工程流体力学课件第三章 流体动力学基础
合集下载
流体力学第三章流体动力学ppt课件
p p(x, y, z,t) (x, y, z,t)
以固定空 间、固定 断面或固 定点为对 象,应采 用欧拉法
x xt, y yt, z zt
3
a.流体质点的加速度
a
dv
dt
ax
dvx dt
vx t
vx x
dx dt
vx y
dy dt
m/ s2
ax 4m / s2
7
(2)
v
vx
i
v
y
j
(4y 6x)i (6y 9x) j 0
t t t
是非恒定流
(3)v v
vx
vx x
vy
vx y
i vx
vy x
vy
vy y
a bt
即
dx a
dt
0xd
x
t
0
adt
x
a
t
dy bt
dt
y
0
dy
t
0
btdt
y
b
t2 2
y
b 2a2
x2
——迹线方程(抛物线)
y
注意:流线与迹线不重合
o
x
13
例:已知速度vx=x+t,vy=-y+t 求:在t=0时过(-1,-1)点的流线和迹线方程。
解:(1)流线: dx dy
(2)迹线方程及t =0时过(0,0)点的迹线。
解:(1)流线: dx dy
a bt
积分: y bt x c a
以固定空 间、固定 断面或固 定点为对 象,应采 用欧拉法
x xt, y yt, z zt
3
a.流体质点的加速度
a
dv
dt
ax
dvx dt
vx t
vx x
dx dt
vx y
dy dt
m/ s2
ax 4m / s2
7
(2)
v
vx
i
v
y
j
(4y 6x)i (6y 9x) j 0
t t t
是非恒定流
(3)v v
vx
vx x
vy
vx y
i vx
vy x
vy
vy y
a bt
即
dx a
dt
0xd
x
t
0
adt
x
a
t
dy bt
dt
y
0
dy
t
0
btdt
y
b
t2 2
y
b 2a2
x2
——迹线方程(抛物线)
y
注意:流线与迹线不重合
o
x
13
例:已知速度vx=x+t,vy=-y+t 求:在t=0时过(-1,-1)点的流线和迹线方程。
解:(1)流线: dx dy
(2)迹线方程及t =0时过(0,0)点的迹线。
解:(1)流线: dx dy
a bt
积分: y bt x c a
工程流体力学--第三章--流体动力学基础ppt课件
当地加速度和迁移加速度的理解,现举例说明这两个加速
度的物理意义。如图3-1所示,不可压缩流体流过一个中 间有收缩形的变截面管道,截面2比截面1小,则截面2的 速度就要比截面1的速度大。所以当流体质点从1点流到2 点时,由于截面的收缩引起速度的增加,从而产生了迁移
加速度,如果在某一段时间内流进管道的流体输入量有变
第三章 流体动力学基础
§1–1 描述流体运动的两种方法
§1–2 流体运动的一些基本概念
§1–3 流体运动的连续性方程
§1–4 理想流体的运动微分方程
§1–5 理想流体微元流束的伯努力方程
§1–6 伯努利(Bernoulli)方程的应用
§1–7 定常流动的动量方程和动量矩方程
§1–8 液体的空化和空蚀现象
拉格朗日方法又称随体法,是从分析流场中个别流体 质点着手来研究整个流体运动的。这种研究方法,最基本
2021/4/19
3
的参数是流体质点的位移,在某一时刻,任一流体质点的
位置可表示为:
X=x (a,b,c,t)
y=y (a,b,c,t)
z=z (a,b,c,t)
(3-1)
式中a、b、c为初始时刻任意流体质点的坐标,即不同的a、 b、c代表不同的流体质点。对于某个确定的流体质点,a、 b、c为常数,而t为变量,则得到流体质点的运动规律。 对于某个确定的时刻,t为常数,而a、b、c为变量,得到 某一时刻不同流体质点的位置分布。通常称a、b、c为拉
(3-2) (3-3)
az w t t22 zaz(a,b,c,t)
2021/4/19
5
式(3-6)是流体质点的运动轨迹方程,将上式对时间 求导就可得流体质点沿运动轨迹的三个速度分量
u dx dt
度的物理意义。如图3-1所示,不可压缩流体流过一个中 间有收缩形的变截面管道,截面2比截面1小,则截面2的 速度就要比截面1的速度大。所以当流体质点从1点流到2 点时,由于截面的收缩引起速度的增加,从而产生了迁移
加速度,如果在某一段时间内流进管道的流体输入量有变
第三章 流体动力学基础
§1–1 描述流体运动的两种方法
§1–2 流体运动的一些基本概念
§1–3 流体运动的连续性方程
§1–4 理想流体的运动微分方程
§1–5 理想流体微元流束的伯努力方程
§1–6 伯努利(Bernoulli)方程的应用
§1–7 定常流动的动量方程和动量矩方程
§1–8 液体的空化和空蚀现象
拉格朗日方法又称随体法,是从分析流场中个别流体 质点着手来研究整个流体运动的。这种研究方法,最基本
2021/4/19
3
的参数是流体质点的位移,在某一时刻,任一流体质点的
位置可表示为:
X=x (a,b,c,t)
y=y (a,b,c,t)
z=z (a,b,c,t)
(3-1)
式中a、b、c为初始时刻任意流体质点的坐标,即不同的a、 b、c代表不同的流体质点。对于某个确定的流体质点,a、 b、c为常数,而t为变量,则得到流体质点的运动规律。 对于某个确定的时刻,t为常数,而a、b、c为变量,得到 某一时刻不同流体质点的位置分布。通常称a、b、c为拉
(3-2) (3-3)
az w t t22 zaz(a,b,c,t)
2021/4/19
5
式(3-6)是流体质点的运动轨迹方程,将上式对时间 求导就可得流体质点沿运动轨迹的三个速度分量
u dx dt
第三章 流体动力学基础
v
qV q
udA
A
u 体积流量
断面平均速度 v(均速):v qv
udA
A
AA
qv vA
过流断 面面积
注:断面平均流速 v 为假想流速,用于求解其它量时会 产生误差,应进行修正。
均匀流与非均匀流
均匀流
均匀流:流场中各流体质点流速大小、方向沿程不变,流线 为相互平行的直线。
非均匀流:流速大小或方向沿程变化,流线不平行。 均匀流一定是恒定流,恒定流不一定是均匀流
方程的意义:恒定流时流体总是从能量高的断面流向能量低 的断面。
2020/3/22
29
元流能量方程的特例 : z1+
p1
+
u12 2g
z2+
p2
+
u
2 2
2g
hw12
1) 理想流体:没有粘性力,没有能耗,h′w 1-2=0,
z1+
p1
+ u12 2g
z2+
p2
+ u22 =const
2g
——称不可压缩理想流体元流恒定流单重流体能量方程
mt2 mt3
二 迹线与流线
迹线(Path Line)——是指质点在某一时段内的运动轨迹线。
迹线是拉格朗日法对流体运动的描述。
为了形象描述流场中的流动情况引入的流线的概念
某时刻,在流场中任取一 流体质点A1,绘出该时刻流体
质点的流速矢量u1,在u1矢量
线上再画出距A1 点很近的A2点, 绘出在同一时刻通过A2点的流 体质点的流速矢量……
欧拉法描写流场时运动要素是时、空(x,y,z,t)的连续函数:
uuxy
ux (x, y, z,t) uy (x, y, z,t)
第三章流体运动学和动力学基础 PPT
1766年德国得腓特烈大帝向拉格朗日发出邀请说,在“欧洲最 大得王”得宫廷中应有“欧洲最大得数学家”。于就是她应邀 去柏林,居住达二十年之久。在此期间她完成了《分析力学》一 书,建立起完整与谐得力学体系。
1786年,她接受法王路易十六得邀请,定居巴黎,直至去世。近 百余年来,数学领域得许多新成就都可以直接或间接地溯源于拉 格朗日得工作。
vx t
vx
vx x
vy
vx y
vz
vx z
ay
vy t
vx
vy x
vy
vy y
vz
vy z
az
vz t
vx
vz x
vy
vz y
vz
vz z
矢量形式
一、 Euler法(欧拉法)
质点加速度:
a dv v (v )v dt t
当地加速度
迁移加速度
第一部分:就是由于某一空间点上得流体质点得速度 随时间得变化而产生得,称为当地加速度
✓2、 欧拉变数:对于三元流动,各运动要素就是空 间点得坐标(x,y,z)与时间t得函数,不同得(x,y,z)即 表示空间中不同得点,通常称(x,y,z)为欧拉变数。
一、Euler法(欧拉法)
3、 物理量方程: 研究表征流场内流体流动得各种物理量得
矢量场与标量场。
压强、密度、温度为: p p(x, y, z, t)
(1) 在定常流动中,流线不 随时间改变其位置与形状, 流线与迹线重合。在非定 常流动中,由于各空间点上 速度随时间变化,流线得形 状与位置就是在不停地变 化得。
(2) 通过某一空间点在给定瞬间只能有一条流线, 一般情况流线不能相交与分支。
(3) 流线不能突然折转,就是一条光滑得连续曲线。
1786年,她接受法王路易十六得邀请,定居巴黎,直至去世。近 百余年来,数学领域得许多新成就都可以直接或间接地溯源于拉 格朗日得工作。
vx t
vx
vx x
vy
vx y
vz
vx z
ay
vy t
vx
vy x
vy
vy y
vz
vy z
az
vz t
vx
vz x
vy
vz y
vz
vz z
矢量形式
一、 Euler法(欧拉法)
质点加速度:
a dv v (v )v dt t
当地加速度
迁移加速度
第一部分:就是由于某一空间点上得流体质点得速度 随时间得变化而产生得,称为当地加速度
✓2、 欧拉变数:对于三元流动,各运动要素就是空 间点得坐标(x,y,z)与时间t得函数,不同得(x,y,z)即 表示空间中不同得点,通常称(x,y,z)为欧拉变数。
一、Euler法(欧拉法)
3、 物理量方程: 研究表征流场内流体流动得各种物理量得
矢量场与标量场。
压强、密度、温度为: p p(x, y, z, t)
(1) 在定常流动中,流线不 随时间改变其位置与形状, 流线与迹线重合。在非定 常流动中,由于各空间点上 速度随时间变化,流线得形 状与位置就是在不停地变 化得。
(2) 通过某一空间点在给定瞬间只能有一条流线, 一般情况流线不能相交与分支。
(3) 流线不能突然折转,就是一条光滑得连续曲线。
工程流体力学课件3流体动力学基础
恒质
量
三
守
大
守
恒能
恒 定
量 守
律
恒动
量
守
程连
续 方
程恒 定
总
程能 量 方
流 三
大
程动
方
量
方
• v1 A1 = v2 A2
说明流量不变时,过流断面越小, 流速越大 —— 水射器原理
Φ
D
小头
大头
消防水枪喷嘴
收缩段 亚音速
喉部 音速
扩散段 超音速
拉瓦尔喷管
由拉瓦尔喷管可获得超音速气流,其原理广泛应用 于超音速燃气轮机中的叶栅,冲压式喷气发动机,火箭 喷管及超音速风洞等处。
3)在恒定流情况下,当判别第II段管中是缓变 流还是急变流时,与该段管长有无关系?
区分均匀流及非均匀流与过流断面上流速 分布是否均匀有无关系?是否存在“非恒定 均匀流”与“恒定急变流”?
当水箱水面恒定时: a)为恒定均匀流;b)为恒定非均匀流。 当水箱水面不恒定时: a)为非恒定均匀流;b)为非恒定非均匀流。
uz F3(x, y, z,t)
x,y,z,t —欧拉变量
由
dux
ux t
dt
ux x
dx
ux y
dy
ux z
dz
a
x
a y
az
dux
dt du y
dt duz
dt
dF1
dt dF2
dt dF3
dt
ux t
ux
ux x
uy
ux y
uz
ux z
u y t
ux
u y x
uy
u y y
重、难点
工程流体力学课件3流体动力学基础
总结词
边界层理论是研究流体在固体表面附近流动的理论, 其特征包括流体的粘性和湍流状态。
详细描述
边界层理论主要关注流体与固体表面之间的相互作用 ,特别是流体的粘性和湍流状态对流动的影响。在边 界层内,流体的速度和压力变化梯度较大,湍流状态 较为明显。
边界层分离现象和转捩过程
总结词
边界层分离现象是指流体在经过曲面或突然扩大区域 时,流速减小,压力增加,导致流体离开壁面并形成 回流的现象。转捩过程则是从层流到湍流的过渡过程 。
有旋流动
需要求解偏微分方程组,如纳维-斯托克斯 方程(Navier-Stokes equations),该方 程组较为复杂,需要采用数值方法进行求解
。
05 流体动力学中的湍流流动
湍流流动的定义和特征
湍流流动的定义
湍流是一种高度复杂的流动状态,其中流体的速度、压 力和其它属性随时间和空间变化。
湍流流动的特征
质量守恒定律在流体中的应用
质量守恒定律
物质的质量不会凭空产生也不会消失,只会从一种形式转化为另一种形式。在流体中,质量守恒定律表现为流体 微元的质量变化率等于进入和离开微元的净质量流量。
质量守恒方程
根据质量守恒定律,流体微元的质量变化率可以表示为流入和流出微元的净质量流量。这个方程是流体动力学基 本方程之一,用于描述流体的运动特性。
流体流动的描述方法
描述流体流动的方法包括拉格朗日法和欧拉法。
拉格朗日法是以流体质点作为描述对象,追踪各个质点的运动轨迹,研究其速度、加速度等参数随时 间的变化。欧拉法是以空间点作为描述对象,研究空间点上流速、压强等参数随时间和空间的变化。
03 流体动力学基本方程的推 导
牛顿第二定律在流体中的应用
能源
边界层理论是研究流体在固体表面附近流动的理论, 其特征包括流体的粘性和湍流状态。
详细描述
边界层理论主要关注流体与固体表面之间的相互作用 ,特别是流体的粘性和湍流状态对流动的影响。在边 界层内,流体的速度和压力变化梯度较大,湍流状态 较为明显。
边界层分离现象和转捩过程
总结词
边界层分离现象是指流体在经过曲面或突然扩大区域 时,流速减小,压力增加,导致流体离开壁面并形成 回流的现象。转捩过程则是从层流到湍流的过渡过程 。
有旋流动
需要求解偏微分方程组,如纳维-斯托克斯 方程(Navier-Stokes equations),该方 程组较为复杂,需要采用数值方法进行求解
。
05 流体动力学中的湍流流动
湍流流动的定义和特征
湍流流动的定义
湍流是一种高度复杂的流动状态,其中流体的速度、压 力和其它属性随时间和空间变化。
湍流流动的特征
质量守恒定律在流体中的应用
质量守恒定律
物质的质量不会凭空产生也不会消失,只会从一种形式转化为另一种形式。在流体中,质量守恒定律表现为流体 微元的质量变化率等于进入和离开微元的净质量流量。
质量守恒方程
根据质量守恒定律,流体微元的质量变化率可以表示为流入和流出微元的净质量流量。这个方程是流体动力学基 本方程之一,用于描述流体的运动特性。
流体流动的描述方法
描述流体流动的方法包括拉格朗日法和欧拉法。
拉格朗日法是以流体质点作为描述对象,追踪各个质点的运动轨迹,研究其速度、加速度等参数随时 间的变化。欧拉法是以空间点作为描述对象,研究空间点上流速、压强等参数随时间和空间的变化。
03 流体动力学基本方程的推 导
牛顿第二定律在流体中的应用
能源
第三章流体动力学基础(2)课件
2024/8/21
.
21
第三章 流体动力学基础
2024/8/21
根据牛顿第二定律:
x y zD D x v tfx x y z p x x y z
化简得:
Dvx Dt
fx
1 p
x
y, z方向同理得:
Dvy Dt
fy
1
p y
Dvz Dt
fz
1 p
z
动量方程写成矢量形式: D v grad fp 0
.
23
第三章 流体动力学基础
二、欧拉方程的积分-伯努利方程(Bernoulli) 一般情况下,欧拉方程只能用数值方法求解。特定
条件下可以积分。 所获得的积分关系称为伯努利方程 Euler方程积分获得Bernoulli方程条件: 理想流体,定常流动 作用在流体上的质量力是有势的; 流体是正压流体,即流体密度函数仅与压强有关 沿流线或涡线积分 粘性流体、总流、
• 定常流动:
• 流场中任意点密度不随时间变化,则质量也不
随时间变化:
t
dV
CV
0
vdA 0
• 定常流动连续方程CS化简为:
•
不可压缩流[动t:CV
dV
CS
v
dA]
0
• 流场中任意一v 点 dA密度0不随时间、空间变化变化
CS
2024/8/21
.
17
第三章 流体动力学基础
三、一维流动的连续方程
一维、二维与三维流动模型
2024/8/21
.
2
第三章 流体动力学基础
• 设基点A上速度为: vxA, vyA,vzA
• 则在瞬时t, 任意点M速度可表达如下(略去二
流体动力学基础(工程流体力学).ppt课件
dV
II '
t t
dV
II '
t
dt t0
t
lim
dV
III
t t
dV
I
t
t 0
t
δt→0, II’ → II
x
nv
z
III
v II ' n
I
o y
20 20
dV
dV
II
tt II
t
lim t t0
t
dV
dV
lim III
t t
t0
t
v cosdA
质点、质点系和刚体 闭口系统或开口系统
均以确定不变的物质集协作为研讨对象!
7 7
定义:
系统(质量体)
在流膂力学中,系统是指由确定的流体质点所组成的流 体团。如下图。
系统以外的一切统称为外界。 系统和外界分开的真实或假象的外表称为系统的边境。
B C
A
D
Lagrange 方法!
系统
8
8
特点:
(1) 一定质量的流体质点的合集 (2) 系统的边境随流体一同运动,系统的体积、边境面的
31 31
固定的控制体
对固定的CV,积分方式的延续性方程可化为
CS
ρ(
vn
)dA
CV
t
dV
运动的控制体
将控制体随物体一同运动时,延续性方程方式不变,只
需将速度改成相对速度vr
t
dV
CV
CS (vr n)dA 0
32 32
延续方程的简化
★1、对于均质不可压流体: ρ=const
dV 0
令β=1,由系统的质量不变可得延续性方程
《工程流体力学》 杨树人 第2-4章 课件
《工程流体力学》 杨树人 第2-4章 课 件
目录
• 第2章 流体静力学 • 第3章 流体动力学基础 • 第4章 流体阻力和水头损失 • 第5章 量纲分析与相似原理
01
第2章 流体静力学
流体静力学基本概念
流体
流体是气体和液体的总称,具有流动性和可压缩 性。
静止流体
不发生宏观运动的流体。
平衡状态
流体处于静止状态时的受力平衡状态。
流体静力学基本方程
流体静力学基本方程
p + ρgh + p0 = 常数(适用于不可 压缩流体)。
p
流体压强;ρ:流体密度;g:重力加 速度;h:流体高度;p0:大气压强 。
静水压强分布及特性
静水压强
液体静止时对固体表面的压力。
静水压强特性
静水压强随深度增加而增大,在同一深度上,各方向静水压强相等 。
静水压强分布规律
在重力场中,静止液体内部压强随深度增加而线性增大。
02
第3章 流体动力学基 础
流体动力学基本概念
流体
在任何外力作用下都不能保持 其固有形状和体积的物质。
流体静力学
研究流体处于静止状态时的平 衡规律及其作用力的科学。
流体动力学
研究流体运动规律及其作用力 的科学。
牛顿流体
流体的应力与应变率成正比的 流体。
湍流阻力与水头损失
湍流阻力
当流体在管道中以湍流状态流动时,由于流体质点间的相互碰撞、混合,会产生较大的阻力。湍流阻 力和流速、管道长度、管道直径等因素有关。
水头损失
在湍流状态下,由于流体分子间的内摩擦力和流体质点间的相互碰撞、混合,使得流体机械能减小, 称为水头损失。水头损失与流速、管道长度、管道直径等因素有关。
目录
• 第2章 流体静力学 • 第3章 流体动力学基础 • 第4章 流体阻力和水头损失 • 第5章 量纲分析与相似原理
01
第2章 流体静力学
流体静力学基本概念
流体
流体是气体和液体的总称,具有流动性和可压缩 性。
静止流体
不发生宏观运动的流体。
平衡状态
流体处于静止状态时的受力平衡状态。
流体静力学基本方程
流体静力学基本方程
p + ρgh + p0 = 常数(适用于不可 压缩流体)。
p
流体压强;ρ:流体密度;g:重力加 速度;h:流体高度;p0:大气压强 。
静水压强分布及特性
静水压强
液体静止时对固体表面的压力。
静水压强特性
静水压强随深度增加而增大,在同一深度上,各方向静水压强相等 。
静水压强分布规律
在重力场中,静止液体内部压强随深度增加而线性增大。
02
第3章 流体动力学基 础
流体动力学基本概念
流体
在任何外力作用下都不能保持 其固有形状和体积的物质。
流体静力学
研究流体处于静止状态时的平 衡规律及其作用力的科学。
流体动力学
研究流体运动规律及其作用力 的科学。
牛顿流体
流体的应力与应变率成正比的 流体。
湍流阻力与水头损失
湍流阻力
当流体在管道中以湍流状态流动时,由于流体质点间的相互碰撞、混合,会产生较大的阻力。湍流阻 力和流速、管道长度、管道直径等因素有关。
水头损失
在湍流状态下,由于流体分子间的内摩擦力和流体质点间的相互碰撞、混合,使得流体机械能减小, 称为水头损失。水头损失与流速、管道长度、管道直径等因素有关。
大学课程《工程流体力学》PPT课件:第三章
§3.1 研究流体运动的方法
➢ 欧拉法时间导数的一般表达式
d (v ) dt t
d :称为全导数,或随体导数。
dt
:称为当地导数。
t
v
:称为迁移导数。
例如,密度的导数可表示为: d (v )
dt t
§3.1 研究流体运动的方法
3.1.2 拉格朗日法
拉格朗日法的着眼点:特定的流体质点。
lim t0
(
dV
III
)
t
t
t
CS2 vndA
单位时间内流入控制体的物理量:
z
Ⅲ
Ⅱ’
Ⅰ
y
lim
t 0
(IdV )t t t CS1vndA
x
§3.3 雷诺输运方程
➢ 雷诺输运方程
dN dt
t
CV dV
CSvndA
雷诺输运方程说明,系统物理量 N 的时间变化率,等于控 制体该种物理量的时间变化率加上单位时间内经过控制面 的净通量。
d dt
V
dV
t
CV
dV
CS
vndA
0
因此,连续性方程的一般表达形式为:
t
CV
dV
CS
vndA
0
连续性方程是质量守恒定律在流体力学中的表现形式。
对定常流动,连续性方程简化为:
CS vndA 0
§3.4 连续性方程
对一维管流,取有效截面 A1 和 A2,及
v2
管壁 A3 组成的封闭空间为控制体:
ay
dv y dt
v y t
vx
v y x
vy
v y y
vz
v y z
az
工程流体力学 第3章 流体运动基本概念和基本方程PPT课件
η表示单位质量流体所具有的该种物理量。 N dV
V
t时刻流体系统所具有的某种物理量N对时间的变化率为
d dN td dtVd V lt i0m (V' d )V t tt(Vd )V t
V :系统在t时刻的体积;
VVIIVIII
V’ :系统在t+δt时刻的体积。 完整编辑ppt
VVIIIII
25
工程流体力学
第三章 流体动力学基础
(Fundamental of Fluid Dynamics)
流体力学基本方程
连
动伯
续动量 努能
性量矩 利量
方方方 方方
程程程 程程
完整编辑ppt
1
第一节 流体运动的描述方法
一 Euler法(欧拉法 ) 基本思想:考察空间每一点上的物理量及其变化。
独立变量:空间点坐标 (x, y, z) 和时间参数 t
1 和 2 分别表示两个截面上的平均流速,并将截面取为有效截面:
11A122A2
一维定常流动积分形式的连续性方程
方程表明:在定常管流中的任意有效截面上,流体的质量流 量等于常数。
对于不可压缩流体: A A 1 1 完整2编辑2ppt
29
第七节 动量方程 动量矩方程
——用于工程实际中求解流体与固体之间的作用力和力矩
d (v) dt t
随当 迁 体地 移 导导 导 数数 数
压强的质点导数
dppvp
dt t
密度的质点导数
dv
dt t
完整编辑ppt
5
二 Lagrange法(拉格朗日法)
基本思想:跟踪每个流体质点的运动全过程,记录 它们在运动过程中的各物理量及其变化规律。 独立变量:(a,b,c,t)——区分流体质点的标志
V
t时刻流体系统所具有的某种物理量N对时间的变化率为
d dN td dtVd V lt i0m (V' d )V t tt(Vd )V t
V :系统在t时刻的体积;
VVIIVIII
V’ :系统在t+δt时刻的体积。 完整编辑ppt
VVIIIII
25
工程流体力学
第三章 流体动力学基础
(Fundamental of Fluid Dynamics)
流体力学基本方程
连
动伯
续动量 努能
性量矩 利量
方方方 方方
程程程 程程
完整编辑ppt
1
第一节 流体运动的描述方法
一 Euler法(欧拉法 ) 基本思想:考察空间每一点上的物理量及其变化。
独立变量:空间点坐标 (x, y, z) 和时间参数 t
1 和 2 分别表示两个截面上的平均流速,并将截面取为有效截面:
11A122A2
一维定常流动积分形式的连续性方程
方程表明:在定常管流中的任意有效截面上,流体的质量流 量等于常数。
对于不可压缩流体: A A 1 1 完整2编辑2ppt
29
第七节 动量方程 动量矩方程
——用于工程实际中求解流体与固体之间的作用力和力矩
d (v) dt t
随当 迁 体地 移 导导 导 数数 数
压强的质点导数
dppvp
dt t
密度的质点导数
dv
dt t
完整编辑ppt
5
二 Lagrange法(拉格朗日法)
基本思想:跟踪每个流体质点的运动全过程,记录 它们在运动过程中的各物理量及其变化规律。 独立变量:(a,b,c,t)——区分流体质点的标志
流体力学-3 流体动力学基础111页PPT
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
流体力学-3 流体动力学基础
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!Байду номын сангаас
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
流体力学-3 流体动力学基础
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!Байду номын сангаас
第三章 流体动力学 ppt课件
此控制体积经dt时间后流至新的位置aabb在此控制体积内的微小流束中取一流线段长为ds截面积为da流速为u的微元则这一段微元的动量为控制体内微小流束的动量为dadsudqdsdmdqdsdqs分别为aa和bb截面处的坐标由动量定理可得dmddqudqdtdtdtdqudqudqdt在工程实际应用中往往用平均流速v代替实际流速u其误差用一动量修正系数予以修正故上式可改写为上式即为流动液体的动量方程
连续性假定:质点指的是一个含有大量分子的流体微团, 其尺寸远小于设备尺寸、但比分子自由程却大的多。假 定流体是由大量质点组成的、彼此间没有间隙、完全充 满所占空间的连续介质。 运动的考察方法 拉格朗日法:选定一个流体质点,对其进行考察,描述
其运动参数与时间u 的关f系x,。y,z, 欧拉法:描述空间各u 点f的x状,y,态z及其与时间的关系。
• 整个控制体积液体的动量为
M d M q
(s2 s 1 )d q
• 式中 S1 、S2,分别为A-A和B-B截面处 的坐标,由动量定理可得
Fd d M t d d t q(s2s1)dq(s2s1)d d q tq(u2u1)dq (s2s1)d d q tqu2dqqu1dq
• 图所示为一不等截面管.液体在管内作恒 定流动.任取l、2两个通流截面、设其面积分 别为A1和A2 ,两个截面中液体的平均流速和密 度分别为v1 、 ρ1和v2 、 ρ2 ,根据质量守恒 定律.在单位时间内流过的两个截面的液体质 量相等,即
1v1A12v2A2
不考虑液体的压缩性,有 1 2 。则得 v1A1 v2A2
qAudAvA
• 由此得出通流截面上的平均流速为 v q A
• 在实际的工程计算中,平均流速才具有应用价 值。液压缸工作时,活塞的运动速度就等于缸 内液体的平均流速,当液压缸有效面积一定时, 活塞运动速度由输入液压缸的流量决定。
连续性假定:质点指的是一个含有大量分子的流体微团, 其尺寸远小于设备尺寸、但比分子自由程却大的多。假 定流体是由大量质点组成的、彼此间没有间隙、完全充 满所占空间的连续介质。 运动的考察方法 拉格朗日法:选定一个流体质点,对其进行考察,描述
其运动参数与时间u 的关f系x,。y,z, 欧拉法:描述空间各u 点f的x状,y,态z及其与时间的关系。
• 整个控制体积液体的动量为
M d M q
(s2 s 1 )d q
• 式中 S1 、S2,分别为A-A和B-B截面处 的坐标,由动量定理可得
Fd d M t d d t q(s2s1)dq(s2s1)d d q tq(u2u1)dq (s2s1)d d q tqu2dqqu1dq
• 图所示为一不等截面管.液体在管内作恒 定流动.任取l、2两个通流截面、设其面积分 别为A1和A2 ,两个截面中液体的平均流速和密 度分别为v1 、 ρ1和v2 、 ρ2 ,根据质量守恒 定律.在单位时间内流过的两个截面的液体质 量相等,即
1v1A12v2A2
不考虑液体的压缩性,有 1 2 。则得 v1A1 v2A2
qAudAvA
• 由此得出通流截面上的平均流速为 v q A
• 在实际的工程计算中,平均流速才具有应用价 值。液压缸工作时,活塞的运动速度就等于缸 内液体的平均流速,当液压缸有效面积一定时, 活塞运动速度由输入液压缸的流量决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u22
2g
u12
2g
dQdt
z2 - z1
z1 -位置水头
z1 +
p1
+
u12
2g
=
z2 +
p2
+
u22
2g
p1 -压强水头
u12 -速度水头
2g
总流能量方程
源流能量方程积分可得总流能量方程:
Q z1
+
p1
+
u12
2g
dQ
=
Q z2 +
p2
+
u22
2g
hw12 dQ
z1 +
p1
解:取如图所示的段面 1-1 和 2-2,段面 1-1 取在离喇叭口一定距离处,以使得速度和
相对压强为零(即 v1 =0, p1 =0),段面 2-2 取在测压管处,以使得相对压强已知。列气流能
量方程:
v12 2
+p1 +( a
)(z2
z1)
v22 2
+p2
pw1-2
由于流动气体是空气 =a ,所以位压为零,另外忽略阻力即 pw1-2 =0。因此上式化简为:
不可压缩
F Q( 2v2 1v1)
恒定总流动量方程
u 2dA
A
Av2
1.02 1.05, 常取 1
直角坐标系中的分量式: Fx Q( 2v2x 1v1x )
Fy Q( 2v2 y 1v1y )
求解步骤:
Fz Q( 2v2z 1v1z )
(1)建立坐标系, 标出控制体
uy(a,b,c,t)
dz
uz(a,b,c,t)
dt
流线
dx
dy
dz
ux(x,y,z,t) uy(x,y,z,t) uz(x,y,z,t)
流线性质
(1)流线彼此不能相交(驻点和边界除外)。 v1 交点 v2
s1
(2)流线是一条光滑的曲线,
不可能出现折点(驻点除外)。
s2
(3)恒定流动时流线形状不变, 非恒定流动时流线形状发生变化。
第三章 流体动力学基础
第一节 流体运动的描述方法 第二节 欧拉法的基本概念 第三节 连续性方程及其应用 第四节 恒定流能量方程 第五节 恒定气体流动能量方程 第六节 恒定流体的动量方程
流体流动
当我们移步在山野娟娟溪流边,漫步在波光粼粼的湖水旁;当 我们驶过波涛汹涌的激流险滩,冲浪在波澜壮阔潮起潮落的 海面。这样的时刻,我们会看到一涟涟、一漪漪、一丝丝、 一缕缕、一弯弯、一旋旋、一涡涡、一片片、一簇簇、一丛 丛、一条条、一堆堆、一波波、一浪浪,似繁复似简洁,似 已知似未知,似相识似未识,似无限似有限,瞬时万变,循 环往复,永不停息的运动画面。此情此景,没有人不惊叹大 自然那短暂而又永恒的体验,没有人不赞叹那大自然的壮美 、多变的美和周期性律动之美,这样的美和惊叹是绝无仅有 的,只有水的运动才能带给我们。那么请大家思考流体运动 的世纪难题:流体究竟是如何运动的,如何描述?流体为什 么运动,为什么会有如此美丽的运动?
1 1/
d(mv) 2u2dtdA2u2 1u1dtdA1u1
条件:恒定总流,1、2断面为渐变流断面(流速方向
近于平行,也是平均流速方向),因此:
d(
平均化
mv) 2u2u2dtdA2 1u1u1dtdA1
A2
A1
2 2v2v2dtdA2 11v1v1dtdA1
A2
A1
( 2 2Q2v2 11Q1v1)dt Q( 2v2 1v1)dt
2
v22 2g
根据连续方程得 v2 A1 2
v1 A2
由上述三式解得:v22 2,
2g
v12 0.5, 2g
v2 6.26 m/s
(2)入口损失0.5v12 / 2g 0.25 m
粗管沿程损失3.5v12 / 2g 1.75 m
大小头损失0.1v22 / 2g 0.2 m
v22 2, v12 0.5,
+
1v12 2g
=
z2 +
p2
+
2v22 2g
hw12
1
2
2
1
3
3
能量输入输出
v12 2g
+z1+
p1
Ht
v22 2g
+z2 +
p2
hl1-2
能量方程求解步骤
分析流动 选取断面 选取基准面 列出方程求解
香蕉球与船吸
空化与气蚀
混 流 泵 叶 片
声 波 激 发
连 续 云 溃 灭
皮托管和文丘里
v1 折点 v2
s
(4)恒定流中流线与迹线重合,非恒定流中流线与迹线不重合
流管 元流 总流
v
Q
=
A
udA
AA
流动分类
流动类型1
流动类型2
一维流、二维流、三维流 有压流(加压流)、重力流
实际流、理想流 不可压缩流、可压缩流
层流、湍流(紊流) 均匀流、可变流
定常流、非定常流
有旋流、无旋流
亚音速流动、跨音速流动 和超音速流动
a1 b1
h
b a
b
0+ pa
vb2
+
p b
2g
vb
2g pa pb = 2g ’h
v12
+
p 1
2g
v22
+
p 2
2g
Q=A1v1 =A1
(
2gh A12 -1)
A22
例3-4 水流由水箱经前后相接的两管流出大气中。大小 管断面的比例为2:1。全部水头损失的计算式参见图。 (1)求出口流速;(2)绘总水头线和测压管水头线; (3)根据水头线求细管中点M的压强pM。
解:(1)根据连续性方程,不可压缩流体恒定流动流量守恒得:
Q=v1A1 v2A2 =v3A3
v2
=
Q A2
=
4
4 10-3
(5.010-2)2
m/s=2.04m/s
v1 =
Q A1
=
4 10-3
m/s=8.16m/s
(2.510-2)2
4
v3
=
Q A3
=
4
4 10-3
(10.010-2)2
0+0+0
v22 2
+(- 水
12 103)+0
v2 =14m / s
Q=v2A= 14
4
0.12
m3 /s=0.11m3
/
s
(2)对A、C断面
0.8v2
0.8v2
9.812 0 9.8(1.2 0.8) 40 0
9
2
2
v 9.8 7 8.28 m/s
Q vA 8.28 0.12 0.065 m3/s
(1)求射流对平板的作用力 R 列 y 轴方向的动量方程
R 0 Q0v0 sin
其中
Q0 v0A0 6 0.01 m3 / s 0.06m3 / s
代入动量方程,得平板对射流的作用力
R 0.312KN
则射流对平板的作用力 R 0.312KN ,方向与 oy 轴方向相反
(2)求流量 Q1 与 Q2 之比 列 x 轴方向的动量方程
/
s
以管轴线为基准,列 1、2 断面伯努利方程
0 p1 1v12 0 p2 2v22
2g
2g
得
p2
p1
1v12 -2v22 2g
243.96KPa
P1
p1
1 4
d12
245
4
0.52
KN
48.08KN
P2
p2
1 4
d22
243.96
4
0.42
KN
30.64KN
代入上述动量方程,解得
恒 定 气
势势势压压压实实线实线线际际际///静静静流流流压压压体体体线线线总总总理理压压压想想线线线流流///全全全体体压压压总总线线线压压线线 动压线
流
a
动零压压线线 b
c
压 强 线
a
零动理压想线流体总b压线
a
静压线 静压线
实实实势势势际际际压压压流流流线线线(体体体b总总总零)理理压压压压想想流线线线线流流/动//全全全体体气压压压总总b线体线线压压为线线空气
m/s=0.51m/s
(2)面积不变,速度与流量成正比,流量增加为2倍 ,速度也分别增加为2倍,流量减少为1/2,速度也相应 减少为1/2。
第四节 恒定流能量方程
元流能量方程
根据功能原理:
p1dA1u1dt p2dA2u2dt p1 p2 dQdt
p1 p2
dQdt
=
dQdt
令 β1=β2=1,列总流动量方程的投影式。
在 x 方向
P1 P2 cos Rx Q v2 cos v1
在 y 方向 由连续性方程,得
P2 sin Ry Q v2 sin 0
v2
v1
d1 d2
2
1.2
0.5 0.4
2
m
/s
1.875m
/
s
Q
1 4
d12
v1
0.236m3
c c
静压线
动压线
a
动压线 b 零压线
c
a
动压线 b 零压线
c
a
b 零压线
c
(c)流动气体为其它气体 图 3.28 气体流动的压强线示意
第六节 恒定流体的动量方程