三次Bezier曲线的插补算法及误差分析

三次Bezier曲线的插补算法及误差分析
三次Bezier曲线的插补算法及误差分析

大学物理实验报告数据处理及误差分析

篇一:大学物理实验1误差分析 云南大学软件学院实验报告 课程:大学物理实验学期: - 学年第一学期任课教师: 专业: 学号: 姓名: 成绩: 实验1 误差分析 一、实验目的 1. 测量数据的误差分析及其处理。 二、实验内容 1.推导出满足测量要求的表达式,即 0? (?)的表达式; 0= (( * )/ (2*θ)) 2.选择初速度A,从[10,80]的角度范围内选定十个不同的发射角,测量对应的射程, 记入下表中: 3.根据上表计算出字母A 对应的发射初速,注意数据结果的误差表示。 将上表数据保存为A. ,利用以下程序计算A对应的发射初速度,结果为100.1 a =9.8 _ =0 =[] _ = ("A. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _

+= [ ] 0= _ /10.0 0 4.选择速度B、C、D、重复上述实验。 B C 6.实验小结 (1) 对实验结果进行误差分析。 将B表中的数据保存为B. ,利用以下程序对B组数据进行误差分析,结果为 -2.84217094304 -13 a =9.8 _ =0 1=0 =[] _ = ("B. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _ += [ ] 0= _ /10.0 a (0,10): 1+= [ ]- 0 1/10.0 1 (2) 举例说明“精密度”、“正确度”“精确度”的概念。 1. 精密度 计量精密度指相同条件测量进行反复测量测值间致(符合)程度测量误差角度说精密度所 反映测值随机误差精密度高定确度(见)高说测值随机误差定其系统误差亦。 2. 正确度 计量正确度系指测量测值与其真值接近程度测量误差角度说正确度所反映测值系统误差 正确度高定精密度高说测值系统误差定其随机误差亦。 3. 精确度 计量精确度亦称准确度指测量测值间致程度及与其真值接近程度即精密度确度综合概念 测量误差角度说精确度(准确度)测值随机误差系统误差综合反映。 比如说系统误差就是秤有问题,称一斤的东西少2两。这个一直恒定的存在,谁来都是 这样的。这就是系统的误差。随机的误差就是在使用秤的方法。 篇二:数据处理及误差分析 物理实验课的基本程序

实验三 自由曲线的生成

实验三 Bezier曲线生成 一、实验目的 1. 理解并会自己编程实现二维Bezier曲线的画图 二、实验内容和要求 1.选择自己熟悉的任何编程语言, 建议使用VB,VC或JAVA。 2.创建良好的用户界面,包括菜单,参数输入区域和图形显示区域。 3.实现二维2、3、4阶Bezier曲线的描画。 4.将生成算法以菜单或按钮形式集成到用户界面上。 5.坐标参数可以用鼠标或键盘输入。 三.实验报告 1.用户界面的设计思想和框图。 2.各种实现算法的算法思想。 3.算法验证例子。 4.上交源程序。 四.Bezier曲线生成程序设计的步骤如下: 1.创建工程名称为“Test”单文档应用程序框架 (1)启动VC,选择“文件”|“新建”菜单命令,并在弹出的新建对话框中单击“工程”标签。 (2)选择MFC AppWizard(exe),在“工程名称”编辑框中输入“Test”作为工程名称,单击“确定”按钮,出现Step 1对话框。 (3)选择“单个文档”选项,单击“下一个”按钮,出现Step 2对话框。 (4)接受默认选项,单击“下一个”按钮,在出现的Step 3~Step 5对话框中,接受默认选项,单击“下一个”按钮。 (5)在Step 6对话框中单击“完成”按钮,即完成“Test”应用程序的所有选项,随后出现工程信息对话框(记录以上步骤各选项选择情况),如图1-2所示,单击“确定”按钮,完成应用程序框架的创建。

图1-2 信息程序基本 2.编辑菜单资源 设计如图1-1所示的菜单项。在工作区的ResourceView标签中,单击Menu项左边“+”,然后双击其子项IDR_MAINFRAME,并根据表1-1中的定义编辑菜单资源。此时VC已自动建好程序框架,如图1-2所示。 表1-1菜单资源表 3.添加消息处理函数 利用ClassWizard(建立类向导)为应用程序添加与菜单项相关的消息处理函数,ClassName栏中选择CTestView,根据表1-2建立如下的消息映射函数,ClassWizard会自动完成有关的函数声明。 表1-2菜单项的消息处理函数 onRButtonDown()。

插补运动(逐点比较法)

1、概述 在机床的实际加工中,被加工工件的轮廓形状千差万别,各式各样。严格说来,为了满足几何尺寸精度的要求,刀具中心轨迹应该准确地依照工件的轮廓形状来生成。然而,对于简单的曲线,数控装置易于实现,但对于较复杂的形状,若直接生成,势必会使算法变得很复杂,计算机的工作量也相应地大大增加。因此,在实际应用中,常常采用一小段直线或圆弧去进行逼近,有些场合也可以用抛物线、椭圆、双曲线和其他高次曲线去逼近(或称为拟合)。所谓插补是指数据密化的过程。在对数控系统输入有限坐标点(例如起点、终点)的情况下,计算机根据线段的特征(直线、圆弧、椭圆等),运用一定的算法,自动地在有限坐标点之间生成一系列的坐标数据,即所谓数据密化,从而自动地对各坐标轴进行脉冲分配,完成整个线段的轨迹运行,以满足加工精度的要求。 机床数控系统的轮廓控制主要问题就是怎样控制刀具或工件的运动轨迹。无论是硬件数控(NC)系统,还是计算机数控(CNC)系统或微机数控(MNC)系统,都必须有完成插补功能的部分,只是采取的方式不同而已。在CNC或MNC中,以软件(程序)完成插补或软、硬件结合实现插补,而在NC中有一个专门完成脉冲分配计算(即插补计算)的计算装置——插补器。无论是软件数控还是硬件数控,其插补的运算原理基本相同,其作用都是根据给定的信息进行数字计算,在计算过程中不断向各个坐标发出相互协调的进给脉冲,使被控机械部件按指定的路线移动。 有关插补算法问题,除了要保证插补计算的精度之外,还要求算法简单。这对于硬件数控来说,可以简化控制电路,采用较简单的运算器。而对于计算机数控系统来说,则能提高运算速度,使控制系统较快且均匀地输出进给脉冲。 经过多年的发展,插补原理不断成熟,类型众多。从产生的数学模型来分,有直线插补、二次曲线插补等;从插补计算输出的数值形式来分,有基准脉冲插补(又称脉冲增量插补)和数据采样插补。在基准脉冲插补中,按基本原理又分为以区域判别为特征的逐点比较法插补,以比例乘法为特征的数字脉冲乘法器插补,以数字积分法进行运算的数字积分插补,以矢量运算为基础的矢量判别法插补,兼备逐点比较和数字积分特征的比较积分法插补,等等。在CNC系统中,除了可采用上述基准脉冲插补法中的各种插补原理外,还可采用各种数据采样插补方法。 本文将介绍在数控系统中常用的逐点比较法、数字积分法、时间分割法等多种插补方法以及刀具半径补偿计算原理。 2、逐点比较法 逐点比较法是我国数控机床中广泛采用的一种插补方法,它能实现直线、圆弧和非圆二次曲线的插补,插补精度较高。

三次样条插值作业题

例1 设)(x f 为定义在[0,3]上的函数,有下列函数值表: 且2.0)('0=x f ,1)('3-=x f ,试求区间[0,3]上满足上述条件的三次样条插值函数)(x s 本算法求解出的三次样条插值函数将写成三弯矩方程的形式: ) ()6()() 6()(6)(6)(211123 13 1j j j j j j j j j j j j j j j j x x h h M y x x h h M y x x h M x x h M x s -- + -- + -+ -= +++++其中,方程中的系数 j j h M 6, j j h M 61+,j j j j h h M y )6(2- , j j j j h h M y ) 6(211++- 将由Matlab 代码中的变量Coefs_1、Coefs_2、Coefs_3以及Coefs_4的值求出。 以下为Matlab 代码: %============================= % 本段代码解决作业题的例1 %============================= clear all clc % 自变量x 与因变量y ,两个边界条件的取值 IndVar = [0, 1, 2, 3]; DepVar = [0, 0.5, 2, 1.5]; LeftBoun = 0.2; RightBoun = -1; % 区间长度向量,其各元素为自变量各段的长度 h = zeros(1, length(IndVar) - 1); for i = 1 : length(IndVar) - 1 h(i) = IndVar(i + 1) - IndVar(i); end % 为向量μ赋值

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

第三章_曲线拟合算法的研究汇总

第三章 曲线拟合算法的研究 3.1 引言 随着航空、汽车等现代工业与计算机技术的发展,圆锥曲线与列表点曲线已经成为形状数学描述的常用方法,得到了广泛的应用。为了满足激光切割加工任务的需要,自动编程系统集成了多种曲线拟合算法,这样利用现有的激光切割机,即可实现特殊曲线的插补功能,极大地丰富系统的插补能力,满足复杂的生产要求。 3.2 圆锥曲线拟合算法的研究 在经济型数控系统中,对于圆锥曲线即平面二次曲线的加工是数控加工中经常遇到的问题,随着数控加工对圆锥曲线插补的需求,近年来有关各种圆锥曲线的插补算法应运而生[26]。常用的解决方法是先用低次的有理参数曲线拟合或将其离散,再用直线、圆弧逼近,然后才能进行数控加工[28]。本章从一个新的视角利用双圆弧方法,提出先对圆锥曲线进行标准化处理,再用双圆弧拟合逼近,然后再进行数控加工。这样的优点是:圆弧样条的等距曲线还是圆弧;双圆弧样条能达到C 1连续,基本上能满足要求;所有数控系统都具有直线插补和圆弧插补功能,无需增加额外负担。 由于工程应用不同,对曲线拟合的要求也不同。有的只要求拟合曲线光滑,有的要求光顺[9-10]。本章中开发的软件要求是:支持多种常用圆锥曲线的拟合;拟合曲线要求光滑;拟合曲线与函数曲线间的误差应控制在允许的范围之内,且拟合圆弧段数较少。 本章提出的对圆锥曲线的插补,是建立在对平面任意二次曲线可以进行分类的基础上,先将二次曲线进行分类,然后对各类曲线分别进行双圆弧拟合,这样就可以直接利用数控系统的圆弧插补功能进行插补。 3.2.1 圆锥曲线的一般理论[9] 在平面直角坐标系中,二元二次方程所表示的曲线称为二次曲线。其中系数A 、B 、 C 、 D 、 E 、 F 为实常数,且A 、B 、C 不同时为零。 022=+++++F Ey Dx Cy Bxy Ax (3.1) 式(3.1)称为圆锥曲线的隐式方程。令 AC B 42-=? (3.2) 称上式为二元二次方程(3.1)的判别式。 0

数字积分圆弧第一二三四象限顺逆插补计算

数控技术课程设计说明书 设计题目:数字积分法圆弧插补计软件设计指导老师: 专业:机械设计制造及其自动化 班级:机 姓名: 学号:

目录 一、课程设计题目 (1) 二、课程设计的目的 (1) 三、课程设计使用的主要仪器设备 (1) 四、课程设计的任务题目描述和要求 (1) 五、数字积分法插补原理 (2) 5.1从几何角度来看积分运算 (2) 5.2数字积分圆弧插补 (3) 5.3数字积分法圆弧插补程序流程图 (5) 5.4插补实例 (6) 六、程序清单 (7) 七、软件运行效果仿真 (18) 八、课程小节 (21) 九、参考文献 (22)

一、课程设计题目 数字积分法第一、二、三、四象限顺、逆圆插补计算 二、课程设计的目的 《数控原理与系统》是自动化(数控)专业的一门主要专业课程,安排课程设计的目的是通过课程设计方式使学生进一步掌握和消化数控原理基本内容,了解数控系统的组成,掌握系统控制原理和方法,通过设计与调试,掌握各种功能实的现方法,为今后从事数控领域的工作打下扎实的基础。 1)了解连续轨迹控制数控系统的组成原理。 2) 掌握数字积分法(DDA)插补的基本原理。 3)掌握数字积分法(DDA)插补的软件实现方法。 三、课程设计使用的主要仪器设备 1、PC计算机一台 2、数控机床实验装置一台 3、支持软件若干(选用VB环境) 四、课程设计的任务题目描述和要求 数字积分法又称数字微分分析法DDA(Digital Differential Analyzer)。数字积分法具有运算速度快、脉冲分配均匀、易于实现多坐标联动及描绘平面各种函数曲线的特点,应用比较广泛。其缺点是速度调节不便,插补精度需要采取一定措施才能满足要求。由于计算机有较强的计算功能和灵活性,采用软件插补时,上述缺点易于克服。 本次课程设计具体要求如下: (1)掌握数字积分插补法基本原理 (2)设计出数字积分(DDA)插补法插补软件流程图 (3)编写出算法程序清单算法描述(数字积分法算法在VB中的具体实现)(4)要求软件能够实现第一、二、三、四象限顺、逆圆插补计算 (5)软件运行仿真效果插补结果要求能够以图形模式进行输出

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<= 10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()() 3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。 鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB 可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB 在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m 。 Matlab 代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second

机械加工误差分析实验报告

机械加工误差的综合分析 ------统计分析法的应用一、实验目的

运用统计分析法研究一批零件在加工过程中尺寸的变化规律,分析加工误差的性质和产生原因,提出消除或降低加工误差的途径和方法,通过本实验使同学能够掌握综合分析机械加工误差的基本方法。 二、实验用仪器、设备 1.M1040A型无心磨床一台; 2.分辨率为0.001mm的电感测微仪一台; 3.块规一付(尺寸大小根据试件尺寸而定); 4.千分尺一只; 5.试件一批约120件, 6.计算机和数据采集系统一套。 三、实验容 在无心磨床上连续磨削一批试件(120件),按加工顺序在比较仪上测量尺寸,并记录之,然后画尺寸点图和X---R图。并从点图上取尺寸比较稳定(即尽量排除掉变值系统性误差的影响)的一段时间连续加工的零件120件,由此计算出X、σ,并做出尺寸分布图,分析加工过程中产生误差的性质,工序所能达到的加工精度;工艺过程的稳定性和工艺能力;提出消除或降低加工误差的措施。

四、实验步骤 1. 按被磨削工件的基本尺寸选用块规,并用气油擦洗干净后推粘在一起; 2. 用块规调整比较仪,使比较仪的指针指示到零,调整时按大调---微调---水平调整步骤进行(注意大调和水平调整一般都予先调好),调整好后将个锁紧旋钮旋紧,将块规放入盒中。 3. 修正无心磨床的砂轮,注意应事先把金刚头退后离开砂轮。将冷却液喷向砂轮,然后在按操作规程进刀,修整好砂轮后退刀,将冷却液喷头转向工件位置。 4. 检查磨床的挡片,支片位置是否合理(如果调整不好,将会引起较大的形变误差)。对于挡片可通过在机床不运转情况下,用手将工件沿着支片紧贴挡片前后推动,同时调整前后螺钉,直至工件能顺利、光滑推过为宜。 5. 按给定尺寸(Φd-0.02)调整机床,试磨五件工件,使得平均尺寸应保证在公差带中心稍偏下为宜,然后用贯穿法连续磨削一批零件,同时用比较仪,按磨削顺序测量零件尺寸并记录之。 6. 清理机床,收拾所用量具、工具等。 7. 整理实验数据,打印做实验报告。 五、实验结果及数据处理 该实验选用M1040A型无心磨床和块规一付 (1)实验原始数据

计算机图形学 编程生成“三次贝塞尔”曲线

集美大学 计算机工程学院实验报告 课程名称计算机图形学教程 实验名称实验五、编程生成“三次贝塞尔”曲 线 实验类型设计型 学号 日期12月12日地点 成绩教师

一、实验目的: 一方面,让学生对自由曲线的生成算法有更深入的理解,特别是对于曲线的逼近,能够通过实验编程来验证书上所提供的算法思想:另一方面,在图形程序设计方法(如设计各种各样的图形)、绘图函数的使用以及C和C++语言编程环境、程序的调试和测试方面受到比较系统和严格的训练。 二、实验内容: 运用所学的三次贝塞尔曲线生成的算法,根据以下数据点[x, y]:[50, 100] [80, 230] [100, 270] [140, 160] [180, 50] [240, 65] [270, 120] [330, 230] [380, 230] [430, 150]计算出结果,并实现三段贝塞尔在屏幕上显示的功能 三、实验要求: (1)3段三次贝塞尔曲线在衔接点上要连续,曲线整体效果要光滑。 (2)整个图形轮廓要清晰,色彩要分明 四、实验环境: 1.PC,CPU:P4 2.0GHz以上,内存:512M,硬盘:40GB以上; 2.操作系统:Microsoft Windows 2000 /2003/XP; 3.软件:VC或JAVA等。 五、实验内容及完成情况: #include "graphics.h" #include "conio.h" #include "stdio.h" typedef struct { double x,y; } DPOINT; //定义结构体

class Bezier //定义Bezier类 { private: DPOINT* bP; int m_maxIndex; void drawFrame(); void drawCurve(); void drawCurve(int p0,int p1,int p2,int p3); public: Bezier(DPOINT* p,int len); //定义构造函数 void draw(); }; Bezier::Bezier(DPOINT* p,int len) //构造函数的实现{ this ->bP=p; m_maxIndex=len-1; } void Bezier::draw() //通过公有函数调用私有函数{

圆弧加减速插补算法

机电工程学院 数控加工技术课程设计——插补算法实现 学号:S311077006 专业:机械工程 学生姓名:胡晓锋 任课教师:李霞副教授 2011年4月

基于PC的圆弧曲线加减速算法实现 插补算法一直以来就是数控系统中的核心技术。从数控系统的原理来说,插补的本质问题就是对任意曲线进行分解,成为若干段微小的曲线,当对曲线的分解达到无穷级时,每一段曲线便成为微小的直线段。然后利用与相应微小曲线相类似的直线段代替,通过控制刀具按直线段行走进行加工,完成为整个曲线的插补运算加工。实际问题中不可能对任意曲线的分解达到无穷,因此总是存在相应的误差。然而在实际运用中对误差的容忍度有限,因此只需在满足精度的情况下进行曲线的分解。对曲线的分解过程即是将其坐标点进行密化,不但要保证精度,还需要在极短的时间内完成。受现代技术的限制,这一过程目前还存在一定的问题。由此而产生的对插补算法的研究也一直没有停止过,从经典的逐点比较法到现在的自由曲面直接插补法,各种算法层出不穷。 本次对圆弧的插补算法是基于PC技术的算法,利用MATLAB软件编写相应的插补程序,实现对插补轨迹的模拟与分析。 一、问题描述 本次设计针对圆弧曲线进行插补,采用加减速的方式完成刀具的行走过程。根据数据采样插补原理,实现数控轨迹的密化。本次插补的难点在于对刀具行走轨迹的自动加减速进行控制,由控制器发出相应指令,当刀具以不同速度运行到不同位置时,能够根据当前的状态判断下一个插补周期需要的状态,从而连续平滑的完成插补过程。 二、速度曲线的数学表达式 刀具在进行插补时的速度应该是一个加速-匀速-减速的过程,各个过程与时间的关系应该由相应的加速度来控制。因此曲线的形状呈现一定的抛物线形。 另初始进给速度为F1,末端进给速度为F2,指令速度为F,当前速度为V,减速距离为S,当前距离为CS,n为插补周期个数,t为当前时刻。则速度的数学表达式如下: (F1S),起始时刀具加速运动。 F1=F/2,加速度为a= (F1>=F)&&(CS>10),刀具做匀速运动。

一元线性回归分析实验报告

一元线性回归在公司加班制度中的应用 院(系): 专业班级: 学号姓名: 指导老师: 成绩: 完成时间:

一元线性回归在公司加班制度中的应用 一、实验目的 掌握一元线性回归分析的基本思想和操作,可以读懂分析结果,并写出回归方程,对回归方程进行方差分析、显著性检验等的各种统计检验 二、实验环境 SPSS21.0 windows10.0 三、实验题目 一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。经10周时间,收集了每周加班数据和签发的新保单数目,x 为每周签发的新保单数目,y 为每周加班时间(小时),数据如表所示 y 3.5 1.0 4.0 2.0 1.0 3.0 4.5 1.5 3.0 5.0 2. x 与y 之间大致呈线性关系? 3. 用最小二乘法估计求出回归方程。 4. 求出回归标准误差σ∧ 。 5. 给出0 β∧与1 β∧ 的置信度95%的区间估计。 6. 计算x 与y 的决定系数。 7. 对回归方程作方差分析。 8. 作回归系数1 β∧ 的显著性检验。 9. 作回归系数的显著性检验。 10.对回归方程做残差图并作相应的分析。

11.该公司预测下一周签发新保单01000 x=张,需要的加班时间是多少? 12.给出0y的置信度为95%的精确预测区间。 13.给出 () E y的置信度为95%的区间估计。 四、实验过程及分析 1.画散点图 如图是以每周加班时间为纵坐标,每周签发的新保单为横坐标绘制的散点图,从图中可以看出,数据均匀分布在对角线的两侧,说明x和y之间线性关系良好。 2.最小二乘估计求回归方程

用SPSS 求得回归方程的系数01,ββ分别为0.118,0.004,故我们可以写出其回归方程如下: 0.1180.004y x =+ 3.求回归标准误差σ∧ 由方差分析表可以得到回归标准误差:SSE=1.843 故回归标准误差: 2= 2SSE n σ∧-,2σ∧=0.48。 4.给出回归系数的置信度为95%的置信区间估计。 由回归系数显著性检验表可以看出,当置信度为95%时:

基于FPGA的逐点比较圆弧插补算法设计

二○一三届毕业设计 基于FPGA逐点比较圆弧插补算法设计 学院:电子与控制工程学院 专业:电子科学与技术 姓名:…….. 学号:……… 指导教师:…….. 完成时间:2013年5月 二〇一三年五月

摘 要 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 摘 要 本课题主要是研究基于VHDL 实现数控系统中的逐点比较圆弧插补,要求圆弧运动过程平滑,在各象限能顺利过渡,并有较小的设计误差,能与运动控制部分很好的集成,实现较高的切割频率。 本课题采用QuartusII 软件来调试程序,并进行波形仿真。主要的工作如下: 1) 理解数控系统中逐点比较圆弧插补算法的原理及其实现方法; 2) 通过硬件描述语言VHDL 在FPGA 上实现上述算法; 3) 完成圆弧插补的仿真与测试。 关键词:VHDL ,FPGA ,逐点比较法,QuartusII

ABSTRACT ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ABSTRACT This topic mainly studies based on VHDL realization of point by point comparison circular arc interpolation in nc system, the movement for arc process smooth, in each quadrant can smooth transition, and a relatively small design error, can very good integration with motion control part, realize the high frequency of cutting. This subject adopts software QuartusII to debug program and waveform simulation. The main work is as follows: 1. Understand CNC system the principle of point by point comparison in circular arc interpolation algorithm and its realization method 2. Through the hardware description language VHDL FPGA to realize the above algorithms. 3. Finish arc interpolation of simulation and test KEY WORDS : VHDL, FPGA, point-by-point comparison, QUARTUS II

误差分析及实验心得

误差分析及实验心得 误差分析 1 系统误差:使用台秤、量筒、量取药品时产生误差; 2 随机误差:反应未进行完全,有副反应发生;结晶、纯化及过滤时,有部分产品损失。 1、实验感想: 在实验的准备阶段,我就和搭档通过校园图书馆和电子阅览室查阅到了很多的有关本实验的资料,了解了很多关于阿司匹林的知识,无论是其发展历史、药理、分子结构还是物理化学性质。而从此实验,我们学习并掌握了实验室制备阿司匹林的各个过程细节,但毕竟是我们第一次独立的做实验,导致实验产率较低,误差较大。 在几个实验方案中,我们选取了一个较简单,容易操作的进行实验。我与同学共做了3次实验,第一次由于加错药品而导致实验失败,第二次实验由于抽滤的时候加入酒精的量过多,导致实验产率过低。因此,我们进行了第三次实验,在抽滤时对酒精的用量减少,虽然结果依然不理想,但是我们仍有许多的收获: (1)、培养了严谨求实的精神和顽强的毅力。通过此次的开放性实验,使我们了解到“理论结合实践”的重要性,使我们的动手能力和思考能力得到了锻炼和提高,明白了在实践中我们仍需要克服很多的困难。(2)、增进同学之间的友谊,增强了团队合作精神。这次的开放性实验要求两个或者两个以上的同学一起完成,而且不像以前实验时有已知的实验步骤,这就要求我们自己通力合作,独立思考,查阅资料了解实验并制定方案,再进行实验得到要求中的产物。我们彼此查找资料,积极的发表个人意见,增强了团队之间的协作精神,培养了独立思考问题的能力,同时培养了我们科学严谨的求知精神,敢于追求真理,不怕失败的顽强毅力。当然我们也在实验中得到了很大的乐趣。 九、实验讨论及心得体会 本次实验练习了乙酰水杨酸的制备操作,我制得的乙酰水杨酸的产量为理论上应该是约1.5g。所得产量与理论值存在一定偏差通过分析得到以下可能原因: a、减压过滤操作中有产物损失。 b、将产物转移至表面皿上时有产物残留。 c、结晶时没有结晶完全。 通过以上分析我觉得有些操作导致的损失可以避免所以我在以后的实验中保持严谨的态度。我通过本次实验我学到了乙酸酐和水杨酸在酸催化下制备乙酰水杨酸的操作方法初步了解有机合成中乙酰化反应原理巩固和进一步熟悉了减压过滤、重结晶基本操作的原理和方法了解到乙酰水杨酸中杂质的来源及其鉴别方法通过误差分析可能原因进一步更深理解实验的原理和操作养成严谨的态度。

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

实验四 自由曲线曲面算法实验(2)

实验四 自由曲线曲面算法实验 实验项目性质:设计性实验 所属课程名称:3D 游戏图形学 实验计划学时:3学时 一、 实验目的和要求 1. 了解自由曲线和曲面的生成原理; 2. 掌握并实现Bezier 曲线和B 样条曲线的生成算法; 3. 实现Bezier 曲面的生成算法。 二、 实验原理 1. Bezier 曲线是通过一组多边形折线的顶点来定义的。如果折线的顶点固定不变,则由其定义的Bezier 曲线是唯一的。在折线的各顶点中,只有第一点和最后一点在曲线上且作为曲线的起始处和终止处,其他的点用于控制曲线的形状及阶次。曲线的形状趋向于多边形折线的形状,要修改曲线,只要修改折线的各顶点就可以了。因此,多边形折线又称Bezier 曲线的控制多边形,其顶点称为控制点。 三次多项式,有四个控制点,如图1所示, 其数学表示如下: ,300.31 1.32 2.33 3.30 ()()()()()()i i i Q t PB t P B t PB t P B t P B t ===+++∑

32230123(1)3(1)3(1),[0,1]t P t t P t t P t P t =-+-+-+∈ (1) 其矩阵形式为 01322313313630()(1),[0,1]33001000P P Q t t t t t P P --????????-????=∈????-???????? (2) 2. B 样条曲线保留了Bezier 曲线的优点,对Bezier 曲线进行了拓广,用B 样条基代替Bernstein 基,克服了Bezier 曲线由于整体表示带来的不具备局部性质的缺点。B 样条曲线的数学定义为 0n k k,m k p(t)P B (t) ==∑ (3) 式中,(0,1 ,,)k P k n = 为n+1个控制点,由控制点顺序连成的折线称为B 样条控制多边形。m 是一个阶参数,可以取2到控制顶点个数n+1之间的任一整数,m-1是B 样条曲线的次数。参数t 的选取取决于B 样条结点矢量的选取。k,m B (t)是B 样条基函数, ()()k 1,1,,11,111 1 ()0 ()k k k k m k m k m k m k m k k m k t t t B t t t t t B t B t B t t t t t ++-+-+-++≤

三次样条插值的MATLAB实现

MATLAB 程序设计期中考查 在许多问题中,通常根据实验、观测或经验得到的函数表或离散点上的信息,去研究分析函数的有关特性。其中插值法是一种最基本的方法,以下给出最基本的插值问题——三次样条插值的基本提法: 对插值区间[]b a ,进行划分:b x x x a n ≤

关于三次样条插值函数的学习报告(研究生)资料

学习报告—— 三次样条函数插值问题的讨论 班级:数学二班 学号:152111033 姓名:刘楠楠

样条函数: 由一些按照某种光滑条件分段拼接起来的多项式组成的函数;最常用的样条函数为三次样条函数,即由三次多项式组成,满足处处有二阶连续导数。 一、三次样条函数的定义: 对插值区间[,]a b 进行划分,设节点011n n a x x x x b -=<< <<=,若 函数2()[,]s x c a b ∈在每个小区间1[,]i i x x +上是三次多项式,则称其为三次样条函数。如果同时满足()()i i s x f x = (0,1,2)i n =,则称()s x 为()f x 在 [,]a b 上的三次样条函数。 二、三次样条函数的确定: 由定义可设:101212 1(),[,] (),[,]()(),[,] n n n s x x x x s x x x x s x s x x x x -∈??∈?=???∈?其中()k s x 为1[,]k k x x -上的三次 多项式,且满足11(),()k k k k k k s x y s x y --== (1,2,,k n = 由2()[,]s x C a b ∈可得:''''''()(),()(),k k k k s x s x s x s x -+-+== 有''1()(),k k k k s x s x -++= ''''1()(),(1 ,2,,1)k k k k s x s x k n -+ +==-, 已知每个()k s x 均为三次多项式,有四个待定系数,所以共有4n 个待定系数,需要4n 个方程才能求解。前面已经得到22(1)42n n n +-=-个方程,因此要唯一确定三次插值函数,还要附加2个条件,一般上,实际问题通常对样条函数在端点处的状态有要求,即所谓的边界条件。 1、第一类边界条件:给定函数在端点处的一阶导数,即 ''''00(),()n n s x f s x f == 2、第二类边界条件:给定函数在端点处的二阶导数,即

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

相关文档
最新文档