九年级数学专题复习数与式综合复习
2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)
2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。
2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。
★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
数轴 1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。
2024年九年级中考数学一轮复习大单元《数与式》学习设计
数与式【学科大概念】数与式是描述客观世界中数量关系最为基本的数学语言和工具.【课程大概念】运用数与式简洁、准确的表述研究对象之间的数量关系(数学语言),有效借助运算方法解决计算问题,发展数学运算能力,形成规范化思考问题的品质,养成一丝不苟、严谨求实的科学精神.单元概述【单元内容】数与式包括实数及其运算,代数式及整式(含因式分解),分式,二次根式,是初中数学《代数》部分的重要内容;本单元重在回顾梳理实数(有理数、无理数)、代数式(整式、分式、二次根式)相关概念及内在联系,应用运算法则进行整式、分式、二次根式的加、减、乘、除、乘方运算,梳理出三类代数式算理之间的逻辑关系,发展数学运算素养.【中考考查方向】实数的有关概念、科学计数法、实数的大小比较、实数的运算、代数式、整式的相关概念、整式的运算、因式分解、分式有无意义及分式值为0的条件、分式的性质、分式的运算、二次根式的概念、二次根式的性质、二次根式的运算等.【课标要求】1.数与式(1)理解有理数的意义;理解乘方的意义,掌握有理数的加、减、乘、除乘方及简单的混合运算;理解负数的意义;能用数轴上的点表示实数,能比较实数的大小;能借助数轴理解相反数和绝对值的意义.(2)理解有理数的运算律,能运用运算律简化运算,能运用有理数的运算解决简单的问题.2.实数(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根,了解乘方与开方互为逆运算;(2)了解无理数和实数,知道实数由有理数和无理数组成,感悟数的扩充,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;.(3)了解二次根式、最简二次根式的概念,了解二次根式的运算法则,会用他们进行简单的四则运算.3.代数式(1)能分析具体问题中的简单数量关系,并用代数式表示.(2)会求代数式的值;能根据待定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.4.整式与分式(1)了解整数指数幂的意义和基本性质;会用科学计数法表示数.(2)理解整式的概念,掌握合并同类项和去括号的法则,能进行简单的整式加减运算;能进行简单的乘法的运算.(3)能用提公因式法、公式法、进行因式分解.(4)了解分式和最简的分式加减乘除运算.(5)能利用乘法公式进行简单的推理.(6)了解代数推理.【单元目标】1.从概念,性质及运算法则三个方面梳理实数与代数式相关内容,分析实数、整式、分式、二次根式、代数式之间的区别与联系,构建数与式的知识与逻辑体系;2.应用运算法则进行整式、分式、二次根式的加、减、乘、除、乘方混合运算,总结三类计算算理之间的内在联系,解决相关计算问题,发展数学运算能力;3.人人参与过关,自主纠错,反思错因,灵活应用整式、分式、二次根式解决综合实际问题.【评价预设】评价内容水平一☆水平二☆☆水平三☆☆☆整体建构能说出实数、代数式、整式、分式、二次根式相关概念及性质,举例说明它们之间的区别与联系;梳理整式、分式、二次根式的运算法则,说出三类计算算理之间的内在联系;从概念、性质、运算法则三个方面画出思维导图,构建数与式单元知识、逻辑体系.探究迁移能说出对整式、分式、二次根式的基本性质与运算法则的理解,并会举例说明;经历整式、分式、二次根式的运算过程,总结运算过程中的一般思路方法、注意事项以及三类运算之间的内在联系;结合找规律问题,分析数与式中的用到的数学方法,总结解决相关数学问题的规律方法.拓展过关能从实数、整式、分式及二次根式的基本概念、性质及运算等方面梳理数与式之间的内在联系,能说出数与式的本质;自主纠错,反思错因,能综合运用整式、分式、二次根式解决相关计算问题;围绕数与式的相关运算进行二次过关,能综合运用数与式解决实际问题.【学时建议】【单元目标追求】一、我的学习目标:(结合单元学习目标制定)二、通过本单元的学习,我的目标达成情况及改进措施三、通过本单元学习,除了学科知识外,我的其他收获(如学习能力、核心素养、生活实际应用等)【单元前测】(一)实数及其运算1.把下列各数填入相应的集合内.-7,3,2,23-,98,327,0.99,2π,-0.31,227.(1)有理数集合{}(2)无理数集合{}(3)正实数集合{}(4)负实数集合{}2.(多选)下列说法不正确的是()A.2m-4与3m-1是同一个数的平方根,则m 的值是-3;B.-0.064的立方根是-0.4;C.16的算术平方根是4;D.364的平方根是23.(2022·潍坊)秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比约为512-,下列估算正确的是()A .512025-<<B .2511522-<<C .151122-<<D .5112->4.用科学记数法表示数(1)2022年北京冬奥会国家速滑馆“冰丝带”屋顶上安装的光伏电站,据测算,每年可输出约44.8万度的清洁电力.将44.8万度用科学记数法可以表示为__________(2)我国古代数学家祖冲之推算出π的近似值为,它与π的误差小于0.0000003.将0.0000003用科学记数法可以表示为___________.5.(2018·潍坊)用教材中的计算器进行计算,开机后依次按下把显示结果输入如图的程序中,则输出的结果是____________.(二)代数式相关概念及性质6.若把分式r 2B中的x 和y 都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍7.(2022·潍坊多项选择题)如图,实数a ,b 在数轴上的对应点在原点两侧,下列各式成立的是()A .||1a b>B .a b -<C .0a b ->D .0ab ->8.若121+n xy 与313y x m -的和仍是一个单项式,则m =,n =.9.已知x、y、z 是△ABC 的三边长,如果−22+−1+−=0,则△ABC 的形状为____________.10.当3-32-x x 有意义时,x 的取值为;11--x x 的值为0时,x 的取值为.11.当为何值时,下列各式有意义?(1)2−3;(2)−2;(3)−32;(4)3K1;12.化简下列二次根式(1)288(2(3)483(4)(三)代数式相关运算13.若代数式325222+-+x y mx 的值与字母x 的取值无关,则m 的值.14.计算(1)327−212(2)5∙(−10)−12÷24(3)(5+3)(5-3)+3×6-8(4)27×(-2)+|2-6|-(1-7)0-(−12)−2(5)22212-21-22-()(++15.计算(1)(a +1)(a -1)-(a -2)2(2)532b −a 2−(B 2+32p(3)12x 2xx 2x 44x x 22--+÷+++16.因式分解(1)22yx +-(2)22363ay axy ax +-(3)(−2p 2−(2+p 2(4)x 2-2x+(x-2)(5)(x﹣2)(x﹣4)-15(6)a 2b +ab 2﹣a ﹣b数与式整体建构【学习目标】1.梳理实数、代数式、整式、分式、二次根式相关概念及性质,举例说明它们之间的区别与联系;2.对比分析整式、分式、二次根式的运算法则,说出三类计算算理之间的内在联系;3.以概念、性质、运算法则为主线画出思维导图,构建数与式单元知识、逻辑体系.【学习任务】构建数与式的知识、逻辑体系【学习活动】结合教材和271BAY对应资源梳理七年级上《有理数》《有理数的运算》《整式的加减》《代数式与函数的初步认识》七年级下《整式的乘除》《乘法公式与因式分解》、八年级上《分式》、八年级下《实数》《二次根式》的相关知识点,然后完成纸质学程和电子学程对应的学习活动,能梳理实数(有理数、无理数)、代数式(整式、分式、二次根式)相关概念及内在联系,应用运算法则进行整式、分式、二次根式的加、减、乘、除、乘方运算活动一:探究实数及其运算问题1:实数是什么?如何对实数进行分类?有几种分类方法?你的分类依据是什么?无理数的常见形式有哪些?问题2:实数的相关概念:数轴、相反数、倒数、绝对值、平方根、算术平方根、立方根的意义是什么?问题3:n的方法是什么?问题4:实数的大小比较方法有哪些?问题5:实数的运算法则、运算顺序、运算律是什么?需要注意的问题是什么?活动二:探究代数式有关概念问题1:什么是代数式、整式、分式、二次根式?它们之间有什么关系与区别?问题2:整式相关概念:整式、单项式(系数、次数)、多项式(系数、次数)、同类项、因式分解的意义是什么?问题3:分式的相关概念及性质:分式有无意义的条件是什么?分式的基本性质有哪些?最简分式、约分、通分的意义是什么?问题4:二次根式的概念及性质:二次根式的性质是什么?最简二次根式的意义是什么?活动三:探究代数式相关运算问题1:整式的运算:整式的加减、乘除、幂的运算法则是什么?问题2:因式分解的方法有哪些?整式的乘除与因式分解的关系是什么?问题3:分式的运算:分式的加减、乘除、乘方运算法则是什么?问题4:二次根式的运算:二次根式的加减、乘除法则是什么?问题5:整式的运算、分式的运算、二次根式的运算之间有什么联系?注意事项有哪些?活动四:构建数与式知识思维导图结合前面的三个学习活动,梳理平方根、算术平方根、立方根、科学记数法、整式、因式分解、分式、二次根式等核心概念及性质,构建本单元的思维导图,总结本单元与其他单元的逻辑体系.数与式【学习目标】1.说出对整式、分式、二次根式的基本性质与运算法则的理解,举例说明三类计算算理之间的内在联系;2.经历整式、分式、二次根式的运算过程,总结运算过程中的一般思路方法和注意事项;3.解决找规律问题,说出数式规律和定义新运算问题中用到的数学方法.【学习任务】探究整式、分式、二次根式的性质及运算【学习活动】活动一:探究整式的运算问题1:代数式及求代数式的值1.若2+2=1,则42+8−3的值是_______.2.已知26+=x ,那么xx 222-的值是________.3.与下面科学计算器的按键顺序:对应的计算任务是()A.0.6×+124B.0.6×+124C.0.6×5÷6+412D.0.6×+412问题2:整式及其运算1.(2020·潍坊)下列运算正确的是()A.235a b ab+= B.325a a a ⋅= C.222()a b a b+=+ D.()326a b a b=2.(2022·潍坊多项选择)下列运算正确的是()A .(a ﹣)2=a 2﹣a+B .(﹣a ﹣1)2=C .=D .=23.若3=+b a ,2+2=7,则ab =_______.4.计算:(1)32−+3−3+3(2)()()()()233232222x y x xy yx ÷-+-⋅探究迁移5.先化简再求值.(1)已知,153,2,32++=+-=-=x x P x N a x M 且P N M +⋅不含x 项,求a 的值(2)2+32−3−+22+4(+3),其中=tan 60°.6.如图,某市有一块长为3+米,宽为2+米的长方形地块, 规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米? 并求出当=3,=2时的绿化面积.问题3:因式分解1.(2019·潍坊)下列因式分解正确的是()A.)2(36322ax ax ax ax -=-B.))((22y x y x y x --+-=+C.222)2(42b a b ab a +=-+ D.22)1(2--=-+-x a a ax ax 2.因式分解(1)())2(2y x x y x +-+=________(2)()9)(62+-+-x y y x =________(3)44922---y y x =______________(4)a ax ax 672+-=___________________(5)(2017·潍坊))2(22-+-x x x =___________________【探究生成】整式的运算的一般思路和注意事项有哪些?整式的乘除运算与因式分解的关系是什么?活动二:探究分式的运算问题1:分式的概念及基本性质1.若x,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2+KB.22C .2332D.22(K )22.x 的值是()A.±1B.1C.-1D.不存在问题2:分式的运算1.若411=-b a ,则abb a b ab a 722+---的值_________.2.分式的化简(1)122−9+2K3(2)ab ba b a b a ----+223113(3)2226934x x x x x +-+⋅--(4)xxx x x x x +-⋅-+÷+--1111121223.分式的化简求值(1)(2019·河南)先化简,再求值:44212122+--÷--+x x x x x x )(其中3=x .(2)课堂上,老师给出这样一道题,当x =3、725-、37+时,求代数式1121111222+--+÷++÷-x xx x x x x 的值,小明看了觉得太复杂了,你能解决这个问题吗?请写出具体过程.【探究生成】分式运算的一般思路是什么?注意事项有哪些?活动三:探究二次根式的运算问题1:二次根式的概念及基本性质1.实数a、b 在数轴上的位置如图所示,化简(+1)2+(−1)2-(−)2的结果是()A.-2B.0C.-2aD.2b2.直线l :()23-+-=n x m y (m 、n 是常数)的图像如图所示,化简:−−2−4+4−−1.问题2:二次根式的运算1.(2014聊城)下列计算正确的是()A.23×33=63B.2+3=5C.55-22=33D.2÷3=632.计算:(1)27135.07523221-+-(2)755.02713311232+++-xol(3)48÷3-12×12+24.(4)(12)-2-6sin30°-(17-5)0+2+|2-3|.3.先化简,再求值1−2r 2K1-,其中=4.121=+a a ,当0<<1时,aa 1-=__________【探究生成】1.二次根式的运算的一般思路是什么?注意事项有哪些?2.整式、分式、二次根式的运算过程一般思路方法、注意事项以及三类运算之间的内在联系是什么?活动四:探究数与式的综合运算分析问题1:数与式综合分析(12103时,小亮的计算过程如下:2103=41627316+-+=-2=-小莹发现小亮的计算有误,帮助小亮找出了3个错误.请你找出其他错误,参照①~③的格式写在横线上,并依次标注序号:1224-=;②10(1)1-=-;③|6|6-=-;.请写出正确的计算过程.(2)先化简,再求值:22213()369x x x x x x --⋅-++,其中x 是方程2230x x --=的根.问题2:数与式规律探索1.观察下列各式:a 1=21,a 2=43,a 3=85,a 4=167,a 5=329,…,根据其中的规律可得a n =(用含n 的式子表示).(A 层延伸拓展)观察下列一组数:1=13,2=35,3=69,4=1017,5=1533,...,它们是按一定规律排列的,利用其中的规律,第n 个数_____=n a 【公示提示:1+2+3+4+⋯+=or1)2】2.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,…,第n 个数记为n a ,则___2004=+a a 222166410(1)第6个数是,第10个数是问题3:定义新运算1.用“㊣”定义新运算,对于任意实数ab 都有a ㊣b =12+b ,例如7㊣4=42+1=17,那么5㊣3=_________,当m 为实数时,m ㊣(m ㊣2)=_________。
初三数学中考复习专题数与式
《数与式》考点1 有理数、实数的概念1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73 π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有___个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______ 4、 写出一个无理数________,使它与2的积是有理数 考点2 数轴、倒数、相反数、绝对值1、___________的倒数是211-;0.28的相反数是_________. 2、 如图1,数轴上的点M 所表示的数的相反数为_________ M3、 0|2|)1(2=++-n m ,则n m +的值为________4、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( ) ①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A .1个B .2个C .3个D .4个5、 ①数轴上表示-2和-5的两点之间的距离是______②数轴上表示x 和-1的两点A 和B 之间的距离是_______,如果|AB |=2,那么____________=x考点3 平方根与算术平方根.1、下列说法中,正确的是( )A .3的平方根是3B .7的算术平方根是7C .15-的平方根是15-±D .2-的算术平方根是2- 2、 9的算术平方根是______3、 38-等于_____ 3图1 ∙-2 -1 a 图2 ∙∙b c4、 03|2|=-+-y x ,则______=xy考点4 近似数和科学计数法1、 据生物学统计,一个健康的成年女子体内每毫升血液中红细胞的数量约为420万个,用科学计算法可以表示为___________2、 由四舍五入得到的近似数0.5600的有效数字的个数是______,精确度是_______3、 用小数表示:5107-⨯=_____________考点5 实数大小的比较1、 比较大小:0_____21_____|3|--;π. 2、 比较41,31,21---的大小关系:__________________ 3、 已知2,,1,10x x xx x ,那么在<<中,最大的数是___________ 考点6 实数的运算【知识要点】1、是正整数);时,当n a a a n ______(_____00==≠-.2、 如图1,是一个简单的数值运算程序,当输入x 的值为-1时,则输出的数值为____________3、 计算(1)|21|)32004(21)2(02---+-(2)︒⋅+++-30cos 2)21()21(10考点7 乘法公式与整式的运算1、下列计算正确的是( )A .532x x x =+B .632x x x =⋅C .623)(x x =-D .236x x x =÷2、 下列不是同类项的是( )A .212与-B .n m 22与C .b a b a 2241与-D 222221y x y x 与- 3、 计算:)12)(12()12(2-+-+a a a4、 计算:)()2(42222y x y x-÷-考点8 因式分解 1、 分解因式______2=+mnmn ,______4422=++b ab a 2、 分解因式________12=-x考点9:分式 1、 当x _______时,分式52+-x x 有意义 2、 当x _______时,分式242--x x 的值为零 3、 下列分式是最简分式的是( )A .ab a a +22B .axy 36 C .112+-x x D 112++x x 4、 下列各式是分式的是( )A .a 1 B .3a C .21 D π65、 计算:x x ++-11116、 计算:112---a a a考点10 二次根式1、下列各式是最简二次根式的是( )A .12B .x 3C .32xD .352、 下列根式与8是同类二次根式的是( ) A .2 B .3 C .5 D .63、 二次根式43-x 有意义,则x 的取值范围_________4、 计算:3322323--+5、 计算:)0(4522≥-a a a6、 计算:5120-7、 数a 、b 在数轴上的位置如图所示,化简:222)()1()1(b a b a ---++.(第7题)82得【 】 (A ) 2 (B )4x 4-+ (C )-2 (D )4x 4-达标测试:1、实验中学初三年级12个班中共有团员a 人,则a 12表示的实际意义是 ▲ 2、先化简,再求值:2x 2x 11x 1x -⎛⎫⋅+ ⎪+⎝⎭,其中x=12. 3、已知, P=22x y x y x y---,Q=()2x y 2y(x y)+-+,小敏、小聪两人在x 2,y 1==-的条件下分别计算了P 和Q 的值,小敏说P 的值比Q 大,小聪说Q 的值比P 大,请你判断谁的结论正确,并说明理由。
初三总复习数与式专题
数与式一.实数(一)知识点1.数的分类0⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎪⎩⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩正整数整数负整数有理数实数正分数分数负分数无理数——无线不循环小数0⎧⎧⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎨⎪⎪⎨⎩⎪⎪⎪⎩⎩正数有理数正数分数无理数实数整数有理数负数分数无理数 2.有关概念:实数、有理数、无理数、数轴、相反数、绝对值、倒数、自然数、平方根、算术平方根、立方根、二次根式、最简二次根式、同类二次根式、分母有理化(1)实数:有理数和无理数统称为实数 (2)有理数:整数和分数统称为有理数(3)无理数:无限不循环的小数叫无理数。
如:1.413……,π,带√且开方开不尽的数。
(4)数轴:规定原点、正方向、单位长度的直线。
(5)相反数:只有符号不同的两个数(6)绝对值:在数轴上表示数a 的点到原点的距离叫做数a 的绝对值。
绝对值意义:一个正数的绝对值等于它本身; 一个负数的绝对值等于它的相反数;零的绝对值等于零。
即|a |={a (a >0)0(a =0)−a (a <0)(7)倒数:如果两个数的积等于1,那么这两个数互为倒数(0没有倒数) (8)自然数:非负整数,如:0、1、2、3、4、……(9)平方根、算术平方根:如果x 2=a ,那么x 叫做a 的平方根。
其中x =±√a ,√a 叫非负数a 的算术平方根平方根意义:一个正数有两个平方根,它们互为相反数;负数没有平方根;零的平方根是零。
的相反数是 .3.若m、n 互为相反数,则5m+5n-5= .4.2-的相反数是( )A .2B .-2C .4D . 考点二:绝对值 1.|−2|的值是( )A .-2B .2C .12 D .-122.若|m −3|+(n +2)2=0,则m+2n 的值为( )A .4-B .1-C .0D .43.23-的值是4.计算:2247)π-+-+=5.若√2x −y +|y +2|=0,求代数式[(x −y)2+(x +y )(x −y)]÷2x 的值考点三:倒数 1.-8的倒数是( )A .8B .-8C .18 D .- 182.若m 、n 互为倒数,则m n 2−(n −1)的值为 .考点四:数轴1.如图,矩形ABCD 的顶点A ,B 在数轴上, CD = 6,点A 对应的数为 -1,则点B 所对应的数为( ).2.实数a 、b 在数轴上的位置如图所示,则化简代数式|a +b |−a 的结果是( )A .2a+bB .2aC .aD .b3.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .a+b >0B .ab >0C .a-b >0D .|a |−|b |>0 B A b -1 0 a 1考点五:科学记数法:将一个数字表示成10na ⨯的形式,其中010a ≤<,n 表示整数,这种记数方法叫科学记数法。
中考数学考点专项突破 专题一 数与式的综合运算 复习课件
02
考点梳理
数与式的综合运算涉及实数的加、减、乘、除、乘方、开方运算以 及整式、分式、二次根式的相关运算;根据数的排列特点或图形的排 列规律,运用数学思想或方法,探究数或式的变化规律,因此,在解决此 类问题时,要注意以下几点:
1.对于实数的运算,要熟练掌握如下运算及相应的运算法则:0次 幂、负整数指数幂、-1的奇数次幂、乘方及常见的开方、立方根、去 绝对值符号等.在解答此类运算题时,应先计算每一小项的值,再进行实 数的四则混合运算.
x=-2,y= 2,从而 1 xy 1 (2) 2 2 . 22
【感悟】掌握 a ≥0 以及 a≥0 ( a>0 )的性质,才能正确解答此题.
真题剖析
考点4:代数式的化简与求值
【例 4】(2019• 广西桂 林)先化 简,再求值: ( 1 1 ) x2 2xy y2 1 ,其中
yx
2xy
yx
x 2 2 ,y=2.
【点拨与解答】本题主要考查分式的化简求值以及二次根式的有关运算,解题的关键是 熟练掌握因式分解、二次根式的化简、分式混合运算的顺序和运算法则等.
【例 1】(2018•广西北部湾经济区)化简: 4 tan 60 12 ( 1) 1 =
.
2
【点拨与解答】第一项利用去绝对值符号的性质,去绝对值符号的原则是:当绝对值里 面的数大于等于【0,感则悟】直在接进去行绝实对数值的符运号算时;,当掌握绝运对算值的里先面后的顺数序小是解于题0的,关则键去. 绝对值符号后在 数的前面加负号,第二项利用特殊角的三角函数值计算,第三项是根式的化简,最后一项是
负指数幂的运算.原式=4+ 3 - 2 3 -2=2- 3 .
【感悟】在进行实数的运算时,掌握运算的先后顺序是解题的关键.
初三数学复习_数与式(知识点讲解)
初三数学复习 数与式第一课时 实数的有关概念【知识要点】(一)实数的有关概念(1)实数的分类当然还可以分为:正实数、零、负实数。
有理数还可以分为:正有理数,零,负有理数(2)数轴:数轴是研究实数的重要工具,是在数与式的学习中,实现数形结合的载体,数轴的三要素:原点、正方向和单位长度,实数与数轴上的点是一一对应的,我们还可以利用这种一、一对应关系来比较两个实数的大小。
(3)绝对值绝对值的代数意义:||()()()a a a a a a =>=-<⎧⎨⎪⎩⎪0000 绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离。
(4)相反数、倒数 实数的相反数记为-,非零实数的倒数记为,零没有倒数。
a a a 1a若a 、b 两个数为互为相反数,则a+b=0。
若m 、n 两个数互为倒数,则m ·n=1。
(5)三种非负数: ||()a a a a ,,都表示非负数。
20≥“几个非负数的和等于零,则必定每个非负数都同时为零”的结论常用于化简,求值。
(6)平方根、算术平方根、立方根的概念。
如果一个数的平方等于a ,这个数就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;0有 一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作 .一个正数a 的正的平方根,叫做a 的算术平方根.a(a≥0)的算术平方根记作 .⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧—无限不循环小数—无理数负分数正分数分数负整数零正整数整数有理数实数(7)科学计数法、有效数字和近似值的概念。
1.近似数: 一个近似数,四舍五入到那一位,就说这个近似数精确到哪一位.2.有效数字: 一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.3.科学记数法: 把一个数用 (1≤ <10,n 为整数)的形式记数的方法叫科学记数法.【典型例题:】P2例1、(2012贵州六盘水,5,3分)13,πcos 45︒,0.32 中无理数的个数是( ▲ ) A .1 B .2 C .3 D .4点评:此题主要考查了无理数的定义,其中:(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数.(2)无理数是无限不循环小数,其中有开方开不尽的数.(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不环小数不能化为分数,它是无理数.P2例4、(2012·湖北省恩施市,题号16 分值 4)观察下表:根据表中数的排列规律,B+D=_________.例题补充、(2012河北省17,3分)17、某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎪⎭⎫ ⎝⎛+111,第2位同学报⎪⎭⎫ ⎝⎛+121,…这样得到的20个数的积为_________________.第二课时:实数的运算及比较大小【知识要点】一、实数的运算1.加法:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法:减去一个数等于加上这个数的相反数.3.乘法:几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法:除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)a n所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数二、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.对于实数a、b,若a-b>0 a>b;a-b=0 a=b;a-b<0 a<b.4.对于实数a,b,c,若a>b,b>c,则a>c.5.无理数的比较大小:利用平方转化为有理数:如果a>b>0,a2>b2 则a>b ;或利用倒数转化:如比较与.三、实数运算顺序加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.四、实数的运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc【典型例题:】P3例3(2012山东省聊城,10,3分)如右图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数是3和-1,则点C 所对应的实数是( )A. 1+3B. 2+3C. 23-1D. 23+1P4例 4(2012广东汕头,21,7分)观察下列等式:第1个等式:a 1==×(1﹣); 第2个等式:a 2==×(﹣); 第3个等式:a 3==×(﹣); 第4个等式:a 4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a 5= = ;(2)用含有n 的代数式表示第n 个等式:a n = = (n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值.第三课时:整式与因式分解(一):【整式知识梳理】代数式的分类1.整式有关概念 (1)单项式:只含有 的积的代数式叫做单项式。
初三数与式知识点归纳总结
初三数与式知识点归纳总结初三阶段,数与式是数学学科的重要内容之一,也是后续学习的基础。
本文将对初三数与式的知识点进行归纳总结,以帮助初三学生更好地掌握相关知识。
一、整数与分数1. 整数的基本概念:整数包括正整数、负整数和零。
正整数用正号表示,负整数用负号表示,零用0表示。
2. 整数的加法与减法:整数的加法满足结合律和交换律,减法是加法的逆运算。
3. 分数的基本概念:分数由分子和分母组成,分子表示份数,分母表示总份数。
4. 分数的四则运算:分数的加减乘除运算在初三中比较常见,可以通过化简分数、通分等方法进行运算。
5. 小数与分数的转化:小数可以转化为分数,分数也可以转化为小数,可以通过与10、100等的乘除法进行转化。
二、比例与百分数1. 比例的概念与性质:比例是两个或多个有对应关系的数的比较,比例的概念、性质及运算规律是初三数学的重要内容。
2. 百分数的概念与应用:百分数是以100为基数的比例,常用于表示比例关系或表示部分与整体的比例。
3. 比例与百分数的应用:在生活中,比例与百分数有广泛的应用,如购物打折、利润计算等。
三、两步算法与方程1. 两步算法的概念与应用:两步算法是指先进行加、减、乘、除等运算,再进行逆运算,求解未知数的过程。
2. 一元一次方程:一元一次方程是指未知数的最高次数为1的方程,可以通过移项、消元等方法求解。
3. 一元一次方程的应用:一元一次方程在实际问题中的应用较广泛,可以用于解决关于长度、面积、体积等问题。
四、图形与几何知识1. 图形的基本概念:初三的几何知识中包括了平面图形和立体图形的概念和性质,如点、线、面、体等。
2. 三角形与四边形:三角形和四边形作为平面图形的重要代表,其性质和特点需要掌握,如角的性质、边长的关系等。
3. 圆与圆的应用:圆的相关性质和圆的应用也是初三几何知识的重要内容,如圆的面积、周长计算等。
五、概率与统计1. 概率的基本概念与计算:概率是事件发生的可能性,可以通过频率和理论概率进行计算。
2021年中考九年级数学总复习 第一章 数与式 第二节 代数式与整式
第一章 数与式第二节 代数式与整式 知识点1:列代数式的基本模型 例1.(2017山西12题3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.例2.(2020山西大模考)太谷饼是山西省传统名吃,以其香、酥、绵、软而闻名全国.某网店以a 元一包的价格购进500包太谷饼,加价20%卖出400包以后,剩余每包比进价降低b 元后全部卖出,则可获得利润 元.知识点2:非负数及其性质例3.(2020大庆)若0)3(22=-++y x ,则y x -的值为 ( )A. -5B.5C.1D. -1知识点3:整式及其相关概念⎪⎪⎩⎪⎪⎨⎧=======++≥0,0,0,0,000)0(,,222c b a c b a c b a c c b a 则则有,如为,则每个非负数的值均若几个非负数的和为常见的非负数有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧数也相同的项,并且相同的字母的指同类项:所含字母相同统称为整式整式:单项式和多项式数次数:次数最高项的次项叫做常数项项式的项,不含字母的项:每个单项式叫做多定义:几个单项式的和多项式所有字母指数的和次数:一个单项式中,因数系数:单项式中的数字母也是单项式单独的一个数或一个字表示的式子定义:由数或字母的积单项式.知识点4:整式的运算例4.(2020山西3题3分)下列运算正确的是 ( )A.2523a a a =+B.a a a 2482=+-C.6338)2(a a -=-D. 5231234a a a =• 例5.(2019山西2题3分)下列运算正确的是 ( )A.2532a a a =+B.2224)2(b a b a +=+C.632a a a =•D.6332)(b a ab -=-例6.(2020安徽)计算36)(a a ÷-的结果是( )A.3a -B.2a -C.3aD.2a例7.先化简,再求值:223)2)(()(x y x y x y x -+-++,其中23,32-=+=y x . 知识点5:因式分解⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧+±=±-=-+⇒⇒⇒⇒⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧====÷=•⎪⎩⎪⎨⎧-+-+22222222)())((:)(.)(....b ab a b a b a b a b a a b a b b a b a a a a a a a a a n n n n n n mn n m n m n m nm n m 完全平方公式:平方差公式:乘法运算整式的加减单项乘单项乘多项单项式乘多项式:单项整式的加减单项乘单项单项乘多项乘多项多项式乘多项式:多项,作为积的一个因式字母连同它的指数不变母的幂分别相乘,其余把他们的系数、相同字单项式乘单项式乘法运算左到右的顺序进行计算加减,同级运算按照从先乘方,再乘除,最后整式混合运算的顺序:如同时乘方商的乘方:分子、分母如所得的幂相乘个因式分别乘方,再把积的乘方:把积的每一)如(指数相乘幂的乘方:底数不变,如变,指数相减同底数幂除法:底数不如变,指数相加同底数幂乘法:底数不幂的运算内各项都变号”号,去括号后,括号是“内各项不变号;括号前”号,去括号后,括号“去括号法则:括号前是母的指数不变果作为系数,字母和字的系数相加,所得的结合并同类项:把同类项合并同类项整式加减运算的实质是加减运算⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧±=+±-+=-⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧++=++⎩⎨⎧22222)(2))(()(.2.1b a b ab a b a b a b a c b a m mc mb ma 公式法的最低次数指数:取各项相同字母母字母:取各项相同的字大公约数系数:取各项系数的最公因式的确定公式:提公因式法基本方法式都不能再分解为止必须分解到每一个多项整式积的形式把一个多项式化为几个目的例8.(2020自贡)分解因式:=+-22363b ab a 例9.(2017山西16(2)题5分)分解因式:22)2()2(y x x y +-+.参考答案例1. 1.08a 例2. (a 80-100b) 例3. A 例4.D 例5.D 例6.C 例7.解:原式=222223222x y xy xy x y xy x ---++++ =xy当23,32-=+=y x 时,原式=)23)(32(-+ =-1例8.2)(3b a -例9.解:原式 [][]))((3))(33()22)(22()2()2()2()2(y x y x y x y x y x x y y x x y y x x y y x x y -+=-+=--++++=+-++++=。
初三数学中考专题—数与式(全面、详细、好用)
1专题一:数与式一、考点综述考点内容:实数与代数式是数学知识的基础,也是其它学科的重要工具,因此在近年来各地的中考试卷中始终占有一席之地. 考纲要求: (1)实数1借助数轴理解相反数、倒数、绝对值意义及性质. 2掌握实数的分类、大小比较及混合运算.3会用科学记数法、有效数字、精确度确定一个数的近似值. 4能用有理数估计一个无理数的大致范围. (2)代数式1了解整式、分式、二次根式、最简二次根式的概念及意义.会用提公因式法、公式法对整式进行因式分解.2理解平方根、算术平方根、立方根的意义及其性质. 根据整式、分式、二次根式的运算法则进行化简、求值考题分值:数与式约占总分的17.1%备考策略:①夯实基础,抓好“双基”.②把课本的典型、重点的题目做变式和延伸. ③注意一些跨学科的常识.④关注中考的新题型.⑤关注课程标准里面新增的目标. ⑥探究性试题的复习步骤:1.纯数字的探索规律.2.结合平面图形探索规律.3.结合空间图形探索规律,4.探索规律方法的总结. 二、例题精析【答案】选B .【规律总结】部分学生不能够读懂题意,无法做出正确选择,往往会随便猜出一个答案.突破方法:根据表格中所提供的信息,找出规律,容易发现短横与长横所表示的不同意义.然后对照分析出两个安全空格中所应填写的数字. 例2.阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-3,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-4,点A 、B 都在原点的右边,A B O B O A b a b a a b=-=-=-=-;(2)如图1-5,点A 、B都在原点的左边,()AB OB OA b a b a a b a b =-=-=---=-=-;(3)如图1-6,点A 、B在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:的两点之间的距离是 ;数轴上表示-2和-1和-3的两点之间的距离之间的距离是.如果2AB =,那么x =. 【解题思路】依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解.(1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+;因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.【答案】(1)3,3,4;(2)1x =或3x =-.【规律总结】要认真阅读材料,理解数轴上两点A 、B 的距离公式AB a b =-,获取新的信息和结论,然后应用所得结论,解答新问题.例3.0细心观察图形,认真分析各式,然后解答问题。
(完整word版)初中九年级数与式复习提纲—
中考复习提纲一数与式考点1:有理数、实数的概念 【知识要点】1、实数的分类:有理数,无理数。
(框架图)2、 实数和数轴上的点是 ________________ 对应的,每一个实数都可以用数轴上的 ___________________ 来表示,反过来,数轴上的点都表示一个 ______________ 。
3、 ____________________________ 叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数 (如• 4),也不是所有的无理数都可以写成根号的形式(如 )。
4、 _________________________ 统称为有理数。
【典型考题】1.把下列各数填入相应的集合内:7.5,.15, 4,JI,|, 38,, 13 30.25, 0.15有理数集{},无理数集{}正实数集{}4,3 J 0,.2 1, .64,3271J2.在实数227中,共有个无理数]3, 3.14,2,sin 45 ,、43.在3中,无理数的个数是,写出一个无理数,使它与、2的积是有理数 ______________【复习指导】解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 :数轴、倒数、相反数、绝对值 【知识要点】若a 0,则它的相反数是 ______________ ,它的倒数是 _________ 。
0的相反数是 ____________ 。
a 、b 互为相反数, 则 ______________________ 相反数等于它本身的数是 __________________________________________ 互为倒数,a 、b 互为倒数,则 _____________________ ; 0 ____________ ;一个正实数的绝对值是 ______________________ ;一个负实数的绝对值是 ________________________ ; 0的绝对值是2、如图1,数轴上的点 M 所表示的数的相反数为|x|。
人教版初中数学中考复习专题复习 数与式(37张PPT)
知识回顾
五、实数的运算 1.包括加法、减法、乘法、除法、乘方、开方共六种,
运算时先确定___符__号___,再运算. 2.实数的运算顺序:先算乘方、开方,再算__乘__除____,
最后算_加__减_____;如果有括号,先算__括__号____里面的; 同级运算按照_从__左__到__右_的顺序依次计算. 六、整式的有关概念 1.整式:__单__项__式__和_多__项__式__统称为整式. 单项式中的_数__字__因__数_叫作单项式的系数,所有字母的 __指__数__和__叫作单项式的次数. 组成多项式的每一个单项式叫作多项式的__项______,多 项式的每一项都要带着前面的符号.
中考·数学
2020版
第一部分 系统复习
第一讲 数与式
知识回顾
一.按实数的定义分类:
负整数
分数
正分数
负无理数
知识回顾
二、实数的基本概念和性质 1.数轴 (1)定义:规定了 _原__点____ 、 _正__方__向__ 、 _单__位__长__度__的直
线叫作数轴. (2)性质: _实___数___和数轴上的点是一一对应的. 2.相反数 (1)定义:a的相反数是___-a____ ,0的相反数是__0___ . (2)性质:a,b互为相反数⇔ __a_+_ b_=__0__ .
2.整式的乘法
知识回顾
(1)单项式乘单项式:把它们的系数、相同字母分别 ___相__乘___,对于只在一个单项式里含有的字母,则连同 它的__指__数____作为积的一个因式.
(2)单项式乘多项式:பைடு நூலகம்单项式去乘多项式的每一项,再 把所得的积__相__加____.
即m(a+b+c)=___m__a_+_m_b_+_m__c__.
中考数学专题复习《数与式》测试卷(附带答案)
中考数学专题复习《数与式》测试卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×10112.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×1083.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×1044.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×1085.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×1066.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×1097.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×10118.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×1099.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×10810.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×10711.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×10312.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×10313.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<115.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥316.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数.(答案不唯一)四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.20.(2024•房山区一模)计算:.21.(2024•石景山区一模)计算:.22.(2024•通州区一模)计算:.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.26.(2024•大兴区一模)计算:.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.28.(2024•东城区一模)计算:.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.30.(2024•顺义区一模)计算:.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.31.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.32.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.33.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.34.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.六.提公因式法与公式法的综合运用(共11小题)36.(2024•平谷区一模)分解因式:ax2+2ax+a=.37.(2024•房山区一模)分解因式:x2y﹣4y=.38.(2024•石景山区一模)分解因式:xy2﹣4x=.39.(2024•北京一模)分解因式:8a2﹣8b2=.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=.41.(2024•朝阳区一模)分解因式:3x2+6xy+3y2=.42.(2024•大兴区一模)分解因式:ax2﹣4a=.43.(2024•海淀区一模)分解因式:a3﹣4a=.44.(2024•东城区一模)因式分解:2xy2﹣18x=.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=.46.(2024•顺义区一模)分解因式:4m2﹣4=.七.分式有意义的条件(共3小题)47.(2024•房山区一模)若代数式有意义,则实数x的取值范围是.48.(2024•丰台区一模)若代数式有意义,则实数x的取值范围是.49.(2024•顺义区一模)代数式有意义,则实数x的取值范围是.八.分式的值(共2小题)50.(2024•海淀区一模)已知b2﹣4a=0,求代数式的值.51.(2024•东城区一模)已知2x﹣y﹣9=0,求代数式的值.九.分式的加减法(共1小题)52.(2024•平谷区一模)化简:的结果为.一十.分式的化简求值(共2小题)52.(2024•石景山区一模)已知x2﹣3x﹣6=0,求代数式的值.53.(2024•丰台区一模)已知x﹣3y﹣2=0,求代数式的值.一十一.二次根式有意义的条件(共6小题)55.(2024•平谷区一模)若代数式有意义,则实数x的取值范围是.56.(2024•石景山区一模)若在实数范围内有意义,则实数x的取值范围是.57.(2024•通州区一模)若在实数范围内有意义,则实数x的取值范围为.58.(2024•朝阳区一模)若式子在实数范围内有意义,则x的取值范围是.59.(2024•海淀区一模)代数式在实数范围内有意义,则x的取值范围是.60.(2024•东城区一模)若二次根式有意义,则实数x的取值范围是.参考答案与试题解析一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:70000000000=7×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12089000=1.2089×107故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:8500=8.5×103故选:C.【点评】本题考查了科学记数法表示绝对值较大的数的方法,掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数是关键.4.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×108【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:22300000000=2.23×1010故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:921000=9.21×105故选:C.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.6.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74870000000=7.487×1010故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:43700000=4.37×107.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×108【分析】根据科学记数法的规则进行作答即可.【解答】解:17500000=1.75×107.故选:C.【点评】本题主要考查科学记数法,解题的关键是熟练掌握科学记数法的规则.10.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:1330000=1.33×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:19000=1.9×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:3998000=3.998×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:210000000=2.1×108故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,熟悉数轴上各点的分布特点是解题的关键.15.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥3【分析】由数轴可知,﹣3<a<﹣2,由此逐一判断各选项即可.【解答】解:由数轴可知,﹣3<a<﹣2A、﹣3<a<﹣2,故选项A不符合题意;B、﹣3<a<﹣2,故选项B不符合题意;C、∵﹣3<a<﹣2,∴2<﹣a<3,故选项C符合题意;D、∵﹣3<a<﹣2,∴2<﹣a<3,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,从题目中提取已知条件是解题的关键.16.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵﹣2<a<﹣1,0<b<1∴1<|a|<2,0<|b|<1∴|a|>|b|∴选项A不符合题意;∵﹣2<a<﹣1,0<b<1∴a<b∴a+1<b+1∴选项B符合题意;∵﹣2<a<﹣1,0<b<1∴1<a2<4,0<b2<1∴a2>b2∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴a<﹣b∴选项D不符合题意.故选:B.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵a<﹣1∴选项A不符合题意;∵b<1∴选项B不符合题意;∵﹣2<a<﹣1∴1<﹣a<2∵0<b<1∴﹣a>b∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴﹣b>a∴选项D符合题意.故选:D.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数π.(答案不唯一)【分析】由于开方开不尽的数是无理数,然后确定的所求数的范围即可求解.【解答】解:∵1=,4=∴只要是被开方数大于1而小于16,且不是完全平方数的都可.同时π也符合条件.【点评】此题主要考查了无理数的大小的比较,其中无理数包括开方开不尽的数,和π有关的数,有规律的无限不循环小数.四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.【分析】根据特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简分别计算即可.【解答】解:2cos30°+()﹣1+|﹣1|﹣===1.【点评】本题考查了实数的运算,熟练掌握特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简是解题的关键.20.(2024•房山区一模)计算:.【分析】利用特殊锐角三角函数值,负整数指数幂,绝对值的性质,二次根式的性质计算即可.【解答】解:原式=6×+2+3﹣3=3+2+3﹣3=5.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.21.(2024•石景山区一模)计算:.【分析】利用绝对值的性质,二次根式的性质,特殊锐角三角函数值及负整数指数幂计算即可.【解答】解:原式=2﹣+2﹣2×+5=2﹣+2﹣+5=7.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.22.(2024•通州区一模)计算:.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负整数指数幂的性质分别化简得出答案.【解答】解:原式=4×=2+4+1=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.【分析】sin45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式=4×+2﹣3+2=2﹣3+4=4.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.【分析】分别根据绝对值、零指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2=3=2.【点评】本题考查的是实数的运算,熟知绝对值、零指数幂的运算法则,熟记特殊角的三角函数值是解答此题的关键.26.(2024•大兴区一模)计算:.【分析】cos45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式==.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.【分析】根据实数的运算法则、负整数指数幂和特殊角的三角函数值的定义进行计算.【解答】解:原式=2×+1+2﹣2=+1+2﹣2=3﹣.【点评】本题考查了实数的运算法则、负整数指数幂和特殊角的三角函数值,掌握实数的运算法则、负整数指数幂和特殊角的三角函数值的定义是关键.28.(2024•东城区一模)计算:.【分析】利用二次根式的性质,特殊锐角三角函数值,零指数幂,绝对值的性质计算即可.【解答】解:原式=4﹣2×+1﹣2=4﹣+1﹣2=3﹣1.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.【分析】直接利用特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=3+2×﹣3﹣2=3+﹣3﹣2=﹣.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2024•顺义区一模)计算:.【分析】利用负整数指数幂,特殊锐角三角函数值,二次根式的性质,零指数幂计算即可.【解答】解:原式=﹣4×+2+1=﹣2+2+1=.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:4x(x﹣1)+(2x+1)(2x﹣1)=4x2﹣4x+4x2﹣1=8x2﹣4x﹣1∵2x2﹣x﹣1=0∴2x2﹣x=1∴当2x2﹣x=1时,原式=4(2x2﹣x)﹣1=4×1﹣1=4﹣1=3.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.32.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:(3x+2)(3x﹣2)﹣3x(x+1)=9x2﹣4﹣3x2﹣3x=6x2﹣3x﹣4∵2x2﹣x﹣1=0∴2x2﹣x=1当2x2﹣x=1时,原式=3(2x2﹣x)﹣4=3×1﹣4=3﹣4=﹣1.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.33.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1∵x2﹣x﹣4=0∴x2﹣x=4∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.34.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.【分析】利用完全平方公式,单项式乘多项式法则进行计算,然后把a2+3a=1代入化简后的式子进行计算即可解答.【解答】解:(a+1)2+a(a+4)﹣2=a2+2a+1+a2+4a﹣2=a2+a2+2a+4a+1﹣2=2a2+6a﹣1∵a2+3a﹣1=0∴a2+3a=1当a2+3a=1时,原式=2(a2+3a)﹣1=2×1﹣1=2﹣1=1.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.35.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.【分析】利用完全平方公式,单项式乘多项式的法则进行计算,然后把x2+2x=1代入化简后的式子进行计算,即可解答.【解答】解:4(x+1)+(x﹣1)2=4x+4+x2﹣2x+1=x2+2x+5当x2+2x=1时,原式=1+5=6.【点评】本题考查了整式的混合运算﹣化简求值,代数式求值,完全平方公式,准确熟练地进行计算是解题的关键.六.提公因式法与公式法的综合运用(共11小题)【分析】先提取公因式,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:ax2+2ax+a=a(x2+2x+1)﹣﹣(提取公因式)=a(x+1)2.﹣﹣(完全平方公式)【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.37.(2024•房山区一模)分解因式:x2y﹣4y=y(x+2)(x﹣2).【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2)故答案为:y(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.38.(2024•石景山区一模)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2)故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.39.(2024•北京一模)分解因式:8a2﹣8b2=8(a+b)(a﹣b).【分析】提公因式后利用平方差公式因式分解即可.【解答】解:原式=8(a2﹣b2)=8(a+b)(a﹣b)故答案为:8(a+b)(a﹣b).【点评】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=y(x﹣6)2.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.42.(2024•大兴区一模)分解因式:ax2﹣4a=a(x+2)(x﹣2).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.43.(2024•海淀区一模)分解因式:a3﹣4a=a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.44.(2024•东城区一模)因式分解:2xy2﹣18x=2x(y+3)(y﹣3).【分析】提取公因式后再用平方差公式分解即可.【解答】解:2xy2﹣18x=2x(y2﹣9)=2x(y+3)(y﹣3).故答案为:2x(y+3)(y﹣3).【点评】本题考查了因式分解,熟练掌握公式法和提取公因式法是关键.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=a(x+2y)(x﹣2y).【分析】观察原式ax2﹣4ay2,找到公因式a,提出公因式后发现x2﹣4y2符合平方差公式,利用平方差公式继续分解可得.【解答】解:ax2﹣4ay2=a(x2﹣4y2)。
初三数学 专题复习 数与式、方程、不等式
专题复习一:数与式、方程、不等式一、考点、热点回顾 (一)数与式A 、中考经典真题1、(2013•攀枝花)计算:2﹣1﹣(π﹣3)0﹣=2、(2013•遵义)如图,A 、B 两点在数轴上表示的数分别是a 、b ,则下列式子中成立的是( )A . a +b <0B . ﹣a <﹣bC . 1﹣2a >1﹣2bD . |a|﹣|b|>0 3、(2013台湾、29)数轴上A 、B 、C 三点所表示的数分别为a 、b 、c ,且C 在AB 上.若|a|=|b|,AC :CB=1:3,则下列b 、c 的关系式,何者正确?( )A .|c|=|b|B .|c|=|b|C .|c|=|b|D .|c|=|b|4、(2013•咸宁)在数轴上,点A (表示整数a )在原点的左侧,点B (表示整数b )在原点的右侧.若|a ﹣b|=2013,且AO=2BO ,则a+b 的值为 .5、(绵阳市2013年)2013年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为( D )A .1.2×10-9米B .1.2×10-8米C .12×10-8米D .1.2×10-7米6、(2013凉山州)如果单项式﹣xa+1y 3与是同类项,那么a 、b 的值分别为( )A .a=2,b=3B .a=1,b=2C .a=1,b=3D .a=2,b=27、(2013•绥化)按如图所示的程序计算.若输入x 的值为3,则输出的值为 .8、(13年北京5分16) 已知0142=--x x ,求代数式22))(()32(y y x y x x --+--的值。
9、(2013年江西省)如图,矩形ABCD 中,点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,连接AM ,CN ,MN ,若AB =22,BC =23,则图中阴影部分的面积为 .B 、培优训练1. (2009 湖北省鄂州市) 为了求231222++++…+20082的值,可令231222S =++++…20082+,则23422222S =++++…20092+,因此2009221S S -=-,所以231222++++…20082009221+=-.仿照以上推理计算出231555++++…20095+的值是( ) A .200951- B .201051- C .2009514- D .2010514- 2. (2009 四川省眉山市) 一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,……,其中第10个式子是( )A .1019a b + B .1019a b -C .1017a b -D .1021a b -3. (2009 贵州省贵阳市) 有一列数12341n n a a a a a a - ,,,,,,,其中1521a =⨯+,2532a =⨯+,3543a =⨯+,4554a =⨯+,5565a =⨯+, ,当2009n a =时,n 的值等于( )A .2010B .2009C .401D .3344. (2009 福建省南平市) 观察下列数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,那么第32个数对是( )A .(4,4)B .(4,5)C .(4,6)D .(5,4)5. (2009 福建省泉州市) 点A 1、 A 2、 A 3、 …、n A (n 为正整数)都在数轴上.点A 1在原点O 的左边,且A 1O =1;点A 2在点A 1的右边,且A 2A 1=2;点A 3在点A 2的左边,且A 3A 2=3;点A 4在点A 3的右边,且A 4A 3=4;……,依照上述规律,点A 2008 、A 2009所表示的数分别为( )A .2008、2009-B .2008-、 2009C .1004、1005-D .1004、 1004- 6. (2007 内蒙古呼和浩特市) 观察下列三角形数阵:则第50行的最后一个数是( ) A.1225 B.1260 C.1270 D.12757. (2009 浙江省台州市) 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.....,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++; ③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 8、 (2008 福建省南平市) 定义:a 是不为1的有理数,我们把11a-称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,依此类推,则2009a =9. (2009 湖北省荆门市) 定义2*a b a b =-,则(12)3**=______.10. (2007 四川省德阳市) 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0) 根据这个规律探索可得,第100个点的坐标为____________.12 34 5 6 7 8 9 10 11 12 13 14 15O (1,0) (2,0) (3,0) (4,0) (5,0)x(5,1)(4,1) (3,1) (2,1) (3,2) (4,2) (4,3) (5,4) (5,3)(5,2) y11.(2009 四川省凉山州) 我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543210110101121202120212=⨯+⨯+⨯+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?12. (2009 四川省凉山州)观察下列多面体,并把下表补充完整.名称三棱柱四棱柱 五棱柱 六棱柱图形顶点数a 6 10 12 棱数b 9 12 面数c58观察上表中的结果,你能发现a b c 、、之间有什么关系吗?请写出关系式.(二)方程与不等式 A 、中考经典真题1、(2013年河北)甲队修路120 m 与乙队修路100 m 所用天数相同,已知甲队比乙队每天多修10 m ,设甲队每天修路x m.依题意,下面所列方程正确的是A .120x =100x -10B .120x =100x +10C.120x-10=100x D.120x+10=100x2、(2013•牡丹江)若关于x的分式方程的解为正数,那么字母a的取值范围是3、(2013•攀枝花)已知实数x,y,m满足,且y为负数,则m的取值范围是()A.m>6 B.m<6 C.m>﹣6 D.m<﹣64、(2013•咸宁)已知是二元一次方程组的解,则m+3n的立方根为.5、(2013安顺)4x a+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b= .6、(2013•泸州)设x1、x2是方程x2+3x﹣3=0的两个实数根,则的值为()A.5B.﹣5 C.1D.﹣17、(2013•鄂州)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为()A.﹣10 B.4C.﹣4 D.10 8、(2013达州)甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。
4、初中数学中考知识点复习之数与式知识点归纳
数与式知识点汇总若()2,0x a a=,则x是a的平方根,平方根为+x与-x两个互为相反数。
正的平方根为算术平方根。
若3,x a=(a为任何数),则x是a的立方根。
2.实数的计算:1] 实数的计算顺序:从左到右,先算特殊值(如乘方、开方、三角函数、绝对值等),再乘除,后加减;有括号从小、中、大顺序进行。
2]开方的计算:5加减:先每项化为最简二次根式(没得开方),再合并同类二次根式(根号内相同),如10---3==,3.几数:倒数、相反数,近似数,有效数字,绝对值:1]倒数:相乘为1;2]相反数:符号不同但数字相同,相加为0;3]近似数:四舍五入;4]有效数字:从非零数数起。
5]绝对值:,,aaaìïï=íï-ïîaa³pa2a=352-=22=-22=;科学记数法:()10110na a矗p,n为整数;4.比较大小:作差法:比较0,a b a ba ba b a bì-[ïïíï-ïîf f作商法:比较1,0,1a b a ba ba b a bì福郏ïïíï港ïîff f作平方法:比较22220,0,a b a ba ba b a bìï[ïïíïïÛïîf ff fab a b=a a a?()m mna a=()1m ma a-=;01a=()2222a b a ab b??;()()22a b a b a b+-=-;()m a b am bm+=+;()()a b m n am an bm bn++=+++;7.常用口诀:完全平方:()2222??尾尾尾头头头;平方差:()()22+-=-同反同反同反;完全平方的应用:()2222a ab b a b++=+()2222a b a b ab+=+-()()2222ab a b a b=+-+()()224ab a b a b?+--8.整式:加减:去括号(用分配律,注意符号),合并同类项(字母及指数都对应相同);乘除用幂公式;9.分式(与分数相同):乘除:约分(约去公因式);加减:通分(分母变为相同的最小公倍数,再分子加减)10.因式分解(结果为积的形式):先1、提公因式;再2、公式法(完全平方,平方差);后3、十字相乘11.式子是否有意义:分母不为00,0,a12.去括号:2(34)68x y x y-+=-+,2(34)68x y x y--=-+提括号:682(34)x y x y-=-,682(34)x y x y-+=--13.符号问题:同号得正,异号得负;负数中偶次方为正,奇次方为负。
初三数学复习_数与式(知识点讲解)
千里之行,始于足下。
初三数学复习_数与式(学问点讲解)数与式是数学中的重要概念,它们是数学运算的基础。
在初三数学复习中,复习数与式的学问点是格外重要的,下面是关于数与式的学问点的讲解。
一、数的概念数是人们用来计数、比较和度量的工具。
数可以分为整数、分数、小数和无理数等不同的类型。
整数包括正整数、负整数和零,分数是整数的比例形式,小数是分数的小数形式,无理数是不能被表示为分数或小数的数。
二、式的概念式是由数、运算符号和运算符组成的代数表达式。
式可以是简洁的数字、字母或它们的组合,也可以是包含了运算符的简单表达式。
一个式可以表示一个数、一种关系或一个命题。
三、代数式与方程式代数式是由系数、变量和运算符组成的表达式,它可以通过运算得到一个确定的结果。
代数式没有等号,它只是表示一个数或一个关系。
方程式是一个包含等号的代数式,它表示一个等式,左右两边的表达式是相等的。
方程式中一般会包含未知数,求解方程式就是找到未知数的值,使得方程式成立。
四、数与式的四则运算1. 加法:两个数或式相加,结果称为和。
例如:3 + 5 = 8。
2. 减法:一个数或式减去另一个数或式,结果称为差。
例如:8 - 5 = 3。
3. 乘法:两个数或式相乘,结果称为积。
例如:2 × 3 = 6。
4. 除法:一个数或式除以另一个数或式,结果称为商。
例如:6 ÷ 3 = 2。
第1页/共2页锲而不舍,金石可镂。
五、数与式的运算性质1. 交换律:加法和乘法满足交换律,即a + b = b + a,a × b = b ×a。
2. 结合律:加法和乘法满足结合律,即(a + b) + c = a + (b + c),(a × b) × c = a × (b × c)。
3. 安排律:乘法对加法满足安排律,即a × (b + c) = a × b + a ×c。
数与式综合测试卷(原卷版)—2024年中考数学一轮复习【举一反三】系列(全国通用)
数与式综合测试卷考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2023·青海西宁·统考中考真题)算式―3□1的值最小时,□中填入的运算符号是()A.+B.-C.×D.÷2.(3分)(2023·江苏宿迁·统考中考真题)下列运算正确的是()A.2a―a=1B.a3⋅a2=a5C.(ab)2=ab2D.(a2)4=a63.(3分)(2023·浙江衢州·统考中考真题)手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(单位:dBm),则下列信号最强的是()A.―50B.―60C.―70D.―804.(3分)(2023·河北·统考中考真题)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012km.下列正确的是()A.9.46×1012―10=9.46×1011B.9.46×1012―0.46=9×1012C.9.46×1012是一个12位数D.9.46×1012是一个13位数5.(3分)(2023·重庆·×)A.4和5之间B.5和6之间C.6和7之间D.7和8之间6.(3分)(2023·天津·统考中考真题)计算1x―1―2x2―1的结果等于()A.―1B.x―1C.1x+1D.1x2―17.(3分)(2023·山东·统考中考真题)实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是()A.c(b―a)<0B.b(c―a)<0C.a(b―c)>0D.a(c+b)>08.(3分)(2023·河北·统考中考真题)若k为任意整数,则(2k+3)2―4k2的值总能()A .被2整除B .被3整除C .被5整除D .被7整除9.(3分)(2023·四川德阳·统考中考真题)在“点燃我的梦想,数学皆有可衡”数学创新设计活动中,“智多星”小强设计了一个数学探究活动:对依次排列的两个整式m ,n 按如下规律进行操作:第1次操作后得到整式串m ,n ,n ―m ;第2次操作后得到整式串m ,n ,n ―m ,―m ;第3次操作后…其操作规则为:每次操作增加的项,都是用上一次操作得到的最末项减去其前一项的差,小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( )A .m +nB .mC .n ―mD .2n10.(3分)(2023·四川内江·统考中考真题)对于正数x ,规定f(x)=2xx+1,例如:f(2)=2×22+1=43,=2×1212+1=23,f(3)=2×33+1=32,=2×1313+1=12,计算:+++⋯+++f(1)+f(2)+f(3)+⋯+f(99)+f(100)+f(101)=( )A .199B .200C .201D .202二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2023·四川巴中·统考中考真题)在0,,―π,―2四个数中,最小的实数是.12.(3分)(2023·江苏·统考中考真题)若圆柱的底面半径和高均为a ,则它的体积是 (用含a 的代数式表示).13.(3分)(2023·江苏泰州·统考中考真题)若2a ―b +3=0,则2(2a +b)―4b 的值为 .14.(3分)(2023·山东潍坊·统考中考真题)从―(□+○)2÷“□”与“○”中,计算该算式的结果是 .(只需写出一种结果)15.(3分)(2023·黑龙江大庆·统考中考真题)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,(a+b)7展开的多项式中各项系数之和为.16.(3分)(2023·湖南娄底·统考中考真题)若干个同学参加课后社团——舞蹈活动,一次排练中,先到的n个同学均匀排成一个以O点为圆心,r为半径的圆圈(每个同学对应圆周上一个点),又来了两个同学,先到的同学都沿各自所在半径往后移a米,再左右调整位置,使这(n+2)个同学之间的距离与原来n个同学之间的距离(即在圆周上两人之间的圆弧的长)相等.这(n+2)个同学排成圆圈后,又有一个同学要加入队伍,重复前面的操作,则每人须往后移米(请用关于a的代数式表示),才能使得这(n+3)个同学之间的距离与原来n个同学之间的距离相等.三.解答题(共7小题,满分52分)17.(6分)(2023·江苏无锡·统考中考真题)(1)计算:(―3)2―+|―4|(2)化简:(x+2y)(x―2y)―x(x―y)18.(6分)(2023·广东广州·统考中考真题)已知a>3,代数式:A=2a2―8,B=3a2+6a,C=a3―4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.19.(8分)(2023·河北·统考中考真题)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(a>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为S1,S2.(1)请用含a的式子分别表示S1,S2;当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.20.(8分)(2023·四川攀枝花·统考中考真题)2022年卡塔尔世界杯共有32支球队进行决赛阶段的比赛.决赛阶段分为分组积分赛和复赛.32支球队通过抽签被分成8个小组,每个小组4支球队,进行分组积分赛,分组积分赛采取单循环比赛(同组内每2支球队之间都只进行一场比赛),各个小组的前两名共16支球队将获得出线资格,进入复赛;进入复赛后均进行单场淘汰赛,16支球队按照既定的规则确定赛程,不再抽签,然后进行18决赛,14决赛,最后胜出的4支球队进行半决赛,半决赛胜出的2支球队决出冠、亚军,另外2支球队决出三、四名.(1)本届世界杯分在C 组的4支球队有阿根廷、沙特、墨西哥、波兰,请用表格列一个C 组分组积分赛对阵表(不要求写对阵时间).(2)请简要说明本届世界杯冠军阿根廷队在决赛阶段一共踢了多少场比赛?(3)请简要说明本届世界杯32支球队在决赛阶段一共踢了多少场比赛?21.(8分)(2023·福建厦门·统考模拟预测)“歌唱家在家唱歌”“蜜蜂酿蜂蜜”这两句话从左往右读和从右往左读,结果完全相同.文学上把这样的现象称为“回文”,数学上也有类似的“回文数”,比如252,7887,34143,小明在计算两位数减法的过程中意外地发现有些等式从左往右读的结果和从右往左读的结果一样,如:65―38=83―56;91―37=73―19;54―36=63―45.数学上把这类等式叫做“减法回文等式”.(1)①观察以上等式,请你再写出一个“减法回文等式”;②请归纳“减法回文等式”的被减数ab (十位数字为a ,个位数字为b )与减数cd 应满足的条件,并证明.(2)两个两位数相乘,是否也存在“乘法回文等式”?如果存在,请你直接写出“乘法回文等式”的因数xy 与因数mn 应满足的条件.22.(8分)(2023·山东青岛·统考中考真题)如图①,正方形ABCD 的面积为1.(1)如图②,延长AB到A1,使A1B=BA,延长BC到B1,使B1C=CB,则四边形AA1B1D的面积为______;(2)如图③,延长AB到A2,使A2B=2BA,延长BC到B2,使B2C=2CB,则四边形AA2B2D的面积为______;(3)延长AB到A n,使A n B=nBA,延长BC到B n,使B n C=nCB,则四边形AA n B n D的面积为______.23.(8分)(2023·山东潍坊·统考中考真题)[材料阅读]用数形结合的方法,可以探究q +q 2+q 3+...+q n +…的值,其中0<q <1.例求12+++⋯++⋯的值.方法1:借助面积为1的正方形,观察图①可知12+++⋯++⋯的结果等于该正方形的面积,即12+++⋯++⋯=1.方法2:借助函数y =12x +12和y =x 的图象,观察图②可知12+++⋯++⋯的结果等于a 1,a 2,a 3,…,a n …等各条竖直线段的长度之和,即两个函数图象的交点到x 轴的距离.因为两个函数图象的交点(1,1)到x 轴的距为1,所以,12+++⋯++⋯=1.【实践应用】任务一 完善23+++⋯++⋯的求值过程.方法1:借助面积为2的正方形,观察图③可知23+++⋯++⋯=______.方法2:借助函数y =23x +23和y =x 的图象,观察图④可知因为两个函数图象的交点的坐标为______,所以,23+++⋯++⋯=______.任务二 参照上面的过程,选择合适的方法,求34+++⋯++⋯的值.任务三 用方法2,求q +q 2+q 3+⋯+q n +⋯的值(结果用q 表示).【迁移拓展】的矩形是黄金矩形,将黄金矩形依次截去一个正方形后,得到的新矩形仍是黄金矩形.观察图⑤+++⋯++⋯的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总复习数与式综合复习【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点进阶:整数和分数统称有理数.无限不循环小数叫做无理数. 有理数和无理数统称实数. 2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系. 要点进阶:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础. 3.相反数实数a 和-a 叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等. 要点进阶:两个互为相反数的数的运算特征是它们的和等于零,即如果a 和b 互为相反数,那么a+b =0;反过来,如果a+b =0,那么a 和b 互为相反数. 4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即 如果a >0,那么|a|=a ; 如果a <0,那么|a|=-a ; 如果a =0,那么|a|=0. 要点进阶:从绝对值的定义可以知道,一个实数的绝对值是一个非负数. 5.实数大小的比较(1)在数轴上表示两个数的点,右边的点所表示的数较大.(2)正数都大于0;负数都小于0,两个负数绝对值大的那个负数反而小.(3)对于实数,a b 、0=0=0a b a b a b a b a b a b ⇔⇔⇔->>;-;-<<. 要点进阶:常用方法:①数轴图示法;②作差法;③作商法;④平方法等.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c=a+(b+c);乘法交换律 ab=ba;乘法结合律 (ab)c=a(bc);分配律 a(b+c)=ab+ac.(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减.算式里如果有括号,先进行括号内的运算.如果只有同一级运算,从左到右依次运算.7.平方根如果x2=a,那么x就叫做a的平方根(也叫做二次方根).要点进阶:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根.8.算术平方根正数a的正的平方根,叫做a的算术平方根.零的算术平方根是零.要点进阶:从算术平方根的概念可以知道,算术平方根是非负数.9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字.10.科学记数法把一个数记成±a×10n的形式(其中n是整数,a是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念、性质1.二次根式的概念形如a(a≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.要点进阶:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)a a 与互为有理化因式;(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a a a b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. 要点进阶:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m m m ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1ppa a -=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简.(2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.④运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x , 则有:))((212x x x x a c bx ax --=++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式;②考虑所给多项式是否能用公式法分解.要点进阶:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) 要点进阶:分式有意义⇔分母≠0; 分式无意义⇔分母=0;分式值为0 =00.⎧⇔⎨⎩分子,分母≠分式值为1=0.⎧⇔⎨⎩分子分母,分母≠分式值为正⇔分子、分母同号.分式值为负⇔分子、分母异号. (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点进阶:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数;(3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的概念、运算及因式分解例1.在数轴上表示a 、b 、c 三个数的点的位置如图所示.化简:|a-b|+|a-c|-|b+c|.举一反三:【变式】阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-1,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-2,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-;(2)如图1-3,点A 、B 都在原点的左边, ()AB OB OA b a b a a b a b =-=-=---=-=-; (3)如图1-4,点A 、B 在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.B ba A 图1-3O 0O 0b B 图1-2a A O (A ) 0bB 图1-1综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5的两点之间的距离是 ;数轴上表示1和-3的两点之间的距离是 .(2)数轴上表示x 和-1的两点A 和B 之间的距离是 .如果2AB =,那么x = .例2.分解因式.(1)﹣18x 2y 2+9x 4﹣6x 3y . (2)1﹣m 2﹣n 2+2mn . (3)﹣a+2a 2﹣a 3.举一反三:【变式】分解因式:2212a a b -+-= .类型二、分式的有关运算例3.我们把分子为1的分数叫做单位分数.如12,13,14…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如111236=+,1113412=+,1114520=+,…(1)根据对上述式子的观察,你会发现1115=+O,请写出□,○所表示的数;(2)进一步思考,单位分数n 1(n 是不小于2的正整数)=11+∆,请写出△,⊙所表示的式,并加以验证.baA 图1-4O 0B举一反三:【变式】若0<x <1,则21x xx 、、的大小关系是( ).A .21x x x << B .21x xx << C .xx x 12<< D .x x x <<21例4.计算222214(2)244x x x x x x x x x +--⎛⎫-÷- ⎪--+⎝⎭.举一反三:【变式】计算3213411x x x x x -+----.类型三、二次根式的运算例5.已知举一反三: 【变式】估计32×12+20的运算结果应在 ( ) A. 6到7之间 B. 7到8之间 C. 8到9之间D. 9到10之间例6.若a ,b 为实数,且b =355315a a -+-+,试求22b a b a a b a b++-+-的值.举一反三:【变式】(1) 若622=-n m ,且2m n -=,则=+n m .(2)若61,10=+<<a a a ,求aa 1-的值.类型四、数与式的综合运用例7.如图,用相同规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题: (1)在第n 个图中,共有瓷砖 块,其中白色瓷砖 块,黑色瓷砖 块(均用含n 的代数式表示);(2)按上述铺设方案,铺设一块这样的矩形地面共用了1056块瓷砖,求此时n 的值; (3)若黑瓷砖每块4元,白瓷砖每块3元,则问题(2)中,共花多少元购买瓷砖?【巩固练习】一、选择题1. 把多项式1-x 2+2xy-y 2分解因式的结果是( )A.(1)(1)x y x y +--+B.(1)(1)x y x y --+-C.(1)(1)x y x y ---+D.(1)(1)x y x y +-++2.按一定的规律排列的一列数依次为:111111,,,,,2310152635┅┅,按此规律排列下去,这列数中的第7个数是( ) A .145 B .140 C .146 D .1503.根据下表中的规律,从左到右的空格中应依次填写的数字是( )000110010111001111A .100,011B .011,100C .011,101D .101,1104.在一个地球仪的赤道上用铁丝打一个箍,现将铁丝半径增大1米,需增加m 米长的铁丝.假设地球赤道上也有一个铁箍,同样半径增大1米,需增加n 米长的铁丝,则m 与n 的大小关系是( ) A .m >n B .m <n C .m =n D .不能确定5.将一张长方形纸片对折,可得到一条折痕,继续对折,对折时每次折痕与上次折痕保持平行,那么对折n 次后折痕的条数是 ( )A .2n -1B .2n +1C .2n -1D .2n+16.如图图案都是同样大小的小正方形按一定的规律组成的,其中第1个图形中有5个小正方形,第2个图形有13个小正方形,第3个图形有25个小正方形,…,按此规律,则第8个图形中小正方形的个数为( )A .181B .145C .100D .887.若非零实数a ,b 满足2244a b ab +=,则ba= .8.已知分式)1)(2(12---x x x ,当x = 时,分式的值为0.9.在实数范围内分解因式4(1)x y -+-2(x+y)= .10. 化简: (1)当x≥0时,= ; (2)当a≤0时,= ;(3)当a≥0,b <0时,= .11.德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数):第一行 11第二行12 12 第三行 13 16 13第四行 14 112 112 14第五行 15 120 130 120 15… …… …根据前五行的规律,可以知道第六行的数依次是: .12.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n 1=5 ,计算n 12+1得a 1; 第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2; 第三步:算出a 2的各位数字之和得n 3,再计算n 23+1得a 3; …………依此类推,则a 2012=_______________.13.图①是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为 ;(2)观察图②,三个代数式(m+n )2,(m ﹣n )2,mn 之间的等量关系是 ; (3)观察图③,你能得到怎样的代数等式呢?(4)试画出一个几何图形,使它的面积能表示(m+n )(m+3n ); (5)若x+y=﹣6,xy=2.75,求x ﹣y 的值.14.阅读下列题目的计算过程:xx x +---12132=)1)(1()1(2)1)(1(3-+---+-x x x x x x (A )=(x -3)-2(x -1) (B ) =x -3-2x +1 (C ) =-x -1 (D )(1)上述计算过程中,从哪一步开始出现错误?请写出该步的代号 . (2)错误的原因 .(3)本题目正确的结论为 .15.已知271xx x =-+,求2421x x x ++的值.16. 设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++ 设12...n S S S S =+++,求S 的值 (用含n 的代数式表示,其中n 为正整数).。