初级生产量的测定方法之一___黑白瓶法(精)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知有固氮能力的细菌和藻类很多,但为了方便可把它们分为两个类群:一类是共生的固氮生物(主要是细菌,但也有真菌和藻类),另一类是自由生活的固氮生物(包括细菌、藻类和其他一些微生物)。共生的固氮生物主要生活在陆地,而营自由生活的固氮生物在陆地和水域都有。但共生固氮生物在数量上至少要比营自由生活的固氮生物多几百倍。在共生固氮生物中,根瘤菌(Rhizobium)是最重要的,也是人类了解最清楚的。根瘤菌对宿主植物(如豌豆、三叶草和菜豆等豆科植物)有高度的特异性,一定种类的根瘤菌只同一定种类的豆科植物发生共生关系,这些根瘤菌可潜入豆科植物的根毛,然后进行繁殖。已知有10多种高等植物(如鼠李、杨梅和恺木等)也有共生生物固氮作用。由于豆科植物与根瘤菌之间已经形成了密切的共生关系,所以豆科植物离开了根瘤菌就不能固氮,而把根瘤菌接种在其他植物上也不能固氮。
为了研究水体中的固氮过程,需把溶于水中的大气氮移出(通常是用氦清除),然后用一种稳定的氮同位素15N取而代之,并用质谱分析仪跟踪观察这种同位素的去向,这种方法与使用14C测定初级生产量的方法大体相同。P . Richard等人用这种方法研究过sanctusry湖的固氮过程。研究表明:高固氮率与三种蓝绿藻(鱼腥藻属)存在着正相关。对其他两个湖(Mondota和wingra湖)的研究也表明:高固氮率与其他蓝绿藻(包括Gleotrichia echinulata)的大量存在密切相关。而在马尾藻海,高固氮率则与束毛藻(trichodesmium属)的存在相关。固氮过程所需要的能量是靠这些蓝绿藻的光合作用提供的,也就是说,蓝绿藻所生产的有机物质提供了固氮所需要的能量(615 x 103).Mol-1)。
1.固氮
由于大气成分的79%是氮气,所以氮最重要的储存库就是大气圈,但是大多数生物又不能直接利用氮气,所以以无机氮形式(氨、亚硝酸盐和硝酸盐)和有机氮形式(尿素、蛋白质和核酸等)存在的氮库对生物最为重要。大气中的氮只有被固定为无机氮化合物(主要是硝酸盐和氨)以后,才能被生物所利用。虽然固氮的方法有物理化学法和生物法两种,但其中以生物固氮法最为重要。据估计,靠电化学和光化学固氮,每年平均可固氮7.6x106t,而生物固氮平均每年的固氮量为54 x 106t,靠工业固氮人类每年合成氮肥约30 x 106t,这也是一个不小的数字。根据人类合成氮肥的增产速度,估计到20世纪末,每年约可生产氮肥100 x 106t。C . C . Delwich。认为:现在的工业固氮量约等于现代农业到来之前的生物固氮量。固氮过程首先需要分子氮激活,使其分裂为两个自由氮原子(N2→2N ),这个过程需要消耗能量,在生物固氮时,1 mol的N2约耗能669x103)。在自由氮与氢结合形成氨气时( N一NH3), lmol的氮气(289)可释放54 x 103)能量,因此,固定1 mo1的氮气,只需输入615 x 103)能量就够了(即669一54 = 615)。除了光化学固氮法外,所有固氮生物都需要从外部提供碳化合物作为一种能源,以便影响这一吸热反应。生物固氮需要两种酶(固氮酶和氢化酶)进行调节,生物固氮的意义在于低能消耗,而工业固氮需要极高的温度和极大的压力(即400℃高温和2 x 104kpa)。
正如前面已说过的,在水生生态系统中,固氮生物大都是非共生生物,但有一个重要例外,这就是满江红(Azolla)及其共生物蓝绿藻[鱼腥藻(Anabaoa ) ],它们广泛分布于我国温带和亚热带的水稻田中,被农民作为肥料加以利用,因此对农业生产有重要意义。在非共生固氮生物Байду номын сангаас既有需氧细菌也有厌氧细菌,还包括蓝绿藻。需氧固氮菌[如固氮菌属(Azotobactr)]广泛分布在土壤中以及淡水和海水中;厌氧菌[如梭菌属(Clostridium )]的分布也同样广泛。事实证明:土壤和水体中的很多细菌都有固氮能力,又由于它们数量极多,所以它们固定的氮量也相当可观。例如在盐沼的沉积层中,细菌固氮量相当于藻类固氮量的10倍。这里值得强调的一点是:所有的共生和非共生固氮菌都需要从外部供应糖类,以便作为一种能源去完成固氮过程的吸热反应,因为没有任何一种固氮菌能够进行光合作用【固定1 mol氮气(N2)需吸热615 x 103)]。
初级生产量的测定方法之一___黑白瓶法
用红外气体分析仪无法对水生生态系统的二氧化碳进行测定,所以在二氧化碳同化法的基础上又提出了适应于水生生态系统的黑白瓶法,主要是对含氧量进行测定。1927年,T . Gaarder和H . H . Gran首次将这种方法用于海洋生态系统生产量的研究,这种方法现在已得到了广泛应用,其方法十分简便。首先是从池塘、湖泊或海水的一定深度采取含有自养生物(如藻类)的水样(水样中难免也含有某些异养生物如细菌和浮游动物等),然后将水样分装在成对的小样瓶中,样瓶的容积通常是125~300 ml。在每对样瓶中总是有一个白瓶一个黑瓶,所谓白瓶就是透光瓶,里面可进行光合作用;所谓黑瓶就是不透光瓶,里面不能进行光合作用,但有呼吸活动。黑瓶和白瓶同时被悬浮在水体中水样所在的深度,放置一定时间后(通常是4~8小时,也可到24小时)便从水体中取出,用标准的化学滴定法或电子检测器测定黑瓶和白瓶中的含氧量。根据白瓶中含氧量的变化可以确定净光合作用量和净光合作用率,根据黑瓶中所测得的数据可以得知正常的呼吸耗氧量。同时利用黑瓶和白瓶的测氧资料就可以计算出总初级生产量。黑白瓶法的基本假设条件是:植物的呼吸作用在黑瓶中和白瓶中是一样的,这一点对于某些种类的植物来说和对于短时间的实验来说是可以成立的,但也有很多种类的植物在黑暗条件下常表现出不同的呼吸率。黑白瓶法的另一个不足之处是,它必须把整体群落的一部分(一个取样)完全密封起来,而这个取样往往不能完全反映取样所属种群的实际状况(可通过多次重复实验进行校正)。此外,取样中异养生物的数量变化也会使呼吸消耗偏离正常值。再有,取样中的水是静止的,而在实际情况下水是不断流动的,使运动中的各种营养物质不断到达和离开光合作用发生地点。最后,从一定水深处采上来的水样如果曝光时间太长也会发生光合作用。尽管黑白瓶法存在上述的一些缺点,但这种方法还是得到了广泛应用。黑白瓶的基本原理是测定水中含氧量的变化,另一种类似的方法是在一天时间内(24小时)每隔2~3个小时对水生生态系统的含氧量进行一次自动监测。如果把一个电子检测器接到一个自动记录装置上,就可以连续24小时对一个水生生态系统的含氧量进行取样。这个方法的优点是直接测定整个生态系统而不是测定一些小的取样,此法还用自然光周期取代黑瓶对夜晚的模拟。总之,上述两种方法都是运用各种计算来确定氧的净生产量,然后再利用光合作用方程计算出总初级生产量。
相关文档
最新文档