数学人教版八年级下册算术平均数

合集下载

人教八年级数学下册-平均数(附习题)

人教八年级数学下册-平均数(附习题)

误区 计算加权平均数时漏掉权 二八年级期末考试成绩如下:八(1)班55人,平 均分 81分;八(2)班40人,平均分90分;八(3)45 人,平均分85分;八(4)班60人,平均分84分.求 年级平均分. 错解:x 81 90 85 84 =8(5 分)
4
正解:x 81 55 90 40 85 45 8460 =84.(6 分)
2.加权平均数中的“权”对计算结果 有什么影响?
3.能把这种加权平均数的计算方法推 广到一般吗?
一般地,若n个数x1,x2,…,xn的权分别是w1,
w2,…,wn,则
x=
x1w1+x2w2 + L +xnwn w1+w2+ L +wn
叫做这n个数的加权平均数.
如果这家公司想招一名口语能力较强的翻译, 听、说、读、写成绩按3:3:2:2的比确定,计 算两名应试者的平均成绩(百分制),从他们的 成绩看,应录取谁?
6+4
此时乙将被录取
2.晨光中学规定学生的学期体育成绩满分为100分, 其中早锻炼及体育课外活动占20%,期中考试 成绩占30%,期末考试成绩占50%.小桐的三项 成绩(百分制)依次是95分、90分、85分,小 桐这学期的体育成绩是多少?
解:小桐这学期的体育成绩为:
95 20%+90 30%+8550% =88.5(分) 20% 30% 50%
即样本平均数是1672.
用寿命合适吗?
因此,可以估计这批灯泡的平均使用寿
命大约是1672h.
1.例3中各组的“数据”和“权”怎么确定? 2.总结用样本平均数估计总体平均数的一般步骤. 3.某次数学测试成绩统计如图,试根据统计图中
的信息,求这次测试的平均成绩.

人教版数学八年级下册20.1.1平均数

人教版数学八年级下册20.1.1平均数

次.
选手
演讲内容
演讲能力
演讲效果
A
85
95
95
B
95
85
95
解析:本题中演讲内容、演讲能力、演讲效果三 项成绩的权分别是 __5_0_%___、___4_0_%__、___1_0_%___
选手A的最后得分是:
85 ×50%+95 ×40%+95 ×10% 50%+40%+10%
=90
√选手B的最后得分是: 95 ×50%+85 ×40%+95 ×10% =91
=88.5
归纳权的形式

1、比值的形式
2、百分比的形式
如 3:3:2:4 如 20%,30%,50%
本节课你掌握了什么知识?
权:数据的重要程度 加权平均数: 平均数不同比重数据的
加权平均数的计算:第一步:数据分别乘以相应的权作为分子;
第二步:所有的权相加作为分母; 第三步:将分子除以分母
布置作业
自行阅读教材 P111—113
问题1 一家公司打算招聘一名英文翻译。对甲、乙 两名应试者各进行了听、说、读、写的英语水平测试,他
们的各项成绩(百分制)如下表所示。
应试者 听 说 读 写

85 78 85 73

73 80 82 83
(1)如果公司想招一名综合能力较强的翻译, 计算两名应试者的平均成绩,应该录用谁?
答:因为_x__乙__>__x_甲 __,所以__乙___将被录取.
典例评析
例1 一次演讲比赛中,评委将从演讲内容、演讲
能力、演讲效果三个方面为选手打分.各项成绩均按百分
制计,然后再按演讲内容占50%、演讲能力占40%、演

新人教版初中数学八年级下册第20章 数据的分析《20.1.1 平均数》教学PPT

新人教版初中数学八年级下册第20章 数据的分析《20.1.1 平均数》教学PPT
灯泡只数
600≤x <1 000
5
1 000≤x <1 400
10
1 400≤x <1 800
12
1 800≤x <2 200
17
2 200≤x <2 600
6
解:即样本平均数为1 672. 因此,可以估计这批灯泡的平均使用寿命大约是 1 672 h.
样本估计总体
练一练
问题2 某校为了解八年级男生的身高,从八年级
各班随机抽查了共40 名男同学,测量身高情况(单位:
cm)如下图.试估计该 人数
校八年级全部男生的平 20
20
均身高.
15
10
10
6
5
4
0 145 155 165 175 185 身高/cm
课堂小结
(1)在抽样调查得到样本数据后,你如何处理样本 数据并估计总体数据的集中趋势? 样本平均数估计总体平均数.
解:他们的平均身高为: 156+158+160+162+170 =161.2 5
所以,他们的平均身高为161.2 cm.
做一做
问题2 某班级为了解同学年龄情况,作了一次年 龄调查,结果如下:13岁8人,14岁16人,15岁24人, 16岁2人.求这个班级学生的平均年龄(结果取整数).
解:这个班级学生的平均年龄为:
课堂小结
(1)当一组数据中有多个数据重复出现时,如何简便 地反映这组数据的集中趋势? 利用加权平均数.
(2)据频数分布求加权平均数时,你如何确定数据与 相应的权?试举例说明.
数据
频数

组中值
课后作业
作业: 必做题:教科书第121页复习巩固第1题; 选做题:教科书第122页综合应用第6题.

人教版数学八年级下册-20.1.1平均数-教案(2)

人教版数学八年级下册-20.1.1平均数-教案(2)

20.1.1平均数——人教版版八年级上册第二十章第一节教学设计一、学生状况分析本节课是人教版版数学教材八年级下册第二十章《数据的代表》的第1节——“平均数”的第1课时.学生在小学阶段已经初步学习过算术平均数的概念,会简单地求一组数据的算术平均数,并会单一地用算术平均数理解一组数据的平均水平.进入初中阶段后,在七年级相关知识的学习过程中,学生已经经历了一些统计活动,解决了一些简单的现实问题,感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验,具备了一定的合作与交流的能力.二、教学任务分析本节课的教学任务是:让学生理解算术平均数、加权平均数的概念;会求一组数据的算术平均数和加权平均数;能解决有关平均数的实际问题,发展学生的数学应用能力, 达成有关的情感态度目标.根据以上分析,制定本节课的教学任务入下:1.知识与技能(1)认识权、会求加权平均数,并体会权的差异对结果的影响.(2)理解简单平均数和加权平均数的区别和联系,并能利用其解决一些实际问题.2. 过程与方法(1)通过小组活动,初步经历数据的处理过程,发展学生数据处理能力.(2)经历从特殊到到一般的数学探究方法,认识加权平均数的意义和价值,解决简单的实际问题.3. 情感态度与价值观(1)通过小组合作的活动,进一步增强与他人交流的意识与能力,培养学生的合作意识和能力.(2)通过权对结果的影响,使学生体会数学与人类社会的密切联系,通过解决身边的实际问题,体会到从不同角度考虑问题的必要性,认识事物要经历从一般到特殊的过程.了解数学的价值,增进对数学的理解和学好数学的信心.在探索过程中形成实事求是的态度和勇于探索的精神.4、教学重难点 教学重点:(1)加权平均数的概念,会求加权平均数. (2)简单平均数与加权平均数的区别和联系. 教学难点:体会权的差异对结果的影响,认识到权的重要性. 三、教学过程设计本节课由五个教学环节组成,它们是“温旧孕新——探新知权——新知升华—学以致用——小结平均数”.其具体内容与分析如下:按照学生的认知规律,遵循以“学生为主体,教师为主导,数学活动为主线”的指导思教 学 内 容教师活动 学生活动 教学目的一、 温旧孕新问题1 2017年2月28日由《重庆晚报》打造的“重庆六一班”小记者培训课,在德普外国语学校开班,并授予德普为小记者培训基地. 经过激烈的比赛,学校现在要在甲、乙两名同学中选拔出一名“德普小记者”,他们的各项成绩(百分制)如下表:现在请计算两名候选者的平均成绩(百分制),如果你是评委,从他们的成绩看,应该选谁呢?展示视频图片以什么样的标准来比较他们的成绩?肯定分配中突出某项的方案具有合理性,并通过计算得出方案的可行性.在总分、平均分相等的情况下,具体该如何比较选拔?学生给出方案计算总分、平均分无法解决问题,让学生感受不同成绩在同一个问题上的重要程度不同,体会数据赋予“权”的必要性.形式变化,实质仍然反映了数据的不同重要程度.二、探新知权 1、加权平均数的概念 由小记者在四个测试中的重要程度不同,在老师的追问中,由学生自己探索出权的呈现形式,引入“权”的概念,导入课题. 权的定义: 权表示:数据的重要程度 数据的权反映数据的相对重要程度. 权形式:比例、百分比 根据不同的权重,所求的平均数就是加权平均数. 归纳: 一般地,若n 个数1x ,2x ,…,n x 的权分别提炼出权的定义:反映数据的重要程度.体会“权”的差异对“加权平均数”结果的影响.“简单平均数”可以看作是权相等的“加权平均数”.给学生一个反思自悟的过程.是 1w ,2w ,…,n w ,则 112212n nnx w x w x w x w w w ++=++叫做这n 个数的加权平均数(weighted average ) .书本171-172页“加权平均数”的相关内容.三、新知升华简单平均数与加权平均数统称为算术平均数. 当数据的权都相等时,所求的加权平均数就是简单平均数,简单平均数是加权平均数地特殊情况, 四、学以致用 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分. 其中一位选手的单项成绩(百分制)如下表:(1)按演讲内容占60%、演讲能力占30%、演讲效果占10%,计算选手的平均成绩;(2)演讲内容、演讲能力、演讲效果按 3:2: 1的比确定,计算选手的平均成绩.五、学以致用 小组编题1. 选择你感兴趣的生活中加权平均数的例子为背景;2. 可以采用不同形式给出相应考察项目的权;3. 小组合作探究,要分工明确,设计出科学合理的求加权平均数的题目;4. 小组活动时间共18分钟;5. 活动结束后 ,每个小组派两个代表上台展示成果.六、小结—平均数 我最大的收获是…我对同学和同伴的表现感到… 我从同学身上学到了…本节课在对你今后的生活中对待一些事情进行分析时,会有什么帮助?七、布置作业.必做题:教科书第113页练习第2题;归纳概括公式(权的百分数的形式与比的形式)从加权平均数的多种形式计算巩固所学知识,并为下面生活中的加权平均例子提供素材.归纳概括公式利用刚才总结的公式列出式子.学生举例巩固所学体会“权”的对结果的影响,进一步理解“权”.感受加权平均数在生活中应用的广泛,体会数学的价值.巩固演练、反馈矫正(备用)1.(★)如果一组数据5, x, 3, 4的平均数是5, 那么x=____;2.(★★)某小区月底统计用电情况:其中有4户用电45度,有5户用电42度, 有6户用电50度, 则平均每户用电_____度;3. (★★)某校规定学生的体育成绩由三部分组成:体育课外活动占成绩的20%,体育理论测试占30%,体育技能测试占50%.小颖的上述三项成绩依次为92分、80 分、84 分,则小颖这学期的体育成绩是多少分?4. (★★★)小亮买甲种练习本a本,每本m元;买乙种练习本b本,每本n元,两种练习本平均每本多少元?你得了________颗★。

新部编人教版八年级下册数学 《平均数(2)》教案

新部编人教版八年级下册数学 《平均数(2)》教案

第二十章数据的分析20.1.1平均数第二课时一、教学目标1.核心素养通过进一步学习算术平均数、加权平均数的概念,加深对加权平均数的理解,初步掌握统计解决问题的基本方法,培养学生收集数据提取信息的能力,学会构建模型分析数据,解释数据蕴含的结论.2.学习目标(1)1.1.1 进一步加深对加权平均数的理解.(2)1.1.2经历探索加权平均数对数据处理的过程,体验对统计基本思想的理解过程,学会频数分布表中应用加权平均数的方法.(3)1.1.3能根据频数分布直方图计算平均数,能正确有效应用平均数知识解决问题,提高分析解决问题的能力.3.学习重点根据频数分布表求加权平均数,根据频数分布直方图计算平均数.4.学习难点理解频数、组中值得概念,根据不同特点的频数分布直方图采取相应的处理方法.二、教学设计(一)课前设计1.预习任务阅读教材P128-P130,思考:平均数的意义是什么?如何利用加权平均数的计算公式求一组数据的平均数?2.预习自测1.数据15,23,17,17,22的平均数是_____________,若4,x,5的平均数是7,则3,4,5,x,6五个数的平均数是__________。

2.利用公式x=x/+a计算105,103,101,100,114,108,110,106,98,102的平均数,其中a=___,x/=_______,x=_______。

3.一个班级有45名学生,其中14岁的有16人,15岁的有17人,16岁的有8人,17岁的有4人,那么这个班的平均龄是_________岁。

预习自测参考答案1.18.8,62.100,4.7,104.73.15(二)课堂设计1.知识回顾(1)加权平均数的意义;(2)加权平均数的计算公式2.问题探究问题探究一:加深对加权平均数的理解问题1:某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个人小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?解:(1)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是(分),由上可得,甲组的成绩最高.问题2:阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 4151 36 44 46 40 53 37 47 45 46(1)前10株西红柿秧上小西红柿个数的平均数是_____,中位数是_____,众数是_____;(2)若对这20个数按组距为8进行分组,请补全频数分布表及频数分布直方图(3)通过频数分布直方图试分析此大棚中西红柿的长势.解:(1)前10株西红柿秧上小西红柿个数的平均数是(32+39+45+55+60+54+60+28+56+41)÷10=47;把这些数据从小到大排列:28、32、39、41、45、54、55、56、60、60,最中间的数是(45+54)÷2=49.5,则中位数是49.5;60出现了2次,出现的次数最多,则众数是60;故答案为:47,49.5,60;(2)根据题意填表如下:个数分组, 28≤x<36, 36≤x<44, 44≤x<52, 52≤x<60, 60≤x<68频数, 2, 5, 7, 4, 2补图如下:故答案为:5,7,4;(3)此大棚的西红柿长势普遍较好,最少都有28个;西红柿个数最集中的株数在第三组,共7株;西红柿的个数分布合理,中间多,两端少.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.问题3:下图反映了甲、乙两班学生的体育成绩。

初中人教部编版八年级数学下册教案《平均数》数据的分析PPT课件

初中人教部编版八年级数学下册教案《平均数》数据的分析PPT课件

载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71
91 111
频数(班次)
3 5 20 22 18 15
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
之间有何关系?
面积
=
总耕地面积 人口总数
郊 县
人数(万)
人均耕地面积(公顷)
A
15
0.15
B
7
0.21
C
10
0.18
总耕地
人均耕地
面积
面积
=
人口总数
思考1:总耕地面积
三个郊县耕地面积之和
思考2:人口总数
三个郊县人数之和
解答:这个市郊县的人均耕地面积是: 0.15×15 + 0.21×7 + 0.18×10 15+7+10
共汽车每个运行班次的载客量,得到下表,这天5路公共汽车平均每班
的载客量是多少?
载客量/人 1≤x<21 21 ≤x<41 41 ≤x<61 61 ≤x<81
频数(班次) 3 5 20 22
表格中载客量是六个 数据组,而不是一个具体 的数,各组的实际数据应 该选谁呢?
81 ≤x<101
18
101 ≤x<121
15
组中值:数据分组后,这个小组的两个端点的数的平均数叫做 这个组的组中值.
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71

人教版八年级数学下册(RJ)教案 第1课时 平均数和加权平均数

人教版八年级数学下册(RJ)教案 第1课时 平均数和加权平均数

20.1 数据的集中趋势20.1.1 平均数第1课时平均数和加权平均数1.知道算术平均数和加权平均数的意义,会求一组数据的算术平均数和加权平均数;(重点)2.理解“权”的差异对平均数的影响,算术平均数与加权平均数的联系与区别,并能利用它们解决实际问题.(难点)一、情境导入在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用.你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2,作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图).二、合作探究 探究点一:平均数【类型一】 已知一组数据的平均数,求某一个数据如果一组数据3,7,2,a ,4,6的平均数是5,则a 的值是( )A .8B .5C .4D .3解析:∵数据3,7,2,a ,4,6的平均数是5,∴(3+7+2+a +4+6)÷6=5,解得a =8.故选A.方法总结:关键是根据算术平均数的计算公式和已知条件列出方程求解.【类型二】 已知一组数据的平均数,求新数据的平均数已知一组数据x 1、x 2、x3、x4、x5的平均数是5,则另一组新数据x1+1、x2+2、x3+3、x4+4、x5+5的平均数是( )A.6 B.8 C.10 D.无法计算解析:∵x1、x2、x3、x4、x5的平均数为5,∴x1+x2+x3+x4+x5=5×5,∴x1+1、x2+2、x3+3、x4+4、x5+5的平均数为(x1+1+x2+2+x3+3+x4+4+x5+5)÷5=(5×5+15)÷5=8.故选B.方法总结:解决本题的关键是用一组数据的平均数表示另一组数据的平均数.探究点二:加权平均数【类型一】以频数分布表提供的信息计算加权平均数某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是( )A.6.2小时B.6.4小时C.6.5小时D.7小时解析:根据题意得(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时),故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选B.方法总结:计算加权平均数时,要首先明确各项的权,再将已知数据代入加权平均数公式进行计算.【类型二】以频数分布直方图提供的信息计算加权平均数小明统计本班同学的年龄后,绘制如右频数分布直方图,这个班学生的平均年龄是( ) A.14岁 B.14.3岁C.14.5岁 D.15岁解析:该班同学的年龄和为13×8+14×22+15×15+16×5=717岁.平均年龄是717÷(8+22+15+5)=14.34≈14.3(岁).故选B.方法总结:利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【类型三】以百分数的形式给出各数据的“权”某招聘考试分笔试和面试两种,其中笔试按40%、面试按60%计算加权平均数作为总成绩,小华笔试成绩为90分,面试成绩为85分,那么小华的总成绩是( ) A.87分B.87.5分C.88分D.89分解析:∵笔试按40%、面试按60%,∴总成绩为90×40%+85×60%=87(分).故选A.方法总结:笔试和面试所占的百分比即为“权”,然后利用加权平均数的公式计算.【类型四】以比的形式给出各数据的“权”小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A.255分B.84分C.84.5分D.86分解析:根据题意得85×22+3+5+80×32+3+5+90×52+3+5=17+24+45=86(分).故选D.方法总结:“权”的表现形式,一种是比的形式,如5∶3∶2;另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%.“权”的大小直接影响结果.【类型五】加权平均数的实际应用学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.解析:(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后比较计算结果,结果大的胜出.解:(1)x乙=(73+80+82+83)÷4=79.5,∵80.25>79.5.∴应选派甲;(2)x甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,x乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4.∴应选派乙.方法总结:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,“权”的差异对结果会产生直接的影响.三、板书设计1.平均数与算术平均数2.加权平均数“权”的表现形式这节课,大多数学生在课堂上表现积极,并且会有自己的思考,有的同学还能把不同意见发表出来,师生在课堂上的交流活跃,学生的学习兴趣较高.在这种前提下,简便算法的推出就水到渠成了.教学设计也努力体现新课改的新理念,如培养学生数学的思维能力,教会学生从生活中学习数学,课内外结合等等.。

人教版八年级数学下册20.1.1 平均数(二)课件

人教版八年级数学下册20.1.1 平均数(二)课件

某灯泡厂为测量一批灯泡的使用寿命、从中抽查了100 只灯泡,它们的使用 x<1000 1000≤ x<1400 1400≤ x<1800 1800≤ x<2200 2200≤ x<2600
灯泡数(单位:个)
10
19
25
34
12
这批灯泡的平均使用寿命是多少?
20.1.1平均数(2)
知识回顾
概念-:
一般地,对于n 个数 x1, x2 ,, x,n 我们把
x x1 x2 ...... xn n
n 叫做这 个数的算术平均数,简称平均数,
x x 记为 ,读作 拔.
概念二: 一般地,若n个数x1,x2,…,xn的权分别 是w1,w2,…,wn ,则这n个数
也叫做x1,x2,…,xk这k个数的加权 平均数,其中f1,f2,…,fk分别叫做x1, x2,…,xk的权。
解:这天5路公共汽车平均每班的载客量是:
x 11 3 31 5 51 20 71 22 9118 11115 3 5 20 22 18 15
7(3 人) 接下来,同学们请来思考这样的问题: 从上表中,你能知道这…天5路公共汽车大约有多少 班次的载客量在平均载客量以上吗?占全天总班次的 百分比是多少?
由表格可知, 81≤x<101的18个班次 和
101≤x<121的15个班次共有33个班次超过平均载 客量,占全天总班次的百分比为33/83约等于40%。
3、某校为了了解学生做课外作业所用时间的情况,对学生做课
外作业所用时间进行调查,下表是该校初二某班50名学生某一天
做数学课外作业所用时间的情况统计表
所用时间t(分钟) 0<t≤10 10<t≤20 20<t≤30 30<t≤40 40<t≤50 50<t≤60

(部编本人教版)最新八年级数学下册 第二十章第1课时 平均数练习 (新版)部编本人教版【经典练习】

(部编本人教版)最新八年级数学下册 第二十章第1课时 平均数练习 (新版)部编本人教版【经典练习】

20.1.1 第1课时平均数知识点1 算术平均数1.7名学生的体重(单位: kg)分别是40,42,43,45,47,47,58,则这组数据的平均数是( )A.44 B.45 C.46 D.472.某中学举行校园歌手大赛,7位评委给选手小明的评分如下表:若比赛的计分方法如下:去掉一个最高分,去掉一个最低分,其余分数的平均值作为该选手的最后得分,则小明的最后得分为( )A.9.56分 B.9.57分C.9.58分 D.9.59分3.[2018·株洲]睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一.小强同学通过问卷调查的方式了解到本班三名同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三名同学该天的平均睡眠时间是________小时.4求该同学这五次投实心球的平均成绩.知识点2 加权平均数5.[2018·无锡]某商场为了了解A产品的销售情况,在上个月的销售记录中,随机抽取了5天A则这5天中,A产品平均每件的售价为( )A.100元 B.95元 C.98元 D.97.5元6.[2017·聊城]为了满足顾客的需求,某商场将5 kg奶糖、3 kg酥心糖和2 kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖的售价为每千克20元,水果糖的售价为每千克15元,混合后什锦糖的售价应为每千克( )A.25元 B.28.5元C.29元 D.34.5元7.[2018·桂林]某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,在这次测验中,该学习小组的平均分为________分.8.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期数学学期综合成绩是________分.9.[2018·宜宾改编]某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如下表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,求被录取教师的综合成绩.10.[2018·淮安]若一组数据3,4,5,x,6,7的平均数是5,则x的值是( ) A.4 B.5 C.6 D.711.[2018·重庆]某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图20-1-1所示的折线统计图,则在这五天里,该工人每天生产零件的平均数是________个.图20-1-112.某次射击训练中,一小组的成绩(单位:环)如下表所示,已知该小组的平均成绩为8环,那么成绩为9环的人数是13.如图20-1-2是根据今年某校九年级学生体育考试跳绳的成绩绘制成的统计图.如果该校九年级共有200名学生参加了这项跳绳考试,根据该统计图给出的信息,可得这些同学跳绳考试的平均成绩为________个.图20-1-214.[2018·日照]某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩按照招聘简章要求,对专业知识、讲课、答辩三项赋权5∶4∶1,请计算三名应聘者的平均成绩,从成绩看,应该录取谁?拓广探究创新练冲刺满分15.某班为了从甲、乙两名同学中选出班长,进行了一次演讲答辩与民主测评,A,B,C,D,E五位老师作为评委,对“演讲答辩”情况进行评价,全班50名同学参与了民主测评,结果如下表所示:演讲答辩得分表(测评分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;综合得分=演讲答辩分×(1-a)+民主测评分×a(0.5≤a≤0.8).(1)当a=0.6时,甲的综合得分是多少?(2)当a在什么范围内时,甲的综合得分高?当a在什么范围内时,乙的综合得分高?教师详解详析1.C [解析] 平均数为(40+42+43+45+47+47+58)÷7=322÷7=46.2.C [解析] 去掉一个9.8分和一个9.4分,然后计算剩余五个数的平均数,所以小明的最后得分=9.5+9.7+9.8+9.4+9.55=9.58(分).故选C.3.8.4 [解析] 根据题意得(7.8+8.6+8.8)÷3=8.4(时), 则这三名同学该天的平均睡眠时间是8.4小时.4.解:该同学这五次投实心球的平均成绩为:x =10+15(0.5+0.2+0.3+0.6+0.4)=10+0.4=10.4(m).5.C [解析] A 产品平均每件的售价为:(90×110+95×100+100×80+105×60+110×50)÷(110+100+80+60+50) =(9900+9500+8000+6300+5500)÷400 =39200÷400 =98(元).6.C [解析] 根据题意得:(40×5+20×3+15×2)÷(5+3+2)=29(元),即混合后什锦糖的售价应为每千克29元.故选C.7.84 [解析] x -=15(2×85+2×90+1×70)=84(分),故该学习小组的平均分为84分.8.88 [解析] 90×3+90×3+85×43+3+4=88(分).9.解:∵甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∴被录取的教师为乙,其综合成绩为78.8分.10.B [解析] ∵3+4+5+x +6+76=5.∴x =5.故选B.11.34 [解析] 由图可知这组数据是36,34,31,34,35,故x -=15(36+34+31+34+35)=15×170=34.因此答案为34.12.313.175.5 [解析] 22%×180+27%×170+26%×175+25%×178=175.5(个). 14.解:(1)甲的平均成绩为70×5+85×4+80×15+4+1=77(分);乙的平均成绩为90×5+85×4+75×15+4+1=86.5(分);丙的平均成绩为80×5+90×4+85×15+4+1=84.5(分).因为乙的平均成绩最高,所以应录取乙. 15.解:(1)甲的演讲答辩得分=90+92+943=92(分),甲的民主测评得分=40×2+7×1+3×0=87(分),当a =0.6时,甲的综合得分=92×(1-0.6)+87×0.6=36.8+52.2=89(分).(2)∵乙的演讲答辩得分=89+87+913=89(分),乙的民主测评得分=42×2+4×1+4×0=88(分),∴乙的综合得分=89(1-a)+88a.由(1)知甲的综合得分=92(1-a)+87a.当92(1-a)+87a>89(1-a)+88a时,a<0.75.又∵0.5≤a≤0.8,∴当0.5≤a<0.75时,甲的综合得分高;当92(1-a)+87a<89(1-a)+88a时,a>0.75.又∵0.5≤a≤0.8,∴当0.75<a≤0.8时,乙的综合得分高.。

人教版八年级数学下册《算术平均数与加权平均数》PPT

人教版八年级数学下册《算术平均数与加权平均数》PPT
算术平均数与加权平均数
x x +x +....+x 算术平均数:一般地,对于n个数x1, x2, …, xn,我们把
x=
+
1
2
3
n
n
叫做这n个数的算术平均数,简称平均数.
加权平均数:在实际生活中,一组数据中各个数据的重要程度是不同的,所以我们在计算这组数据的平均数的时 候往往根据其重要程度,分别给每个数据一个“权”。这样,计算出来的平均数叫做加权平均数。
2.在实际问题中,各项权不相等时,计算平均数时就要采用加权平均数, 当各项权相等时,计算平均数就要采用算术平均数.

28元/千克
6千克
你能计算出杂拌糖的售价吗?
想一想
种类
售价

24元/千克

19元/千克

28元/千克
质量
2千克 2千克 6千克
24 19 28 23.7(元 / 千克) 3
思考:你认为小明的做法有道理吗?为什么?
正确解答: 24 2 19 2 28 6 25.4(元 / 千克)
226
小结 算术平均数与加权平均数的区别和联系 1.算术平均数是加权平均数的一种特殊情况(它特殊在各项的权相等);
一般地,若n个数x1,x2,…,xn的权分别是w1,w2,…,wn,则
x=
x1w1+x2w2 + w1+w2 +
+xnwn +种糖果,应顾客要求,妈妈打算把糖果混合成杂拌糖 出售,具体进价和用量如下表:
种类
售价
质量

24元/千克
2千克

19元/千克
2千克

人教版八年级数学下册20.1.1《平均数》(第2课时)一等奖优秀教学设计

人教版八年级数学下册20.1.1《平均数》(第2课时)一等奖优秀教学设计

20.1.1 平均数(第2课时)教学设计
一、教材分析:
1、地位作用:这节课时学生在第一课时学习了平均数的基础上,对平均数的进一步深入拓展,通过本节课的学习,让学生平均数的运算由一般的加权平均数扩大到特殊的加权平均数的运算,为统计知识的学习奠定良好的基础。

2、教学目标:
(1)、熟练掌握平均数的计算方法;
(2)、运用加权平均数进行有关计算.
(3)、数学思考:通过实践,培养学生的计算、归纳能力.
3、教学重、难点
教学重点:①探究加权平均数的运算方法;②运用加权平均数的运算性质解决问题.
教学难点:探究加权平均数的运算方法.
突破难点的方法:通过加权平均数的运算,让学生归纳加权平均数的运算方法.
二、教学准备:多媒体课件、导学案
三、教学过程
k个数的加权平均数,其中。

人教版八年级下册数学作业课件 第二十章 第1课时 平均数和加权平均数

人教版八年级下册数学作业课件 第二十章 第1课时 平均数和加权平均数

(建议用时:10 分钟)
1.在演唱比赛中,5 位评委给一位歌手的打分如下:8.2
分,8.3 分,7.8 分,7.7 分,8.0 分,则这位歌手的平
均分是
(B)
A.7.9 分
B.8.0 分
C.8.1 分
D.8.2 分
2.某中学规定学生的学期体育成绩满分为 100 分,其中 体育课外活动占 30%,期末考试成绩占 70%,小彤的 这两项成绩依次是 90 分,80 分.则小彤这学期的体育 成绩是 83 分.
如表所示:
候选人 听 说 读 写

8 98 7
乙9 86 8源自(1)如果听、说、读、写成绩同样重要,应录取谁? 解:甲的平均数:8+9+4 8+7=8, 乙的平均数:9+8+6+8=7.75. 4 因为甲的平均数大于乙的平均数, 所以如果听、说、读、写同样重要,甲将被录取.
(2)如果听、说、读、写的成绩按 4∶2∶1∶3 的权重 来计算总成绩,应录取谁? 解:甲的平均成绩:(8×4+9×2+8×1+7×3)÷10=7.9(分), 乙的平均成绩:(9×4+8×2+6×1+8×3)÷10=8.2(分). 因为乙的平均分数较高,所以乙将被录取.
3.(教材 P121 习题 T1 变式)某学校在开展“节约每 一滴水”的活动中,从八年级的同学中任选 10 名同 学汇报了各自家庭一个月的节水情况,将有关数据整 理如下表,则这 10 名同学的家庭月平均节水量是 1.2 吨.
节水量(吨) 0.5 1 1.5 2
人数
23 4 1
4.数据 1,0,2,3,x 的平均数是 2,则 x= 4 . 5.一次考试中,甲组 12 人的平均分数为 70 分,乙组 8
人的平均分数为 80 分,那么这两组 20 人的平均分为 74 分.

初中数学人教版八年级下册20.1.1 平均数第1课时 平均数(1)教案

初中数学人教版八年级下册20.1.1 平均数第1课时 平均数(1)教案

初中数学人教版八年级下册实用资料第二十章 数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时 平均数(1)1.使学生理解并掌握数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.重点会求加权平均数.难点对“权”的理解.一、复习导入某校八年级共有班级 1班 2班 3班 4班参考人数 40 42 45 32平均成绩 80 81 82 79x =14×(79+80+81+82)=80.5 平均数的概念及计算公式:一般地,如果有n 个数x 1,x 2,x 3,…,x n ,则有x =x 1+x 2+x 3+…+x n n,其中x 叫做这n 个数的平均数,读作“x 拔”.二、讲授新课问题: 一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(应试者 听 说 读 写甲 85 78 85 73乙 73 80 82 83(1)(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?对于问题(1),根据平均数公式,甲的平均成绩为:85+78+85+734=80.25, 乙的平均成绩为73+80+82+834=79.5. 因为甲的平均成绩比乙高,所以应该录取甲.对于问题(2),听、说、读、写成绩按照2∶1∶3∶4的比确定,这说明各项成绩的“重要程度”有所不同,读、写的成绩比听、说的成绩更加“重要”.因此,甲的平均成绩为85×2+78×1+85×3+73×42+1+3+4=79.5, 乙的平均成绩为73×2+80×1+82×3+83×42+1+3+4=80.4. 因为乙的平均成绩比甲高,所以应该录取乙.上述问题(1)是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.而问题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2,1,3,4分别称为听、说、读、写四项成绩的权,相应的平均数79.5,80.4分别称为甲和乙的听、说、读、写四项成绩的加权平均数.一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+…+w n叫做这n 个数的加权平均数.三、例题讲解【例1】教材第112页例1【例2】为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行了测量,结果如下表:(单位:小时寿命 450 550 600 650 700只数 20 10 30 15 25解:这些灯泡的平均使用寿命为:x =450×20+550×10+600×30+650×15+700×2520+10+30+15+25=597.5(小时) 四、巩固练习1.在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为________.【答案】2x 1+3x 2+4x 3+5x 4x 1+x 2+x 3+x 42.某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶________环.【答案】ax +by a +b五、课堂小结师:这节课你学到了什么新知识?生1:数据的权和加权平均数的概念.生2:掌握加权平均数的计算方法.……平均数是统计中的一个重要概念,新教材注重学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念,基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值.第2课时 平均数(2)1.加深对加权平均数的理解.2.会根据频数分布表求加权平均数,解决一些实际问题.3.会用计算器求加权平均数的值.重点根据频数分布表求加权平均数.难点根据频数分布表求加权平均数.一、复习导入采用教材原有的引入问题,设计的几个问题如下:(1)请同学们阅读教材中的探究问题,依据统计表可以读出哪些信息?(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)如果每组数据在本组中分布较为均匀,每组数据的平均值和组中值有什么关系? 设计意图(1)主要是想引出根据频数分布表求加权平均数近似值的计算方法;(2)加深了对“权”的意义的理解:当利用组中值近似取代一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权;二、例题精讲【例2】某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).解:这个跳水队运动员的平均年龄为x =13×8+14×16+15×24+16×28+16+24+2≈14(岁). 【例3】某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50只灯泡.它们的使用使用寿命/x/h 600≤x<1000 1000≤x<1400 1400≤x<1800 1800≤x<2200 2200≤x<2600灯泡只数 5 10 12 17 6分析:估计这批灯泡的平均使用寿命.解:根据表格,可以得出各小组的组中值,于是x =800×5+1200×10+1600×12+2000×17+2400×650=1672, 即样本平均数为1672.因此,可以估计这批灯泡的平均使用寿命大约是1672 h .三、巩固练习某校为了了解学生做课外作业所用时间的情况,对学生做课外作业所用时间进行调查,下表是该校八年级某班.所用时间t(分钟) 人 数0<t≤10 410<t≤20 620<t≤30 1430<t≤40 1340<t≤50 950<t≤60 4求:(1)(2)该班学生平均每天做数学作业所用的时间.【答案】解:(1)15(2)该班学生平均每天做数学作业所用时间为x =5×4+15×6+25×14+35×13+45×9+55×44+6+14+13+9+4=30.8(分钟) 四、课堂小结1.加权平均数的应用.2.根据频数分布表求加权平均数.3.学会用计算器求加权平均数的值.在统计中算术平均数常用于表示对象的一般水平,它是描述数据集中程度的一个统计量,它可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的差别,可见平均数是统计中的一个重要概念.基于这一认识,这节课注重了以下几个方面:一、在现实生活情境中引入,注重数学与生活的联系.二、创造有效的数学学习方式,理解平均数的意义,学会平均数的算法.20.1.2 中位数和众数第1课时 中位数和众数(1)认识中位数和众数,并会求出一组数据的众数和中位数.重点认识中位数、众数这两种数据代表.难点利用中位数、众数分析数据信息,做出决策.一、复习导入前面已经和同学们研究了平均数这个数据代表.它在分析数据的过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据的过程中又起到怎样的作用.二、讲授新课 月收 入/元 45000 18000 10000 5500 5000 3400 3000 1000 人数 1 1 1 3 6 1 11 1(2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?师:同学们知道如何计算这个公司员工月收入的平均数吗?生:根据加权平均数,可以求出这个公司员工月收入的平均数为:45000+18000+10000+5500×3+5000×6+3400+3000×11+10001+1+1+3+6+1+11+1=6276.师:很好!那么用第(1)问中算得的平均数来反映该公司全体员工的月收入水平,你认为合理吗?生:不合理.因为在这25名员工中,仅有3名员工的收入在6276元以上,而另外22名员工的收入都在6276元以下.因此,用月收入的平均数反映所有员工的月收入水平不合理.师:这位同学分析得很好!那么应该选择什么数据来反映该公司员工月收入的水平呢?这就要用到本节课要学习的中位数,利用中位数可以更好地反映这组数据的集中趋势.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称位于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.利用中位数分析数据可以获得一些信息.例如,上述问题中将公司25名员工月收入数据由小到大排列,得到的中位数为3400,这说明除去月收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.【例1】教材第117页例4师:刚才我们学习中位数,下面我们再来学习一个反映数据集中趋势的另一众数,一组数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好地反映该组数据的集中趋势.【例2】一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你尺码/cm22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 3 1码组成的一组数据的众数.一段时间内卖出的300双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数,进而估计这家鞋店销售哪种尺码的鞋最多.解:由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5 cm的鞋销售量最大,因此可以建议鞋店多进23.5 cm的鞋.三、巩固练习1.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是________,众数是________.【答案】9 92.一组各不相同的数据23,27,20,18,x,12,它的中位数是21,则x的值是________.【答案】223.数据92,96,98,100,x的众数是96,则其中位数和平均数分别是( )A.97,96 B.96,96.4C.96,97 D.98,97【答案】B4.如果在一组数据中,23,25,28,22出现的次数依次为3,5,3,1,并且没有其他的数据,则这组数据的众数和中位数分别是( )A.24,25 B.23,24C.25,25 D.23,25【答案】C四、课堂小结1.认识了中位数和众数.2.理解了中位数和众数的意义和作用,并能利用它们分析数据信息,做出决策.本次教学中,我通过引导学生在了解中位数和众数的意义之后,让学生利用中位数和众数的知识解决实际问题,沟通了知识与实际生活的联系,让学生体会到中位数与众数知识的实用性.第2课时中位数和众数(2)1.进一步认识到平均数、众数、中位数都是数据的代表.2.了解平均数、中位数、众数在描述数据时的差异.重点了解平均数、中位数、众数之间的差异.难点灵活运用这三个数据代表解决问题.一、复习导入平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据集中趋势的量.它们各有自己的特点,能够从不同的角度提供信息,在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.另外要注意:(1)平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大;(2)众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算也不受极端值的影响;(3)平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应地引起平均数的变动;(4)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势;(5)实际问题中求得的平均数、众数、中位数应带上单位.二、例题讲解【例1得分50 60 70 80 90 100 110 120人数 2 3 6 14 15 5 4 1解:众数90分中位数85分平均数84.6分【例2】公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁) 甲群:13,13,14,15,15,15,16,17,17.乙群:3,4,5,5,6,6,36,55.(1)甲群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映甲群游客年龄特征的是________;(2)乙群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映乙群游客年龄特征的是________.解:(1)15 15 15 众数(2)15 5.5 5,6 中位数【例3】教材第119页例6三、巩固练习职员董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为应该使用平均数和中位数中的哪一个来描述该公司职工的工资水平?【答案】(1)2091 1500 1500 (2)3288 1500 1500 (3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.四、课堂小结1.了解平均数、中位数、众数之间的差异.2.灵活运用这三个数据代表解决问题.本节课首先从复习平均数、中位数和众数的定义开始,接着列出这三种统计量各自的特点和适用条件,为避免太过抽象,在后面设计的例题中都有这些统计量的应用,培养学生应用数学的意识.20.2 数据的波动程度1.了解方差的定义和计算公式.2.理解方差概念的产生和形成过程.3.会用方差比较两组数据的波动大小.重点方差产生的必要性和应用方差公式解决实际问题.难点理解方差的概念并会运用方差的公式解决实际问题.一、情境导入1.请同学们看下面的问题:(幻灯片出示)农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49 上面两组数据的平均数分别是x 甲≈7.54,x 乙≈7.52,说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个地区种植这两种甜玉米,它们的平均产量相差不大.为了直观地看出甲、乙两种甜玉米产量的分布情况,我们把这两组数据画成下面的图1和图2.师:比较上面的两幅图可以看出,甲种甜玉米在各试验田的产量波动较大,乙种甜玉米在各试验田的产量较集中地分布在平均量附近,从图中看出的结果能否用一个量来刻画呢?这就是我们本节课所要学习的内容——方差.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).2.方差的概念教师讲解:为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:设在一组数据中,各数据与它们的平均数的差的平方的和的平均数是s 2,那么我们用s 2=1n[(x 1-x)2+(x 2-x)2+…+(x n -x)2] 来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据的方差越大,说明这组数据的波动越大;数据的方差越小,说明这组数据的波动越小,教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解了方差的概念之后,再回到了引例中,通过计算甲、乙两种甜玉米的方差,根据理论说明哪种甜玉米的产量更好.教师示范:两组数据的方差分别是s 甲2=(7.65-7.54)2+(7.50-7.54)2+…+(7.41-7.54)210≈0.01, s 乙2=(7.55-7.52)2+(7.56-7.52)2+…+(7.49-7.52)210≈0.002. 显然s 甲2>s 乙2,即甲种甜玉米的波动较大,这与我们从图1和图2看到的结果一致.由此可知,在试验田中,乙种甜玉米的产量比较稳定.正如用样本的平均数估计总体的平均数一样,也可以用样本的方差来估计总体的方差.因此可以推测,在这个地区种植乙种甜玉米的产量比甲种的稳定.综合考虑甲、乙两个品种的平均产量和产量的稳定性,可以推测这个地区比较适合种植乙种甜玉米.这样做使学生深刻地体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.二、例题讲解【例1】教材第125页例1【例2】教材第127页例2【例3】(幻灯片出示)已知两组数据:甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1分别计算这两组数据的方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名学生到黑板计算. 解:根据公式可得x 甲=10+18(-0.1+0.3-0.2+0.1+0.4+0-0.2-0.3) =10+18×0=10 x 乙=10+18(0.2+0-0.5+0.3+0.5-0.4-0.2+0.1) =10+18×0=10 s 甲2=18[(9.9-10)2+(10.3-10)2+…+(9.7-10)2] =18(0.01+0.09+…+0.09) =18×0.44=0.055 s 乙2=18[(10.2-10)2+(10-10)2+…+(10.1-10)2] =18(0.04+0+…+0.01) =18×0.84=0.105 从s 甲2<s 乙2知道,乙组数据比甲组数据波动大.三、巩固练习1.已知一组数据为2,0,-1,3,-4,则这组数据的方差为________.【答案】62.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,7,7经过计算,两人射击环数的平均数相同,但s甲2________s乙2,所以确定________去参加比赛.【答案】>乙四、课堂小结1.知识小结:通过这节课的学习,我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小,而描述一组数据的波动大小的量不止一种,最常用的是方差.2.方法小结:求一组数据方差的方法:先求平均数,再利用平均数求方差.本次教学在解决引例问题时,通过对数据的分析,发现以前学过的统计知识不能解决新问题,引出矛盾,这里设计了小组讨论的环节,让学生在交流中得到启发,进而使学生的思维发生碰撞,产生创新的火花,真正体现“不同的人,在数学上得到不同的发展”.。

人教版数学八年级下册 平均数和加权平均数

人教版数学八年级下册 平均数和加权平均数
归纳总结
权的英文 weight

w1一,般w2地,,…若,wn n个,数则xx1,1w1x+2,x2…w2,+ xn
的权分别
+xn wn
w1+w2 + +wn
叫做这 n 个数的加权平均数.
思考:如果公司想招一名口语能力较强的翻译,听、 说、读、写的成绩按照 3:3:2:2 的比确定,那么甲、 乙两人谁将被录取?与上述问题中的 (1) (2) 相比较, 你体会到权的作用吗?
例2 某跳水队为了解运动员的年龄情况,做了一次
年龄调查,结果如下表. 求这个跳水队运动员的平
均年龄(结果取整数). 13 13 13 13 13 13 13 13 14 年龄 频数(出现次数)
14 14 14 14 14 14 14 14 14 13
8
14 14 14 14 14 14 15 15 15 14
知识点2: 加权平均数的其他形式
权 能体现在整组数据比重中所占的比重
比例
百分数
数据出现?的次数
2:1:3:4 50% : 40% : 10%
想一想:哪组数据的 2 所占的比重更大呢?
2的权: 1 1,2 1个 2
2的权: 10 1,2,2,2,2,2,2,2,2,2,2 10个2
总结 碰到重复的数据时,可以用加权的办法来计算平均数.
(2) 如果公司想招一名笔译能力较强的翻译,听、说、 读、写的成绩按照 2:1:3:4 的比确定,计算两名应试者 的平均成绩(百分制) . 从他们的成绩看,应该录取谁?
分析: 权
比例 2:1:3:4
应试者 听




85
78

最新版八年级数学下册课件:20.1.1平均数

最新版八年级数学下册课件:20.1.1平均数

3
3
课堂检测
20.1 数据的集中趋势/
能力提升题
(2)若三项测试得分按3:6:1的比例确定个人的测试成绩,此时 第一名是谁?
解: xA 723 85 6 67 1 =79.3 3 61
853 74 6 701
xB
=76.9
3 61
所以,此时第一名是选手A.
课堂检测
20.1 数据的集中趋势/
课堂检测
20.1 数据的集中趋势/
拓广探索题
(2)如果公司认为,作为公关人员面试的成绩应该比笔试更 重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均 成绩,看看谁将被录取.
解:
80 6 96 4
x甲
86.4
10
94 6 81 4
x乙
88.8
10
x乙 x甲 所以乙将被录取.
课堂小结
课堂检测
20.1 数据的集中趋势/
基础巩固题
5.下表是校女子排球队队员的年龄分布:
年龄 13 14 15 16
频数 1
4
5
2
求校女子排球队队员的平均年龄.
解: x 13114 4 155 16 2 14.7( 岁) 1 4 5 2
答:校女子排球队队员的平均年龄为14.7岁.
课堂检测
20.1 数据的集中趋势/
答:小桐这学期的体育成绩是88.5分.
课堂检测
20.1 数据的集中趋势/
能力提升题
某次歌唱比赛,两名选手的成绩如下:
测试
测试成绩
选手 创新 唱功 综合知识
A 72 85
67
B 85 74
70
(1)若按三项平均值取第一名,则___选__手__B___是第一名.

人教版八年级数学下册_20.1.1平均数

人教版八年级数学下册_20.1.1平均数

A.3.5 元
B.6 元
C.6.5 元
人数就“权”.
10 1
D.7 元
感悟新知
解题秘方:根据“定义(2)的公式”进行计算.
_ 解:x =
5 2+6 3+7 2+101
=6.5(元).
8
知2-讲
感悟新知
知2-练
2-1. 为了解乡镇企业的水资源的利用情况,市水利管理部 门抽查了部分乡镇企业在一个月中的用水情况, 其中 用水15 吨的有3 家,用水20 吨的有5 家,用水30 吨的 有7 家, 那么平均每家企业一个月用水( A ) A.23.7 吨 B.21.6 吨 C.20 吨 D.5.416 吨
能性及付出的代价;
(2)抽取的样本要具有一般性和代表性,这样有利于推测全
貌、估计总体,作出决策,解决有关问题.
感悟新知
特别提醒 用样本估计总体的两种类型: 1. 用样本平均数估计总体平均数; 2. 用样本的总量估计总体的总量.
知3-讲
感悟新知
例 5 某校为了了解八年级学生某 次体育测试的成绩,现对该 年级学生这次体育测试成绩 进行抽样调查,结果统计如 下表及扇形统计图(如图20.13),其中扇形统计图中C 组 所在的扇形圆心角为36°.
解:由频数分布直方图可以看出: P=60,则Q=200-50-60-70=20.
知2-讲
感悟新知
知2-讲
(2)请把如图20.1-1 所示的频数分布直方图补充完整;
解:如图20.1-2 所示.
感悟新知
知2-讲
(3)这200 名女生的平均身高大约为__1_5_3_c_m__.
解:求出每组的组中值分别为140,150,160,170, 用每组的组中值近似地作为该组内女生的平均身高. 140 50+150 60+160 70+170 20 =153(cm),因此
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档