形绕着点O顺时针方向旋转700后,再绕着点O逆时针方向旋转1200,这时如果要使图形回到原来的位置,需要将图形绕着点O什么方向旋转多少度?()A、顺时针方向500B、逆时针方向500C、顺时针方向1900D、逆时针方向19009.如图所示,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.l个 B.2个C.3个D.4个10.如图,把图①中的△ABC 经过一定的变换得到图②中的,如果图①中△ABC上点P的坐标为,那么这个点在图②中的对应点的坐标为()A .B .C .D .11.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为()A.︒30 B.︒60 C.︒120 D.︒180二、填空题(每小题3分,共21分)12.一条线段绕其上一点旋转90°与原来的线段位置关系.13.下列大写字母A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z旋转90°和原来形状一样的有,旋转180°和原来形状一样的有.14.钟表的分针匀速旋转一周需要60分钟,它的旋转中心是____________,经过20分钟,分针旋转了____________。
人教版九年级数学上册第23章《图形的旋转》单元检测试题2
第 23 章旋转单元检测( B 卷)附答案(满分 100 分,时间40 分钟)命题人:陈锦喜单位:矿泉中学试卷命题企图 : 中考取有好多实质操作题,可是考试中有时不行能实质操作,这就需要同学们在平常着手,培育自己的实践操作能力. “旋转”既考察基着手操作有考察图形空间想象能力,本测试题是在掌握本章的知识基础长进行提高和稳固,考察数学解题过程,学生解题的切入点不一样,运用的思想方法不一样,表现出不一样的思想水平。
使不一样思想层次的考生都有表现的时机,进而有效地域分出学生不一样的数学能力。
试卷展望难度为0.6 左右。
一. 选择题 ( 每题 4 分,共 20 分)1.如图 , 过圆心 O和圆上一点 A 连一条曲线 ,将曲线OA绕 O点按同一方向连续旋转三次, 每次旋转900, 把圆分红四部分 , 则( )AA.这四部分不必定相等B.这四部分相等O·C.前一部分小于后一部分D.不可以确立2.图( 1)中,能够经过旋转和翻折形成图案(2)的梯形切合条件为()A.等腰梯形 ; B .上底与两腰相等的等腰梯形 ;C.底角为 60°且上底与两腰相等的等腰梯形;D.底角为 60°的等腰梯形3.按序连结矩形各边中点所得的四边形()A.是轴对称图形而不是中心对称图形; B.是中心对称图形而不是轴对称图形;C.既是轴对称图形又是中心对称图形; D.没有对称性4.如图,直线y= 3 x+ 3 与y轴交于点P,将它绕着点P 旋转 90?°所得的直线的分析式为().A. y=3x+ 3B. y=-3x+ 3 33C. y= 1x+ 3D. y=-1x+ 3 335.如图,△ ABC中,∠ B=90°,∠ C=30°, AB=1,将△ ABC?绕极点 A 旋转 180°,点 C 落在C′处,则 CC′的长为()A.4 B .42C.23 D .25二、填空题(每题 4 分,共 20 分)6.以下图的五角星绕中心点旋转必定的角度后能与自己完整重合,则其旋转的角度起码为 __ ______ .7.如图,将 Rt △ ABC 绕点 C 按顺时针方向旋转 90°到△ A?′B′ C 的地点, ?已知斜边AB=?10cm,?BC=?6cm, ?设 A?′ B?′的中点是 M,?连结 AM, ?则 AM= cm .8.以下图,P 是等边△ ABC 内一点,△ BMC 是由△ BPA 旋转所得,则∠PBM =.9.如图,设 P 是等边三角形 ABC 内随意一点,△ ACP′是由△ ABP 旋转获得的,则 PA___ ___PB+ PC(填“ >”、“<”或“=” ).第 8题图第9题图第10题图10.如图, E、F 分别是正方形ABCD 的边 BC、CD 上一点,且BE+ DF = EF,则∠ EAF =____ .三. 解答题(共 60 分)11.( 10 分)作图 (1) 已知△ ABC和点 O,画出△ DEF,使△ DEF和△ ABC对于点 O成中心对称.(2)已知四边形 ABCD和点 O,求作四边形 A'B'C'D' ,使四边形 A'B'C'D' 和四边形 ABCD对于点 O成中心对称 .12.( 10 分)如图是一个每边长4m 的荷花池, O 到各极点距离相等,计划在池中安装13盏灯,使夜景变得更为美丽。
第23章 旋转单元测试卷(解析卷)
中小学教育资源及组卷应用平台○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________第23章 旋转单元测试卷参考答案与试题解析一.选择题(共10小题,每小题3分,满分30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.解:根据轴对称图形的定义,选项中轴对称图形有A 、C 、D , 根据中心对称图形的定义,选项中的中心对称图形有B 、D , 综上可知,既是轴对称图形又是中心对称图形的是D , 故答案为:D.2.如图,已知点O 是六边形ABCDEF 的中心,图中所有的三角形都是等边三角形,则下列说法正确的是( )A. △ODE 绕点O 顺时针旋转60°得到△OBCB. △ODE 绕点O 逆时针旋转120°得到△OABC. △ODE 绕点F 顺时针旋转60°得到△OABD. △ODE 绕点C 逆时针旋转90°得△OAB 解:A 、因为点O 是六边形ABCDEF 的中心,图中所有的三角形都是等边三角形,所以△ODE 绕点O 顺时针旋转120°得到△OBC ,所以A 不符合题意;B 、因为点O 是六边形ABCDEF 的中心,图中所有的三角形都是等边三角形,所以△ODE 绕点O 顺时针旋转120°得到△OBC ,所以B 不符合题意;C 、因为点O 是六边形ABCDEF 的中心,图中所有的三角形都是等边三角形,所以△ODE 绕点F 顺时针旋转60°时,点O 旋转到点A 得,点E 旋转到点O ,点D 旋转到点B ,所以C 符合题意;D 、因为点O 是六边形ABCDEF 的中心,图中所有的三角形都是等边三角形,所以△ODE 绕点C 顺时针旋转60°得到△OBC ,所以D 不符合题意. 故答案为:C3.若点P 关于x 轴对称点为P 1(2a+b ,3),关于y 轴对称点为P 2(9,b+2),则点P 坐标为( ) A. (9,3) B. (﹣9,3) C. (9,﹣3) D. (﹣9,﹣3) 解:由题意得:解得:a =−2,b =−5,∵P 1(2a +b ,3), ∴P 1(−9,3), ∴P (−9,−3), 故答案为:D4. 如图,将△ABC 绕点C 顺时针旋转90°得到△EDC . 若点A , D , E 在同一条直线上,∠ACB =20°,则∠ADC 的度数是( )A. 55°B. 60°C. 65°D. 70° 解:∵将△ABC 绕点C 顺时针旋转90°得到△EDC . ∴∠ACE =90°,AC =CE , ∴∠E =45°,∵∠ADC 是△CDE 的外角,∴∠ADC =∠E +∠DCE =45°+20°=65°,故答案为:C 。
《第23章 旋转》单元测试卷
《第23章 旋转》单元测试卷一、选择题:(本大题10个小题,每小题4分,共40分)每小题只有一个答案是正确的,请将正确答案的代号填入题后的括号内. 1.(4分)下面四个图案中,不能由基本图案旋转得到的是( ) A .B .C .D .2.(4分)△ABC 绕点A 按顺时针方向旋转了60°得△AEF ,则下列结论错误的是( ) A . ∠BAE=60° B . A C=AF C . E F=BC D . ∠BAF=60° 3.(4分)下列五个结论,其中属于旋转、平移和轴对称三种变换的共同性质的有( ) ①对应点连线平行; ②对应点连线相交于一点; ③对应线段相等; ④变换前后的图形是全等形,形状和大小都没有改变; ⑤位置发生了改变.A . 2个B . 3个C . 4个D . 5个 4.(4分)如图,△ABC 与△A′B′C′是成中心对称,下列说法不正确的是( )A . S △ABC =S △A′B′C′B .AB=A′B′,AC=A′C′,BC=B′C′C . A B ∥A′B′,AC ∥A′C′,BC ∥B′C′D . S △ACO =S △A′B′O5.(4分)(2013•天水)下列图形中,中心对称图形有( )A . 1个B . 2个C . 3个D . 4个6.(4分)你玩过扑克牌吗?你仔细观察过每张扑克牌的图案吗?下列扑克牌的图案中,是中心对称的一组是()A.红挑6与红挑4 B.方块6与方块4 C.梅花6与梅花4 D.黑挑6与黑挑47.(4分)(2010•沈阳)如图,在方格纸上建立的平面直角坐标系中,Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△FEC,则点A的对应点F的坐标是()A.(﹣1,1)B.(﹣1,2)C.(1,2)D.(2,1)8.(4分)经过矩形对称中心的任意一条直线,把这个矩形分成两部分,设这两部分的面积分别为S1和S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定9.(4分)点P(2a+1,4)与P′(1,3b﹣1)关于原点对称,则2a+b=()A.﹣3 B.﹣2 C.3D.210.(4分)(2007•白银)4张扑克牌阵图(1)所示放在桌面上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左到右数起是()A.第一张B.第二张C.第三张D.第四张二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填写在题后的横线上.11.(4分)一条线段绕它的一个端点旋转90°后与原来线段的位置关系是_________;把一个平行四边形绕对角线交点旋转_________度第一次与自身重合.12.(4分)如图,△ABC绕点A旋转30°后成△ADE,已知∠CAB=100°,则∠EAD=_________,∠BAD=_________.13.(4分)如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的,如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为_________.14.(4分)(2010•聊城)如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,Rt△AB′C′可以看作是由Rt△ABC绕点A逆时针方向旋转60°得到的,则线段B′C的长为_________.15.(4分)(2007•江苏)用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为_________度.16.(4分)(2007•梅州)如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90度.将此三角形纸片沿AD剪开,得到两个三角形,若把这两个三角形拼成一个平行四边形,则能拼出平行四边形_________个.三、解答题:(本大题4个小题,每小题6分,共24分)下列各题解答时必须给出必要的演算过程或推理步骤.17.(6分)(2005•长沙)如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.(1)三角尺旋转了多少度_________度;(2)连接CD,试判断△CBD的形状;_________.(3)求∠BDC的度数._________度.18.(6分)△ABC是等边三角形,D是BC上一点,△ABD经旋转后到达△ACE的位置.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若M是AB的中点,那么经过上述旋转后,点M转到了什么位置?19.(6分)已知:如图,△ABD≌△FEC,D与C的对应顶点.(1)△FEC可以看作是由△ABD通过怎样的旋转变换得到的?(2)BD与EC的位置关系是什么,为什么?20.(6分)(2010•新疆)(北师大版)用四块如图①所示的正方形瓷砖拼成一个新的正方形,使拼成的图案是一个轴对称图形.请你在图②、图③、图④中各画一种拼法(要求三种拼法各不相同,且其中至少一个既是轴对称图形,又是中心对称图形).四、解答题:(本大题4个小题,每小题10分,共40分)下列各题解答时必须给出必要的演算过程或推理步骤.21.(10分)如图所示的正方形网格中,每小格均为边长是1的正方形,△ABC的顶点均在格点上,请在所给直角坐标系中解答下列问题:(1)分别写出点A、B的坐标;(2)将△ABC向下平移3个单位长度;作出平移后的△A1B1C1;(3)作出△ABC关于坐标原点成中心对称的△A2B2C2;(4)△A1B1C1与△A2B2C2构成对称图形吗?若是,请在图上画出对称轴或对称中心.22.(10分)(2010•庆阳)图①、图②均为7×6的正方形网格,点A、B、C在格点上.(1)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形.(画一个即可)(2)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形.(画一个即可)23.(10分)(2013•大丰市一模)请认真观察图(1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征:特征1:_________;特征2:_________.(2)请在图(2)中设计出你心中最美的图案,使它也具备你所写出的上述特征(用阴影表示).24.(10分)如图,已知∠BAC=90°,△ABC绕点A逆时针旋转得到△ADE,恰好D在BC 上,连接CE.(1)∠BAE与∠DAC有何关系?并说明理由;(2)线段BC与CE在位置上有何关系?为什么?五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.(10分)已知:如图,E点是正方形ABCD的边AB上一点,AB=4,DE=6,△DAE逆时针旋转后能够与△DCF重合.(1)旋转中心是_________.旋转角为_________度.(2)请你判断△DFE的形状,并说明理由.(3)求四边形DEBF的周长和面积.26.(12分)(2012•东台市一模)如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋转90°后得到△CBE.(1)求∠DCE的度数;(2)当AB=4,AD:DC=1:3时,求DE的长.《第23章旋转》2012年单元测试卷(涪陵二中)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)每小题只有一个答案是正确的,请将正确答案的代号填入题后的括号内.1.(4分)下面四个图案中,不能由基本图案旋转得到的是()A.B.C.D.考点:利用旋转设计图案.分析:寻找基本图形,旋转中心,旋转角,旋转次数,逐一判断.解答:解:A、可由一个基本“花瓣”绕其中心经过7次旋转,每次旋转45°得到;B、可由一个基本“菱形”绕其中心经过5次旋转,每次旋转60°得到;C、可由一个基本图形绕其中心旋转180°得到;D、不能由基本图案旋转得到.故选D.点评:本题考查了旋转的基本知识,培养学生分析和判断问题的能力.2.(4分)△ABC绕点A按顺时针方向旋转了60°得△AEF,则下列结论错误的是()A.∠BAE=60°B.A C=AF C.E F=BC D.∠BAF=60°考点:旋转的性质.分析:作出图形,然后根据旋转变换只改变图形的位置不改变图形的形状与大小,对应边的夹角等于旋转角对各选项分析判断后利用排除法求解.解答:解:A、∵旋转了60°,∴∠BAE=60°,正确,故本选项错误;B、∵AC、AF是对应边,∴AC=AF正确,故本选项错误;C、∵EF、BC是对应边,∴EF=BC正确,故本选项错误;D、∠BAF=60°﹣∠BAC≠60°,故本选项正确.故选D.点评:本题考查了旋转的性质,熟练掌握旋转的性质是解题的关键,作出图形更形象直观.3.(4分)下列五个结论,其中属于旋转、平移和轴对称三种变换的共同性质的有()①对应点连线平行;②对应点连线相交于一点;③对应线段相等;④变换前后的图形是全等形,形状和大小都没有改变;⑤位置发生了改变.A.2个B.3个C.4个D.5个考点:几何变换的类型.分析:根据旋转、平移和轴对称三种变换的性质对各小题进行判断即可得解.解答:解:①对应点连线平行旋转变换不具有;②对应点连线相交于一点只有旋转变换具有;③对应线段相等三种变换都具有;④变换前后的图形是全等形,形状和大小都没有改变,三种变换都具有;⑤位置发生了改变轴对称变换位置不一定改变,例如轴对称图形关于对称轴变换;综上所述,三种变换都具有的性质有③④共2个.故选A.点评:本题考查了几何变换的类型,熟练掌握旋转、平移和轴对称三种变换的性质是解题的关键,需熟记.4.(4分)如图,△ABC与△A′B′C′是成中心对称,下列说法不正确的是()A.S△ABC=S△A′B′C′B.A B=A′B′,AC=A′C′,BC=B′C′D.S△ACO=S△A′B′OC.A B∥A′B′,AC∥A′C′,BC∥B′C′考点:中心对称.分析:根据中心对称图形的性质,即可作出判断.解答:解:A、根据中心对称的两个图形全等,即可得到,故正确;B、中心对称图形中,对称点到对称中心的距离相等,故正确;C、根对称点到对称中心的距离相等,即可证得对应线段平行,故正确;D、不正确.故选D.点评:本题主要考查了中心对称图形的性质,中心对称图形全等,且对称点到对称中心的距离相等.5.(4分)(2013•天水)下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:第一个图形是中心对称图形;第二个图形是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共3个中心对称图形.故选C.点评:掌握好中心对称图形的概念.中心对称图形关键是要寻找对称中心,旋转180度后两部分重合.6.(4分)你玩过扑克牌吗?你仔细观察过每张扑克牌的图案吗?下列扑克牌的图案中,是中心对称的一组是()A.红挑6与红挑4 B.方块6与方块4 C.梅花6与梅花4 D.黑挑6与黑挑4考点:中心对称.分析:中心对称图形就是把一个图形绕着一个点,旋转180°以后能够与原来的图形重合,这样的图形就是中心对称图形,依据定义即可作出判断.解答:解:A、C、D中,旋转180度后,新图形中间的桃心和原图形桃心一个向上,一个向下,所以不是中心对称图形.故选B.点评:本题考查了中心对称,解答此题要熟悉扑克牌的花色,根据中心对称图形的定义将扑克牌旋转,能与原图重合的即为中心对称图形.7.(4分)(2010•沈阳)如图,在方格纸上建立的平面直角坐标系中,Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△FEC,则点A的对应点F的坐标是()A.(﹣1,1)B.(﹣1,2)C.(1,2)D.(2,1)考点:坐标与图形变化-旋转.分析:如图,Rt△ABC绕点C按顺时针方向旋转90°得到Rt△FEC,根据旋转的性质知道CA=CF,∠ACF=90°,而根据图形容易得到A的坐标,也可以得到点A的对应点F的坐标.解答:解:如图,将Rt△ABC绕点C按顺时针方向旋转90°得到Rt△FEC,∴根据旋转的性质得CA=CF,∠ACF=90°,而A(﹣2,1),∴点A的对应点F的坐标为(﹣1,2).故选B.点评:本题涉及图形体现了新课标的精神,抓住旋转的三要素:旋转中心C,旋转方向顺时针,旋转角度90°,通过画图即可得F点的坐标.8.(4分)经过矩形对称中心的任意一条直线,把这个矩形分成两部分,设这两部分的面积分别为S1和S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定考点:中心对称.分析:根据矩形对角线相等且平分的性质,易证△OEC≌△OFA,△DEO≌△BFO,△AOD≌△BOC,即可证明S1=S2,即可解题.解答:解:矩形ABCD中,AD=BC,AO=BO=CO=DO,∴△AOD≌△BOC(SSS),∵∠ECO=∠FAO,OA=OC,∠EOC=∠FOA,∴△OEC≌△OFA,同理可证,△DEO≌△BFO,∴S1=S2.故选C.点评:本题考查了矩形对角线相等且互相平分的性质,全等三角形的证明,全等三角形面积相等的性质,本题中求证△OEC≌△OFA是解题的关键.9.(4分)点P(2a+1,4)与P′(1,3b﹣1)关于原点对称,则2a+b=()A.﹣3 B.﹣2 C.3D.2考点:关于原点对称的点的坐标.分析:根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)可得到a,b的值,再代入2a+b中可得到答案.解答:解:∵点P(2a+1,4)与P′(1,3b﹣1)关于原点对称,∴2a+1=﹣1,3b﹣1=﹣4,∴a=﹣1,b=﹣1,∴2a+b=2×(﹣1)+(﹣1)=﹣3.故选A.点评:此题主要考查了坐标系中的点关于原点对称的坐标特点.注意:关于原点对称的点,横纵坐标分别互为相反数.10.(4分)(2007•白银)4张扑克牌阵图(1)所示放在桌面上,小敏把其中一张旋转180°后得到如图(2)所示,那么她所旋转的牌从左到右数起是()A.第一张B.第二张C.第三张D.第四张考点:中心对称图形.专题:操作型.分析:根据旋转的性质,旋转前后图形的大小和形状没有改变,必须是图形中心对称图形;找4个图形中的中心对称图形可得答案.解答:解:根据旋转的性质,旋转前后图形的大小和形状没有改变,其必须是中心对称图形.分析可得只有第一张是中心对称图形;而第(2)(3)(4)张均不符合.故选A.点评:根据旋转的性质,旋转前后图形的大小和形状没有改变且与原图重合.二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填写在题后的横线上.11.(4分)一条线段绕它的一个端点旋转90°后与原来线段的位置关系是垂直;把一个平行四边形绕对角线交点旋转180度第一次与自身重合.考点:旋转的性质.分析:根据垂直的定义和平行四边形的中心对称性解答.解答:解:一条线段绕它的一个端点旋转90°后与原来线段的位置关系是垂直;把一个平行四边形绕对角线交点旋转180度第一次与自身重合.故答案为:垂直;180.点评:本题考查了旋转的性质,平行四边形是中心对称图形,是基础题.12.(4分)如图,△ABC绕点A旋转30°后成△ADE,已知∠CAB=100°,则∠EAD=100°,∠BAD=30°.考点:旋转的性质.分析:根据旋转的性质,旋转变换只改变图形的位置不改变图形的形状与大小可得∠EAD=∠CAB,对应边AB、AD的夹角等于旋转角解答即可.解答:解:∵△ABC绕点A旋转30°后成△ADE,∴∠EAD=∠CAB=100°,∠BAD=30°.故答案为:100°;30°.点评:本题考查了旋转的性质,是基础题,熟记性质是解题的关键.13.(4分)如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的,如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为(5,2).考点:坐标与图形变化-旋转.分析:利用对应点连线AD、BE、CF中任意两条中垂线的交点就是对称中心,进而得出P点坐标即可.解答:解:如图所示:作出对应点连线AD、BE、CF中任意两条中垂线的交点P,就是对称中心,∵(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,∴点P的位置为:(5,2).故答案为:(5,2).点评:此题主要考查了图形的旋转变换以及坐标确定位置,根据已知得出P点位置是解题关键.14.(4分)(2010•聊城)如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,Rt△AB′C′可以看作是由Rt△ABC绕点A逆时针方向旋转60°得到的,则线段B′C的长为.考点:旋转的性质.专题:压轴题.分析:作B′E⊥AC交CA的延长线于E,由直角三角形的性质求得AC、AE,BC的值,根据旋转再求出对应角和对应线段的长,再在直角△B′EC中根据勾股定理求出B′C的长度.解答:解:如图,作B′E⊥AC交CA的延长线于E.∵∠ACB=90°,∠BAC=60°,AB=6,∴∠ABC=30°,∴AC=AB=3,∵Rt△AB′C′可以看作是由Rt△ABC绕点A逆时针方向旋转60°得到的,∴AB=AB′=6,∠B′AC′=60°,∴∠EAB′=180°∠BAC=60°.∵B′E⊥EC,∴∠AB′E=30°,∴AE=3,∴根据勾股定理得出:B′E==3,∴EC=AE+AC=6,∴B′C===3.点评:本题把旋转的性质和直角三角形的性质结合求解,考查了学生综合运用数学知识的能力.15.(4分)(2007•江苏)用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为22度.考点:旋转的性质;等腰直角三角形;专题:计算题.分析:由平移的性质知,AO∥SM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.解答:解:由平移的性质知,AO∥SM,故∠WMS=∠OWM=22°;故答案为:22.点评:本题利用了两直线平行,内错角相等,及平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.16.(4分)(2007•梅州)如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90度.将此三角形纸片沿AD剪开,得到两个三角形,若把这两个三角形拼成一个平行四边形,则能拼出平行四边形3个.考点:平行四边形的判定;等腰三角形的性质.专题:压轴题;操作型.分析:分别以小直角三角形的三边为对角线,并令对应边重合,即可拼出图形,然后根据平行四边形的判定条件作答.解答:解:若要拼成平行四边形,即是分别让它们的一组对应边重合,另外两组对应边分别平行.故能拼出3个.故答案为:3.点评:本题灵活考查了平行四边形的判定,熟练掌握判定定理是解题的关键,题意新颖,是道好题.三、解答题:(本大题4个小题,每小题6分,共24分)下列各题解答时必须给出必要的演算过程或推理步骤.17.(6分)(2005•长沙)如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.(1)三角尺旋转了多少度150度;(2)连接CD,试判断△CBD的形状;等腰三角形.(3)求∠BDC的度数.15度.考点:旋转的性质;等腰三角形的性质.专题:综合题.分析:根据等腰三角形的定义判断.根据30°的直角三角形的性质及∠CBE=180°,通过角的和差关系进行计算.解答:解:(1)∵三角尺旋转的度数即为一条边旋转后与原边组成的角,∴三角尺的斜边AB旋转到EB后AB与BE所组成的角∠ABE=180°﹣∠ABC=180°﹣30°=150°.(2)∵图形旋转前后两图形全等,∴CB=DB,故△CBD为等腰三角形.(3)∵三角形CBD中∠DBE为∠CBA旋转以后的角,∴∠DBE=∠CBA=30°,故∠DBC=180°﹣∠DBE=180°﹣30°=150°,又∵BC=BD,∴∠BDC=∠BCD==15°.点评:此题根据等腰三角形的性质,即图形旋转后与原图形全等解答.18.(6分)△ABC是等边三角形,D是BC上一点,△ABD经旋转后到达△ACE的位置.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若M是AB的中点,那么经过上述旋转后,点M转到了什么位置?考点:旋转的性质.专题:几何图形问题.分析:(1)观察图形,由于△ABC是等边三角形,D是BC上一点,△ABD经旋转后到达△ACE的位置,可得出旋转中心;(2)观察图形,线段AB旋转后,对应边是AC,∠BAC就是旋转角,可得出旋转角;(3)因为旋转前后AB、AC是对应边,故AB的中点M,旋转后就是AC的中点了.解答:解:(1)∵△ABD经旋转后到达△ACE,它们的公共顶点为A,∴旋转中心是点A;(2)线段AB旋转后,对应边是AC,∠BAC就是旋转角,也是等边三角形的内角,是60°,∴旋转了60°;(3)∵旋转前后AB,AC是对应边,故AB的中点M,旋转后就是AC的中点了,∴点M转到了AC的中点.点评:本题考查了图形的旋转变化,学生要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.19.(6分)已知:如图,△ABD≌△FEC,D与C的对应顶点.(1)△FEC可以看作是由△ABD通过怎样的旋转变换得到的?(2)BD与EC的位置关系是什么,为什么?考点:旋转的性质;平行线的判定.专题:探究型.分析:(1)△ABD旋转得到△FEC,首先确定对应点,即可确定旋转中心,以及旋转角;(2)根据旋转的性质,即可得到BD与EC的位置关系.解答:解:(1)△FEC可以看作是由△ABD绕CD的中点旋转180°得到;(2)BD∥EC.根据中心对称中,对应点的连线被对称中心平分,则对应线段一定平行或在一条直线上.点评:正确确定旋转的方式,首先要确定旋转前后两图的对应顶点.20.(6分)(2010•新疆)(北师大版)用四块如图①所示的正方形瓷砖拼成一个新的正方形,使拼成的图案是一个轴对称图形.请你在图②、图③、图④中各画一种拼法(要求三种拼法各不相同,且其中至少一个既是轴对称图形,又是中心对称图形).考点:利用旋转设计图案;利用轴对称设计图案.专题:作图题.分析:根据图中画出的折痕分别作出轴对称和中心对称图形.要注意:轴对称图形关于某一直线对称,中心对称图形绕某一点旋转180度与原图重合.解答:解:点评:此题主要考查学生的动手实践能力和逻辑思维能力.趣味性强,便于操作,是一道好题.四、解答题:(本大题4个小题,每小题10分,共40分)下列各题解答时必须给出必要的演算过程或推理步骤.21.(10分)如图所示的正方形网格中,每小格均为边长是1的正方形,△ABC的顶点均在格点上,请在所给直角坐标系中解答下列问题:(1)分别写出点A、B的坐标;(2)将△ABC向下平移3个单位长度;作出平移后的△A1B1C1;(3)作出△ABC关于坐标原点成中心对称的△A2B2C2;(4)△A1B1C1与△A2B2C2构成对称图形吗?若是,请在图上画出对称轴或对称中心.考点:作图-轴对称变换.专题:网格型.分析:(1)根据A、B在坐标系中的位置写出坐标;(2)将△ABC向下平移3个单位长度即可;(3)分别作A、B、C三点关于原点的对应点,再顺次连接;(4)画图后易得△A1B1C1与△A2B2C2构成中心对称图形,连接A1A2、C1C2交于一点,就是对称中心.解答:解:(1)点A的坐标为(﹣2,3),点B的坐标为(﹣3,2),(2分)(2)如图所示(4分)(3)如图所示(6分)(4)△A1B1C1与△A2B2C2构成中心对称图形,连接A1A2、C1C2交于点P(在y轴上),点P就是它们的对称中心.(8分)点评:此题综合考查点的坐标、图形的平移、中心对称图形的画法以及对称点的确定.22.(10分)(2010•庆阳)图①、图②均为7×6的正方形网格,点A、B、C在格点上.(1)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形.(画一个即可)(2)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形.(画一个即可)考点:利用轴对称设计图案;作图-轴对称变换.专题:作图题;网格型;开放型.分析:先要找出什么样的图形是轴对称图形,什么样的图形是中心对称图形.解答:解:(1)有以下答案供参考:.(2)有以下答案供参考:.点评:此题主要考查了利用轴对称设计图案,考查中心对称、轴对称的概念与画图的综合能力.23.(10分)(2013•大丰市一模)请认真观察图(1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征:特征1:是轴对称图形;特征2:是中心对称图形.(2)请在图(2)中设计出你心中最美的图案,使它也具备你所写出的上述特征(用阴影表示).考点:利用旋转设计图案;利用轴对称设计图案.分析:(1)应从对称方面,阴影部分的面积等方面入手思考;(2)应画出既是中心对称图形,又是轴对称图形,且面积为4的图形.解答:解:(1)特征1:是轴对称图形,特征2:是中心对称图形;(2).点评:图形的特点应从对称性和面积等方面进行考虑.24.(10分)如图,已知∠BAC=90°,△ABC绕点A逆时针旋转得到△ADE,恰好D在BC 上,连接CE.(1)∠BAE与∠DAC有何关系?并说明理由;(2)线段BC与CE在位置上有何关系?为什么?考点:旋转的性质.分析:(1)根据旋转的性质可得∠BAC=∠DAE=90°,然后表示出∠CAE,再根据∠BAE=∠BAC+∠CAE列式整理即可得解;(2)根据旋转的性质可得AB=AD,AC=AE,再利用等腰三角形两底角相等表示出∠B、∠ACE,然后求出∠BCE=90°,根据垂直的定义即可得解.解答:解:(1)∠BAE与∠DAC互补.理由如下:由旋转的性质知:∠BAC=∠DAE=90°,∴∠CAE=∠DAE﹣∠DAC=90°﹣∠DAC,∵∠BAE=∠BAC+∠CAE=90°+(90°﹣∠DAC)=180°﹣∠DAC,∴∠BAE+∠DAC=180°,因此∠BAE与∠DAC互补;(2)线段BC⊥CE.理由如下:由旋转知:∠BAD=∠CAE,BA=DA,CA=EA,∴∠B=∠ADB=(180°﹣∠BAD),∠ACE=∠AEC=(180°﹣∠CAE),∴∠ACE=∠B,∴∠B+∠BCA=180°﹣90°=90°,∴∠BCE=∠BCA+∠ACE=∠BCA+∠B=90°,∴BC⊥CE.点评:本题考查了旋转的性质,等腰三角形两底角相等的性质,垂直的定义,熟练掌握旋转的性质是解题的关键.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.(10分)已知:如图,E点是正方形ABCD的边AB上一点,AB=4,DE=6,△DAE逆时针旋转后能够与△DCF重合.(1)旋转中心是D.旋转角为90度.(2)请你判断△DFE的形状,并说明理由.(3)求四边形DEBF的周长和面积.考点:旋转的性质.分析:(1)确定旋转中心及旋转的角度,首先确定哪是对应点,即可确定旋转中心以及旋转角;(2)根据旋转的性质,可以得到旋转前后的两个图形全等,以及旋转角的定义即可作出判断;(3)根据△DAE≌△DCF,可以得到:AE=CF,DE=DF,则四边形DEBF的周长就是正方形的三边的和与DE的和.解答:解:(1)旋转中心是点D.旋转角为90度.(2)根据旋转的性质可得:△DAE≌△DCF,则DE=DF,∠EDF=∠ADC=90°,则△DFE的形状是等腰直角三角形.(3)四边形DEBF的周长是BE+BC+CF+DF+DE=AB+BC+DE+DF=20;面积等于正方形ABCD的面积=16.点评:本题主要考查了旋转的性质,旋转不改变图形的形状与大小,只改变图形的位置,旋转前后两个图形全等.26.(12分)(2012•东台市一模)如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋转90°后得到△CBE.(1)求∠DCE的度数;(2)当AB=4,AD:DC=1:3时,求DE的长.考点:旋转的性质;等腰直角三角形.专题:计算题;压轴题.分析:(1)由题意我们知道∠A+∠C=90°,那么我们只要通过全等三角形来得出∠BCE=∠A,就能得出∠DCE=90°的结论,那么关键就是证明三角形ADB和CBE全等,根据题意我们知三角形CBE是由三角形ABD旋转得来,根据旋转的性质我们可得出两三角形全等.(2)由(1)可得出三角形DEC是个直角三角形,要求DE的长,就必须求出CD和CE,由(1)可知AD=CE,那么就必须求出AD和DC的长,有AD,CD的比。
2024-2025学年人教新版九年级上册数学《第23章+旋转》单元测试卷
2024-2025学年人教新版九年级上册数学《第23章旋转》单元测试卷一.选择题(共10小题,满分30分)1.如图,若点M是等边△ABC的边BC上一点,将△AMC绕点A顺时针旋转得到△ANB,连接MN,则下列结论:①∠BMN=30°;②MN=AM;③BN∥AM,其中正确的个数有()A.3个B.2个C.1个D.0个2.把如图所示的五角星图案,绕着它的中心旋转,若旋转后的五角星能与自身重合.则旋转角至少为()A.30°B.45°C.60°D.72°3.下列图形是中心对称图形的是()A.B.C.D.4.在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是()A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(3,1)5.我国杨秉烈先生在上世纪八十年代发明了繁花曲线规画图工具,利用该工具可以画出许多漂亮的繁花曲线,繁花曲线的图案在服装、餐具等领域都有广泛运用.下面四种繁花曲线中,是轴对称图形的是()A.B.C.D.6.如图,三个完全相同的四边形组成的图案绕点O旋转可以和原图形重合,则旋转角可以是()A.60°B.90°C.120°D.150°7.将如图所示的图案通过平移后可以得到的图案是()A.B.C.D.8.李明家有一个时钟,假期间,某天上午他8点整出门锻炼,回家时发现时针刚好旋转了60°,那么李明回家的时间是()A.9点整B.9点半C.10点整D.10点半9.如图,已知点A(﹣1,0),B(0,2),A与A′关于y轴对称,连结A′B,现将线段A′B以A′点为中心顺时针旋转90°得A'B',点B的对应点B′的坐标为()A.(3,1)B.(2,1)C.(4,1)D.(3,2)10.如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N二.填空题(共10小题,满分30分)11.在圆、正六边形、正八边形中,属于中心对称图形的有个.12.在平面直角坐标系中,若点A(a,3)与点B(﹣1,b)于原点对称,则a+b=.13.时钟从下午3时到晚上9时,时针沿顺时针方向旋转了度.14.如图,点O是矩形ABCD的对称中心,点P,Q分别在边AD,BC上,且PQ经过点O,AB=6,AP =3,BC=8,点E是边AB上一动点.则△EPQ周长的最小值为.15.如图,方格纸中每个小正方形的边长均为1,已知A(﹣1,3),B(﹣4,4),C(﹣2,1).(1)画△ABC关于原点成中心对称的△A1B1C1;(2)若第二象限存在点D,使点A、B、C、D构成平行四边形,则D的坐标为.16.如图,在平面直角坐标系中有一个航空母舰的简图.若将该图案各个顶点的纵坐标保持不变,横坐标都减去3,则所得到的新图案是由原图案向平移3个单位长度得到的.17.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为.18.如图是由中国结和雪花两种元素组成的一个图案,这个图案绕着它的旋转中心旋转角度α°(0°<α<360°)后能够与它本身重合,则角α最小是度.19.如图,小刚利用计算机绘制了一个树叶图案,曲线C1为抛物线的一部分,顶点为A,曲线C2与曲线C1关于直线y=﹣x对称,点B为点A的对称点,则点B的坐标为.20.如图,O是△ABC内的点,AB=AC,∠BAC=90°,∠BOC=130°,将△AOB绕点A按逆时针方向旋转90°,得到△ADC,连接OD.设∠AOB为α,当△COD为等腰三角形时,α为.三.解答题(共6小题,满分60分)21.如图,这是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,求BB'的长.22.已知点M(3m﹣2,2m+1),解答下列问题:(1)若点M与(﹣7,﹣7)关于原点对称,求点m的值;(2)若点N(3,9),且直线MN平行于x轴,求点M的坐标.23.如图,在五边形ABCDE中,∠EAB=∠BCD=90°,AB=BC,∠ABC=α,AE+CD=DE.(1)将△ABE绕点B顺时针旋转α,画出旋转后的△BCM,并证明D、C、M三点在一条直线上;(2)求证:△EBD≌△MBD.24.如图3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.25.如图,在△ABC中,AB=BC,点O是AC边上的中点,将△ABC绕着点O旋转180°得到△ACD.(1)求证:四边形ABCD是菱形;(2)如果∠ABC=30°,BC=2,求菱形ABCD的面积.26.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.参考答案与试题解析一.选择题(共10小题)1.【答案】C2.【答案】D3.【答案】B4.【答案】A5.【答案】C6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C二.填空题(共10小题)11.【答案】见试题解答内容12.【答案】﹣2.13.【答案】180.14.【答案】.15.【答案】(1)见解答.(2)(﹣5,2)或(﹣3,6).16.【答案】左.17.【答案】见试题解答内容18.【答案】60.19.【答案】(﹣2,0).20.【答案】85°或115°或145°.三.解答题(共6小题)21.【答案】4.22.【答案】(1)m=3;(2)M(10,9).23.【答案】(1)画图见解析,证明见解析;(2)见解析.24.【答案】见解析.25.【答案】(1)略;(2)2.26.【答案】见试题解答内容。
【5套打包】潍坊市初三九年级数学上(人教版)第二十三章旋转单元测试及答案
人教版九年级数学上册第23章旋转单元练习卷含答案(1)一、选择题1. 下列几个图形是国际通用的交通标志,其中不是中心对称图形的是()A. B. C. D.2.在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )A B C D3.下列运动形式属于旋转的是()A.在空中上升的氢气球B.飞驰的火车C.时钟上钟摆的摆动D.运动员掷出的标枪4.如图是扬州“三菱”电梯的标志,它可以看作是由菱形通过旋转得到的,每次旋转了()A.60°B.90°C.120°D.150°5. 若点P(-m,m-3)关于原点对称的点是第二象限内的点,则m满足()A. m>3B. 0<m≤3C. m<0D. m<0或m>36.如图,是用围棋子摆出的图案(围棋子的位置用有序数对表示,如点A在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)7.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是()A.(1,1)B.(2,0)C.(0,1)D.(3,1)8. 如图,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°.四边形ABCD是平行四边形,下列结论中错误的是()A. △ACE以点A为旋转中心,逆时针旋转90°后与△ADB重合B.△ACB以点A为旋转中心,顺时针旋转270°后与△DAC重合C. 沿AE所在直线折叠后,△ACE与△ADE重合D. 沿AD所在直线折叠后,△ADB与△ADE重合9.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转到ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.7 B.6 C.D.510.已知等边△ABC的边长为4,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是()A.B.C.2 D.不能确定二、填空题11. 钟表分针的运动可以看作是一种旋转现象,经过40分钟分针旋转了°. 12.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,点B,C旋转后的对应点分别是点D和E,连接BD,则∠BDE的度数是.13.如图,线段AB的端点A、B分别在x轴和y轴上,且A(2,0),B(0,4),将线段AB绕坐标原点O逆时针旋转90°得线段A'B',设线段AB'的中点为C,则点C的坐标是.14.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为____.15. 如图,△ABC绕点A逆时针旋转30°后到△A′B′C′的位置,若∠B′=45°,∠C′=60°,则∠B′AC=.16.如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按照逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按照逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P8的坐标为.17.如图,在△ABC中、∠C=90°,AC=3,BC=4,点O是BC的中点,将△ABC绕点O 旋转得△A'B'C',则在旋转过程中点A,C'两点间的最大距离是__________.18.如图,正方形ABCD,将正方形AEFG绕点A旋转,连接DF,点M是DF的中点,连接CM,若AB=4,AE=1,则线段CM的最大值为.三、解答题19.如图,△ABC为等边三角形,△AP′B旋转后能与△APC重合,那么:(1)指出旋转中心;(2)求旋转角的度数;(3)求∠PAP′的度数.20.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;直接写出点B2的坐标;(3)作出△ABC关于原点O成中心对称的△A3B3C3,并直接写出B3的坐标.21.如图,在平面直角坐标系中,O为坐标原点,每个小方格的边长为1个单位长度,在第二象限内有横、纵坐标均为整数的A,B两点,点B(-2,3),点A的横坐标为-2,且OA = 5.(1)直接写出A点的坐标,并连接AB,AO,BO;(2)画出△OAB关于点O成中心对称的图形△OA1B1,并写出点A1,B1的坐标(点A1,B1的对应点分别为A,B);(3)将△OAB逆时针旋转90°得到△O1A2B2,画出△O1A2B2.22.如图,在正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.(1)△DCF可以看成是△BCE绕点C旋转某个角度得到的吗?(2)若∠CEB=60°,求∠EFD的度数.23.如图①,△ABC和△AEF都为等腰直角三角形,∠ACB=∠AEF=90°,连接EC、BF,点D为BF的中点,连接CD.(1)如图①,当点E落在AB边上时,请判断线段EC与DC的数量关系,并证明你的结论;(2)将△AEF绕点A顺时针旋转n°(n<180),如图②,请判断线段EC与DC的数量关系,并证明你的结论;(3)若AC=2,点P为BC中点,动点Q满足PQ=,如图③,将线段AQ绕点A逆时针旋转90°到线段AM,连PM,则线段PM的最小值为.图①图②人教新版九年级数学上第23章旋转单元练习试题含详细答案一.选择题(共10小题)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是()A.36°B.60°C.72°D.90°3.如图,△ODC是由△OAB绕点O顺时针旋转50°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为130°,则∠C的度数是()A.25°B.30°C.35°D.40°4.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A.B.C.D.5.如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为()A.30°B.35°C.40°D.45°6.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移7.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n 的最小值为()A.45 B.60 C.72 D.1448.在平面直角坐标系中,点A的坐标是(1,3),将点A绕原点O顺时针旋转90°得到点A′,则点A′的坐标是()A.(﹣3,1)B.(3,﹣1)C.(﹣1,3)D.(1,﹣3)9.如图,在平面直角坐标系xOy中,点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过()A.点M B.点N C.点P D.点Q10.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′二.填空题(共9小题)11.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=度.12.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小是.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为.15.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M 是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.17.在△ABC中,∠C=90°,AC=BC,将△ABC绕点A按顺时针方向旋转60°到△AB′C′的位置,连结C′B、BB′,则∠BB′C′=.18.在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,使点B在直线CD上,连接OD交AB于点M,直线CD的解析式为.19.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是.三.解答题(共6小题)20.如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.21.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.23.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2B2C2.24.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.25.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.参考答案一.选择题(共10小题)1.解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.2.解:根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.3.解:∵∠AOC的度数为130°,∠AOD=∠BOC=50°,∴∠AOB=130°﹣50°=80°,∵△AOD中,AO=DO,∴∠A=(180°﹣50°)=65°,∴△ABO中,∠B=180°﹣80°﹣65°=35°,由旋转可得,∠C=∠B=35°,故选:C.4.解:A、B、C中只能由旋转得到,不能由平移得到,只有D可经过平移,又可经过旋转得到.故选:D.5.解:∵△ABC绕点A逆时针旋转110°,得到△ADE∴AB=AD,∠BAD=110°由三角形内角和∠B=故选:B.6.解:屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,可以先逆时针旋转90°,再向左平移.故选:A.7.解:该图形被平分成五部分,旋转72°的整数倍,就可以与自身重合,故n的最小值为72.故选:C.8.解:如图所示,由旋转可得:∠AOA'=∠BOC=90°,AO=A'O,∴∠AOB=∠A'OC,而∠ABO=∠A'CO=90°,∴△AOB≌△A'OC,∴A'C=AB=1,CO=BO=3,∴点A'的坐标为(3,﹣1),故选:B.9.解:由图形可得:OA=,OM=,ON=,OP=,OQ=5,所以点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过P点,故选:C.10.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.二.填空题(共9小题)11.解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=65°,∴∠B=65°.故答案为65.12.解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,分两种情况:①如图,当正△AEF在正方形ABCD内部时,在△ABE和△ADF中,∴△ABE≌△ADF(SSS),∴∠BAE=∠DAF=(90°﹣60°)=15°②如图,当正△AEF在正方形ABCD外部时,在△ABE和△ADF中,∴△ABE≌△ADF(SSS),∴∠BAE=∠DAF=(360°﹣90°+60°)=165°故答案为:15°或165°.13.解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).14.解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.15.解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).16.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.17.解:∵∠C=90°,AC=BC,∴∠ABC=∠BAC=45°,∵将△ABC绕点A按顺时针方向旋转60°到△AB′C′的位置,∴∠AB′C′=∠ABC=45°,∠BAB′=60°,AB′=AB,∴AB′=B′B=BA,∴∠AB′B=60°,∴∠BB′C′=∠AB′B﹣∠AB′C′=60°﹣45°=15°,故答案为:15°.18.解:∵△BOA绕点A按顺时针方向旋转得△CDA,∴△BOA≌△CDA,∴AB=AC,OA=AD,∵B、D、C共线,AD⊥BC,∴BD=CD=OB,∵OA=AD,BO=CD=BD,∴OD⊥AB,设直线AB解析式为y=kx+b,把A与B坐标代入得:,解得:,∴直线AB解析式为y=﹣x+4,∴直线OD解析式为y=x,联立得:,解得:,即M(,),∵M为线段OD的中点,∴D(,),设直线CD解析式为y=mx+n,把B与D坐标代入得:,解得:m=﹣,n=4,则直线CD解析式为y=﹣x+4.故答案为:y=﹣.19.解:取线段AC的中点G,连接EG,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=AB=6,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=CD=BC=3.故答案为3.三.解答题(共6小题)20.解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作21.解:(1)如图,△A1B1C1为所作,C1(﹣1,2);(2)如图,△A2B2C2为所作,C2(﹣3,﹣2);(3)因为A的坐标为(2,4),A3的坐标为(﹣4,﹣2),所以直线l的函数解析式为y=﹣x,22.解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).23.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.24.解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.25.解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC ≌△ADB (SAS );(2)∵四边形ADFC 是菱形,且∠BAC =45°,∴∠DBA =∠BAC =45°,由(1)得:AB =AD ,∴∠DBA =∠BDA =45°,∴△ABD 为直角边为2的等腰直角三角形,∴BD 2=2AB 2,即BD =2,∴AD =DF =FC =AC =AB =2,∴BF =BD ﹣DF =2﹣2.人教版九年级上册第二十三章旋转单元测试(含答案)(2)一、选择题:(每小题3分共30分)1.如图,在等腰直角△ABC 中,∠C =90°,将△ABC 绕顶点 A 逆时针旋转 80°后得△AB′C′,则∠CAB′的度数为( )A .45°B .80°C .125°D .130°2.如图,把ABC ∆绕着点A 逆时针旋转20︒得到ADE ∆,30BAC ∠=︒,则BAE ∠的度数为( )A .10︒B .20︒C .30°D .50︒3.图中,不能由一个基本图形通过旋转而得到的是( )A.B.C.D.4.在以下几种生活现象中,不属于旋转的是()A.下雪时,雪花在天空中自由飘落B.钟摆左右不停地摆动C.时钟上秒针的转动D.电风扇转动的扇叶5.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰直角三角形C.平行四边形D.菱形7.如图,将绕点逆时针旋转一定的角度,得到,且.若,,则的大小为()A. B. C. D.8.如图①,在△AOB 中,∠AOB=90°,OA=3,OB=4,AB=5.将△AOB 沿x 轴依次绕点A、B、O 顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为()A.(30,0) B.(32,0) C.(34,0) D.(36,0)△绕点B顺时针旋转60 得到DBE,点C的对应点E落在AB的延长9.如图,将ABC线上,连接,AD AC 与DE 相交于点F .则下列结论不一定正确的是( )A .60ABD CBE ︒∠=∠=B .ADB △是等边三角形C .BC DE ⊥D .60EFC ︒∠=10.在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC=5,BD=4,则以下四个结论中:①△BDE 是等边三角形; ②AE ∥BC ; ③△ADE 的周长是9; ④∠ADE=∠BDC .其中正确的序号是( )A .②③④B .①②④C .①②③D .①③④二、填空题:(每小题3分共18分)11.在平面直角坐标系中,点(45)P -,与点Q(4,1m -+)关于原点对称,那么m =_____;12.如图,等腰△ABC 中,∠BAC =120°,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转30°后,点D 落在边AB 上,点E 落在边AC 上,若AE =2cm ,则四边形ABDE 的面积是__________.13.如图,在ΔABC 中,AB=8,AC=6,∠BAC=30°,将ΔABC 绕点A 逆时针旋转60°得到△AB 1C 1,连接BC 1,则BC 1的长为________.14.如图,两块相同的三角板完全重合在一起,30,10A AC ∠==,把上面一块绕直角顶点B 逆时针旋转到''A BC ∆的位置,点'C 在AC 上,''A C 与AB 相交于点D ,则'BC =______.15.如图,在矩形ABCD 中,3AD =,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且60DAG ∠=︒,若EC =AB =__.16.如图,点D 是等边ABC △内部一点,1BD =,2DC =,AD =ADB ∠的度数为=________°.三、解答题:(共72分)17.如图,已知△ABC 的顶点A ,B ,C 的坐标分别是A (-1,-1),B (-4,-3),C (-4,-1).(1)作出△ABC 关于原点O 中心对称的图形△A ’B ’C ’;(2)将△ABC 绕原点O 按顺时针方向旋转90°后得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点A 1的坐标.18.已知,P 为等边三角形内一点,且BP=3,PC=4,将BP 绕点B 顺时针旋转60°至BP′的位置.(1)试判断△BPP′的形状,并说明理由;(2)若∠BPC=150°,求PA 的长度.19.如图,在平面直角坐标系中,直线:3l y x =-+与x 轴、y 轴分别交于点A ,B ,将点B 绕坐标原点O 顺时针旋转60︒得点C ,解答下列问题:(1)求出点C 的坐标,并判断点C 是否在直线l 上;(2)若点P 在x 轴上,坐标平面内是否存在点Q ,使得以P 、C 、Q 、A 为顶点的四边形是菱形?若存在,请直接写出Q 点坐标;若不存在,请说明理由.20.在Rt△ABC中,∠ACB=90°,,点D是斜边AB上一动点(点D与点A、B 不重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接AE,DE.(1)求△ADE的周长的最小值;(2)若CD=4,求AE的长度.21.四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=3,AB=7,求(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?请说明理由.22.如图所示:已知∠ABC=120°,作等边△ACD,将△ACD旋转60°,得到△CDE,AB=3,BC=2,求BD和∠ABD.23.如图,把一副三角板如图①放置,其中,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图②).(1)求∠OFE1的度数;(2)求线段AD1的长.24.如图,在正方形ABCD 中,点M 、N 是BC 、CD 边上的点,连接AM 、BN ,若BM=CN(1)求证:AM ⊥BN(2)将线段AM 绕M 顺时针旋转90°得到线段ME ,连接NE ,试说明:四边形BMEN 是平行四边形;(3)将△ABM 绕A 逆时针旋转90°得到△ADF ,连接EF ,当1 BM BC n时,请求出四边形四边形ABCD AMEFS S 的值。
人教版九年级上册数学第23章测试卷及答案
精品基础教育教学资料,仅供参考,需要可下载使用!人教版九年级上册数学《第23章旋转》单元测试题一.选择题(共10小题)1.下列图形中,由原图旋转得到的是()A.B.C.D.2.如图,Rt△ABC中,∠ACB=90°,线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,过点A作AE⊥射线CD于点E,则∠CAE的度数是()A.90﹣αB.αC.D.3.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.4.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)5.下列四张扑克牌图案,属于中心对称的是()A.B.C.D.6.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个7.点P(2,﹣1)关于原点中心对称的点的坐标是()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣2,1)8.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()A.黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)9.在A、B、C、D四幅图案中,能通过图平移得到的是()A.B.C.D.10.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1 B.2 C.3 D.4二.填空题(共8小题)11.如图,将△ABC绕着点A旋转,使点B恰好落在BC边上,得△AB'C,如果∠BAB'=32°,且AC'∥BC,那么∠B'AC=度.12.如图,△ABC为等边三角形,AB=3,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.13.如图,等边△AOB绕点O逆时针旋转到△A′OB′的位置,∠A′OB=80°,则△AOB旋转了度.14.已知点A(a,1)与点A(4,b)关于原点对称,则a+b=.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A,O,B的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个中心对称图形,请写出棋子P的位置坐标(写出1个即可).16.下列4种图案中,是中心对称图形的有个.17.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是图形(填写“轴对称”、“中心对称”).18.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为.三.解答题(共7小题)19.如图,△AEC绕A点顺时针旋转60°得△APB,∠PAC=20°,求∠BAE.20.如图所示,点D是等边△ABC内一点,DA=13,DB=19,DC=21,将△ABD绕点A逆时针旋转到△ACE的位置,求△DEC的周长.21.如图所示的两个图形成中心对称,请找出它的对称中点.22.如图,方格纸的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上.(1)画出△ABC关于原点对称的△A1B1C1;(2)画出△ABC向上平移5个单位后的△A2B2C2,并求出平移过程中△ABC扫过的面积.23.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度.(2)若连结EF,则△AEF是三角形;并证明.24.如图,Rt△ABC中,∠C=90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB 上.(1)若∠BDA=70°,求∠BAC的度数;(2)若BC=8,AC=6,求△ABD中AD边上的高.25.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.(2)若E为AC的中点,P为A'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.人教版九年级上册数学《第23章旋转》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列图形中,由原图旋转得到的是()A.B.C.D.【分析】旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这是判断旋转的关键,据此解答即可.【解答】解:A、是由图形通过轴对称得到的;B、是由图形通过轴对称得到的;C、是通过轴对称和旋转得到的;D、是由图形通过顺时针旋转90°得到的.故选:D.【点评】此题主要考查了旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.2.如图,Rt△ABC中,∠ACB=90°,线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,过点A作AE⊥射线CD于点E,则∠CAE的度数是()A.90﹣αB.αC.D.【分析】先利用旋转的性质得∠CBD=α,BC=BD,再根据等腰三角形的性质和三角形内角和定理得到∠BCD=90°﹣α,然后利用互余表示出∠ACE,从而利用互余可得到∠CAE的度数.【解答】解:∵线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,∴∠CBD=α,BC=BD,∴∠BCD=∠BDC,∴∠BCD=(180°﹣α)=90°﹣α,∵∠ACB=90°,∴∠ACE=90°﹣∠BCD=90°﹣(90°﹣α)=α,∵AE⊥CE,∴∠CAE=90°﹣∠ACE=90°﹣α.故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.3.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.【分析】根据旋转对称图形的概念作答.【解答】解:A、绕它的中心旋转90°能与原图形重合,故本选项不合题意;B、绕它的中心旋转90°能与原图形重合,故本选项不合题意;C、绕它的中心旋转90°能与原图形重合,故本选项不合题意;D、绕它的中心旋转120°才能与原图形重合,故本选项符合题意.故选:D.【点评】本题考查了旋转对称图形的知识,如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.4.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)【分析】首先利用平移的性质得出P1(4,4),再利用旋转变换的性质可得结论;【解答】解:∵P(﹣5,4),点P(﹣5,4)向右平移9个单位得到点P1∴P1(4,4),∴将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是(4,﹣4),故选:A.【点评】本题考查坐标与图形变化﹣旋转以及平移,解题的关键是理解题意,熟练掌握基本知识,属于中考基础题.5.下列四张扑克牌图案,属于中心对称的是()A.B.C.D.【分析】根据中心对称图形的概念和各扑克牌的花色排列特点的求解.【解答】解:A、是中心对称图形,符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:A.【点评】本题考查中心对称的知识,掌握好中心对称图形的概念是解题的关键.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.点P(2,﹣1)关于原点中心对称的点的坐标是()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣2,1)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).【解答】解:根据中心对称的性质,得点P(2,﹣1)关于中心对称的点的坐标为(﹣2,1).故选:D.【点评】此题主要考查了关于原点对称的点坐标的关系,记忆方法是结合平面直角坐标系的图形记忆.8.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()A.黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)【分析】根据轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:要使8枚棋子组成的图案是轴对称图形,则黑子可以摆放在横坐标为3的格点上,故摆放错误的是A,故选:A.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形定义.9.在A、B、C、D四幅图案中,能通过图平移得到的是()A.B.C.D.【分析】根据平移后对应点的连线平行且相等可得答案.【解答】解:能通过图甲平移得到的是B,故选:B.【点评】此题主要考查了图形的平移,关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.10.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1 B.2 C.3 D.4【分析】从阴影部分图形的各顶点向虚线作垂线并延长相同的距离找对应点,然后顺次连接各点可得答案.【解答】解:如图所示,把阴影凃在图中标有数字3的格子内所组成的图形是轴对称图形,故选:C.【点评】本题考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质,基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.二.填空题(共8小题)11.如图,将△ABC绕着点A旋转,使点B恰好落在BC边上,得△AB'C,如果∠BAB'=32°,且AC'∥BC,那么∠B'AC=42 度.【分析】先利用旋转的性质得到∠CAC′=∠BAB'=32°,AB=AB′,再根据等腰三角形性质和三角形内角和定理计算出∠B=74°,接着利用平行线的性质得到∠B′AC′=∠AB′B=74°,然后计算∠B′AC﹣∠CAC′即可.【解答】解:∵△ABC绕着点A旋转,使点B恰好落在BC边上,得△AB'C,∴∠CAC′=∠BAB'=32°,AB=AB′,∵AB=AB′∴∠B=∠AB′B=(180°﹣32°)=74°,∵AC'∥BC,∴∠B′AC′=∠AB′B=74°,∴∠B'AC=∠B′AC﹣∠CAC′=74°﹣32°=42°.故答案为42.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.如图,△ABC为等边三角形,AB=3,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.【分析】由等边三角形的性质得出∠ABC=∠BAC=60°,AC=AB=3,求出∠APC=120°,当PB ⊥AC时,PB长度最小,设垂足为D,此时PA=PC,由等边三角形的性质得出AD=CD=AC =,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°,求出PD=AD•tan30°=AD=,BD =AD=,即可得出答案.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是,当O、P、B共线时,PB长度最小,设OB交AC于D,如图所示:此时PA=PC,OB⊥AC,则AD=CD=AC=,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°,∴PD=AD•tan30°=AD=,BD=AD=,∴PB=BD﹣PD=﹣=.故答案为:.【点评】本题考查了等边三角形的性质、等腰三角形的性质、三角形内角和定理、勾股定理、三角函数等知识;熟练掌握等边三角形的性质是解决问题的关键.13.如图,等边△AOB绕点O逆时针旋转到△A′OB′的位置,∠A′OB=80°,则△AOB旋转了140 度.【分析】∠AOA′就是旋转角,根据等边三角形的性质得出∠AOB等于60°,再根据∠BOA′等于90°,从而求出∠AOA′的度数.【解答】解:旋转角∠AOA′=∠AOB+∠BOA′=60°+80°=140°.∴△AOB旋转了140度.故答案为:140.【点评】本题主要考查了旋转的性质,正确理解旋转角是解题的关键;此题较简单,解题时要能根据等边三角形的性质求出角的度数.14.已知点A(a,1)与点A(4,b)关于原点对称,则a+b=﹣5 .【分析】根据“两点关于原点对称,则两点的横、纵坐标都是互为相反数”解答.【解答】解:∵点A(a,1)与点A′(4,b)关于原点对称,∴a、b的值分别为﹣4,﹣1.所以a+b=﹣1﹣4=﹣5,故答案为:﹣5【点评】本题考查了关于原点对称的点的坐标:两点关于原点对称,则两点的横、纵坐标都是互为相反数.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A,O,B的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个中心对称图形,请写出棋子P的位置坐标(0,1)(写出1个即可).【分析】直接利用中心对称图形的性质得出答案.【解答】解:如图所示:点P(0,1)答案不唯一.故答案为:(0,1).【点评】此题主要考查了中心对称图形的性质,正确把握定义是解题关键.16.下列4种图案中,是中心对称图形的有 2 个.【分析】根据中心对称图形的概念即可求解.【解答】解:第1个图形,是中心对称图形,符合题意;第2个图形,不是中心对称图形,不符合题意;第3个图形,是中心对称图形,符合题意;第4个图形,不是中心对称图形,不符合题意.故答案为:2.【点评】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.17.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是轴对称图形(填写“轴对称”、“中心对称”).【分析】根据轴对称图形的概念与中心对称图形的概念即可作答.【解答】解:根据对称图形的概念,知110仅是轴对称图形,对称轴为正中水平直线.【点评】掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,对称轴两边图形折叠后可重合.18.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为10096 .【分析】由图象可知点B2019在第一象限,求出B2,B4,B6的坐标,探究规律后即可解决问题.【解答】解:由图象可知点B2019在x轴上,∵OA=,OB=4,∠AOB=90°,∴AB=,∴B2(10,4),B4(20,4),B6(30,4),…∴B2018(10090,4).∴点B2019横坐标为10090++=10096.故答案为:10096.【点评】本题考查坐标与图形的变化﹣旋转、勾股定理等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题,属于中考常考题型.三.解答题(共7小题)19.如图,△AEC绕A点顺时针旋转60°得△APB,∠PAC=20°,求∠BAE.【分析】充分运用旋转的性质,旋转前后三角形全等,即△ABP≌△ACE,根据对应角相等,三角形内角和定理,对应边的夹角为旋转角,通过计算解答题目问题.【解答】解:根据旋转的性质可得△ABP≌△ACE,AC与AB是对应边,∠BAC=∠BAP+∠PAC=60°,∵∠PAC=20°,∴∠CAE=∠BAP=40°,∴∠BAE=∠BAC+∠CAE=100°.【点评】本题考查旋转的性质,旋转变化前后,对应角分别相等,结合三角形内角和定理求出相关的角.20.如图所示,点D是等边△ABC内一点,DA=13,DB=19,DC=21,将△ABD绕点A逆时针旋转到△ACE的位置,求△DEC的周长.【分析】先根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得到AD=AE,CE =BD=19,∠DAE=∠BAC=60°,则可判断△ADE为等边三角形,从而得到DE=AD=13,然后计算△DEC的周长.【解答】解:∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵△ABD绕点A逆时针旋转到△ACE的位置,∴AD=AE,CE=BD=19,∠DAE=∠BAC=60°,∴△ADE为等边三角形,∴DE=AD=13,∴△DEC的周长=DE+DC+CE=13+21+19=53.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.21.如图所示的两个图形成中心对称,请找出它的对称中点.【分析】根据关于中心对称的两个图形,对应点的连线都经过对称中心作图.【解答】解:连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.【点评】本题考查的是中心对称的性质,掌握关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分是解题的关键.22.如图,方格纸的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上.(1)画出△ABC关于原点对称的△A1B1C1;(2)画出△ABC向上平移5个单位后的△A2B2C2,并求出平移过程中△ABC扫过的面积.【分析】(1)根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和平移的性质画出A、B、C的对应点A2、B2、C2,然后计算一个矩形的面积加上△ABC的面积得到△ABC扫过的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,△ABC扫过的面积=5×4+×2×4=24.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点A,旋转角度是90 度.(2)若连结EF,则△AEF是等腰直角三角形;并证明.【分析】(1)根据旋转变换的定义,即可解决问题;(2))根据旋转变换的定义,即可解决问题.【解答】解:(1)如图,由题意得:旋转中心是点A,旋转角度是90度.故答案为A、90.(2)等腰直角三角形由旋转得:AF=AE,∠FAB=∠EAD∴∠FAB+∠BAE=∠EAD+∠BAE即∠FAE=∠BAD∵四边形ABCD是正方形∴∠FAE=∠BAD=90°∴△AEF是等腰直角三角形故答案为等腰直角.【点评】本题主要考查了旋转变换的性质、正方形的性质及其应用问题;解题的关键是牢固掌握旋转变换的性质、正方形的性质,这是灵活运用、解题的基础和关键.24.如图,Rt△ABC中,∠C=90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB 上.(1)若∠BDA=70°,求∠BAC的度数;(2)若BC=8,AC=6,求△ABD中AD边上的高.【分析】(1)由旋转性质知BD=BA、∠CBA=∠EBD,据此可得∠BDA=∠BAD=70°,从而得∠ABD=∠ABC=40°,结合∠C=90°可得答案;(2)由旋转性质得BE=BC=8、DE=AC=6、AB=BD=10,从而得AE=2,利用勾股定理知AD =2,作BF⊥AD得AF=AD=,再次利用勾股定理可得答案.【解答】解:(1)由旋转性质知BD=BA、∠CBA=∠EBD,∵∠BDA=70°,∴∠BAD=70°,∴∠ABD=∠ABC=40°,∵∠C=90°,∴∠BAC=50°;(2)∵BC=8、AC=6,∠C=90°,∴AB=10,由旋转性质知△ABC≌△DBE,则BE=BC=8、DE=AC=6,∴AE=2,在Rt△ADE中,AD===2,作BF⊥AD于点F,∵BA=BD,∴AF=AD=,则BF===3.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.也考查了等腰三角形的性质和勾股定理.25.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.(2)若E为AC的中点,P为A'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.【分析】(1)当AB∥CB′时,∠BCB′=∠B=∠B′=30°,则∠A′CD=90°﹣∠BCB′=60°,∠A′DC=∠BCB′+∠B′=60°,可证:△A′CD是等边三角形;(2)连接CP,当E、C、P三点共线时,EP最长,根据图形求出此时的旋转角及EP的长.【解答】(1)证明:∵AB∥CB′,∴∠B=∠BC B′=30°,∴∠BC A′=90°﹣30°=60°,∵∠A′=∠A=60°,∴△A′CD是等边三角形;(2)解:如图,连接CP,当△ABC旋转到E、C、P三点共线时,EP最长,此时θ=∠ACA1=120°,∵∠B′=30°,∠A′CB′=90°,设AC=a,∴A′C=AC=A′B′=a,∵AC中点为E,A′B′中点为P,∠A′CB′=90°∴CP=A′B′=a,EC=a,∴EP=EC+CP=a+a=AC.【点评】此题考查了旋转的性质,特殊三角形的判定与性质,相似三角形的判断与性质.关键是根据旋转及特殊三角形的性质证明问题.。
人教版九年级上册数学 第二十三章 旋转 单元综合测试(含解析)
第二十三章旋转单元综合测试一.选择题1.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=4,则BE的长为()A.3B.4C.5D.62.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=25°,则旋转角度是()A.25°B.15°C.65°D.40°3.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是()A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC4.如图,若△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,则∠AB1B=()A.50°B.55°C.60°D.65°5.下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.如图,将△ABC绕点C(0,)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(a,﹣b+2)C.(﹣a,﹣b+)D.(﹣a,﹣b+2)7.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B的对应点B′的坐标是()A.B.C.D.(0,﹣4)8.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=8,BD=7,则△AED的周长是()A.15B.14C.13D.129.如图,CD是△ABC的边AB上的中线,将线段AD绕点D顺时针旋转90°后,点A的对应点E恰好落在AC边上,若AD=,BC=,则AC的长为()A.B.3C.2D.410.在平面直角坐标系xOy中,点A(4,3),点B为x轴正半轴上一点,将△AOB绕其一顶点旋转180°,连接其余四个顶点得到一个四边形,若该四边形是一个轴对称图形,则满足条件的点有()A.5个B.4个C.3个D.2个二.填空题11.如图,四角星的顶点是一个正方形的四个顶点,将这个四角星绕其中心旋转,当第一次与自身重合时,其旋转角的大小是度.12.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D 在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180),如果EF⊥AB,那么n的值是.13.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,连接CC'.若AB∥CC',则旋转角的度数为°.14.如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为.15.已知点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,则xy的值是.16.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.17.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围是.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)19.在平面直角坐标系中,△OAB的位置如图所示,将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;……依此类推,第2020次旋转得到△OA2020B2020,则项点A的对应点A2020的坐标是.三.解答题20.在平面直角坐标系中,已知点P(a,﹣1),请解答下列问题:(1)若点P在第三象限,则a的取值范围为;(2)若点P在y轴上,则a的值为;(3)当a=2时,点P关于y轴对称的点的坐标为点P关于原点对称的点的坐标为.21.如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B 按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:AE=CD;(2)若∠DBC=45°,求∠BFE的度数.22.如图所示,把△ABC绕点A旋转至△ADE位置,延长BC交AD于F,交DE于G,若∠CAD=10°,∠D=25°,∠EAB=120°,求∠DFB的度数.23.已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D 关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.24.如图,正△ABC与正△A1B1C1关于某点中心对称,已知A,A1,B三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.25.如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.参考答案1.解:∵△ABC绕点A顺时针旋转60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=4,∴BE=4.故选:B.2.解:∵∠AOB=40°,∠BOC=25°,∴∠AOC=65°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=65°,故选:C.3.解:将△ADE绕点D顺时针旋转,得到△CDB,∴∠ADE=∠CDB,AD=CD,AE=BC,故A、B、D选项正确;∵∠B=∠E,但∠B不一定等于∠BDC,∴BD不一定平行于AE,故C选项错误;故选:C.4.解:∵△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,∴AB=AB1,∠BAB1=50°,∴∠AB1B=(180°﹣50°)=65°.故选:D.5.解:A、是轴对称图形,不是中心对称图形,不符合题意;B、既不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.6.解:将点A的坐标为(a,b)向下平移个单位,得到对应点坐标为(a,b),再将其绕原点旋转180°可得对称点坐标为(﹣a,﹣b+),然后再向上平移个单位可得点A'的坐标为(﹣a,﹣b+2),故选:D.7.解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故选:C.8.解:∵将△BCD绕点B逆时针旋转60°得到△BAE,∴BD=BE,∠DBE=60°,CD=AE,∴△DBE是等边三角形,∴BD=DE=7,∴△AED的周长=AE+AD+DE=CD+AD+DE=8+7=15,故选:A.9.解:如图,连接BE,∵CD是△ABC的边AB上的中线,∴AD=BD,∵将线段AD绕点D顺时针旋转90°,∴AD=DE,∠ADE=90°,∴∠A=45°,AE=AD=2,AD=DE=BD,∴∠AEB=90°,∴∠A=∠ABE=45°,∴AE=BE=2,∴EC===1,∴AC=AE+EC=3,故选:B.10.解:观察图象可知,满足条件的点B有5个.故选:A.11.解:该图形被平分成四部分,旋转90°的整数倍,就可以与自身重合,故当此图案第一次与自身重合时,其旋转角的大小为90°.故答案为:90.12.解:如图1,延长EF交AB于H,∵EF⊥AB,∠A=45°,∴∠ACH=45°,∴∠ACE=135°,∴n=135;如图2,∵EF⊥AB,∠A=45°,∴∠ACE=45°,∴n=360﹣45=315,∵0<n<180,∴n=315不合题意舍去,故答案为:135.13.解:∵AB∥CC',∴∠ABC+∠C′CB=180°,而∠B=90°,∴∠C′CB=90°,∴∠ACC′=90°﹣∠ACB=90°﹣50°=40°,∵Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,∴AC=AC′,∠C′AC等于旋转角,∴∠AC′C=∠ACC′=40°,∴∠C′AC=180°﹣40°﹣40°=100°,即旋转角为100°.故答案为100.14.解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD.∴∠F AB=∠MAE,∴∠F AB+∠BAE=∠BAE+∠MAE.∴∠F AE=∠MAB.∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=4.∵DM=1,∴CM=3.∴在Rt△BCM中,BM==5,∴EF=5,故答案为:5.15.解:∵点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,3+y﹣5=0,解得:x=﹣1,y=2,则xy的值是:﹣2.故答案为:﹣2.16.解:∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE==2,故答案为2.17.解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,,解得:a<2.∴故答案为:a<2.18.解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=a,∴正方形ABCD的面积=4×a+b=a+b.故答案为(a+b).19.解:将△OAB绕点O顺时针旋转90°得△OA1B1;此时,点A1的坐标为(2,﹣1);再将△OA1B1绕点O顺时针旋转90°得△OA2B2;此时,点A2的坐标为(﹣1,2);再将△OA2B2绕点O顺时针旋转90°得△OA3B3;此时,点A3的坐标为(﹣2,1);再将△OA3B3绕点O顺时针旋转90°得△OA4B4;此时,点A4的坐标为(1,2);∴每旋转4次一个循环,∵2020÷4=505,∴第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同,为(1,2);故答案为:(1,2).20.解:(1)∵点P(a,﹣1),点P在第三象限,∴a<0;故答案为:a<0;(2)∵点P(a,﹣1),点P在y轴上,∴a=0;故答案为:0;(3)当a=2时,点P(a,﹣1)的坐标为:(2,﹣1)关于y轴对称的点的坐标为:(﹣2,﹣1),点P关于原点对称的点的坐标为:(﹣2,1).故答案为:(﹣2,﹣1),(﹣2,1).21.(1)证明:∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,∴BD=BE,∠EBD=120°,∵AB=BC,∠ABC=120°,∴∠ABD+∠DBC=∠ABD+∠ABE=120°,∴∠DBC=∠ABE,∴△ABE≌△CBD(SAS),∴AE=CD;(2)解:由(1)知∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,∴∠BED=∠BDE=(180°﹣120°)=30°,∴∠BFE=180°﹣∠BED﹣∠ABE=180°﹣30°﹣45°=105°.22.解:由旋转可知:△ABC≌△ADE,∵∠D=25°,∴∠B=∠D=25°,∠EAD=∠CAB,∵∠EAB=∠EAD+∠CAD+∠CAB=120°,∠CAD=10°,∴∠CAB=(120°﹣10°)÷2=55°,∴∠F AB=∠CAB+∠CAD=55°+10°=65°,∵∠DFB是△ABF的外角,∴∠DFB=∠B+∠F AB,∴∠DFB=25°+65°=90°.23.解:(1)∵点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,∴2b+1=﹣1,3a﹣1=2,解得a=1,b=﹣1,∴点A(﹣1,2),B(﹣1,﹣2),C(3,﹣1),∵点C(a+2,b)与点D关于原点对称,∴点D(﹣3,1);(2)如图所示:四边形ADBC的面积为:.24.解:(1)∵A,A1,B三点的坐标分别是(0,4),(0,3),(0,2),所以对称中心的坐标为(0,2.5);(2)等边三角形的边长为4﹣2=2,所以点C的坐标为(,3),点C1的坐标(,2).25.解:(1)∵△ABC与△DEC关于点C成中心对称,∴AC=CD,BC=CE,∴四边形ABDE是平行四边形,∴AE与BD平行且相等;(2)∵四边形ABDE是平行四边形,∴S△ABC=S△BCD=S△CDE=S△ACE,∵△ABC的面积为5cm2,∴四边形ABDE的面积=4×5=20cm2;(3)∠ACB=60°时,四边形ABDE为矩形.理由如下:∵AB=AC,∠ACB=60°,∴△ABC是等边三角形,∴AC=BC,∵四边形ABDE是平行四边形,∴AD=2AC,BE=2BC,∴AD=BE,∴四边形ABDE为矩形.。
人教版九年级数学上《第23章旋转》单元测试题含答案
第23章 旋转一、选择题1.在平面直角坐标系中,点A (﹣2,1)与点B 关于原点对称,则点B 的坐标为( )A .(﹣2,1)B .(2,﹣1)C .(2,1)D . (﹣2,﹣1)2.如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交边AD 、BC 与E 、F 两点,则阴影部分的面积是( )A .1B .2C .3D . 43.如图,△ABC 绕着点O 按顺时针方向旋转90°后到达了△CDE 的位置,下列说法中不正确的是( )A .线段AB 与线段CD 互相垂直 B .线段AC 与线段CE 互相垂直C .点A 与点E 是两个三角形的对应点D .线段BC 与线段DE 互相垂直 4.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A =45°,∠D =30°,斜边AC =BD =10,若将三角板DEB 绕点B 逆时针旋转45°得到△D′E′B,则点A 在△D′E′B 的( )A .内部B .外部C .边上D .以上都有可能 5.如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在平面内,可作为旋转中心的点个数( )A .1个B .2个C .3个D .4个6.如图,直线y =-43x +4与x 轴、y 轴分别交于A ,B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是( )A.(3,4) B.(4,5) C.(4,3) D.(7,3)7.如图,是用围棋子摆出的图案(围棋子的位置用有序数对表示,如点A在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是( )A.4 B.5 C.6 D.89.如图,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC于点E,F,下面的结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE 与△COF成中心对称,其中正确的个数为( )A.2个 B.3个 C.4个 D.5个10.如图,在方格纸上,△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为( )A.(5,2) B.(2,5) C.(2,1) D.(1,2)二、填空题11、将一个直角三角尺AOB绕直角顶点O旋转到如图3所示的位置,若∠AOD=110°,则旋转角的角度是______°,∠BOC =______°.12、时钟6点到9点,时针转动了__度.13.在方格纸上建立如图所示的平面直角坐标系,将△ABO 绕点O 按顺时针方向旋转90°得△A ′B ′O ,则点A 的对应点A ′的坐标为_ _.14.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为____.15.如图,平行四边形ABCD 绕点A 逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B 是对应点,点C′与点C 是对应点),点B′恰好落在BC 边上,则∠C=__ __度.16.如图,已知抛物线C 1,抛物线C 2关于原点对称.若抛物线C 1的解析式为y =34(x +2)2-1,那么抛物线C 2的解析式为__ __.三、解答题17.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A ,B 两点的坐标;(2)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△AB 1C 1.18.直角坐标系第二象限内的点P(x 2+2x ,3)与另一点Q(x +2,y)关于原点对称,试求x +2y 的值.19.如图,将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1,BC 1分别交于点E ,F.(1)求证:△BCF≌△BA 1D ;(2)当∠C=α度时,判定四边形A 1BCE 的形状,并说明理由.答案 BACCC DBCDA11、20°、70°,12、90º ,13. (2,3)14. π15. 10516. y =-34(x -2)2+1 17.解:(1)由点A 、B 在坐标系中的位置可知:A (2,0),B (-1,-4);(2)如图所示:2)如图所示:18 解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-719解:(1)∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,由ASA可证△BCF≌△BA1D(2)四边形A1BCE是菱形,理由如下:∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∵∠C=α,∴∠AED=∠C,∴A1E∥BC,由(1)知△BCF≌△BA1D,∴∠C=∠A1,∴∠A1=∠AED=α,∴A1B ∥AC,∴四边形A1BCE是平行四边形,又∵A1B=BC,∴四边形A1BCE是菱形。
第23章 旋转 单元测试-2022-2023学年九年级人教版数学上册(含答案)
第23章 旋转单元测试(附解析)学校:___________姓名:___________班级:___________考号:___________总分120分,考试时间120分钟一、单选题(共10个小题,每小题3分,共30分)1.下列与杭州亚运会有关的图案中,中心对称图形是( )A .B .C .D . 2.2022年冬奥会将在我国北京市和张家口市联合举行,下列历届冬奥会会徽的部分图案中,是中心对称图形的是( )A .B .C .D . 3.平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是( )A .(3,2)B .(-2,-3)C .(2,-3)D .(2,3)4.如图,矩形ABCD 的顶点1,0A ,()0,2D ,()5,2B ,将矩形以原点为旋转中心,顺时针旋转75°之后点C 的坐标为( )A .()4,2-B .()42,22-C .()42,2-D .()26,22- 5.如图,在钝角△ABC 中,35BAC ∠=︒,将ABC 绕点A 顺时针旋转70︒得到ADE ,点B ,C 的对应点分别为D ,E ,连接BE .则下列结论一定正确的是( )A .ABC AED ∠=∠B .AC DE = C .AD BE AC += D .AE 平分BED ∠ 6.平面直角坐标系中,O 为坐标原点,点A 的坐标为()5,1-,将OA 绕原点按逆时针方向旋转90︒得OB ,则点B 的坐标为( )A .()5,1-B .()1,5--C .()5,1--D .()1,5-7.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,直角MDN ∠绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①DEF 是等腰直角三角形;②AE CF =;③12ABC AEDF S S =△四边形;④BE CF EF +=,其中正确结论的个数是( )A .1B .2C .3D .48.在矩形ABCD 中,AB =4,BC =3,CE =2BE ,EF =2,连按AF ,将线段AF 绕着点A 顺时针旋转90°得到AP ,则线段PE 的最小值为( )A .25B .342-C .4D .341+9.如图,在Rt △ABC 中,∠ACB =90°,2AC BC ==将△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则12BE AB +的值为( )A 6B .22C 3D 210.如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC △绕点A 逆时针旋转后,得到MAB △,则APB ∠等于( ).A .120°B .135°C .150°D .160°二、填空题(共10个小题,每小题3分,共30分)11.如图所示,P 是正方形ABCD 内一点,将△ABP 绕点B 按顺时针方向旋转能与△CBP '重合,若PB =3,则PP '=__________12.若点P (a -1,5)与点Q (5,1-b )关于原点成中心对称,则a +b =_________. 13.对于下列图形:①等边三角形; ②矩形; ③平行四边形; ④菱形; ⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的是_________________.(填写图形的相应编号) 14.若点P (a ,2)点Q (﹣4,b )关于原点对称,则点M (a ,b )在第___象限.15.如图,△ABC 为等边三角形,D 是△ABC 内一点,若将△ABD 经过旋转后到△ACP 位置,则旋转角等于___________度.16.如图,在矩形ABCD 中,23AB =6BC =,点E 是直线BC 上的一个动点,连接DE ,将线段DE 绕着点D 顺时针旋转120︒得到线段DG ,连接AG ,则线段AG 的最小值为_________.17.如图,△ABC 边长为1的正三角形,BDC 是顶角120BDC ∠=︒的等腰三角形,以D 为顶点作一个60度角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,则AMN 的周长为__________.18.如图,在Rt △ABC 中,90ACB ∠=,30BAC ∠=,BC =2,线段BC 绕点B 旋转到BD ,连AD ,E 为AD 的中点,连接CE ,则CE 的最大值是___.19.如图,在△ABC 中,3AB =,2AC =,60BAC ∠=︒,P 为ABC 内一点,则PA PB PC ++的最小值为__________.20.如图,点P 是等边三角形ABC 内一点,且6PA 2PB =22=PC ABC 的边长为________.三、解答题(共6个小题,每小题10分,共60分)21.如图,在△ABC 中,∠ACB =90°,∠B =60°,以C 为旋转中心,旋转一定角度后成△A ′B ′C ,此时B ′落在斜边AB 上,试确定∠ACA ′,∠BB ′C 的度数.22.四边形ABCD 各顶点坐标分别为(5,0)A ,(2,3)B -,(1,0)C -,(1,5)D --,作出与四边形ABCD 关于原点对称的图形.23.如图,在同一平面内,△BEC绕点B逆时针旋转60°得到△BAD,且AB⊥BC,BE=CE.连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.正方形ABCD中,点F为正方形ABCD内的点,BFC△绕着点B按逆时针方向旋转90︒后与△重合.BEA(1)如图①,若正方形ABCD的边长为2,1BE=,3FC=AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.。
九年级数学: 第23章旋转单元测试卷及答案(Word版)
第23 章旋转单元测试卷一、填空题:(共23分)1.如图1,△ABC是等腰直角三角形,D是A B上一点,△CBD经旋转后到达△ACE的位置,则旋转中心是;旋转角度是;点B的对应点是;点D的对应点是;线段C B的对应点是;∠B的对应角是;如果点M是C B的13,那么经过上述旋转后,点M移到了.2. 3点12分和3点40分时,时针与分针构成的角各是度和度.3.请你写出5个成中心对称的汉字,填在下面的横线上.4.如图2所示的四个图形中,图形(1)与图形成轴对称;图形(1)与图形成中心对称.(填写符合要求的图形所对应的符号)5.如图3所示,△ABC绕点A逆时针旋转某一角度得到△ADE,若∠1=∠2=∠3=20°,则旋转角为度.6.如图4所示,线段A B=4cm,且C D⊥AB于O,则阴影部分的面积是.7.如图5①,将字母“V”沿平移格会得到字母“W”。
如图5②,将字母“V”绕点旋转度后得到字母N,绕点旋转度后会得到字母X.(图中E、F分别是其所在线段的中点)8.如图6是由面积为1的单位正三角形经过平移旋转,拼成由24个相同的三角形组成的正六边形,我们把面积为4的正三角形称为“希望杯”,则图中可数出个不同的“希望杯”.9.在直角坐标系中,点A(2,-3)关于原点对称的坐标是.10. 在下列图7的四个图案中,既是轴对称图形,又是中心对称图形的有个.图7二、选择题:(共40分)11.观察下列图形,其中是旋转对称图形的有( )A.1个B.2个C.3个D.4个(1) (2) (3) (4)12.你玩过扑克牌吗?你仔细观察过每张扑克牌中的图案吗?请你指出图案是中心对称图形的一组为( )A.黑桃6与黑桃9B.红桃6与红桃9C.梅花6与梅花9D.方块6与方块913.在平面直角坐标系中,点P(2,1)关于原点对称的点在( )A.第一象限B.第二象限C.第三象限D.第四象限14.下列图形.中心对称图形的为()ABC D15.下列图形中是中心对称图形的是A B C D16.在下列四个图案中,既是轴对称图形,又是中心对称图形的是())AB C D17.下列图案都是由宁母“m ”经过变形、组合而成的.其中不是中心对称图形的是()18.将下面的直角梯形绕直线 l 旋转一周,可以得到右边立体图形( )19.数学课上,老师让同学们观察如图 8 所示的图形,问:它绕着圆心 O 旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°; 丙同学说:90°;丁同学说:135°。
《第23章旋转》单元测试含答案解析
《第23章旋转》一、选择题1.下面的图形中,是中心对称图形的是()A. B. C.D.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.3张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,则她所旋转的牌从左数起是()A.第一张B.第二张C.第三张D.第四张4.在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.A图 B.B图 C.C图 D.D图5.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A.A N E G B.K B X N C.X I H O D.Z D W H7.如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对 B.2对 C.3对 D.4对8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是()A.30°B.45°C.60°D.90°9.如图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.4个 B.3个 C.2个 D.l个10.如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A 点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°二、填空题11.关于某一点成中心对称的两个图形,对称点的连线都经过,并且被平分.12.在平行四边形、矩形、菱形、正方形、等腰梯形5种图形中,既是轴对称,又是中心对称的图形有.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.14.如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是三角形.15.已知a<0,则点P(a2,﹣a+3)关于原点的对称点P在第象限.116.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°.17.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为.18.如图,四边形ABCD 中,∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,若线段AE=5,则S 四边形ABCD = .三、解答题(共66分)19.如图,四边形ABCD 的∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,△BEA 旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A 是旋转中心,那么点B 经过旋转后,点B 旋转到什么位置?20.如图,请画出△ABC 关于点O 点为对称中心的对称图形.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C 的坐标为(4,﹣1).(1)把△ABC 向上平移5个单位后得到对应的△A 1B 1C 1,画出△A 1B 1C 1,并写出C 1的坐标;(2)以原点O 为对称中心,再画出与△A 1B 1C 1关于原点O 对称的△A 2B 2C 2,并写出点C 2的坐标.22.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)23.如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.24.如图所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.25.如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.26.如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF 与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.27.将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.参考答案与试题解析一、选择题1.下面的图形中,是中心对称图形的是()A. B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.【点评】本题主要考查了关于原点对称的点的坐标的特征,熟记特征是解题的关键.3.3张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,则她所旋转的牌从左数起是()A.第一张B.第二张C.第三张D.第四张【考点】中心对称图形.【分析】旋转前后图形的形状一样,从而可判断旋转的那一张牌是中心对称图形,由此可得出答案.【解答】解:旋转前后图形的形状一样,图1中从左边数第二、三张扑克牌旋转180度后,图形不能和原来的图形重合,而第一张旋转180度后正好与原图重合.故选A.【点评】本题考查的是中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.4.在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.A图 B.B图 C.C图 D.D图【考点】旋转的性质;平移的性质.【专题】操作型.【分析】根据平移和旋转的性质解答【解答】解:A、可由△ABC逆时针旋转一个角度得到;B、可由△ABC翻折得到;C、可由△ABC逆时针旋转一个角度得到;D、可由△ABC逆时针旋转一个角度得到.故选B.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.准确的找到对称中心和旋转角是解题的关键.5.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格【考点】生活中的轴对称现象;生活中的平移现象.【专题】压轴题;网格型.【分析】认真观察图形,找准特点,根据轴对称的性质及平移变化得出.【解答】解:观察可得:要使左边图形变化到右边图形,首先以AB为对称轴作轴对称,再向右平移7格.故选D.【点评】主要考查了轴对称的性质及平移变化.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连接两个对称点的线段的垂直平分线.6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A.A N E G B.K B X N C.X I H O D.Z D W H【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念,分析各组大写英文字母的特征求解.【解答】解:A、有轴对称图形A、E,有中心对称图形N;B、有轴对称图形K、B、X,有中心对称图形X、N;C、所有字母既是轴对称,又是中心对称;D、有轴对称图形D、W、H,有中心对称图形Z、H.故不同于另外三组的一组是C,这一组的特点是各个字母既是轴对称,又是中心对称.故选:C.【点评】本题考查利用轴对称与中心对称解决问题的能力,分析字母的结构特点是解决本题的关键.7.如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对 B.2对 C.3对 D.4对【考点】旋转的性质;全等三角形的判定;等边三角形的性质.【分析】根据等边三角形的三边相等、三个角都是60°,以及全等三角形的判定方法(SSS、SAS、ASA、AAS),进行证明.【解答】解:△EBC≌△DAC,△GCE≌△FCD,△BCG≌△ACF.理由如下:∵∠ACB=∠ECD,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD∴△EBC≌△DAC.∴△GCE≌△FCD.∴△BCG≌△ACF.故选:C.【点评】本题考查的是全等三角形的判定、等边三角形的性质以及旋转的性质的综合运用.8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是()A.30°B.45°C.60°D.90°【考点】利用旋转设计图案.【分析】观察每一个图案都可以由一个“基本图案”通过连续旋转得到,就是看这个图形可以被通过中心的射线平分成几个全等的部分,即可确定旋转的角度.【解答】解:每一个图案都可以被通过中心的射线平分成6个全等的部分,则旋转的角度是60度.故选C.【点评】本题中确定旋转角的方法是需要掌握的内容.9.如图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.4个 B.3个 C.2个 D.l个【考点】生活中的旋转现象.【分析】根据旋转的性质,找出图中图形的关键处(旋转中心和对应点)按顺时针方向旋转90°后的形状即可选择答案.21世纪教育网版权所有【解答】解:根据旋转的性质可知,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的是和.故选C.【点评】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.10.如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A 点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°【考点】旋转的性质;等腰直角三角形.【专题】应用题.【分析】图1中可知旋转角是∠EAB,再结合等腰直角三角形的性质,易求∠EAB;图2中是把图1作为基本图形,那么旋转角就是∠FAB,结合等腰直角三角形的性质易求∠FAB.【解答】解:根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.【点评】本题考查了旋转的性质、等腰直角三角形的性质,解题的关键是理解旋转的性质,能找对旋转中心、旋转角.二、填空题11.关于某一点成中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分.【考点】中心对称.【分析】中心对称的性质:对称点的连线都经过对称中心,并且被对称中心平分.【解答】解:根据中心对称的性质,得对称点的连线都经过对称中心,并且被对称中心平分.【点评】本题考查成中心对称的两个图形的性质:对称点的连线都经过对称中心,并且被对称中心平分.12.在平行四边形、矩形、菱形、正方形、等腰梯形5种图形中,既是轴对称,又是中心对称的图形有矩形,菱形,正方形.【考点】轴对称图形;中心对称图形.【分析】根据轴对称图形和中心对称图形的概念作答.【解答】解:两者都是的是矩形,菱形,正方形;其中平行四边形只是中心对称图形;等腰梯形只是轴对称图形.故既是轴对称,又是中心对称的图形有矩形,菱形,正方形.【点评】考查了轴对称图形和中心对称图形的概念,能够正确判断特殊图形的轴对称性.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是90°.【考点】生活中的旋转现象.【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.【点评】此题主要考查了旋转及钟面的认识,解决本题的关键是在钟面上指针每走一个数字,绕中心轴旋转30°.14.如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是等边三角形.21教育名师原创作品【考点】等边三角形的判定;旋转的性质.【分析】由旋转的性质可得AB=AB′,∠BAB′=60°,即可判定△ABB'是等边三角形.【解答】解:因为,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则AB=AB′,∠BAB′=60°,所以△ABB'是等边三角形.【点评】此题主要考查学生对等边三角形的判定及旋转的性质的理解及运用.在第三象限.15.已知a<0,则点P(a2,﹣a+3)关于原点的对称点P1【考点】关于原点对称的点的坐标.所在象限.【分析】首先根据a的符号判断得出P点所在象限,进而得出关于原点的对称点P1【解答】解:∵a<0,∴a2>0,﹣a+3>0,∴P点在第一象限,∴关于原点的对称点P在第三象限.1故答案为:三.【点评】此题主要考查了关于原点对称点的性质,根据题意得出P点位置是解题关键.16.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是60 °.【考点】旋转的性质.【分析】由旋转角∠AOC=40°,∠AOD=90°,可推出∠COD的度数,再根据点C恰好在AB上,OA=OC,∠AOC=40°,计算∠A,利用内角和定理求∠B,根据对应关系可知∠D=∠B.【解答】解:由旋转的性质可知,∠AOC=40°,而∠AOD=90°,∴∠COD=90°﹣∠AOC=50°又∵点C恰好在AB上,OA=OC,∠AOC=40°,∴∠A==70°,由旋转的性质可知,∠OCD=∠A=70°在△OCD中,∠D=180°﹣∠OCD﹣∠COD=60°.【点评】本题考查了旋转性质的运用,等腰三角形的性质运用,角的和差关系问题.17.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为2π.【考点】轴对称的性质;圆的认识.【专题】压轴题.【分析】结合图形,不难发现阴影部分的面积是圆面积的一半.【解答】解:∵大圆的面积=π×22=4π,∴阴影部分面积=×4π=2π.故答案为:2π.【点评】利用图形特点把阴影部分的面积整体计算.18.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD= 25 .【考点】全等三角形的判定与性质.【专题】计算题.【分析】过A点作AF⊥CD交CD的延长线于F点,由AE⊥BC,AF⊥CF,∠C=90°可得四边形AECF为矩形,则∠2+∠3=90°,而∠BAD=90°,根据等角的余角相等得∠1=∠2,加上∠AEB=∠AFD=90°和AB=AD,根据全等三角形的判定可得△ABE≌△ADF,由全等三角形的性质有AE=AF=5,S△ABE =S△ADF,则S四边形ABCD=S正方形AECF,然后根据正方形的面积公式计算即可.【解答】解:过A点作AF⊥CD交CD的延长线于F点,如图,∵AE⊥BC,AF⊥CF,∴∠AEC=∠CFA=90°,而∠C=90°,∴四边形AECF为矩形,∴∠2+∠3=90°,又∵∠BAD=90°,∴∠1=∠2,在△ABE和△ADF中∴△ABE≌△ADF,∴AE=AF=5,S △ABE =S △ADF ,∴四边形AECF 是边长为5的正方形,∴S 四边形ABCD =S 正方形AECF =52=25.故答案为25.【点评】本题考查了全等三角形的判定与性质:有两组对应角相等,并且有一条边对应相等的两个三角形全等;全等三角形的对应边相等;全等三角形的面积相等.也考查了矩形的性质.三、解答题(共66分)19.如图,四边形ABCD 的∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,△BEA 旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A 是旋转中心,那么点B 经过旋转后,点B 旋转到什么位置?【考点】旋转的性质;正方形的性质.【分析】(1)根据图形确定旋转中心即可;(2)对应边AE 、AF 的夹角即为旋转角,再根据正方形的每一个角都是直角解答;(3)因为△AFD ≌△AEB ,所以可知点B 旋转到什么位置是点D .【解答】解:(1)由图可知,点A 为旋转中心;(2)∠EAF 为旋转角,在正方形AECF 中,∠EAF=90°,所以,旋转了90°;(3)∵△BEA 旋转后能与△DFA 重合,∴△BEA ≌△DFA ,∴可知点B 旋转到什么位置是点D .【点评】本题考查了旋转的性质,正方形的性质以及旋转中心的确定,旋转角的确定,以及旋转变换只改变图形的位置不改变图形的形状与大小的性质.20.如图,请画出△ABC 关于点O 点为对称中心的对称图形.【考点】作图-旋转变换.【专题】作图题.【分析】连接AO 并延长至A ′,使A′O =AO ,连接BO 并延长至B′,使B′O=BO,连接CO 并延长至C′,使C′O=CO,然后顺次连接即可.【解答】解:如图所示.【点评】本题考查了利用旋转变换作图,熟练掌握旋转的性质并确定出对应点的位置是解题的关键.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C 的坐标为(4,﹣1).(1)把△ABC 向上平移5个单位后得到对应的△A 1B 1C 1,画出△A 1B 1C 1,并写出C 1的坐标;(2)以原点O 为对称中心,再画出与△A 1B 1C 1关于原点O 对称的△A 2B 2C 2,并写出点C 2的坐标.【考点】作图-旋转变换;作图-平移变换.【专题】作图题;网格型.【分析】根据平移作图的方法作图即可.根据图形特征或平移规律可求得坐标为①C1(4,4);②C2(﹣4,﹣4).【解答】解:根据平移定义和图形特征可得:①C1(4,4);②C2(﹣4,﹣4).【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是:①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特殊情况.22.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为16 ;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)【考点】利用平移设计图案.【专题】网格型.【分析】(1)求小鱼的面积利用长方形的面积减去周边的三角形的面积即可得到;(2)直接根据平移作图的方法作图即可.【解答】解:(1)小鱼的面积为7×6﹣×5×6﹣×2×5﹣×4×2﹣×1.5×1﹣××1﹣1﹣=16;www-2-1-cnjy-com(2)将每个关键点向左平移3个单位,连接即可.【点评】本题考查的是平移变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.23.如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.2·1·c·n·j·y【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【分析】首先将△BCE以B为旋转中心,逆时针旋转90°,使BC落在BA边上,得△BAM,进而得出△FBM≌△FBE,即可求出∠MBF=∠EBF,求出度数即可.2-1-c-n-j-y【解答】解:将△BCE以B为旋转中心,逆时针旋转90°,使BC落在BA边上,得△BAM,则∠MBE=90°,AM=CE,BM=BE,∵CE+AF=EF,∴MF=EF,在△FBM和△FBE中,∵,∴△FBM≌△FBE(S.S.S),∴∠MBF=∠EBF,∴∠EBF=×90°=45°.【点评】此题主要考查了旋转的性质以及全等三角形的判定与性质,将△BCE逆时针旋转90°,使BC 落在BA边上,得△BAM是解题关键.24.如图所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.【考点】利用旋转设计图案.【分析】仔细观察图形,基本图形可以不同,但对于不同的基本图形需要作的几何变换也不同.【解答】解:方法一:可看作整个花瓣的六分之一部分,图案为绕中心O依次旋转60°、120°、180°、240°、300°而得到整个图案.方法二:可看作是绕中心O依次旋转60°、120°得到整个图案的.【点评】本题考查利用旋转设计图案的知识,基本图案的寻找较为灵活,本题还可以看作整个花瓣的一半绕中心O旋转180°得到的,也可看作是花瓣的一半.经过轴对称得到的.25.(2009•株洲)如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.【来源:21·世纪·教育·网】(1)线段OA1的长是 6 ,∠AOB1的度数是135°;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.【考点】旋转的性质;平行四边形的判定.【分析】(1)图形在旋转过程中,边长和角的度数不变;(2)可证明OA∥A1B1且相等,即可证明四边形OAA1B1是平行四边形;(3)平行四边形的面积=底×高=OA×OA1.【解答】(1)解:因为,∠OAB=90°,OA=AB,所以,△OAB为等腰直角三角形,即∠AOB=45°,根据旋转的性质,对应点到旋转中心的距离相等,即OA1=OA=6,对应角∠A1OB1=∠AOB=45°,旋转角∠AOA1=90°,所以,∠AOB1的度数是90°+45°=135°.(2)证明:∵∠AOA1=∠OA1B1=90°,∴OA∥A1B1,又∵OA=AB=A1B1,∴四边形OAA1B1是平行四边形.(3)解:▱OAA1B1的面积=6×6=36.【点评】此题主要考查旋转的性质和平行四边形的判定以及面积的求法.26.(2004•厦门)如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.21·cn·jy·com (1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF 与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.【出处:21教育名师】【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】几何图形问题;综合题.【分析】(1)显然,当A,F,B在同一直线上时,DF≠BF.(2)注意使用两个正方形的边和90°的角,可判断出△DAG≌△BAE,那么DG=BE.【解答】解:(1)不正确.若在正方形GAEF绕点A顺时针旋转45°,这时点F落在线段AB或AB的延长线上.(或将正方形GAEF 绕点A顺时针旋转,使得点F落在线段AB或AB的延长线上).如图:设AD=a,AG=b,则DF=>a,BF=|AB﹣AF|=|a﹣b|<a,∴DF>BF,即此时DF≠BF;(2)连接BE,可得△ADG≌△ABE,则DG=BE.如图,∵四边形ABCD是正方形,∴AD=AB,∵四边形GAEF是正方形,∴AG=AE,又∵∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.【点评】注意点在特殊位置时所得到的关系,判断边相等,通常要找全等三角形.27.(2008•太原)将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC 和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.【考点】全等三角形的判定;平行四边形的性质.【专题】压轴题;探究型.【分析】(1)要证∠AFD=∠DCA,只需证△ABC≌△DEF即可;(2)结论成立,先证△ABC≌△DEF,再证△ABF≌△DEC,得∠BAF=∠EDC,推出∠AFD=∠DCA;(3)BO⊥AD,由△ABC≌△DEF得BA=BD,点B在AD的垂直平分线上,且∠BAD=∠BDA,继而证得∠OAD=∠ODA,OA=OD,点O在AD的垂直平分线上,即BO⊥AD.【解答】解:(1)∠AFD=∠DCA.证明:∵AB=DE,BC=EF,∠ABC=∠DEF,∴∠ACB=∠DFE,∴∠AFD=∠DCA;(2)∠AFD=∠DCA(或成立),理由如下:方法一:由△ABC≌△DEF,得:AB=DE,BC=EF(或BF=EC),∠ABC=∠DEF,∠BAC=∠EDF,∴∠ABC﹣∠FBC=∠DEF﹣∠CBF,∴∠ABF=∠DEC,在△ABF和△DEC中,,∴△ABF≌△DEC(SAS),∠BAF=∠EDC,∴∠BAC﹣∠BAF=∠EDF﹣∠EDC,∠FAC=∠CDF,∵∠AOD=∠FAC+∠AFD=∠CDF+∠DCA,∴∠AFD=∠DCA;方法二:连接AD,同方法一△ABF≌△DEC,∴AF=DC,∵△ABC≌△DEF,∴FD=CA,在△AFD和△DCA中,,∴△AFD≌△DCA,∴∠AFD=∠DCA;(3)如图,BO⊥AD.方法一:由△ABC≌△DEF,点B与点E重合,得∠BAC=∠BDF,BA=BD,∴点B在AD的垂直平分线上,且∠BAD=∠BDA,∵∠OAD=∠BAD﹣∠BAC,∠ODA=∠BDA﹣∠BDF,。
新人教版九年级上册《第23章+旋转》2020年单元测试卷(3)
新人教版九年级上册《第23章旋转》2020年单元测试卷(3)一、选择题(本题共计10小题,每题3分,共计30分,)1.(3分)在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图案中,不能由一个图形通过旋转而构成的是()A.B.C.D.2.(3分)如图,ODC∆绕点O顺时针旋转30︒后得到的图形,若点D恰好落在∆是由OAB∠的度数为()AB上,则AA.70︒B.75︒C.60︒D.65︒3.(3分)如图,已知ABC∆,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且A、D在BC同侧,连接AD,量一量线段AD的长,约为()A.1.0cm B.1.4cm C.1.8cm D.2.2cm4.(3分)如图,利用直尺和三角尺作平行线,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等5.(3分)经过矩形对称中心的任意一条直线,把这个矩形分成两部分,设这两部分的面积分别为1S 和2S ,则1S 与2S 的大小关系是( )A .12S S >B .12S S <C .12S S =D .不能确定6.(3分)如图,正方形ABCD 的边长是3cm ,一个边长为1cm 的小正方形沿着正方形ABCD 的边AB BC CD DA →→→连续翻转(小正方形起始位置在AB 边上),那么这个小正方形翻转到DA 边的终点位置时,它的方向是( )A .B .C .D .7.(3分)在平面直角坐标系中,有三点(4,3)M -,(4,6)A -,(1,3)B -,对于下列说法错误的是( )A .点M 在第四象限B .点M 到x 轴的距离是3C .点M 到y 轴的距离是4D .MA MB = 8.(3分)已知点(3,3)P --,(3,4)Q -,则直线(PQ )A .平行于x 轴B .平行于y 轴C .垂直于y 轴D .以上都不正确9.(3分)将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-10.(3分)若点A 关于原点对称点的坐标为(,)a b ,则点A 的坐标是( )A .(,)a bB .(,)a b --C .(,)a b -D .(,)a b -二、填空题(本题共计8小题,每题3分,共计24分,)11.(3分)在平面直角坐标系中,若点(2,1)P x x -+关于原点的对称点在第四象限,则x 的取值范围是 .12.(3分)若O 点是ABCD 对角线AC 、BD 的交点,过O 点作直线l 交AD 于E ,交BC于F .则线段OF 与OE 的关系是 ,梯形ABFE 与梯形CDEF 是 图形.13.(3分)如图所示,三角形ABC 中,33BAC ∠=︒,将三角形ABC 绕点A 按顺时针方向旋转50︒,对应得到三角形AB C '',则B AC ∠'的度数为 .14.(3分)如图,直线1y k x =与双曲线2k y x =相交于点P 、Q .若点P 的坐标为(1,2),则点Q 的坐标为 .15.(3分)在钟面上从2点到2点16分,分针旋转的度数是 .16.(3分)如图,由小正方形组成的L 形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:.17.(3分)在线段、锐角、等边三角形、正方形和圆中,是中心对称图形的有 .18.(3分)如图1,教室里有一只倒地的装垃圾的灰斗,BC 与地面的夹角为50︒,25C ∠=︒,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB 绕点C 转动的角度为 .三、解答题(本题共计5小题,共计66分,)19.如图,DEF ∆是由ABC ∆经过某种变换后得到的图形,分别写出点A 与点D ,点B 与点E ,点C 与点F 的坐标,你发现它们之间有怎样的关系?如果三角形ABC 中任意一点M 的坐标为(,)m n ,那么它在DEF ∆中对应点N 的坐标是什么?20.作图题:(保留作图痕迹,不要求写出作法)如图,画出ABC∆关于点A成中心对称的△AB C''.21.如图,请你仔细观察,回答下列问题:(1)图①、图②的周长有什么关系?请用平移的知识解释你的结论;(2)图②、图③的周长有什么关系?请用学过的数学知识解释你的结论.22.如图,在44⨯的方格纸中,ABC∆的三个顶点都在格点上.(1)在图1中,画出一个与ABC∆成中心对称的格点三角形;(2)在图2中,画出ABC∆绕着点C按顺时针方向旋转90︒后的三角形.23.矩形ABCD中,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN 与EF交于点O,记:=.k MN EF(1)如图1,当2⊥,求k的值;=时,若MN EFBC AB(2)如图2,当2BC AB=时,求k的最大值和最小值;(3)若k的值为3,当MN与BD重合且DOF∆为直角三角形时,直接写出:AB BC的值.新人教版九年级上册《第23章 旋转》2020年单元测试卷(3)参考答案与试题解析一、选择题(本题共计10小题,每题3分,共计30分,)1.(3分)在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图案中,不能由一个图形通过旋转而构成的是( )A .B .C .D .【解答】解:A 、旋转90︒后与原图重合;B 、旋转60︒后与原图重合;C 、只有C 是轴对称变换;D 、旋转72︒后与原图重合.故选:C .2.(3分)如图,ODC ∆是由OAB ∆绕点O 顺时针旋转30︒后得到的图形,若点D 恰好落在AB 上,则A ∠的度数为( )A .70︒B .75︒C .60︒D .65︒【解答】解:由题意得30AOD ∠=︒、OA OD =,180752AOD A ADO ︒-∠∴∠=∠==︒, 故选:B .3.(3分)如图,已知ABC ∆,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且A 、D 在BC 同侧,连接AD ,量一量线段AD 的长,约为( )A .1.0cmB .1.4cmC .1.8cmD .2.2cm【解答】解:如图所示:测量可得 1.4AD cm =,故选:B .4.(3分)如图,利用直尺和三角尺作平行线,其依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等【解答】解:由画法可得12∠=∠,则//a b .故选:A .5.(3分)经过矩形对称中心的任意一条直线,把这个矩形分成两部分,设这两部分的面积分别为1S 和2S ,则1S 与2S 的大小关系是( )A .12S S >B .12S S <C .12S S =D .不能确定【解答】解:矩形ABCD 中,AD BC =,AO BO CO DO ===,()AOD BOC SSS ∴∆≅∆,ECO FAO ∠=∠,OA OC =,EOC FOA ∠=∠,OEC OFA ∴∆≅∆,同理可证,DEO BFO ∆≅∆,12S S ∴=.故选:C .6.(3分)如图,正方形ABCD 的边长是3cm ,一个边长为1cm 的小正方形沿着正方形ABCD 的边AB BC CD DA →→→连续翻转(小正方形起始位置在AB 边上),那么这个小正方形翻转到DA 边的终点位置时,它的方向是( )A .B .C .D .【解答】解:根据题意分析可得:小正方形沿着正方形ABCD 的边AB BC CD DA AB ⇒⇒⇒⇒连续地翻转,正方形ABCD 的边长是3cm ,一个边长为1cm 的小正方,如图所示:回到DA 边的终点位置时它的方向是向下.故选:C .7.(3分)在平面直角坐标系中,有三点(4,3)M -,(4,6)A -,(1,3)B -,对于下列说法错误的是( )A .点M 在第四象限B .点M 到x 轴的距离是3C .点M 到y 轴的距离是4D .MA MB =【解答】解:如图,A 、点M 在第二象限,不在第四象限,故本选项正确; B 、点M 到x 轴的距离是3,正确,故本选项错误;C 、点M 到y 轴的距离是4,正确,故本选项错误;D 、3MA =,3MB =,所以,MA MB =,正确,故本选项错误. 故选:A .8.(3分)已知点(3,3)P --,(3,4)Q -,则直线(PQ )A .平行于x 轴B .平行于y 轴C .垂直于y 轴D .以上都不正确【解答】解:(3,3)P --,(3,4)Q -,P ∴、Q 横坐标相等,∴由坐标特征知直线PQ 平行于y 轴,故选:B .9.(3分)将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-【解答】解:2(2)3324y x x =--+=-.故选:A .10.(3分)若点A 关于原点对称点的坐标为(,)a b ,则点A 的坐标是( )A .(,)a bB .(,)a b --C .(,)a b -D .(,)a b -【解答】解:点A 关于原点对称点的坐标为(,)a b ,则点A 的坐标是(,)a b --.故选B .二、填空题(本题共计8小题,每题3分,共计24分,)11.(3分)在平面直角坐标系中,若点(2,1)P x x -+关于原点的对称点在第四象限,则x 的取值范围是 12x -<< .【解答】解:点(2,1)P x x -+关于原点的对称点在第四象限, ∴点P 在第二象限,∴2010x x -<⎧⎨+>⎩, 解得:12x -<<,故答案为:12x -<<.12.(3分)若O 点是ABCD 对角线AC 、BD 的交点,过O 点作直线l 交AD 于E ,交BC于F .则线段OF 与OE 的关系是 相等 ,梯形ABFE 与梯形CDEF 是 图形.【解答】解:如图所示,ABCD 是中心对称图形,对称中心是对角线的交点O , ∴线段OF 与OE 的关系是相等,梯形ABFE 与梯形CDEF 是成中心对称图形. 故答案为:相等,成中心对称.13.(3分)如图所示,三角形ABC 中,33BAC ∠=︒,将三角形ABC 绕点A 按顺时针方向旋转50︒,对应得到三角形AB C '',则B AC ∠'的度数为 17︒ .【解答】解:33BAC ∠=︒,将ABC ∆绕点A 按顺时针方向旋转50︒,对应得到△AB C '', 33B AC ''∴∠=︒,50BAB '∠=︒,B AC ∴∠'的度数503317=︒-︒=︒.故答案为:17︒.14.(3分)如图,直线1y k x =与双曲线2k y x=相交于点P 、Q .若点P 的坐标为(1,2),则点Q 的坐标为 (1,2)-- .【解答】解:直线1y k x =与双曲线2k y x=的图象均关于原点对称, ∴点Q 的坐标与点P 的坐标关于原点对称,点P 的坐标为(1,2),∴点Q 的坐标为(1,2)--.15.(3分)在钟面上从2点到2点16分,分针旋转的度数是 96︒ .【解答】解:分针旋转一周(360)︒用时60分钟,∴分针旋转速度为360606(/÷=︒分钟),∴在钟面上从2点到2点16分,分针旋转的度数是16696⨯=︒,故答案为:96︒.16.(3分)如图,由小正方形组成的L 形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:.【解答】解:如图所示:17.(3分)在线段、锐角、等边三角形、正方形和圆中,是中心对称图形的有 线段、正方形和圆 .【解答】解:由中心对称图形的概念可知,线段、正方形和圆是中心对称图形,符合题意; 锐角、等边三角形不是中心对称图形,是轴对称图形,不符合题意.故中心对称的图形有:线段、正方形和圆.故答案为:线段、正方形和圆.18.(3分)如图1,教室里有一只倒地的装垃圾的灰斗,BC 与地面的夹角为50︒,25C ∠=︒,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB 绕点C 转动的角度为 105︒ .【解答】解:如图:连结AC 并且延长至E ,180105DCE DCB ACB ∠=︒-∠-∠=︒.故灰斗柄AB 绕点C 转动的角度为105︒.故答案为:105︒.三、解答题(本题共计5小题,共计66分,)19.如图,DEF ∆是由ABC ∆经过某种变换后得到的图形,分别写出点A 与点D ,点B 与点E ,点C 与点F 的坐标,你发现它们之间有怎样的关系?如果三角形ABC 中任意一点M 的坐标为(,)m n ,那么它在DEF ∆中对应点N 的坐标是什么?【解答】解:(1,1)A -,(2,4)B -,(6,3)C -,(1,1)D -,(2,4)E -,(6,3)F -,A 与点D ,点B 与点E ,点C 与点F 的横纵坐标互为相反数关系,如果三角形ABC 中任意一点M 的坐标为(,)m n ,那么它在DEF ∆中对应点N 的坐标是(,)m n --.20.作图题:(保留作图痕迹,不要求写出作法)如图,画出ABC ∆关于点A 成中心对称的△AB C ''.【解答】解:如图,△A B C'''即为所求.21.如图,请你仔细观察,回答下列问题:(1)图①、图②的周长有什么关系?请用平移的知识解释你的结论;(2)图②、图③的周长有什么关系?请用学过的数学知识解释你的结论.【解答】解:(1)图①、图②的周长相等,理由:将图②的横纵线段分别平移,即可得出周长正好等于边长为4的正方形的周长;(2)图②的周长大于图③的周长,理由:利用平移的性质可得出平移所有线段后,虚线部分的和大于斜边长,则图②的周长大于图③的周长.22.如图,在44⨯的方格纸中,ABC∆的三个顶点都在格点上.(1)在图1中,画出一个与ABC∆成中心对称的格点三角形;(2)在图2中,画出ABC∆绕着点C按顺时针方向旋转90︒后的三角形.【解答】解:(1)如图1,DCE∆即为所求;(2)如图2,DCE∆即为所求.23.矩形ABCD中,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN 与EF交于点O,记:=.k MN EF(1)如图1,当2⊥,求k的值;=时,若MN EFBC AB(2)如图2,当2=时,求k的最大值和最小值;BC AB(3)若k的值为3,当MN与BD重合且DOFAB BC的值.∆为直角三角形时,直接写出:【解答】解:(1)作FG BC⊥于H,设FG交MH于点P,FG交MN于⊥于G,MH CD点Q,如图1所示:则90∠=∠=︒,MHN FGE四边形ABCD是矩形,=,=,AB CD∴∠=∠=∠=∠=︒,AD BCA B C D90∴四边形AM HD和四边形FGCD是矩形,∠=∠=∠=︒,AMP DFG AFP==,90∴==,FG CD ABMH AD BC∴四边形AMPF 是矩形,90MPQ ∴∠=︒,MN EF ⊥,90FOQ MPQ ∴∠=∠=︒,MQP FQO ∠=∠,MQP FQO ∴∆∆∽,HMN GFE ∴∠=∠,MHN FGE ∠=∠,MHN FGE ∴∆∆∽, ∴22MN MH BC AB EF FG AB AB====, 2k ∴=;(2)2BC AB =,∴设AB a =,则2BC a =,当//MN BC 时,MN 最短为2a ,当MN 与矩形ABCD 的对角线重合时,MN , 当//EF AB 时,EF 最短为a ,当EF 与矩形ABCD 的对角线重合时,EF ,∴当MN 的长取最大时,EF 取最短,此时k =当MN 的最短时,EF 的值取最大,此时k=即k ; (3)MN 与BD 重合,BD MN ∴=,①当90DOF ∠=︒时,作FG BC ⊥于G ,FG 交MN 于点Q ,如图3所示: 则四边形ABGF 为矩形,90DOF FOQ QGB ∠=∠=∠=︒, FG AB ∴=,FQO BQG ∠=∠,FQO BQG ∴∆∆∽,CBD GFE ∴∠=∠,FG BC ⊥,四边形ABCD 是矩形,C FGE ∴∠=∠,CBD GFE ∴∆∆∽, ∴BD BC EF FG =, ∴3MN BC EF FG ==, ∴3BC AB =, ∴13AB BC =; ②当90OFD ∠=︒时,如图4所示:则四边形ABEF 为矩形,EF AB ∴=,3MN EF=, ∴3BD AB=, 设AB a =,则3BD a =,四边形ABCD 是矩形,BC AD ∴=,90A ∠=︒,由勾股定理得:2222(3)22BC AD BD AB a a a ==-=-=, ∴222AB BC a ==, 综上所述,:AB BC 的值为13或24.。
人教版数学九年级上册第23章《旋转》单元检测试卷及答案解析
第23章《旋转》单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是()2.以下图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()3.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转 C.对称和平移 D.旋转和平移4.已知点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,则a+b 的值为()A.1 B.5 C.6 D.45.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.60°B.72°C.90°D.144°7.如图,将△OAB 绕点O 逆时针旋转80°,得到△OCD ,若∠A=2∠D=100°,则∠α的度数是( )A .50°B .60°C .40°D .30°8.在平面直角坐标系xOy 中,A 点坐标为(3,4),将OA 绕原点O 顺时针旋转180°得到OA′,则点A′的坐标是( )A .(﹣4,3)B .(﹣3,﹣4)C .(﹣4,﹣3)D .(﹣3,4)9.如图,将Rt △ABC (其中∠B=30°,∠C=90°)绕点A 按顺时针方向旋转到△AB1C1的位置,使得点B 、A 、B1在同一条直线上,那么旋转角等于( )B 1C 1C BAA .30°B .60°C .90°D .180° 10.如图,在△ABC 中,∠AB=90°,将△ABC 绕点A 顺时针旋转90°,得到△ADE ,连接BD ,若AC=3,DE=1,则线段BD 的长为( )E DCB AA .5B .3C .4D .10二、填空题(共6小题,每小题3分,共18分)11.如图,△ABC 中,∠C =30°,将△ABC 绕点A 顺时针旋转60°得△ADE ,AE 与BC 交于F ,则∠AFB =_______°.12如图,把Rt △ABC 绕点A 逆时针旋转44°,得到Rt △AB′C′,点C′恰好落在边AB 上,连接BB′,则∠BB′C′=图11B'C'CBA图1213.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为.14.如图,直线y=﹣33x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是.15.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.16.在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为.三、解答题(共8题,共72分)17.(本题8分)如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?18.(本题8分)将下图所示的图形面积分成相等的两部分.(图中圆圈为挖去部分)19.(本题8分)19.(8分)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.20.(本题8分)如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?21.(本题8分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴,垂足为A.(1)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(2)△O′A′B′与△OAB关于原点对称,写出点B′、A′的坐标.22.(本题10分)当m为何值时(1)点A(2,3m)关于原点的对称点在第三象限;(2)点B(3m﹣1,0.5m+2)到x轴的距离等于它到y轴距离的一半?23.(本题10分)直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?24.(本题12分)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB 绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.第23章《旋转》单元测试卷解析一、选择题1.【答案】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选:C2.【答案】以图的右边缘所在的直线为轴将该图形向右翻转180°后,黑圆在右上角,再按顺时针方向旋转180°,黑圆在左下角.故选:A.3.【答案】根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.4.【答案】∵点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,∴a=2014,b=﹣2013,则a+b的值为:2014﹣2013=1.故选:A.5.【答案】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5,∴点M(m,n)在第一象限,故选A.6.【答案】如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.故选:B.7.【答案】∵将△OAB绕点O逆时针旋转80°,∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α,∠D=100°∵∠A=2∠D=100°,∴∠D=50°∵∠C+∠D+∠DOC=180°,∴100°+50°+80°﹣α=180°解得α=50°,故选A8.【答案】根据题意得,点A关于原点的对称点是点A′,∵A点坐标为(3,4),∴点A′的坐标(﹣3,﹣4).故选B.9.【答案】∵B、A、B1在同一条直线上,∴∠BAB1=180°,∴旋转角等于180°.故选D.10.【答案】由旋转的性质可知:BC=DE=1,AB=AD,∵在RT△ABC中,AC=3,BC=1,∠ACB=90°,∴由勾股定理得:10又旋转角为90°,∴∠BAD=90°,∴在RT △ADB 中,即:BD 的长为故:选A二、填空题11.【答案】90º12.【答案】∵Rt △ABC 绕点A 逆时针旋转40°得到Rt △AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=12(180°﹣∠BAB′)=12(180°﹣44°)=68°, ∵∠AC′B′=∠C=90°,∴B′C′⊥AB ,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.13.【答案】∵AO=32,BO=2,∴AB=52,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2016的横坐标为:2016÷2×6=6048.∴点B2016的纵坐标为:2. ∴点B2016的坐标为:(6048,2).故答案为:(6048,2).14.【答案】令y=0x+2=0,解得令x=0,则y=2,∴点A (0),B (0,2),∴OB=2,∴∠BAO=30°,∴AB=2OB=2×2=4,∵△AOB 绕点A 顺时针旋转60°后得到△AO′B′,∴∠BAB′=60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(4).故答案为:(4).15.【答案】∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.16.【答案】如图所示:在直角△OBC 中,OC=12AC=12BC=1cm ,则(cm ),则(cm ).故答案为:cm .三、解答题17.【答案】这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.18.【答案】如图:19.【答案】解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-720.【答案】(1)证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.21.【答案】(1)如图,点C的坐标为(﹣2,4);(2)点B′、A′的坐标分别为(﹣4,﹣2)、(﹣4,0).22.【答案】(1)∵点A(2,3m),∴关于原点的对称点坐标为(﹣2,﹣3m),∵在第三象限,∴﹣3m<0,∴m>0;(2)由题意得:①0.5m +2=12(3m ﹣1),解得:m=52;②0.5m +2=﹣12(3m ﹣1),解得:m=﹣34.23.【答案】(1)点P 关于原点的对称点P'的坐标为(2,1); (2)OP '=(a )动点T 在原点左侧,当1TO OP '=时,△P'TO 是等腰三角形,∴点1T,0),(b )动点T 在原点右侧,①当T2O=T2P'时,△P'TO 是等腰三角形,得:2T (54,0),②当T3O=P'O 时,△P'TO 是等腰三角形,得:3T,0),③当T4P'=P'O 时,△P'TO 是等腰三角形,得:点T4(4,0).综上所述,符合条件的t 的值为,54,4.24.【答案】(1)如图1所示过点B 作BC ⊥OA ,垂足为C .图1∵△OAB 为等边三角形,∴∠BOC=60°,OB=BA .∵OB=AB ,BC ⊥OA ,∴OC=CA=1.在Rt △OBC中,BCOC =,∴∴点B 的坐标为(1.(2)如图2所示:(A 1)图2yx O B 1CB A∵点B1与点A1的纵坐标相同,∴A1B1∥OA .①如图2所示:当a=300°时,点A1与点B1纵坐标相同.如图3所示:A 1图3yxO B 1CBA当a=120°时,点A1与点B1纵坐标相同.∴当a=120°或a=300°时,点A1与点B1纵坐标相同.(3)如图2所示:由旋转的性质可知A1B1=AB=2,点B 的坐标为(1,2), ∴点B1的坐标为(﹣1.如图3所示:由旋转的性质可知:点B1的坐标为(1.∴点B1的坐标为(﹣11.【素材积累】司马迁写《史记》汉朝司马迁继承父业,立志著述史书。
九年级数学上册 第二十三章 旋转 单元测试卷及答案(2023年人教版)
九年级数学上册第二十三章旋转单元测试卷及答案(人教版)一、选择题(每题3分,共30分)1.【教材P69习题T2拓展】垃圾混置是垃圾,垃圾分类是资源.下列可回收物、有害垃圾、厨余垃圾、其他垃圾四种垃圾回收标识中,既是轴对称图形又是中心对称图形的是()2.【教材P60例题变式】如图,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是()3.【教材P69练习T2改编】点(-1,2)关于原点的对称点坐标是() A.(-1,-2) B.(1,-2) C.(1,2) D.(2,-1) 4.如图,四边形ABCD为正方形,O为对角线AC,BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA?()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°(第4题)(第5题)(第6题)(第7题)5.【教材P77复习题T7变式】如图,点O是▱ABCD的对称中心,EF是过点O 的任意一条直线,它将平行四边形分成两部分,四边形ABOE和四边形CDOF 的面积分别记为S1,S2,那么S1,S2之间的关系为()A. S1>S2B. S1<S2C.S1=S2 D. 无法确定6.如图,将Rt△ABC(∠B=25°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C ,A ,B 1在同一条直线上,那么旋转角等于( )A .65°B .80°C .105°D .115°7.如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE绕点A 顺时针旋转到与△ABF 重合,则EF =( ) A.41 B.42 C .5 2 D .2138.如图,在平面直角坐标系中,将点P (2,3)绕原点O 顺时针旋转90°得到点P ′,则点P ′的坐标为( )A .(3,2)B .(3,-1)C .(2,-3)D .(3,-2)(第8题) (第9题) (第10题)9.如图,点P 是等腰直角三角形ABC 外一点,把BP 绕点B 顺时针旋转90°到BP ′,已知∠AP′B =135°,P ′A ∶P ′C =1∶3,则P ′A ∶PB 等于( )A .1∶ 2B .1∶2 C.3∶2 D .1∶ 310.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1;依此方式,绕点O 连续旋转2 022次得到正方形OA 2 022B 2 022C 2 022,那么点A 2 022的坐标是( )A.⎝ ⎛⎭⎪⎫22,-22 B .(-1,0) C.⎝ ⎛⎭⎪⎫-22,-22 D .(0,-1) 二、填空题(每题3分,共24分)11.【教材P 63习题T 5变式】如图,风车图案围绕着旋转中心至少旋转________度,会和原图案重合.(第11题) (第12题) (第13题)12.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为________.13.如图所示,图形①经过________变换得到图形②;图形①经过________变换得到图形③;图形①经过________变换得到图形④.(填“平移”“旋转”或“轴对称”)14.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=________.(第14题)(第15题)(第16题)(第17题) 15.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形,若点A的坐标是(1,3),则点M的坐标是__________,点N的坐标是__________.16.如图,在Rt△OAB中,∠OAB=90°,O A=AB=6,将△O AB绕点O按逆时针方向旋转90°得到△OA1B1.连接AA1,则四边形OAA1B1的面积为________.17.如图,将△ABC在平面内绕点A逆时针旋转40°到△AB′C′的位置,若CC′∥AB,则∠CAB′的度数为________.18.如图,将一个45°角的顶点与正方形ABCD的顶点A重合,在正方形的内部绕着点A旋转,角的两边分别与CD,CB边相交于F,E两点,与对角线BD交于N,M两点,连接EF,则下列结论:①AE=AF;②EF=BE+DF;③△CEF的周长等于正方形ABCD周长的一半;④S△AEF =S△ABE+S△ADF.其中正确的结论有____________(填序号).三、解答题(19~22题每题8分,23题10分,其余每题12分,共66分) 19.如图,在△ABC中,∠B=10°,∠ACB=20°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转角的度数;(2)求∠BAE的度数和AE的长.20.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2,C2的坐标.21.【教材P70习题T4拓展】平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.22.如图,在6×6的网格中已经涂黑了三个小正方形,请按下列要求画图.(1)在图①中涂黑一个小正方形,使涂黑的四个小正方形组成一个轴对称图形.(2)在图②中涂黑一个小正方形,使涂黑的四个小正方形组成一个中心对称图形.23.如图,△BAD是由△BEC在平面内绕点B旋转60°得到的,且AB⊥BC,BE =CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.25.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,试判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α.答案一、1.B 2.C 3.B 4.C 5.C 6.D7.D8.D9.B10.B点规律:2022=252×8+6,则点A2022在点A6的位置,点A6与点C重合.二、11.6012.π13.轴对称;旋转;平移14.215.(-1,-3);(1,-3)16.3617.30°18.②③④点思路:将△ADF绕点A顺时针旋转90°,点D与点B重合,利用全等的知识判断.三、19.解:(1)旋转中心是点A.∵∠CAB=180°-∠B-∠ACB=150°,∴旋转角是150°.(2)∠BAE=360°-150°×2=60°.由旋转的性质得△ABC≌△ADE,∴AB=AD,AC=AE.又∵点C是AD的中点,∴AC=12AD=12AB=12×4=2.∴AE=2.20.解:(1)如图,△A1B1C1即为所求.(2)如图,△AB2C2即为所求.点B2的坐标为(4,-2),点C2的坐标为(1,-3).21.解:根据题意,得(x2+2x)+(x+2)=0,y=-3.解得x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0.∴x=-1.∴x+2y=-7.22.解:(1)如图①所示:①、②、③、④处涂黑都可以使涂黑的四个小正方形组成一个轴对称图形;(2)如图②所示:①、②处涂黑都可以使涂黑的四个小正方形组成一个中心对称图形.23.(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°得到的,∴DB=CB,∠ABE=∠DBC=60°.∵AB⊥BC,∴∠ABC=90°.∴∠CBE=30°.∴∠DBE=30°.∴∠DBE=∠CBE.在△BDE和△BCE中,DB=CB,∠DBE=∠CBE,BE=BE,∴△BDE≌△BCE(SAS).(2)解:四边形ABED为菱形.理由:由(1)得△BDE≌△BCE,∴EC=ED.∵△BAD是由△BEC旋转得到的,∴△BAD≌△BEC.∴BA=BE,AD=EC.又∵BE=CE,EC=ED,∴BA=BE=AD=ED.∴四边形ABED为菱形.24.点方法:(1)可以用观察法初步判断AE和DB的数量、位置关系,通过边长DB交AE于点M,利用全等的知识进行验证.解:(1)AE=DB,AE⊥DB.理由:如图①,延长DB交AE于点M.由题意可知,CA=CB,CE=CD,∠ACE=∠BCD=90°,∴△ACE≌△BCD(SAS).∴AE=DB,∠AEC=∠BDC.∵∠ACE=90°,∴∠AEC+∠EAC=90°,∴∠BDC+∠EAC=90°.∴在△AMD 中,∠AMD =180°-90°=90°.∴AE ⊥DB .(2)DE =AF ,DE ⊥AF .理由:如图②,设ED 与AF 相交于点N ,由题意易知BE =AD .∵∠EBD =∠C +∠BDC =90°+∠BDC ,∠ADF =∠BDF +∠BDC =90°+∠BDC ,∴∠EBD =∠ADF .又∵DB =DF ,∴△EBD ≌△ADF (SAS).∴∠E =∠FAD ,DE =AF .∵∠E =45°,∴∠FAD =45°.又∵∠EDC =45°,∴∠AND =90°.∴DE ⊥AF .25.解:(1)∠ABD =30°-12α.(2)△ABE 为等边三角形.证明如下:连接AD ,CD .∵线段BC 绕点B 逆时针旋转60°得到线段BD ,∴BC =BD ,∠DBC =60°.∴△BCD 是等边三角形.∴BD =CD .∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α.在△ABD 和△ACD 中,AB =AC ,AD =AD ,BD =CD ,∴△ABD ≌△ACD (SSS).∴∠BAD =∠CAD =12∠BAC =12α.∵∠BCE =150°,∴∠BEC =180°-12α150°=12α.∴∠BAD =∠BEC .在△ABD 和△EBC 中,∠BAD =∠BEC ,∠ABD =∠EBC ,BD =BC ,∴△ABD ≌△EBC (AAS).∴AB =BE .又∵∠ABE =60°,∴△ABE 为等边三角形.(3)由(2)可知△BCD 为等边三角形,∴∠BCD =60°.∵∠BCE =150°,∴∠DCE =150°-60°=90°.∵∠DEC =45°,∴△DCE 为等腰直角三角形,∴DC =CE =BC .∴∠CBE =∠BEC .∵∠BCE =150°,∴∠EBC =180°-150°2=15°.而由(2)知∠EBC =30°-12α,∴30°-12α=15°.∴α=30°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学(人教版)上学期单元试卷(四)(内容:第23章总分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.将左图所示的图案按顺时针方向旋转90°后可以得到的图案是()3.如图,如果正方形ABCD旋转后能与正方形CDEF重合,那么图形所在的平面内可作旋转中心的点共有()A.1 个B.2 个 C.3 个D.4个4.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50°B.60°C.70°D.80°5.如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A.55°B.45°C.40°D.35°(第3题) (第4题) (第5题)6.如图,O是边长为1的正△ABC的中心,将△ABC绕点O逆时针方向旋转180,得△A1B1C1,则△A1B1C1与△ABC重叠部分(图中阴影部分)的面积为()A.34B.36C.32D.38(A)(B)(C)(D)CB对称的图形.若点A 的坐标是(1, 3),则点M 和点N 的坐标分别为( ) A .(13)(13)M N ---,,, B .(13)(13)M N ---,,, C .(13)(13)M N --,,,D .(13)(13)M N ---,,,8. 如图是一个中心对称图形,A 为对称中心,若∠C =90°, ∠B =30°,AC =1,则BB '的长为( ) A .4 B .33 C .332 D .334(第6题) (第7题) (第8题)9.如图,已知两个全等直角三角形的直角顶点及一条直角边重合,将△ACB 绕点C 按顺时针方向旋转到△A /CB /的位置,其中A /C 交直线AD 于点E ,A /B /分别交直线AD ,AC 于点F ,G ,则旋转后的图中,全等三角形共有( ) A .2对B .3对C .4对D .5对10.如下所示的4组图形中,左边图形与右边图形成中心对称的有( ) A .1组 B .2组 C .3组 D .4组二、填空题(本大题共4小题,每小题3分,共12分)11.点P (2,3)绕着原点逆时针方向旋转90o 与点P /重合,则P /的坐标为 ______ 。
12.将两块直角三角尺的直角顶点重合为如图的位置, 若∠AOD =110°,则∠BOC =________13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……'B74DAFCBEODCBA(第12题) (第13题) (第14题)14.将直角边长为5cm 的等腰直角ABC △绕点A 逆时针旋转15后得到AB C ''△,则图中阴影部分的面积是 ____________ 2cm 。
三、(本题共2小题,每小题5分,满分10分)15.四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如果AF =4,AB =7, (1)指出旋转中心和旋转角度; (2)求DE 的长度;(3)BE 与DF 的位置关系如何?16.如图,四边形ABCD 是边长为1的正方形,且DE =41,△ABF 是△ADE 的旋转图形。
(1)旋转中心是哪一点? (2)旋转了多少度? (3)AF 的长度是多少?(4)如果连结EF ,那么△AEF 是怎样的三角形?ACBB '30°30°30°四、(本题共2小题,每小题5分,满分10分)17.如图所示,△ABP是由△ACE绕A点旋转得到的,那么△ABP与△ACE是什么关系?若∠BAP=40°,∠B=30°,∠P AC=20°,求旋转角及∠CAE、∠E、∠BAE的度数。
A EPB C18.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,求∠B的度数。
五、(本题共2小题,每小题6分,满分12分)19.如图,把△ABC向右平移5个方格,再绕点B顺时针方向旋转90°。
(1)画出平移和旋转后的图形,并标明对应字母;(2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如果不能,说明理由。
CBA20.如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1)。
(1)作出△ABC关于原点O的中心对称图形;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标。
六、(本大题满分8分)21.已知平面直角坐标系上的三个点O(0,0),A(-1,1),B(-1,0),将△ABO绕点O 按顺时针方向旋转135°,点A、B的对应点为A l,B l,求点A l,B l的坐标。
七、(本大题满分8分)22.如图,P是正三角形ABC内的一点,且P A=6,PB=8,PC=10。
若将△P AC绕点A逆时针旋转后,得到△P/AB。
⑴求点P与点P′之间的距离;⑵∠APB的度数。
八、(本大题满分10分)23.操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是( B )A.B.C.D.2.将左图所示的图案按顺时针方向旋转90°后可以得到的图案是(A)3.如图,如果正方形ABCD旋转后能与正方形CDEF重合,那么图形所在的平面内可作旋转中心的点共有( C )A.1 个B.2 个C.3 个D.4个4.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是(C)A.50°B.60°C.70°D.80°5.如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于(D)A.55°B.45°C.40°D.35°(第3题) (第4题) (第5题)6.如图,O是边长为1的正△ABC的中心,将△ABC绕点O逆时针方向旋转180,得△A1B1C1,则△A1B1C1与△ABC重叠部分(图中阴影部分)的面积为(B)A.34B.36C.32D.387.如图,阴影部分组成的图案既是关于x轴成轴对称的图形,又是关于坐标原点O成中心(A)(B)(C)(D)CBA .(13)(13)M N ---,,,B .(13)(13)M N ---,,,C .(13)(13)M N --,,,D .(13)(13)M N ---,,,8. 如图是一个中心对称图形,A 为对称中心,若∠C =90°, ∠B =30°,AC =1,则BB '的长为( A ) A .4 B .33 C .332 D .334(第6题) (第7题) (第8题)9.如图,已知两个全等直角三角形的直角顶点及一条直角边重合,将△ACB 绕点C 按顺时针方向旋转到△A /CB /的位置,其中A /C 交直线AD 于点E ,A /B /分别交直线AD ,AC 于点F ,G ,则旋转后的图中,全等三角形共有( C ) A .2对B .3对C .4对D .5对10.如下所示的4组图形中,左边图形与右边图形成中心对称的有( C ) A .1组 B .2组 C .3组 D .4组二、填空题(本大题共4小题,每小题3分,共12分)11.点P (2,3)绕着原点逆时针方向旋转90o 与点P /重合,则P /的坐标为 (-3,2) 。
12.将两块直角三角尺的直角顶点重合为如图的位置, 若∠AOD =110°,则∠BOC =70° 。
13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……'B74DAFCBEODCBA(第12题) (第13题) (第14题)14.将直角边长为5cm 的等腰直角ABC △绕点A 逆时针旋转15后得到AB C ''△,则图中阴影部分的面积是25362cm 。
三、(本题共2小题,每小题5分,满分10分)15.四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如果AF =4,AB =7, (1)指出旋转中心和旋转角度; (2)求DE 的长度;(3)BE 与DF 的位置关系如何? 15.(1)旋转中心:点A 旋转角度:900; (2)DE =3 ;(3)垂直关系。
16.如图,四边形ABCD 是边长为1的正方形,且DE =41,△ABF 是△ADE 的旋转图形。
(1)旋转中心是哪一点? (2)旋转了多少度? (3)AF 的长度是多少?(4)如果连结EF ,那么△AEF 是怎样的三角形? 16.解:(1)旋转中心是A 点;(2)旋转了90︒; (3)417)41(12222=+=+==DE AD AE AF ;(4)如果连结EF ,那么△AEF 是等腰直角三角形。
ACBB '30°30°30°四、(本题共2小题,每小题5分,满分10分)17.如图所示,△ABP是由△ACE绕A点旋转得到的,那么△ABP与△ACE是什么关系?若∠BAP=40°,∠B=30°,∠P AC=20°,求旋转角及∠CAE、∠E、∠BAE的度数。
A EB CP17.全等。
旋转角为60°,∠CAE=40°,∠E=110°,∠BAE=110°。
18.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,求∠B的度数。