安徽省合肥皖智高考复读学校2020届高三数学上学期第三次半月考试试题 理 新人教A版

合集下载

2020年安徽省合肥市高考数学三模试卷(理科)

2020年安徽省合肥市高考数学三模试卷(理科)

2020年安徽省合肥市高考数学三模试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)已知R是实数集,集合A={﹣1,0,1},B={x|2x﹣1≥0},则A∩(∁R B)=()A.B.C.{1}D.{﹣1,0}2.(3分)已知i是实数集,复数z满足z+z•i=3+i,则复数z的共轭复数为()A.1+2i B.1﹣2i C.2+i D.2﹣i3.(3分)执行如图所示的程序框图,若输入x=﹣1,则输出的y=()A.B.C.D.4.(3分)已知S n是等差数列{a n}的前n项和,若a1+a2+a3=4,S6=10,则a3=()A.B.C.D.5.(3分)某企业的一种商品的产量与单位成本数据如表:产量x(万件)1416182022单位成本y(元/件)12107a3若根据表中提供的数据,求出y关于x的线性回归方程为,则a的值等于()A.4.5B.5C.5.5D.66.(3分)若直线y=k(x+1)与不等式组表示的平面区域有公共点,则实数k 的取值范围是()A.(﹣∞,1]B.[0,2]C.[﹣2,1]D.(﹣2,2]7.(3分)为了得到函数y=sin x的图象,只需将函数的图象()A.横坐标伸长为原来的两倍,纵坐标不变,再向右平移个单位B.横坐标伸长为原来的两倍,纵坐标不变,再向左平移个单位C.横坐标缩短为原来的,纵坐标不变,再向右平移个单位D.横坐标缩短为原来的,纵坐标不变,再向左平移个单位8.(3分)若a,b是从集合{﹣1,1,2,3,4}中随机选取的两个不同元素,则使得函数f(x)=x5a+x b是奇函数的概率为()A.B.C.D.9.(3分)已知直线与圆交于点M,N,点P在圆C上,且,则实数a的值等于()A.2或10B.4或8C.D.10.(3分)已知F是抛物线C:y2=2px(p>0)的焦点,抛物线C上动点A,B满足,若A,B的准线上的射影分别为M,N且△MFN的面积为5,则|AB|=()A.B.C.D.11.(3分)若存在两个正实数x,y使得等式x(1+lnx)=xlny﹣ay成立(其中lnx,lny 是以e为底的对数),则实数a的取值范围是()A.B.C.D.12.(3分)如图,边长为1的菱形ABCD中,∠DAB=60°,沿BD将△ABD翻折,得到三棱锥A﹣BCD,则当三棱锥A﹣BCD体积最大时,异面直线AD与BC所成的角的余弦值为()A.B.C.D.二、填空题.把答案填在答题卡的相应位置.13.(3分)已知,,若,则k=.14.(3分)在的展开式中,x4的系数为.15.(3分)已知函数,若对任意实数x,恒有f(a1)≤f (x)≤f(a2),则cos(a1﹣a2)=.16.(3分)如图是数学家GerminalDandelin用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球O1,球O2的半径分别为3和1,球心距离|O1O2|=8,截面分别与球O1,球O2切于点E,F,(E,F是截口椭圆的焦点),则此椭圆的离心率等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n}满足a1=1,a n=2a n﹣1+2n﹣1(n≥2),数列{b n}满足b n=a n+2n+3.(Ⅰ)求证数列{b n}是等比数列;(Ⅱ)求数列{a n}的前n项和S n.18.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人.在这些居民中,经常阅读的城镇居民100人,农村居民24人.(Ⅰ)填写下面列联表,并判断是否有97.5%的把握认为,经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10024不经常阅读合计200(Ⅱ)从该地区居民城镇的居民中,随机抽取4位居民参加一次阅读交流活动,记这4位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:,其中n=a+b+c+dP(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.82819.已知:在四棱锥P﹣ABCD中,AD∥BC,,G是PB的中点,△PAD 是等边三角形,平面PAD⊥平面ABCD.(Ⅰ)求证:CD⊥平面GAC;(Ⅱ)求二面角P﹣AG﹣C的余弦值.20.已知直线l经过椭圆的右焦点(1,0),交椭圆C于点A,B,点F为椭圆C的左焦点,△ABF的周长为8..(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线m与直线l的倾斜角互补,且交椭圆C于点M、N,|MN|2=4|AB|,求证:直线m与直线l的交点P在定直线上.21.已知函数f(x)=x2﹣axlnx+a+1(e为自然对数的底数)(Ⅰ)试讨论函数f(x)的导函数y=f'(x)的极值;(Ⅱ)若∀x∈[1,e](e为自然对数的底数),f(x)>0恒成立,求实数a的取值范围.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C的参数方程为(α为参数,α∈[0,π]).在以直角坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线E的方程为ρ2(1+3sin2θ)=4.(1)求曲线C的普通方程和曲线E的直角坐标方程;(2)若直线l:x=t分别交曲线C、曲线E于点A,B,求△AOB的面积的最大值.[选修4-5:不等式选讲]23.设f(x)=3|x﹣1|+|x+1|的最小值为k.(1)求实数k的值;(2)设m,n∈R,m≠0,m2+4n2=k,求证:+≥.2020年安徽省合肥市高考数学三模试卷(理科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)已知R是实数集,集合A={﹣1,0,1},B={x|2x﹣1≥0},则A∩(∁R B)=()A.B.C.{1}D.{﹣1,0}【解答】解:因为,所以∁R B={x|x<}.又A={﹣1,0,1},所以A∩(∁R B)={﹣1,0}.故选:D.2.(3分)已知i是实数集,复数z满足z+z•i=3+i,则复数z的共轭复数为()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:z+z•i=3+i可化为z====2﹣i∴z的共轭复数为=2+i,故选:C.3.(3分)执行如图所示的程序框图,若输入x=﹣1,则输出的y=()A.B.C.D.【解答】解:输入x=﹣1,,不成立,;,成立,跳出循环,输出.故选:D.4.(3分)已知S n是等差数列{a n}的前n项和,若a1+a2+a3=4,S6=10,则a3=()A.B.C.D.【解答】解:设等差数列{a n}的公差为d.∵a1+a2+a3=4,S6=10,∴3a1+3d=4,6a1+d=10,联立解得:a1=,d=∴.故选:A.5.(3分)某企业的一种商品的产量与单位成本数据如表:产量x(万件)1416182022单位成本y(元/件)12107a3若根据表中提供的数据,求出y关于x的线性回归方程为,则a的值等于()A.4.5B.5C.5.5D.6【解答】解:由标准数据,计算=×(14+16+18+20+22)=18,=×(12+10+7+a+3)=;由点(,)在线性回归方程=﹣1.15x+28.1上,∴=﹣1.15×18+28.1,则32+a=7.4×5,解得a=5.故选:B.6.(3分)若直线y=k(x+1)与不等式组表示的平面区域有公共点,则实数k 的取值范围是()A.(﹣∞,1]B.[0,2]C.[﹣2,1]D.(﹣2,2]【解答】解:画出不等式组表示的平面区域,如下图所示直线y=k(x+1)过定点A(﹣1,0),直线y=k(x+1)经过不等式组表示的平面区域有公共点则k>0,k AC==2,∴k∈[0,2].故选:B.7.(3分)为了得到函数y=sin x的图象,只需将函数的图象()A.横坐标伸长为原来的两倍,纵坐标不变,再向右平移个单位B.横坐标伸长为原来的两倍,纵坐标不变,再向左平移个单位C.横坐标缩短为原来的,纵坐标不变,再向右平移个单位D.横坐标缩短为原来的,纵坐标不变,再向左平移个单位【解答】解:将函数的图象横坐标伸长为原来的两倍,纵坐标不变,可得y=sin(x+)的图象;再把它的图象再向右平移个单位,可得y=sin x的图象,故选:A.8.(3分)若a,b是从集合{﹣1,1,2,3,4}中随机选取的两个不同元素,则使得函数f(x)=x5a+x b是奇函数的概率为()A.B.C.D.【解答】解:从集合{﹣1,1,2,3,4}中随机选取的两个不同元素共有种,要使得函数f(x)=x5a+x b是奇函数,必须a,b都为奇数共有=6 种,则函数f(x)=x5a+x b是奇函数的概率为P==.故选:B.9.(3分)已知直线与圆交于点M,N,点P在圆C上,且,则实数a的值等于()A.2或10B.4或8C.D.【解答】解:由可得.在△MCN中,CM=CN=2,,可得点到直线MN,即直线的距离为.所以,解得a=4或8.故选:B.10.(3分)已知F是抛物线C:y2=2px(p>0)的焦点,抛物线C上动点A,B满足,若A,B的准线上的射影分别为M,N且△MFN的面积为5,则|AB|=()A.B.C.D.【解答】解:过点A作x轴的垂线,垂足为C,交NB的延长线于点D.设A(,y1),B(,y2),则MN=y1﹣y2.∵S△MFN=5,∴,即(y1﹣y2)p=10,①∵,∴,即,∴y1=﹣4y2,②∵AF=AM=,,∴,③联立①②③解得y1=4,y2=﹣1,p=2.∴|AB|=.故选:D.11.(3分)若存在两个正实数x,y使得等式x(1+lnx)=xlny﹣ay成立(其中lnx,lny 是以e为底的对数),则实数a的取值范围是()A.B.C.D.【解答】解:x(1+lnx)=xlny﹣ay可化为a=,令,则t>0,f(t)=﹣t﹣tlnt,∵f′(t)=﹣2﹣lnt,∴函数f(t)在区间上单调递增,在区间上单调递减.即==则a∈.故选:C.12.(3分)如图,边长为1的菱形ABCD中,∠DAB=60°,沿BD将△ABD翻折,得到三棱锥A﹣BCD,则当三棱锥A﹣BCD体积最大时,异面直线AD与BC所成的角的余弦值为()A.B.C.D.【解答】解:△ABD、△CBD为边长为1的等边三角形,将△ABD沿BD翻折形成三棱锥A﹣BCD如图:点A在底面BDC的投影在∠DCB的平分线CE上,则三棱锥A﹣BCD的高为△AEC 过A点的高;所以当平面ABD⊥平面BCD时,三棱锥A﹣BCD的高最大,体积也最大,此时AE⊥平面BCD;求异面直线AD与BC所成的角的余弦值:平移BC到DC′位置,|cos∠ADC′|即为所求,AD=DC=1,AE=,EC′=,AC′=|cos∠ADC′|=||=,所以异面直线AD与BC所成的角的余弦值为,故选:B.二、填空题.把答案填在答题卡的相应位置.13.(3分)已知,,若,则k=8.【解答】解:+2=(9,2+2k),3﹣=(﹣1,6﹣k);∵(+2)∥(3﹣),∴9(6﹣k)﹣(﹣1)(2+2k)=0,解得k=8.故答案为:8.14.(3分)在的展开式中,x4的系数为﹣.【解答】解:通项公式T k+1=(x3)8﹣k(﹣)k=(﹣)k x24﹣4k,由题意可知24﹣4k=4,解得k=5则x4的系数为(﹣)5=﹣,故答案为:﹣.15.(3分)已知函数,若对任意实数x,恒有f(a1)≤f (x)≤f(a2),则cos(a1﹣a2)=﹣.【解答】解:∵=2cos[+(x﹣)]cos(x﹣)+sin x=cos2x+sin x=﹣2sin2x+sin x+1,∵sin x∈[﹣1,1],∴f(x)∈(﹣2,),对任意实数x,恒有f(a1)≤f(x)≤f(a2),则f(a1)=﹣2,f(a2)=,即sin a1=﹣1,sin a2=,cos a1=0,∴cos(a1﹣a2)=cos a1cos a2+sin a1sin a2=0+=﹣.16.(3分)如图是数学家GerminalDandelin用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球O1,球O2的半径分别为3和1,球心距离|O1O2|=8,截面分别与球O1,球O2切于点E,F,(E,F是截口椭圆的焦点),则此椭圆的离心率等于.【解答】解:如图,圆锥面与其内切球O1、O2分别相切与B,A,连接O1B,O2A,则O1B⊥AB,O2A⊥AB,过O1作O1D⊥O2A于D,连接O1F,O2E,EF交O1O2于点C.设圆锥母线与轴的夹角为α,截面与轴的夹角为β.在Rt△O1O2D中,DO2=3﹣1=2,O1D==2.∴cosα===.∵O1O2=8,CO2=8﹣O1C,∵△EO2C∽△FO1C,∴=,解得O1C=2.∴CF===.即cosβ==.则椭圆的离心率e===.故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n}满足a1=1,a n=2a n﹣1+2n﹣1(n≥2),数列{b n}满足b n=a n+2n+3.(Ⅰ)求证数列{b n}是等比数列;(Ⅱ)求数列{a n}的前n项和S n.【解答】解:(Ⅰ)证明:当n=1时,a1=1,故b1=6.当n≥2时,a n=2a n﹣1+2n﹣1,则b n=a n+2n+3=2(a n﹣1+2n﹣1+2n+3=2[a n﹣1+2(n﹣1)+3],∴b n=2b n﹣1,∴数列列{b n}是等比数列,首项为6,公比为2.(Ⅱ)由(Ⅰ)得b n=3×2n,∴a n=b n﹣2n﹣3=3×2n﹣2n﹣3,∴S n=3×(2+22+……+2n)﹣[5+7+……+(2n+3)]=3×﹣=3×2n+1﹣n2﹣4n﹣6.18.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人.在这些居民中,经常阅读的城镇居民100人,农村居民24人.(Ⅰ)填写下面列联表,并判断是否有97.5%的把握认为,经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10024不经常阅读合计200(Ⅱ)从该地区居民城镇的居民中,随机抽取4位居民参加一次阅读交流活动,记这4位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:,其中n=a+b+c+dP(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.828【解答】解:(Ⅰ)由题意得:城镇居民农村居民合计经常阅读100 24 124不经常阅读50 26 76合计150 50 200则K2==≈5.546>5.024,所以,有97.5%的把握认为经常阅读与居民居住地有关.(Ⅱ)根据样本估计,从该地区城镇居民中随机抽取1人,抽到经常阅读的人的概率是,且x~B(4,),P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==,所以X的分布列为:X0 1 2 3 4P∴E(X)==.19.已知:在四棱锥P﹣ABCD中,AD∥BC,,G是PB的中点,△PAD 是等边三角形,平面PAD⊥平面ABCD.(Ⅰ)求证:CD⊥平面GAC;(Ⅱ)求二面角P﹣AG﹣C的余弦值.【解答】(Ⅰ)证明:取AD的中点为O,连结OP,OC,OB,设OB交AC于H,连结GH.∵AD∥BC,,∴四边形ABCO与四边形OBCD均为菱形∴OB⊥AC,OB∥CD,则CD⊥AC,∵△PAD为等边三角形,O为AD的中点,∴PO⊥AD,∵平面PAD⊥平面ABCD且平面PAD∩平面ABCD=AD.PO⊂平面PAD且PO⊥AD,∴PO⊥平面ABCD,∵CD⊂平面ABCD,∴PO⊥CD,∵H,G分别为OB,PB的中点,∴GH∥PO,∴GH⊥CD.又∵GH∩AC=H,AC,GH⊂平面GAC,∴CD⊥平面GAC;(Ⅱ)解:取BC的中点为E,以O为空间坐标原点,分别以,,的方向为x 轴、y轴、z轴的正方向,建立如图所示的空间直角坐标系O﹣xyz.设AD=4,则P(0,0,2),A(0,﹣2,0),C(,1,0),D(0,2,0),G(,,).=(0,2,2),=(,,).设平面PAG的一法向量=(x,y,z).由,得,即.令z=1,则=(1,,1).由(Ⅰ)可知,平面AGC的一个法向量.∴二面角P﹣AG﹣C的平面角θ的余弦值cosθ=.20.已知直线l经过椭圆的右焦点(1,0),交椭圆C于点A,B,点F为椭圆C的左焦点,△ABF的周长为8..(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线m与直线l的倾斜角互补,且交椭圆C于点M、N,|MN|2=4|AB|,求证:直线m与直线l的交点P在定直线上.【解答】解:(Ⅰ)由已知,得,∴,∴b2=3,∴椭圆C的标准方程.(Ⅱ)若直线l的斜率不存在,则直线m的斜率也不存在,这与直线m与直线l相交于点P矛盾,所以直线l的斜率存在.令l:y=k(x﹣1),(k≠0),m:y=﹣k(x+t),A(x1,y1),B(x2,y2),M(x M,y M),N(x N,y N).将直线m的方程代入椭圆方程得:(3+4k2)x2+8k2tx+4(k2t2﹣3)=0,∴x M+x N =﹣,x M x N =,|MN|2=(1+k2).同理|AB|==.由|MN|2=4|AB|得t=0,此时,△=64k4t2﹣16(3+4k2)(k2t2﹣3)>0,∴直线m:y=﹣kx,∴,即点P的定直线x =上.21.已知函数f(x)=x2﹣axlnx+a+1(e为自然对数的底数)(Ⅰ)试讨论函数f(x)的导函数y=f'(x)的极值;(Ⅱ)若∀x∈[1,e](e为自然对数的底数),f(x)>0恒成立,求实数a的取值范围.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞).g(x)=f'(x)=2x﹣alnx﹣a,g'(x)=2﹣当a≤0时,g'(x)>0,函数y=g(x)在(0,+∞)单调递增,函数y=g(x)没有极值.当a>0时,由g'(x)=0,得x =,函数y=g(x)在(0,)上单调递减,在(,+∞)上单调递增.函数y=g(x )的极小值为,没有极大值.(Ⅱ)对∀x∈[1,e],f(x)>0恒成立,即对∀x∈[1,e],x2﹣axlnx+a+1>0,∴对∀x∈[1,e],x﹣alnx +>0.令h(x)=x﹣alnx +,则h'(x)=1﹣=.①当a+1≤1,即a≤0时,对∀x∈[1,e],h'(x)≥0,∴h(x)在[1,e]上单调递增,∴h(x)min=h(1)=1﹣0+>0,解得a>﹣2,∴﹣2<a≤0满足题意.②当a+1≥qe时,即a≥qe﹣1,对∀x∈[1,e],h'(x)≤0,∴h(x)在[1,e]上单调第21页(共23页)递减,h(x)min=h(e)=e﹣a +>0,解得a <∴e﹣1满足题意.③当1<a+1<e,即0<a<e﹣1时,对于x∈[1,a+1],h'(x)<0;对于x∈[a+1,e],h'(x)>0.∴h(x)在[1,a+1]上单调递减,在[a+1,e]上单调递增,∴.即1+﹣ln(a+1)>0设H(a)=1+﹣ln(a+1),由于H(a)在(0,e﹣1)单调递减,∴H(a)>1﹣>0,即h(x)min=aH(a)>0,∴0<a<e﹣1满足题意.综上①②③可得,a 的取值范围为:.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C 的参数方程为(α为参数,α∈[0,π]).在以直角坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线E的方程为ρ2(1+3sin2θ)=4.(1)求曲线C的普通方程和曲线E的直角坐标方程;(2)若直线l:x=t分别交曲线C、曲线E于点A,B,求△AOB的面积的最大值.【解答】解:(1)由(α为参数,α∈[0,π]).消去参数α,可得曲线C的普通方程为x2+y2=4(y≥0).由ρ2(1+3sin2θ)=4,可得ρ2+3(ρsinθ)2=4,则x2+y2+3y2=4,则曲线E 的直角坐标方程为;(2)设A(2cosα,2sinα),α∈[0,π],其中t=2cosα,则B(2cosα,±sinα).要使得△AOB面积的最大,则B(2cosα,﹣sinα).∴==.第22页(共23页)∵2α∈[0,2π],∴sin2α∈[﹣1,1].当,即时,△AOB 的面积取最大值.[选修4-5:不等式选讲]23.设f(x)=3|x﹣1|+|x+1|的最小值为k.(1)求实数k的值;(2)设m,n∈R,m≠0,m2+4n2=k ,求证:+≥.【解答】解:(1)f(x)=3|x﹣1|+|x+1=,当x=1时,f(x)取得最小值,即k=f(1)=2;(2)证明:依题意,m2+4n2=2,则m2+4(n2+1)=6.所以==,当且仅当,即m2=2,n2=0时,等号成立.所以.第23页(共23页)。

2019-2020学年合肥市高考第三次教学质量检测数学模拟试题(理)有答案

2019-2020学年合肥市高考第三次教学质量检测数学模拟试题(理)有答案

合肥市高三第三次教学质量检测数学试题(理科)(考试时间:120分钟 满分:150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数2i1iz =+(i 为虚数单位),则z = A.3 B.2 C.3 D.22.已知集合{}220A x R x x =∈-≥,{}2210B x R x x =∈--=,则()C R A B =IA.∅B.12⎧⎫-⎨⎬⎩⎭C.{}1D.1 12⎧⎫-⎨⎬⎩⎭,3.已知椭圆2222:1y x E a b+=(0a b >>)经过点A()5 0,,()0 3B ,,则椭圆E 的离心率为 A.23B.5C.49 D.594.已知111 2 3 23α⎧⎫∈-⎨⎬⎩⎭,,,,,若()f x x α=为奇函数,且在()0 +∞,上单调递增,则实数α的值是 A.-1,3B.13,3C.-1,13,3D.13,12,35.若l m ,为两条不同的直线,α为平面,且l α⊥,则“//m α”是“m l ⊥”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 6.已知()()*12nx n N -∈展开式中3x 的系数为80-,则展开式中所有项的二项式系数之和为A.64B.32C.1D.1-7.已知非零实数a b ,满足a a b b >,则下列不等式一定成立的是A.33a b >B.22a b >C.11a b < D.1122log log a b < 8.运行如图所示的程序框图,若输出的s 值为10-,则判断框内的条件应该是A.3?k <B.4?k <C.5?k <D.6?k <9.若正项等比数列{}n a 满足()2*12n n n a a n N +=∈,则65a a -的值是A.2B.162-C.2D.16210.如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有A.24B.48C.96D.12011.我国古代《九章算术》将上下两面为平行矩形的六面体称为刍童.如图所示为一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为A.125B.40C.16123+D.16125+ 12.已知函数()22f x x x a =---有零点12x x ,,函数()2(1)2g x x a x =-+-有零点34x x ,,且3142x x x x <<<,则实数a 的取值范围是A.924⎛⎫-- ⎪⎝⎭,B.9 04⎛⎫- ⎪⎝⎭, C.(-2,0)D.()1 +∞,第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题—第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.把答案填在答题卡相应的位置.(13)若实数x y ,满足条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =-的最大值为.(14)已知()23 0OA =u u r ,,()0 2OB =uu u r ,,AC t AB t R =∈u u u r u u u r,,当OC uuu r 最小时,t =. (15)在ABC ∆中,内角A B C ,,所对的边分别为a b c ,,.若45A =o ,2sin sin 2sin b B c C a A -=,且ABC ∆的面积等于3,则b =.(16)设等差数列{}n a 的公差为d ,前n 项的和为n S ,若数列{}n S n +也是公差为d 的等差数列,则=n a .三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)已知函数()13sin cos cos 223f x x x x π⎛⎫=-- ⎪⎝⎭.(Ⅰ)求函数()f x 图象的对称轴方程; (Ⅱ)将函数()f x 图象向右平移4π个单位,所得图象对应的函数为()g x .当0 2x π⎡⎤∈⎢⎥⎣⎦,时,求函数()g x 的值域.(18)(本小题满分12分)2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:(Ⅰ)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关?(Ⅱ)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加2022年北京冬奥会志愿者宣传活动.(ⅰ)问男、女学生各选取了多少人?(ⅱ)若从这12人中随机选取3人到校广播站开展冬奥会及冰雪项目的宣传介绍,设选取的3人中女生人数为X ,写出X 的分布列,并求()E X .附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.(19)(本小题满分12分)如图,在多面体ABCDE 中,平面ABD ⊥平面ABC ,AB AC ⊥,AE BD ⊥,DE P 12AC ,AD=BD=1.(Ⅰ)求AB 的长;(Ⅱ)已知24AC ≤≤,求点E 到平面BCD 的距离的最大值.(20)(本小题满分12分)已知抛物线2:2C y px =(0p >)的焦点为F ,以抛物线上一动点M 为圆心的圆经过点F.若圆M 的面积最小值为π.EDCBA(Ⅰ)求p 的值;(Ⅱ)当点M 的横坐标为1且位于第一象限时,过M 作抛物线的两条弦MA MB ,,且满足AMF BMF ∠=∠.若直线AB 恰好与圆M 相切,求直线AB 的方程.(21)(本小题满分12分)已知函数()212x f x e x ax =--有两个极值点12x x ,(e 为自然对数的底数). (Ⅰ)求实数a 的取值范围; (Ⅱ)求证:()()122f x f x +>.请考生在第(22)、(23)题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑. (22)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为11x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),圆C 的方程为()()22215x y -+-=.以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)求直线l 及圆C 的极坐标方程;(Ⅱ)若直线l 与圆C 交于AB ,两点,求cos AOB ∠的值.(23)(本小题满分10分)选修4-5:不等式选讲已知函数()13f x x x =-+-. (Ⅰ)解不等式()1f x x ≤+;(Ⅱ)设函数()f x 的最小值为c ,实数a b ,满足0a >,0b >,a b c +=,求证:22111a b a b +≥++.合肥市高三第三次教学质量检测数学试题 (理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分.二、填空题:本大题共4小题,每小题5分.(13)4 (14)34(15)3 (16)1na=-或1524na n=-三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)(Ⅰ)()11cos cos22cos2234f x x x x x xπ⎛⎫=--=-⎪⎝⎭1sin226xπ⎛⎫=-⎪⎝⎭.令262x k k Zπππ-=+∈,,解得32kxππ=+.∴函数()f x图象的对称轴方程为32kx k Zππ=+∈,. …………………………5分(Ⅱ)易知()12sin223g x xπ⎛⎫=-⎪⎝⎭.∵02xπ⎡⎤∈⎢⎥⎣⎦,,∴222333xπππ⎡⎤-∈-⎢⎥⎣⎦,,∴2sin213xπ⎡⎛⎫-∈-⎢⎪⎝⎭⎣⎦,∴()121sin2232g x xπ⎡⎛⎫=-∈-⎢⎪⎝⎭⎣⎦,即当02xπ⎡⎤∈⎢⎥⎣⎦,时,函数()g x的值域为12⎡-⎢⎣⎦. …………………………12分(18)(本小题满分12分)(Ⅰ)因为()22120602020207.5 6.63580408040K⨯⨯-⨯==>⨯⨯⨯,所以有99%的把握认为,收看开幕式与性别有关. ………………………5分(Ⅱ)(ⅰ)根据分层抽样方法得,男生31294⨯=人,女生11234⨯=人,所以选取的12人中,男生有9人,女生有3人. ………………………8分(ⅱ)由题意可知,X的可能取值有0,1,2,3.()()302193933312128410801220220C C C CP X P XC C======,,()()1203939333121227123220220C C C C P X P X C C ======,, ∴X 的分布列是:X 0 1 23 P84220108220 272201220∴()84108271301232202202202204E X =⨯+⨯+⨯+⨯=. ……………………12分(19)(本小题满分12分)(Ⅰ)∵平面ABD ⊥平面ABC ,且交线为AB ,而AC⊥AB,∴AC⊥平面ABD. 又∵DE∥AC,∴DE⊥平面ABD ,从而DE⊥BD .注意到BD⊥AE,且DE∩AE=E,∴BD⊥平面ADE ,于是,BD⊥AD . 而AD=BD=1,∴2AB =. ………………………5分(Ⅱ)∵AD=BD,取AB 的中点为O ,∴DO⊥AB . 又∵平面ABD ⊥平面ABC ,∴DO⊥平面ABC.过O 作直线OY∥AC,以点O 为坐标原点,直线OB ,OY ,OD分别为x y z ,,轴,建立空间直角坐标系O xyz -,如图所示.记2AC a =,则12a ≤≤,22 0 0 0 0A B ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,, 22 2 00 0 C a D ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,20E a ⎛⎫- ⎪ ⎪⎝⎭,,,()2 2 0BC a =-,,u u u r ,22 0 BD ⎛⎫=- ⎪ ⎪⎝⎭,,u u u r . 令平面BCD 的一个法向量为()n x y z =,,r.由00BC n BD n ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r 得220220x ay x z ⎧-+=⎪⎨-+=⎪⎩.令2x =,得12 2n a ⎛⎫= ⎪⎝⎭,,r . 又∵()0 0DE a =-,,u u u r ,∴点E 到平面BCD 的距离2||14DE n d n a⋅==+u u u r rr . ∵12a ≤≤,∴当2a =时,d 取得最大值,max 217=144d =+.………………………12分(20)(本小题满分12分)(Ⅰ)由抛物线的性质知,当圆心M 位于抛物线的顶点时,圆M 的面积最小,此时圆的半径为2p OF =,∴24P ππ=,解得2p =. ……………………4分(Ⅱ)依题意得,点M 的坐标为(1,2),圆M 的半径为2.由F (1,0)知,MF x ⊥轴.由AMF BMF ∠=∠知,弦MA ,MB 所在直线的倾斜角互补,∴0MA MB k k +=. 设MA k k =(0k ≠),则直线MA 的方程为()12y k x =-+,∴()121x y k=-+, 代入抛物线的方程得,()21421y y k ⎛⎫=-+ ⎪⎝⎭,∴24840y y k k -+-=,∴4422A A y y k k+==-,. 将k 换成k -,得42B y k=--, ∴22441444A B A B AB A B A B A B y y y y k x x y y y y --=====--+--.设直线AB 的方程为y x m =-+,即0x y m +-=. 由直线AB 与圆M2=,解得3m =±经检验3m =+3m =+.∴所求直线AB的方程为3y x =-+-. ……………………12分(21)(本小题满分12分)(Ⅰ)∵()212x f x e x ax =--,∴()x f x e x a '=--. 设()x g x e x a =--,则()1x g x e '=-. 令()10x g x e '=-=,解得0x =.∴当() 0x ∈-∞,时,()0g x '<;当()0x ∈+∞,时,()0g x '>. ∴()()min 01g x g a ==-.当1a ≤时,()()0g x f x '=≥,∴函数()f x 单调递增,没有极值点;当1a >时,()010g a =-<,且当x →-∞时,()g x →+∞;当x →+∞时,()g x →+∞. ∴当1a >时,()()x g x f x e x a '==--有两个零点12x x ,. 不妨设12x x <,则120x x <<.∴当函数()f x 有两个极值点时,a 的取值范围为()1 +∞,. …………………5分 (Ⅱ)由(Ⅰ)知,12x x ,为()0g x =的两个实数根,120x x <<,()g x 在() 0-∞,上单调递减. 下面先证120x x <-<,只需证()()210g x g x -<=.∵()2220x g x e x a =--=,得22x a e x =-,∴()2222222x x x g x e x a e e x ---=+-=-+.设()2x x h x e e x -=-+,0x >,则()120x xh x e e'=--+<,∴()h x 在()0 +∞,上单调递减, ∴()()00h x h <=,∴()()220h x g x =-<,∴120x x <-<. ∵函数()f x 在()1 0x ,上也单调递减,∴()()12f x f x >-. ∴要证()()122f x f x +>,只需证()()222f x f x -+>,即证222220x x e e x -+-->.设函数()()220x x k x e e x x -=+--∈+∞,,,则()2x x k x e e x -'=--. 设()()2x x x k x e e x ϕ-'==--,则()20x x x e e ϕ-'=+->, ∴()x ϕ在()0+∞,上单调递增,∴()()00x ϕϕ>=,即()0k x '>. ∴()k x 在()0+∞,上单调递增,∴()()00k x k >=. ∴当()0x ∈+∞,时,220x x e e x -+-->,则222220x x e e x -+-->,∴()()222f x f x -+>,∴()()122f x f x +>. ………………………12分(22)(本小题满分10分)选修4-4:坐标系与参数方程(Ⅰ)由直线l的参数方程11x y ⎧=-⎪⎪⎨⎪=⎪⎩得,其普通方程为2y x =+, ∴直线l 的极坐标方程为sin cos 2ρθρθ=+. 又∵圆C 的方程为()()22215x y -+-=, 将cos sin x y ρθρθ=⎧⎨=⎩代入并化简得4cos 2sin ρθθ=+,∴圆C 的极坐标方程为4cos 2sin ρθθ=+. ……………………5分 (Ⅱ)将直线l :sin cos 2ρθρθ=+,与圆C :4cos 2sin ρθθ=+联立,得()()4cos 2sin sin cos 2θθθθ+-=, 整理得2sin cos 3cos θθθ=,∴tan 32πθθ==,或.不妨记点A 对应的极角为2π,点B 对应的极角为θ,且tan =3θ.于是,cos cos sin 2AOB πθθ⎛⎫∠=-== ⎪⎝⎭. ……………………10分(23)(本小题满分10分)选修4-5:不等式选讲(Ⅰ)()1f x x ≤+,即131x x x -+-≤+. (1)当1x <时,不等式可化为4211x x x -≤+≥,. 又∵1x <,∴x ∈∅;(2)当13x ≤≤时,不等式可化为211x x ≤+≥,. 又∵13x ≤≤,∴13x ≤≤.(3)当3x >时,不等式可化为2415x x x -≤+≤,. 又∵3x >,∴35x <≤.综上所得,13x ≤≤,或35x <≤,即15x ≤≤.∴原不等式的解集为[]1 5,. …………………5分 (Ⅱ)由绝对值不等式性质得,()()13132x x x x -+-≥-+-=, ∴2c =,即2a b +=.令11a m b n +=+=,,则11m n >>,,114a m b n m n =-=-+=,,, ()()2222211114441112m n a b m n a b m n m n mn m n --+=+=+++-=≥=+++⎛⎫ ⎪⎝⎭, 原不等式得证. …………………10分。

2020届安徽省皖南八校高三第三次联考数学(理)试题(解析版)

2020届安徽省皖南八校高三第三次联考数学(理)试题(解析版)

y0
,由题意知
ln
x0
a
1 x0 a
e
ex0
b
,从而可得
ea
b
2
,根据
“1”的代换,可求出
1 ea
1 b
1 2
2
b ea
ea b
,由基本不等式可求出取值范围.
【详解】解:
y
ln x a

y
1 x
a
,设切点为 x0,
y0
,则
ln
x0
a
1 x0
a
e
ex0
b

ea b
2

1 ea
因为平面 PAC 平面 PBC ,所以 AO 平面 PBC ,即VP ABC
1 3
S PBC
AO
3, 6
所以 3 R3 3 , R 1,球的表面积为 4 R2 4 .
6
6
故选:A.
【点睛】本题考查了椎体的体积,考查了面面垂直的性质,考查了球的表面积的求解.求球的体积或表面积
时,关键是求出球的半径,通常设半径,结合勾股定理列方程求解.本题的关键是面面垂直这一条件的应用.
题的关键是由单调性和最值,确定 a, b 的值.
9.若曲线 y ln x a 的一条切线为 y ex b ( e 为自然对数的底数),其中 a, b 为正实数,则 1 1 的
ea b
取值范围是( )
A. 2, e
B. e, 4
C. 2,
D. e,
【答案】C
【解析】
【分析】
设切点为
x0 ,
2017 年获得 E 等级有 0.04a 人,2019 年获得 E 等级有 0.02 2a 0.04a ,人数不变,

2020合肥三模理科数学答案

2020合肥三模理科数学答案

合肥市2020届高三第三次教学质量检测数学试题(理科)参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACDCBCBDACA、填空题:本大题共4小题, 每小题5分,共20分.13.480 14.-960 15.4 16.①②④⑤、解答题:本大题共6小题, 满分70分.17.(本小题满分12分)解:(1)f x cos x sinx .3cos x1 sin2 x31 cos2 x i 2丘sin 2 x2232由1 sin 2 x —1得,f x 的值域是—1 , 3 1.…… ......................... 5分322⑵ T 0 x ,•——2 x —23333由正弦函数的图像可知,fx —在区间0, 上恰有两个实数解,必须2 2- 32 3解得54. .......................................... 12分6318.(本小题满分12分)解:(1) •••四边形AACG 是菱形,• AC AG ,又••• AC .3AG ,••• ACC , =600 , • ACC 是等边三角形. •••点M 为线段AC 的中点,• GM AC . 又T AC // AG , • GM AC 1. •••在等边 ABC 中,BM AC , 由 AC // AG 可得,BM AG . 又 T BM I C 1M M , • AC 1 平面 BMC 1 ,••• A 1C 1 平面ABG ,•平面BMG 丄平面ABG ................................................ 5分 (2) T BM AC ,平面ABCL 平面AACG ,且交线为AC •- BM 平面ACC 1A 1 , •直线MB , MC , MG 两两垂直. 以点M 为坐标原点,分别以MB , MC , MG 所在直线为坐 标轴建立空间直角坐标系,如图,则 B 3 , 0, 0 , G 0, 0, 3 , A 0, uuuir uuu - -•- AC 1 0, 2 0 , BG 3 , 0, 3 , 2, 3 uuuuCC 1 ,C 0, 1, 0 , 1, 3 .0, 设平面ABG 的一个法向量为nuuuur r A C 1 n …uuun rx , y, z1,得nBG n 019.(本小题满分12分)解:(1)由频率分布直方图可得,空气质量指数在(90, 110]的天数为2天,所以估计空气质量指数在 (90, 100]的天数为1天,故在这30天中空气质量等级属于优或良的天数为28无 ................3分 (2)①在这30天中, …P X 0?C 30• X 的分布列为⑵ 由⑴知,当a 2时,fx e x e x 2x 在R 上单调递增,• gx f ln x x 1x 2ln x 在 0, 当n Z 且n 2时, n 1 2l n n 1n.••n Z 且 .n 2 时,1 22n In n n 1n1 1 1 1 1 L 1 i2 i l n i 13 24 n 1 上单调递增. 1 n 21 2ln1 0 ,即卩 2ln n , 1 n 1 1 n 1 n 1 1 1113 n2 n 212分n 1 2 n n 1 2n n 1备孚即点C 到平面ABC 的距离为孚12分1 29,1 22 -29 5②甲不宜进行户外体育运动的概率为—,乙不宜进行户外体育运动的概率为—,10EX 0 -92 14548 145221 9』 …P C 3C 2 10 103 710 1010 567 5000012分20.(本小题满分12分) 解:(1) f x e x e 当ax 2 时,f x e a , a 1 24 2 ,a a 2 4 aa 2 4,InU In 2 22时,由f x在R 上单调递增;a . a 2 4 ln .2时,f x 0 ,••• fx在'『「P 和时,f0.上单调递增,在 lndJ^2,ln122 2上单调递减.…d乙不宜进行户外体育运动,且甲适宜进行户外体育运动的天数共6天,92145_ 1 _ 1C 6 C 24 48C 6 P X 1 6 £ , P X 26. C 30145C 30解:设点 P X o , y , A X i , y i , B x 2, y 2 . (1) T 直线|经过坐标原点,x 2 x 1, y 2 y 1 .2..X0222X0— y 。

2020合肥三模数学(理)高三三联简易答案

2020合肥三模数学(理)高三三联简易答案

- ;
)=6
/6
) 4
3槡&

.! 3槡&
/! !
9:
3# 3!
) 4
3槡&
/#
) 8
3槡&
/!
4
) 3槡& ! /# /!
! <<<<<<<<<<<<<<<<< $ ;
) .# 3槡& ) .! 3槡& $ .# 3槡& .! 3槡&
78 /# /! 43! .# 5! .! 5! 43! .# .! 5! .# 3.! 3+
) <<<<<<<<<<<<<<<<<<<<<<<<<
% ;
+ *4# 4)8)8!)
3# 5) 8# 5) 8!)
3# 5) 8)8#)
4)! 5)3! )

<<<<<<<<<<<
& ;
+ *4! 4)8# 5) 8!) 3)8)8#) 3# 5) 8# 5) 8#) 4#) <<<<<<<<<<<<<< , ;
z{"U=6 $-4! 槡) $,4,#4,-4槡& "-4!>: ,8|},-8 .~,#8 /~,$8 0~ Eefk-lmi $""槡& #"槡& " -槡& "" !

【2019-2020】安徽省高三数学上学期第三次月考试题理

【2019-2020】安徽省高三数学上学期第三次月考试题理

【2019-2020】安徽省高三数学上学期第三次月考试题理一、单选题(每题5分,共60分)1.下列说法错误的是()A.对于命题,则B.“”是“”的充分不必要条件C.若命题为假命题,则都是假命题D.命题“若,则”的逆否命题为:“若,则”2.已知集合,,则()A. B. C. D.3.函数的零点所在的区间为()A. B. C. D.4.设,,,则a,b,c的大小关系是A. B. C. D.5.()A. B. C. D.6.函数的图象在上恰有两个最大值点,则的取值范围为()A. B. C. D.7.已知函数且的最大值为,则的取值范围是()A. B. C. D.8.若在上是减函数,则的取值范围是( )A. B. C. D.9.已知定义在R上的函数满足,且的导数在R上恒有,则不等式的解集为( )A . (-∞,-1)B . (1,+∞)C . (-∞,-1)∪(1,+∞)D . (-1,1) 10.若函数的图象如图所示,则的范围为( )A .B .C .D .11.若,则( )A .B .C .D .12.若曲线21:C y x =与曲线2:xe C y a=(0a >)存在公共切线,则a的取值范围为( )A . ()01,B . 214e ⎛⎤ ⎥⎝⎦,C . 2,24e ⎡⎤⎢⎥⎣⎦D . 2,4e ⎡⎫+∞⎪⎢⎣⎭二、填空题(每题5分,共20分)13.5.函数的部分图象如图所示,则__________. 14.已知:;:,且是的必要不充分条件,则实数的取值范围是____________.15.己知函数.若函数在定义域内不是单调函数,则实数的取值范围是__________. 16.已知函数()212x f x x e =+-(0x <)与()()2ln g x x x a =++,若函数()f x 图像上存在点P 与函数()g x 图像上的点Q 关于y 轴对称,则a 的取值范围是__________. 三、解答题17.(10分)已知函数.(Ⅰ)求的最小周期和最小值,(Ⅱ)将函数的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数的图像.当x 时,求的值域.18.(12分)已知函数()()()12log 124,x x f x a bx a b R +=+++∈.(Ⅰ)若1a =,且()f x 是偶函数,求b 的值;(Ⅱ)若4a =,且()()(){}11A x f x b x ==++=∅,求实数b 的取值范围.19.设函数=[].(1)若曲线在点(1,)处的切线与轴平行,求;(2)若在处取得极小值,求的取值范围.20.已知函数, (1)求函数的单调区间;(2)证明:对一切,都有成立.21.已知函数.(1)求函数在上的值域;(2)若,恒成立,求实数的取值范围.22.已知函数.(I)讨论的单调性;(II)若有两个零点,求的取值范围.参考答案1.C【解析】根据全称命题的否定是特称命题知A正确;由于可得,而由得或,所以“”是“”的充分不必要条件正确;命题为假命题,则不一定都是假命题,故C错;根据逆否命题的定义可知D正确,故选C.2.C【解析】【分析】先根据指数函数的性质求出集合,再求解分式不等式化简集合,然后由交集运算性质得答案.【详解】,,∴,故选B.【点睛】本题考查了交集及其运算,考查了不等式的解法,指数函数的值域问题,解题的关键是认清集合,是基础题.3.B【解析】【分析】判断函数单调递增,求出f(0)=-4,f(1)=-1,f(2)=3>0,即可判断.【详解】∵函数单调递增,∴f(0)=-4,f(1)=-1,f(2)=3>0,根据零点的存在性定理可得出零点所在的区间是,故选B.【点睛】本题考查了函数的单调性,零点的存在性定理的运用,属于容易题.4.C【解析】【分析】利用指数函数、对数函数的单调性直接求解.【详解】,,,,b,c的大小关系是.故选:C.【点睛】本题考查三个数的大小的比较,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.D【解析】【分析】利用积分的运算公式和定积分的几何意义即可求得结果【详解】为奇函数又表示半圆的面积故选【点睛】本题主要考查了积分的基本运算,以及定积分的几何意义,只要根据计算法则即可求出结果,注意几何意义。

安徽省合肥市2020届高三第三次教学质量检测理科综合试题答案

安徽省合肥市2020届高三第三次教学质量检测理科综合试题答案

OP
sin
45

qv0
B
m
v02 r
OP 2L
解得
B
2mv0 qL
(2)带电微粒从 O 点垂直虚线射入第三象限,因为 E2 E1
沿 x 方向:初速度 vx v0 sin 45
2 2
v0
,仅受向右的电场力 qE2 mg
所以 tON
2vx g
vNx vx (沿 x 轴正方向)
沿 y 方向:初速度 vy v0 cos 45
(2 分)
(3)蒸发浓缩、(冷却)结晶 (1 分)
真空或隔绝空气 (1 分)
(4)100 (3 分)
28.(14 分)
(1)氧气与碳发生燃烧反应放热,放出的热被可逆反应吸收利用,促进反应正向移动 (1 分)
(2)C(s) + CO2(g)
2CO(g) ΔH = +176 kJ·mol-1
(2 分)
(3)T3
35.(15 分)
(1)
(1 分)
O>N>C>H
(1 分)
(2) sp2 (1 分) 甘氨酸为极性分子,且分子中的氨基和羧基都能与水分子形成氢键 (2 分)
(3)BH4- 或 AlH4-
(1 分)
(4) 7.22×10 24
(1 分)
离子晶体晶格能小,熔点低(2 分)
(5) 六方最密堆积 (1 分)
(1 分)
CO(NH2)2 + ClO- + 2OH-
N2H4·H2O + Cl-+ CO32-
H―N―N―H
││
HH
(2 分)
(2 分)
(2)①20℃(冷)水浴

2020届合肥市高考第三次教学质量检测数学模拟试题(理)有答案

2020届合肥市高考第三次教学质量检测数学模拟试题(理)有答案

合肥市高三第三次教学质量检测数学试题(理科)(考试时间:120分钟 满分:150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数2i1iz =+(i 为虚数单位),则z = A.3 B.2 C.3 D.22.已知集合{}220A x R x x =∈-≥,{}2210B x R x x =∈--=,则()C R A B =IA.∅B.12⎧⎫-⎨⎬⎩⎭C.{}1D.1 12⎧⎫-⎨⎬⎩⎭,3.已知椭圆2222:1y x E a b+=(0a b >>)经过点A()5 0,,()0 3B ,,则椭圆E 的离心率为 A.23B.5C.49 D.594.已知111 2 3 23α⎧⎫∈-⎨⎬⎩⎭,,,,,若()f x x α=为奇函数,且在()0 +∞,上单调递增,则实数α的值是 A.-1,3B.13,3C.-1,13,3D.13,12,35.若l m ,为两条不同的直线,α为平面,且l α⊥,则“//m α”是“m l ⊥”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 6.已知()()*12nx n N -∈展开式中3x 的系数为80-,则展开式中所有项的二项式系数之和为A.64B.32C.1D.1-7.已知非零实数a b ,满足a a b b >,则下列不等式一定成立的是A.33a b >B.22a b >C.11a b < D.1122log log a b < 8.运行如图所示的程序框图,若输出的s 值为10-,则判断框内的条件应该是A.3?k <B.4?k <C.5?k <D.6?k <9.若正项等比数列{}n a 满足()2*12n n n a a n N +=∈,则65a a -的值是A.2B.162-C.2D.16210.如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有A.24B.48C.96D.12011.我国古代《九章算术》将上下两面为平行矩形的六面体称为刍童.如图所示为一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为A.125B.40C.16123+D.16125+ 12.已知函数()22f x x x a =---有零点12x x ,,函数()2(1)2g x x a x =-+-有零点34x x ,,且3142x x x x <<<,则实数a 的取值范围是A.924⎛⎫-- ⎪⎝⎭,B.9 04⎛⎫- ⎪⎝⎭, C.(-2,0)D.()1 +∞,第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题—第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.把答案填在答题卡相应的位置.(13)若实数x y ,满足条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =-的最大值为.(14)已知()23 0OA =u u r ,,()0 2OB =uu u r ,,AC t AB t R =∈u u u r u u u r,,当OC uuu r 最小时,t =. (15)在ABC ∆中,内角A B C ,,所对的边分别为a b c ,,.若45A =o ,2sin sin 2sin b B c C a A -=,且ABC ∆的面积等于3,则b =.(16)设等差数列{}n a 的公差为d ,前n 项的和为n S ,若数列{}n S n +也是公差为d 的等差数列,则=n a .三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)已知函数()13sin cos cos 223f x x x x π⎛⎫=-- ⎪⎝⎭.(Ⅰ)求函数()f x 图象的对称轴方程; (Ⅱ)将函数()f x 图象向右平移4π个单位,所得图象对应的函数为()g x .当0 2x π⎡⎤∈⎢⎥⎣⎦,时,求函数()g x 的值域.(18)(本小题满分12分)2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:(Ⅰ)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关?(Ⅱ)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加2022年北京冬奥会志愿者宣传活动.(ⅰ)问男、女学生各选取了多少人?(ⅱ)若从这12人中随机选取3人到校广播站开展冬奥会及冰雪项目的宣传介绍,设选取的3人中女生人数为X ,写出X 的分布列,并求()E X .附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.(19)(本小题满分12分)如图,在多面体ABCDE 中,平面ABD ⊥平面ABC ,AB AC ⊥,AE BD ⊥,DE P 12AC ,AD=BD=1.(Ⅰ)求AB 的长;(Ⅱ)已知24AC ≤≤,求点E 到平面BCD 的距离的最大值.(20)(本小题满分12分)已知抛物线2:2C y px =(0p >)的焦点为F ,以抛物线上一动点M 为圆心的圆经过点F.若圆M 的面积最小值为π.EDCBA(Ⅰ)求p 的值;(Ⅱ)当点M 的横坐标为1且位于第一象限时,过M 作抛物线的两条弦MA MB ,,且满足AMF BMF ∠=∠.若直线AB 恰好与圆M 相切,求直线AB 的方程.(21)(本小题满分12分)已知函数()212x f x e x ax =--有两个极值点12x x ,(e 为自然对数的底数). (Ⅰ)求实数a 的取值范围; (Ⅱ)求证:()()122f x f x +>.请考生在第(22)、(23)题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑. (22)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为11x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),圆C 的方程为()()22215x y -+-=.以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)求直线l 及圆C 的极坐标方程;(Ⅱ)若直线l 与圆C 交于AB ,两点,求cos AOB ∠的值.(23)(本小题满分10分)选修4-5:不等式选讲已知函数()13f x x x =-+-. (Ⅰ)解不等式()1f x x ≤+;(Ⅱ)设函数()f x 的最小值为c ,实数a b ,满足0a >,0b >,a b c +=,求证:22111a b a b +≥++.合肥市高三第三次教学质量检测数学试题 (理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分.二、填空题:本大题共4小题,每小题5分.(13)4 (14)34(15)3 (16)1na=-或1524na n=-三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)(Ⅰ)()11cos cos22cos2234f x x x x x xπ⎛⎫=--=-⎪⎝⎭1sin226xπ⎛⎫=-⎪⎝⎭.令262x k k Zπππ-=+∈,,解得32kxππ=+.∴函数()f x图象的对称轴方程为32kx k Zππ=+∈,. …………………………5分(Ⅱ)易知()12sin223g x xπ⎛⎫=-⎪⎝⎭.∵02xπ⎡⎤∈⎢⎥⎣⎦,,∴222333xπππ⎡⎤-∈-⎢⎥⎣⎦,,∴2sin213xπ⎡⎛⎫-∈-⎢⎪⎝⎭⎣⎦,∴()121sin2232g x xπ⎡⎛⎫=-∈-⎢⎪⎝⎭⎣⎦,即当02xπ⎡⎤∈⎢⎥⎣⎦,时,函数()g x的值域为12⎡-⎢⎣⎦. …………………………12分(18)(本小题满分12分)(Ⅰ)因为()22120602020207.5 6.63580408040K⨯⨯-⨯==>⨯⨯⨯,所以有99%的把握认为,收看开幕式与性别有关. ………………………5分(Ⅱ)(ⅰ)根据分层抽样方法得,男生31294⨯=人,女生11234⨯=人,所以选取的12人中,男生有9人,女生有3人. ………………………8分(ⅱ)由题意可知,X的可能取值有0,1,2,3.()()302193933312128410801220220C C C CP X P XC C======,,()()1203939333121227123220220C C C C P X P X C C ======,, ∴X 的分布列是:X 0 1 23 P84220108220 272201220∴()84108271301232202202202204E X =⨯+⨯+⨯+⨯=. ……………………12分(19)(本小题满分12分)(Ⅰ)∵平面ABD ⊥平面ABC ,且交线为AB ,而AC⊥AB,∴AC⊥平面ABD. 又∵DE∥AC,∴DE⊥平面ABD ,从而DE⊥BD .注意到BD⊥AE,且DE∩AE=E,∴BD⊥平面ADE ,于是,BD⊥AD . 而AD=BD=1,∴2AB =. ………………………5分(Ⅱ)∵AD=BD,取AB 的中点为O ,∴DO⊥AB . 又∵平面ABD ⊥平面ABC ,∴DO⊥平面ABC.过O 作直线OY∥AC,以点O 为坐标原点,直线OB ,OY ,OD分别为x y z ,,轴,建立空间直角坐标系O xyz -,如图所示.记2AC a =,则12a ≤≤,22 0 0 0 0A B ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,, 22 2 00 0 C a D ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,20E a ⎛⎫- ⎪ ⎪⎝⎭,,,()2 2 0BC a =-,,u u u r ,22 0 BD ⎛⎫=- ⎪ ⎪⎝⎭,,u u u r . 令平面BCD 的一个法向量为()n x y z =,,r.由00BC n BD n ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r 得220220x ay x z ⎧-+=⎪⎨-+=⎪⎩.令2x =,得12 2n a ⎛⎫= ⎪⎝⎭,,r . 又∵()0 0DE a =-,,u u u r ,∴点E 到平面BCD 的距离2||14DE n d n a⋅==+u u u r rr . ∵12a ≤≤,∴当2a =时,d 取得最大值,max 217=144d =+.………………………12分(20)(本小题满分12分)(Ⅰ)由抛物线的性质知,当圆心M 位于抛物线的顶点时,圆M 的面积最小,此时圆的半径为2p OF =,∴24P ππ=,解得2p =. ……………………4分(Ⅱ)依题意得,点M 的坐标为(1,2),圆M 的半径为2.由F (1,0)知,MF x ⊥轴.由AMF BMF ∠=∠知,弦MA ,MB 所在直线的倾斜角互补,∴0MA MB k k +=. 设MA k k =(0k ≠),则直线MA 的方程为()12y k x =-+,∴()121x y k=-+, 代入抛物线的方程得,()21421y y k ⎛⎫=-+ ⎪⎝⎭,∴24840y y k k -+-=,∴4422A A y y k k+==-,. 将k 换成k -,得42B y k=--, ∴22441444A B A B AB A B A B A B y y y y k x x y y y y --=====--+--.设直线AB 的方程为y x m =-+,即0x y m +-=. 由直线AB 与圆M2=,解得3m =±经检验3m =+3m =+.∴所求直线AB的方程为3y x =-+-. ……………………12分(21)(本小题满分12分)(Ⅰ)∵()212x f x e x ax =--,∴()x f x e x a '=--. 设()x g x e x a =--,则()1x g x e '=-. 令()10x g x e '=-=,解得0x =.∴当() 0x ∈-∞,时,()0g x '<;当()0x ∈+∞,时,()0g x '>. ∴()()min 01g x g a ==-.当1a ≤时,()()0g x f x '=≥,∴函数()f x 单调递增,没有极值点;当1a >时,()010g a =-<,且当x →-∞时,()g x →+∞;当x →+∞时,()g x →+∞. ∴当1a >时,()()x g x f x e x a '==--有两个零点12x x ,. 不妨设12x x <,则120x x <<.∴当函数()f x 有两个极值点时,a 的取值范围为()1 +∞,. …………………5分 (Ⅱ)由(Ⅰ)知,12x x ,为()0g x =的两个实数根,120x x <<,()g x 在() 0-∞,上单调递减. 下面先证120x x <-<,只需证()()210g x g x -<=.∵()2220x g x e x a =--=,得22x a e x =-,∴()2222222x x x g x e x a e e x ---=+-=-+.设()2x x h x e e x -=-+,0x >,则()120x xh x e e'=--+<,∴()h x 在()0 +∞,上单调递减, ∴()()00h x h <=,∴()()220h x g x =-<,∴120x x <-<. ∵函数()f x 在()1 0x ,上也单调递减,∴()()12f x f x >-. ∴要证()()122f x f x +>,只需证()()222f x f x -+>,即证222220x x e e x -+-->.设函数()()220x x k x e e x x -=+--∈+∞,,,则()2x x k x e e x -'=--. 设()()2x x x k x e e x ϕ-'==--,则()20x x x e e ϕ-'=+->, ∴()x ϕ在()0+∞,上单调递增,∴()()00x ϕϕ>=,即()0k x '>. ∴()k x 在()0+∞,上单调递增,∴()()00k x k >=. ∴当()0x ∈+∞,时,220x x e e x -+-->,则222220x x e e x -+-->,∴()()222f x f x -+>,∴()()122f x f x +>. ………………………12分(22)(本小题满分10分)选修4-4:坐标系与参数方程(Ⅰ)由直线l的参数方程11x y ⎧=-⎪⎪⎨⎪=⎪⎩得,其普通方程为2y x =+, ∴直线l 的极坐标方程为sin cos 2ρθρθ=+. 又∵圆C 的方程为()()22215x y -+-=, 将cos sin x y ρθρθ=⎧⎨=⎩代入并化简得4cos 2sin ρθθ=+,∴圆C 的极坐标方程为4cos 2sin ρθθ=+. ……………………5分 (Ⅱ)将直线l :sin cos 2ρθρθ=+,与圆C :4cos 2sin ρθθ=+联立,得()()4cos 2sin sin cos 2θθθθ+-=, 整理得2sin cos 3cos θθθ=,∴tan 32πθθ==,或.不妨记点A 对应的极角为2π,点B 对应的极角为θ,且tan =3θ.于是,cos cos sin 2AOB πθθ⎛⎫∠=-== ⎪⎝⎭. ……………………10分(23)(本小题满分10分)选修4-5:不等式选讲(Ⅰ)()1f x x ≤+,即131x x x -+-≤+. (1)当1x <时,不等式可化为4211x x x -≤+≥,. 又∵1x <,∴x ∈∅;(2)当13x ≤≤时,不等式可化为211x x ≤+≥,. 又∵13x ≤≤,∴13x ≤≤.(3)当3x >时,不等式可化为2415x x x -≤+≤,. 又∵3x >,∴35x <≤.综上所得,13x ≤≤,或35x <≤,即15x ≤≤.∴原不等式的解集为[]1 5,. …………………5分 (Ⅱ)由绝对值不等式性质得,()()13132x x x x -+-≥-+-=, ∴2c =,即2a b +=.令11a m b n +=+=,,则11m n >>,,114a m b n m n =-=-+=,,, ()()2222211114441112m n a b m n a b m n m n mn m n --+=+=+++-=≥=+++⎛⎫ ⎪⎝⎭, 原不等式得证. …………………10分。

安徽省合肥皖智高考复读学校2020届高三数学上学期第三次半月考试试题 理 新人教A版

安徽省合肥皖智高考复读学校2020届高三数学上学期第三次半月考试试题 理 新人教A版

合肥皖智高复学校2020届高三上学期第三次半月考数学(理科)试题第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合{}(){}0,1,2,,210x-2y-1MN x y x y ==-+≥≤∈且0,x,y M ,则N 中的元素个数为( )A.9B.6C.4D.2 2.下列函数中,既是奇函数又是增函数的为( ) A .1y x =+ B .2y x =- C .1y x= D .||y x x = 3.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f (x )图象上的是( )A .(,())a f a --B .(,())a f a -C .(,())a f a -D .(,())a f a --- 4.若ab c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( ) A. (),b c 和(),c +∞内 B.(),a -∞和(),a b 内 C.(),a b 和(),b c 内 D.(),a -∞和(),c +∞内5.如图是导函数y=f′(x )的图象,则下列命题错误的是( )A . 导函数y=f′(x )在x=x 1处有极小值B . 导函数y=f′(x )在x=x 2处有极大值C . 函数y=f (x )在x=x 3处有极小值D . 函数y=f (x )在x=x 4处有极小值6.若曲线()cos f x a x =与曲线2()1g x x bx =++在交点(0,)m 处有公切线, 则a b += ( )A .1-B .0C .1D .2 7.将函数x x y sin cos 3+=的图像向左平移()0m m >个长度单位后,所得到的图像关y 轴对称,则m 的最小值是( )A.12π B.6π C.3π D.65π 8.已知函数00,4,4)(22<≥⎩⎨⎧---=x x x x x x x f ,若()2()0f a f a -+>,则实数a 的取值范围是( )A .13a <-- 或13a >-+B .1>aC .33a <- 或 33a >+D .1<a9. 函数()f x 的定义域为D ,若对任意12,x x D ∈且12x x ≤,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数,设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00f =;②()132x f f x ⎛⎫= ⎪⎝⎭;③()()11f x f x -=-,则1138f f ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭等于( ) A.34 B. 12 C. 1 D.2310.已知f (x )是定义在(0,+∞)上的可导函数,且满足xf′(x )﹣f (x )≥0,对任意正数a ,b ,若a >b ,则必有( ) A . a f (a )≤bf(b ) B . b f (b )≤af(a ) C . a f (b )≤bf(a ) D . b f (a )≤af(b )第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分。

安徽省2020届高三数学上学期第三次月考试题理

安徽省2020届高三数学上学期第三次月考试题理

三数学上学期第三次月考试题理一.选择题(共12 小题)1.已知会合={ | 2 ﹣ 3 ﹣4<0} ,={ | } ,则M N 等于()M x x x N xA.{ x| x< 4} B.{ x| ﹣ 1<x< 3} C. { x|3 <x< 4} D. { x|1 <x< 3}2.我们从这个商标中抽象出一个图象如图,其对应的函数可能是()A.B.C.D.3.已知函数,若f(0)<0,则此函数的单一减区间是()A.(﹣∞,﹣ 1]B.[ ﹣ 1, +∞)C. [ ﹣ 1, 1)D.(﹣ 3,﹣ 1]4.已知正实数a, b, c 知足:,则()A.a<b<c B.c<b<a C.b<c<a D.c<a<b5.设在α ∈ R,则“ cos α=”是“ α =“的()条件A.充足不用要B.必需不充足C.充要D.既不充足也不用要6.已知命题p:? x0∈R,使得 lg cos x0>0;命题 q:? x<0,3x>0,则以下命题为真命题的是()A.p∧q B.p∨(¬q)C.(¬p)∧(¬q) D .p∨q7.已知函数 f ( x)=,若对于x的方程[f(x)]2+mf(x)+m﹣1=0恰有3个不一样的实数解,则实数m的取值范围是()A.(﹣∞, 2)∪( 2,+∞)B.( 1﹣,+∞)C.( 1﹣,1)D.( 1,e)8.已知 y = ( +2)是奇函数,若函数( )= f( )﹣有 k 个不一样的零点,记为x 1,f xg xxx 2, , x k ,则 x 1+x 2+ +x k =()A .0B .kC . 2kD . 4k9.已知函数 f ( x )= sin cos ω x ﹣ ( ω >0)在 [0 , ] 上有且仅有三个零点,则 ω 的取值范围是( )A .(,) B .[,] C .[4 ,]D .[4 , )10.以下命题中正确的选项是()A .函数 y =a x ﹣3+1(a > 0 且 a ≠ 1)的图象恒过定点( 3, 1)B .“ a > 0, b > 0”是“”的充足必需条件C .命题“若 x 2﹣3x +2= 0,则 x = 1 或 x = 2”的逆否命题为“若 x ≠ 1 或 x ≠ 2,则 x 2﹣ 3x +2≠ 0”D .若 ,则 M > N11.已知函数 ,若对随意两个不相等的正数x 1,x 2,都有恒成立,则 a 的取值范围为( )A .[4 , +∞)B .( 4, +∞)C .(﹣∞, 4]D .(﹣∞, 4)2x,若方程 f ( x )= a 有 3 个不一样的实根 x , x , x (x <12.已知函数 f (x )=( x﹣2x ) e1231x 2< x 3),则的取值范围是( )A .( , 0)B .(, 0)C .( , )D .(0, )二.填空题(共 4 小题)13.已知 x0, ,则 ysin x cosx 2sin x cosx 的值域是.212 sin x214. ( 1 xx )dx.15.已知函数 f (x)=2x﹣ a, g( x)=1+x3,若存在 x1, x2∈[0,1],使得 f ( x1)= g( x2)成立,则实数 a 的取值范围是.16.设x= 1 是函数的极值点,数列{ a n} 知足a1=1, a2=2, b n=log2a n+1,若[ x]表示不超过x的最大整数,则] =.三.解答题(共 6 小题)17.已知△ABC内角A、B、C的对边分别为a、 b、 c,面积为 S,且.(Ⅰ)若 c2=5a2+ab,求;(Ⅱ)若,,求a+b的值.18 .已知数列 { a n} , { b n} ,其中a1=5, b1=﹣1,且满足,,n∈N*, n≥2.(1)求证:数列 { a n﹣b n} 为等比数列;( 2)求数列的前n项和为S n.19.如图,在四棱锥P﹣ ABCD中, PA⊥底面 ABCD,AB∥ CD, AD⊥ DC, AB= AD=2DC=2, E 为PB中点.(Ⅰ)求证: CE∥平面 PAD;(Ⅱ)若 PA=4,求平面 CDE与平面 ABCD所成锐二面角的大小.20.过抛物线y2=2px( p>0)的焦点 F 的直线与抛物线订交于M、 N两点,自M、N 向准线 l 作垂线,垂足分别为M1、N1.(1)求?;( 2)记△ FMM 1、△ FM 1N 1、△ FNN 1的面积分别为S 1、S 2、 S 3,求 .21.已知函数 f (x )=.(Ⅰ)若曲线y = f ( x )在点( m , 2)( m > 0)处的切线方程为 y =﹣ x +3,求 f ( x )的单调区间.(Ⅱ)若方程 f ( x )﹣ 1= 0 在 x ∈( , e ] 上有两个实数根,务实数 a 的取值范围.222.已知函数 f (x )= 2lnx +ax , g ( x )= x +1﹣ 2f (x )( 2)若 >0,当 x ∈( 1, +∞)时, g ( )≥ 0,且 g ( )有独一零点,证明:< 1.a x x a参照答案与试题分析一. 选择题ADDBB DCCDD AA二.填空题(共 4 小题)13. 1,,1 214.22 315[ ﹣ 1, 1]16.2017 .三.解答题(共 6 小题)17.解:(Ⅰ)∵,∴ 2ab cos C + × ab sin C = 0,可得 cos C + sin C = 0,∴ tan C =﹣,∵ C ∈( 0, π),∴C =,∴由余弦定理可得: c 2= a 2+b 2+ab ,又∵ c 2=5 2+,可得:b 2=4 2 ,即 b =2 ,a ab a a∴由正弦定理可得:= = 2. ( II )∵ C =,,∴由余弦定理可得21=a 2+b 2+ab ,又∵= ab sin C = ab ,∴解得 ab =4,2 2 22∴ 21= a +b +ab =( a +b ) ﹣ab =( a +b ) ﹣ 4,∴ a +b = 5.18.解:( 1)证明: a n ﹣ b n = ( 3a n ﹣1﹣ b n ﹣1)﹣() ( a n ﹣1﹣ 3b n ﹣ 1)= 2(a n ﹣ 1﹣b n ﹣ 1),( 2)由( 1)知, a n ﹣ b n = 3?2n .①由于n +n=( 3 n ﹣ 1﹣n ﹣ 1) +( ) (n ﹣ 1﹣3n ﹣ 1)= an ﹣1 + n ﹣ 1, 1+ 1 =5+(﹣ 1)= 4,a b a babbab所以 { a +b } 为常数列且 a +b = 4.②nnnnn ﹣ 1联立①②得 a n =3?2 +2,故.所以 S n ==.19.解:(Ⅰ)取 PA 中点 M ,连接 EM 、 DM ,.(Ⅱ) 以 A 为原点, 以 AD 方面为 x 轴,以 AB 方向为 y 轴,以 AP 方向为 z 轴,成立坐标系.可得 D ( 2,0,0),C (2,1,0),P ( 0,0,4),B ( 0,2,0),E ( 0,1,2),,,设平面 CDE 的法向量为;,可得,令 z =1,则 x =1,∴平面 CDE 的法向量为;平面 ABCD 的法向量为;所以.即平面 CDE 与平面 ABCD 所成的锐二面角为.20.解:( 1)依题意,焦点为( , 0),准线l 的方程为 x =﹣ .F设点 M , N 的坐标分别为 M ( x ,y ), N ( x , y ),直线 MN 的方程为 x =my +,1122则有 M 1(﹣ , y 1), N 1(﹣ , y 2),=(﹣ p , y 1), =(﹣ p , y 2).联立方程组,消去x 得 y 2﹣ 2﹣ 2 =0,mpy p于是, y 1+y 2= 2mp , y 1y 2=﹣ p 2.∴?= p 2+y 1y 2= p 2﹣ p 2=0.( 2)设抛物线准线与 x 轴交点为 F 1, M ( x 1, y 1), N ( x 2,y 2),| 1|=|| = x 1+,| 1| =| | = 2+ ,于是:MMMFNNNF x1= ?| 1|?| 1 1|= ( x 1+ ) | y 1| ,S MM F MS = ?| MN | ?| FF | = p | y ﹣ y | ,21 1112S 3= ?| NN 1| ?| F 1N 1| = (x 2+ ) | y 2| .∴ = = ,由得1 2=2 1y 2+ ( 1+ 2) + =﹣22+22+=,x xmy y ymp mp2x 1+x 2=m ( y 1+y 2) +p = 2mp +p ,∴===4,故=4.21.解:(Ⅰ)f’(x)=﹣+.由题意可得2=﹣m+3,解得m=1,∴,解得 a=2.∴ f ( x)=+lnx,f’(x)=﹣+=.当 x>2时、 f '( x)>0,当0< x<2时、 f '( x)<0,∴f ( x)的单一递加区间为(2,+∞),单一递减区间为(0,2).(Ⅱ)方程 f ( x)﹣1=0在 x 上有俩个实数根即方程 a= x(1﹣ Inx )在 x 上有两个实数根,令 h( x)= x(1﹣ lnx ),则 h'( x)=1﹣ lnx ﹣1=﹣Inx ,当≤ x<1时, h'(x)>0, h( x)单一递加;当 1<x≤e时,h’(x)< 0,h(x)单一递减∴ h( x)max= h(1)=1.又()=,()=0,∴.h h e即实数 a 的取值范围是(,1)22.解:( 1)依题意,f′(x)=+a=若 a=0,则 f ′( x)=>0,故函数f(x)在 [4 , +∞)上单一递加;若 a≠0,令 f ′( x)=0,解得 x=﹣,①若> 0,则﹣< 0,则f ′(x)> 0,函数f()在 [4 , +∞)上单一递加;a x②若 a≤﹣,则﹣≤ 4,则f′(x)≤ 0,则函数f(x)在 [4 , +∞)上单一递减;③﹣< a<0,则﹣> 4,则函数f(x)在 [4 ,﹣] 单一递加,在(﹣,+∞)上单一递减;综上所述, ≥ 0 时,函数 f ( )在 [4 ,+∞)上单一递加, a ≤﹣ 时,函数 f( )在[4 ,axx+∞)单一递减,﹣ < <0 时,函数f ( x )在 [4 ,﹣ ] 单一递加,在(﹣, +∞)上单一递减.a( 2)证明:依题意, x 2+1﹣ 4lnx ﹣ 2ax ≥ 0,而 g ′( x )= 2x ﹣ ﹣2a =,令 ′( x )= 0,解得 x => 1,g由于 a > 0,故> 1,故 g ′( x )在( 1, +∞)上有独一零点 x 0=,又 g ′( x )= 2(﹣ +x ﹣ a )故﹣+x 0﹣ a = 0①要使 g ( x )≥ 0 在( 1, +∞)上恒成立,且 g ( x )= 0 有独一解,只要 g ( x 0)= 0,2即﹣ 2lnx 0+ ( x 0+1)﹣ ax 0= 0②由①②可知,﹣ 2lnx 0+ ( x 2+1)﹣ x 0(﹣+x 0)= 0,2故﹣ 2lnx 0﹣ x 0+ = 0,令 h ( x 0)=﹣ 2lnx 0﹣ 2,明显 h ( x 0)在( 1, +∞)上单一递减, x 0+ 由于 ( 1)= 2>0, ( 2)=﹣ 2 2+ <0,hh ln故 1< x 0< 2,又 a =﹣ +x 0 在( 1, +∞)单一递加,故必有 a < 1.。

安徽省合肥市2020届 高三 数学 第三次质检 理

安徽省合肥市2020届 高三 数学 第三次质检 理

合肥市高三第三次教学质量检测数学试题(理)(考试时间:120分钟 满分:150分)第I 卷 (满分50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.设集合2{|280},{|1},A x x x B x x =+-<=<则图中阴影部分表示的集合为( )A .{|1}x x ≥B .{|42}x x -<<C .{|81}x x -<<D .{|12}x x ≤< 2.已知复数()1aia R i∈+对应的点都在圆心为原点,半径为2的圆内(不包括边界),则a 的取值范围是( )A .(-2,2)B .(0,2)C .(7,7)-D .(2,0)(0,2)-U 3.0a <且10b -<<是0a ab +<的( ) A .充要条件 B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件4.在ABC ∆中,已知角A B C 、、所对的边分别为a b c 、、,且3,8,60,a c B ===o则sin A 的值是( ) A .316 B .314C .3316D .33145.已知某几何体的三视图如下,则该几何体的体积为( )A .1B .12 C .13 D .166.已知函数()sin()(0,||)2f x x πωφωφ=+><的部分图像如图所示,则,ωφ的值分别为( ) A .1,23π B .2,3π C .1,26π D .2,6π7.某单位在一次春游踏青中,开展有奖答题活动.从2道文史题和3道理科题中不放回依次抽取2道题,在第一次抽到理科题的前提下第二次抽到理科题的概率为( ) A .925 B .625C .310D .128.执行如图程序,输出的结果为( )A .89100 B .89144 C .68100 D .681109.已知函数()f x 对应关系如表所示,数列{}n a 满足:113,(),n n a a f a +==则2011a =( )A .3B .2C .1D .不确定10.已知函数32(),f x x ax bx c =+++若()f x 在区间(-1,0)上单调递减,则22a b +的取值范围( ).A .9[,)4+∞ B .9(0,]4 C .9[,)5+∞ D .9(0,]5第II 卷(满分100分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卷的相应位置) 11.5名男性驴友到某旅游风景区游玩,晚上入住一家宾馆,宾馆有3间客房可选,一间客房为3人间,其余为2人间,则5人入住两间客房的不同方法有 种(用数字法作答).12.已知P 为直线250x y +-=任意一点,点Q 为221169x y +=上任意一点,则||PQ 的最小值为 .13.在ABC ∆中,,6,4,AB AC AB AC ⊥==D 为AC 的中点,点E 在边AB 上,且3,AE AB =BD 与CE 交于点G ,则AG u u u r ·BC uuu r= .14.设函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则函数()y f x =在区间[0,100]上至少有个 零点.15.如图,在直角梯形ABCD 中,//,,//.AB DC AE DC BE AD ⊥M 、N 分别是AD 、BE 上点,且AM BN =,将三角形ADE 沿AE 折起。

2019-2020年高三(上)第三次月考数学试卷 含解析

2019-2020年高三(上)第三次月考数学试卷 含解析

2019-2020年高三(上)第三次月考数学试卷含解析一、填空题:本大题共14小题,每小题5分,共70分.1.(5分)命题:若x≥1,则x2+3x﹣2≥0的否命题为“若x<1,则x2+3x﹣2<0”..考点:四种命题.专题:常规题型.分析:命题“若p,则q”的否命题为“若¬p,则¬q”,据此可得出答案.解答:解:根据命题“若p,则q”的否命题为“若¬p,则¬q”,可得命题:“若x≥1,则x2+3x﹣2≥0”的否命题应是“若x<1,则x2+3x﹣2<0”.故答案为“若x<1,则x2+3x﹣2<0”.点评:掌握四种命题间的关系是解决问题的关系.2.(5分)i是虚数单位,复数=2﹣i.考点:复数代数形式的乘除运算.专题:计算题.分析:把给出的复数分子分母同时乘以1+i,展开后整理即可.解答:解:.故答案为2﹣i.点评:本题考查了复数代数形式的乘除运算,复数的除法采用分子分母同时乘以分母的共轭复数,此题是基础题.3.(5分)设集合M={x|x2+x﹣6<0},N={x|1≤x≤3},则M∩N=[1,2).考点:交集及其运算.专题:计算题.分析:求出集合M中不等式的解集,确定出集合M,找出M与N解集的公共部分,即可求出两集合的交集.解答:解:由集合M中不等式x2+x﹣6<0,分解因式得:(x﹣2)(x+3)<0,解得:﹣3<x<2,∴M=(﹣3,2),又N={x|1≤x≤3}=[1,3],则M∩N=[1,2).故答案为:[1,2)点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.4.(5分)已知510°角的始边在x轴的非负半轴上,终边经过点P(m,2),则m=﹣2.考点:任意角的概念.专题:三角函数的求值.分析:利用诱导公式求得cos510°=﹣,再由任意角的三角函数的定义可得m<0且﹣=,由此求得m的值.解答:解:∵510°=360°+150°,∴cos510°=cos150°=﹣cos30°=﹣.再由510°角的终边经过点P(m,2),可得m<0,且cos510°=﹣=,解得m=﹣2,故答案为﹣2.点评:本题主要考查任意角的三角函数的定义,诱导公式,终边相同的角的性质,属于基础题.5.(5分)将函数的图象向左平移个单位,再向下平移1个单位,得到函数g(x)的图象,则g(x)的解析式为.考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题;三角函数的图像与性质.分析:直接利用左加右减、上加下减的平移原则,推出平移后的函数解析式即可.解答:解:将函数的图象向左平移个单位,得到=,再向下平移1个单位,得到函数的图象,所以g(x)的解析式为.故答案为:.点评:本题考查三角函数的图象的平移变换,值域左加右减以及上加下减的法则,值域平移的方向与x的系数的关系.6.(5分)已知向量=(sin55°,sin35°),=(sin25°,sin65°),则向量与的夹角为30°.考点:数量积表示两个向量的夹角.分析:向量夹角公式的应用,已知向量的坐标要求向量的夹角,利用向量夹角的公式,在代入的过程中,注意向量的坐标是用三角函数表示的,这里有一个利用诱导公式变化的过程.解答:解:∵=(sin55°,sin35°),=(sin25°,sin65°),∴=1,=1,由向量夹角的公式可得,cosθ====sin120°=,∵θ∈[0,180],∴θ=30°,故答案为:30.点评:本题是向量数量积的运算,条件中给出两个向量的模和两向量的夹角,代入数量积的公式运算即可,只是题目所给的模不是数字,而是用三角函数表示的式子,因此代入后,还要进行简单的三角函数变换.7.(5分)如果实数x、y满足不等式组,则z=x+2y+3最小值为8.考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:画出满足约束条件的平面区域,然后分析平面区域里各个角点,然后将其代入x+2y+3中,求出x+2y+3的最小值.解答:解:依题意作出可行性区域如图,目标函数z=x+2y+3在边界点A(1,2)处取到最小值z=1+2×2+3=8.故答案为:8.点评:本题考察的知识点是简单线性规划的应用,在解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.8.(5分)(xx•浙江二模)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.考点:等比数列的性质.专题:计算题;压轴题.分析:先根据等差中项可知4S2=S1+3S3,利用等比赛数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.解答:解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为点评:本题主要考查了等比数列的性质.属基础题.9.(5分)(xx•盐城一模)已知是定义在(﹣∞,﹣1]∪[1,+∞)上的奇函数,则f(x)的值域为.考点:函数奇偶性的性质;函数的最值及其几何意义.专题:计算题.分析:根据是奇函数,可确定a的值,进而可得函数的解析式,利用函数的定义域,可确定函数的值域.解答:解:∵是定义在(﹣∞,﹣1]∪[1,+∞)上的奇函数∴f(﹣x)=﹣f(x)∴∴∴∴2a=﹣1,∴∴∵x∈(﹣∞,﹣1]∪[1,+∞)∴2x∈(0,]∪[2,+∞)∴[﹣2,﹣1)∪(0,1]∴f(x)∈故答案为:点评:本题重点考查函数的奇偶性,考查函数的值域,解题的关键是确定函数的解析式,属于基础题.10.(5分)“”是“对∀正实数x,”的充要条件,则实数c=1.考点:必要条件、充分条件与充要条件的判断;二次函数的性质.专题:计算题.分析:根据所给的条件,看出对于c的值的符号不同,分两种情况进行讨论,c小于0时,比较简单,当c大于0时,需要分离参数,求出二次函数的值域,根据函数的思想求出结果.解答:解:若c<0,则a≥0,不符合题意,若c>0,,∴根据x是正数有a≥cx﹣2x2∵y=cx﹣2x2在x是正数时,值域是y=则,于是,故答案为:1点评:本题考查充要条件的判断,考查二次函数的性质,考查函数的分离参数的思想.本题解题的关键是求出二次函数的最值,根据函数的思想来解题,本题也可转化为二次函数a≥﹣2x2+cx恒成立展开讨论.11.(5分)函数f(x)=ax2+lnx+1在[e,+∞)上是减函数,则实数a的取值范围是.考点:函数的单调性与导数的关系.专题:导数的概念及应用.分析:求出原函数的导函数,使导函数在[e,+∞)上恒小于等于0,列式求解a的范围.解答:解:由f(x)=ax2+lnx+1,则,令g(x)=2ax2+1,因为f(x)在[e,+∞)上是减函数,所以,f′(x)在[e,+∞)上小于等于0恒成立,则g(x)=2ax2+1在[e,+∞)上小于等于0恒成立,即,所以.故答案为.点评:本题主要考查函数的单调性与其导函数的正负之间的关系.考查了在某一区间内不等式恒成立的问题,此题属中档题.12.(5分)(2011•天津)已知log2a+log2b≥1,则3a+9b的最小值为18.考点:基本不等式;对数的运算性质.专题:计算题.分析:先把已知条件转化为ab≥2,且a>0,b>0;再把所求用基本不等式转化到用ab表示即可.解答:解:由log2a+log2b≥1得ab≥2,且a>0,b>0.又3a+9b=3a+32b≥2=2,因为a+2b≥2=2≥2=4,所以3a+9b≥2=18.即3a+9b的最小值为18.故答案为18.点评:本题是对指数的运算性质,对数的运算性质以及基本不等式的综合考查.考查的都是基本知识点,只要课本知识掌握熟练,是道基础题.13.(5分)设实系数一元二次方程x2+ax+2b﹣2=0有两个相异实根,其中一根在区间(0,1)内,另一根在区间(1,2)内,则的取值范围是.考点:一元二次方程的根的分布与系数的关系.专题:函数的性质及应用.分析:要求的式子化为1+,表示点(a,b)与点(1,4)连线的斜率再加上1.由可得,画出可行域,求出点A和点B的坐标,根据函数z=表示可行域里面的点(a,b)与点p(1,4)的斜率的大小,求出z的范围,可得z+1的范围,即为所求.解答:解:==1+,表示点(a,b)与点(1,4)连线的斜率再加上1,实系数一元二次方程x2+ax+2b﹣2=0有两个相异实根,f(x)=x2+ax+2b﹣2,图象开口向上,对称轴为x=﹣,由可得,画出可行域,如图所示:由求得点A的坐标为(﹣1,1),由求得点B的坐标为(﹣3,2).设目标函数z=,表示可行域里面的点(a,b)与点p(1,4)的斜率的大小,∴z min=k AP==;z max=k BP==,∴≤z≤.再由于点A和点B不在可行域内,故有<z<.∴1+ 的范围为(,),故答案为(,).点评:此题主要考查函数的零点的判定定理,还考查了简单线性和规划问题,要分析的几何的意义,属于中档题.14.(5分)已知函数f (x)=ax2+bx+与直线y=x相切于点A(1,1),若对任意x∈[1,9],不等式f (x﹣t)≤x恒成立,则所有满足条件的实数t的值为2.考点:利用导数研究曲线上某点切线方程;二次函数的性质.专题:导数的概念及应用.分析:对f(x)进行求导,根据它与直线y=x相切于点A(1,1),可得f′(1)=0,可得把点A代入得到方程,求出a,b,求出f(x)的解析式,根据题意对任意x∈[1,9],不等式f (x﹣t)≤x恒成立,根据根与系数的关系进行求解;解答:解:∵已知函数f (x)=ax2+bx+与直线y=x相切于点A(1,1),f′(x)=2ax+b,∴f′(1)=1,可得2a+b=1①,又f(x)过点A(1,1)可得a+b+=1②,联立方程①②可得a=,b=,f(x)=x2+x+,∵对任意x∈[1,9],不等式f (x﹣t)≤x恒成立,可得f(x﹣t)=(x﹣t+1)2≤x,化简可得,x2﹣2x(t﹣1)+(t﹣1)2﹣4x≤0,在[1,9]上恒成立,令g(x)=x2﹣2x(t+1)+(t﹣1)2≤0,在[1,9]上恒成立,∴,解①可得0≤t≤4,解②可得4≤t≤14,解③可得t≥4综上可得:t=4,故答案为2点评:考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值.掌握不等式恒成立时所取的条件;二、解答题:本大题共6小题,共计90分,解答时应写出文字说明,证明过程或演算步骤.15.(14分)已知a>0,a≠1.设命题p,q分别为p:函数y=x2+(3a﹣4)x+1的图象与x 轴有两个不同的交点;q:函数y=a x在(0,+∞)内单调递减.如果命题p或q为真命题,命题p且q为假命题,求实数a的取值范围.考点:命题的真假判断与应用.专题:计算题.分析:依题意可分别求得命题p为真命题与命题q为真命题时a的取值范围,再结合题意,利用真值表通过解不等式组即可求得实数a的取值范围.解答:解:因为a>0,a≠1,由命题p为真命题得:(3a﹣4)2﹣4>0,解得0<a<或a>2….(2分)由命题q为真命题可得0<a<1…(4分)由命题p或q为真命题,命题p且q为假命题,可知命题p、q为真命题恰好一真一假….(6分)(1)当命题p真q假时,,即a>2…(9分)(2)当命题p假q真时,,即≤a<1…(12分)综上,实数a的取值范围为≤a<1或a>2.….(14分)点评:本题考查命题的真假判断与应用,考查二次函数与指数函数的性质,突出考查真值表的应用及解不等式组的能力,属于中档题.16.(14分)已知向量(λ≠0),,,其中O为坐标原点.(1)若λ=2,,β∈(0,π),且,求β;(7)若对任意实数α,β都成立,求实数λ的取值范围.考点:数量积判断两个平面向量的垂直关系;向量的模.专题:平面向量及应用.分析:(1)根据给出的λ和α的值,求出向量,由向量的坐标差求出向量,最后由向量垂直的坐标表示可解得β的值;(2)把向量和的模代入后得到关于λ的不等式λ2+1+2λsin(β﹣α)≥4,把不等式左边看作关于λ的二次函数,分λ>0和λ<0求出函数的最小值,让最小值大于等于4可求解λ的范围.解答:解:(1)若λ=2,,则,,由,得:,即,所以,因为,所以,所以.(2)若对任意实数α,β都成立,则(λcosα+sinβ)2+(λsinα﹣cosβ)2≥4对任意实数α,β都成立,即λ2+1+2λsin(β﹣α)≥4对任意实数α,β都成立,所以,或,解得:λ≥3或λ≤﹣3,所以实数λ的取值范围是(﹣∞,﹣3]∪[3,+∞).点评:本题考查了向量的数量积判断两个向量的垂直关系,考查了向量的模,考查计算能力,数学转化思想和函数思想,是中等难度的题目.17.(14分)(2011•江西模拟)设a∈R,满足,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)设△ABC三内角A,B,C所对边分别为a,b,c且,求f(x)在(0,B]上的值域.考点:余弦定理;两角和与差的正弦函数;正弦函数的单调性;正弦定理.专题:计算题;转化思想.分析:(Ⅰ)通过二倍角公式,以及,求出a的值,利用两角差的正弦函数化简函数的表达式,通过正弦函数的单调增区间,求函数f(x)的单调递增区间;(Ⅱ)利用余弦定理化简,通过正弦定理求出,推出B的值,然后求f(x)在(0,B]上的值域.解答:解:(Ⅰ)f(x)=asinxcosx﹣cos2x+sin2x=.由得,解得.因此.令得故函数f(x)=的单调递增区间(6分)(Ⅱ)由余弦定理知:即2acosB﹣ccosB=bcosC,又由正弦定理知:2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA即,所以当时,,f(x)∈(﹣1,2]故f(x)在(0,B]上的值域为(﹣1,2](12分)点评:本题考查余弦定理,两角和与差的正弦函数,正弦函数的单调性,正弦定理个应用,考查转化思想与计算能力.18.(16分)(xx•绵阳二模)已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千年时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入﹣年总成本)考点:分段函数的应用;函数的最值及其几何意义.专题:分类讨论.分析:(1)由年利润W=年产量x×每千件的销售收入为R(x)﹣成本,又由,且年固定成本为10万元,每生产1千件需另投入2.7万元.我们易得年利润W(万元)关于年产量x(千件)的函数解析式;(2)由(1)的解析式,我们求出各段上的最大值,即利润的最大值,然后根据分段函数的最大值是各段上最大值的最大者,即可得到结果.解答:解:(1)当;当x>10时,W=xR(x)﹣(10+2.7x)=98﹣﹣2.7x.∴W=(2)①当0<x<10时,由W'=8.1﹣=0,得x=9,且当x∈(0,9)时,W'>0;当x∈(9,10)时,W'<0,∴当x=9时,W取最大值,且②当x>10时,当且仅当,即x=时,W=38,故当x=时,W取最大值38.综合①②知当x=9时,W取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.点评:本题考查的知识点是分段函数及函数的最值,分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x、y取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.19.(16分)(xx•天津)已知{a n}是等差数列,其前n项和为S n,{b n}是等比数列,且a1=b1=2,a4+b4=27,s4﹣b4=10.(1)求数列{a n}与{b n}的通项公式;(2)记T n=a n b1+a n﹣1b2+…+a1b n,n∈N*,证明:T n+12=﹣2a n+10b n(n∈N*).考点:等差数列与等比数列的综合;等差数列的通项公式;等比数列的通项公式.专题:计算题;证明题.分析:(1)直接设出首项和公差,根据条件求出首项和公差,即可求出通项.(2)先写出T n的表达式;方法一:借助于错位相减求和;方法二:用数学归纳法证明其成立.解答:解:(1)设等差数列的公差为d,等比数列的公比为q,由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,由条件a4+b4=27,s4﹣b4=10,得方程组,解得,故a n=3n﹣1,b n=2n,n∈N*.(2)证明:方法一,由(1)得,T n=2a n+22a n﹣1+23a n﹣2+…+2n a1;①;2T n=22a n+23a n﹣1+…+2n a2+2n+1a1;②;由②﹣①得,T n=﹣2(3n﹣1)+3×22+3×23+…+3×2n+2n+2=+2n+2﹣6n+2=10×2n﹣6n﹣10;而﹣2a n+10b n﹣12=﹣2(3n﹣1)+10×2n﹣12=10×2n﹣6n﹣10;故T n+12=﹣2a n+10b n(n∈N*).方法二:数学归纳法,③当n=1时,T1+12=a1b1+12=16,﹣2a1+10b1=16,故等式成立,④假设当n=k时等式成立,即T k+12=﹣2a k+10b k,则当n=k+1时有,T k+1=a k+1b1+a k b2+a k﹣1b3+…+a1b k+1=a k+1b1+q(a k b1+a k﹣1b2+…+a1b k)=a k+1b1+qT k=a k+1b1+q(﹣2a k+10b k﹣12)=2a k+1﹣4(a k+1﹣3)+10b k+1﹣24=﹣2a k+1+10b k+1﹣12.即T k+1+12=﹣2a k+1+10b k+1,因此n=k+1时等式成立.③④对任意的n∈N*,T n+12=﹣2a n+10b n成立.点评:本题主要考察等差数列和等比数列的综合问题.解决这类问题的关键在于熟练掌握基础知识,基本方法.并考察计算能力.20.(16分)(xx•湖北模拟)已知f(x)=ax﹣ln(﹣x),x∈(﹣e,0),,其中e是自然常数,a∈R.(1)讨论a=﹣1时,f(x)的单调性、极值;(2)求证:在(1)的条件下,.(3)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.考点:利用导数研究函数的极值;导数在最大值、最小值问题中的应用.专题:计算题;证明题;综合题;压轴题;分类讨论.分析:(1)把a=﹣1代入f(x)=ax﹣ln(﹣x),求导,分析导函数的符号,可得f(x)的单调性、极值;(2)由(1)知f(x)在[﹣e,0)的最小值为1,要证,只需证的最大值小于1即可,利用导数求函数的最大值;(3))假设存在实数a,使f(x)=ax﹣ln(﹣x)有最小值3,x∈[﹣e,0),求导,令导数等于零,解方程得到的方程的根是否在定义域(﹣e,0)内进行讨论,从而求得结果.解答:解:(1)∵f(x)=﹣x﹣ln(﹣x)∴当﹣e≤x<﹣1时,f′(x)<0,此时f(x)为单调递减当﹣1<x<0时,f'(x)>0,此时f(x)为单调递增∴f(x)的极小值为f(﹣1)=1(2)∵f(x)的极小值,即f(x)在[﹣e,0)的最小值为1∴|f(x)|min=1令又∵当﹣e≤x<0时h′(x)≤0,h(x)在[﹣e,0)上单调递减∴∴当x∈[﹣e,0)时,(3)假设存在实数a,使f(x)=ax﹣ln(﹣x)有最小值3,x∈[﹣e,0)①当时,由于x∈[﹣e,0),则∴函数f(x)=ax﹣ln(﹣x)是[﹣e,0)上的增函数∴f(x)min=f(﹣e)=﹣ae﹣1=3解得(舍去)②当时,则当时,此时f(x)=ax﹣ln(﹣x)是减函数当时,,此时f(x)=ax﹣ln(﹣x)是增函数∴解得a=﹣e2点评:此题是个难题.考查利用导数研究函数的单调性和极值、最值问题.对方程f'(x)=0根是否在定义域内进行讨论,体现了分类讨论的思想方法,和转化思想,其中问题(3)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.11 / 11文档可自由编辑打印。

2020高考模拟合肥三检-理数答案

2020高考模拟合肥三检-理数答案
合肥市 2020 届高三第三次教学质量检测数学试题(理科)
参考答案及评分标准
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D A C D C B C B D A C A
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
, 1
,得
n
1,0,1

BC1n 0
3x 3z 0
∴d CC1 n n
3 2
6 2
,即点 C 到平面 A1BC1 的距离为
6 2
.
………………………………12 分
2020 年三模理科试题参考答案 第 1页 共 4页 “”
19.(本小题满分 12 分)
解:(1)由频率分布直方图可得,空气质量指数在(90,110]的天数为 2 天,所以估计空气质量指数在(90,
解:(1)∵四边形 A1 ACC1 是菱形,∴ A1C AC1 , 又∵ A1C 3AC1 ,∴ACC1 =60 ,∴ACC1 是等边三角形.
∵点 M 为线段 AC 的中点,∴C1M AC .
又∵ AC ∥ A1C1 ,∴C1M A1C1 .
∵在等边ABC 中, BM AC ,
由 AC ∥ A1C1 可得, BM A1C1 . 又∵ BM C1M M ,∴ A1C1 平面BMC1 ,
2
9 10
C21
3 10
7 10
567 50000
.
………………………………12 分
20.(本小题满分 12 分)
解:(1) f x ex ex a . 当a 2 时, f x ex ex a 2 a 0 , f x 在 R 上单调递增;

安徽省皖南八校2020届高三第三次联考数学(理科)(word版含答案)

安徽省皖南八校2020届高三第三次联考数学(理科)(word版含答案)

安徽省皖南八校2020届高三第三次联考数学(理科)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|1≤x ≤4},B=*2{|23}x x x ∈-≤N ,则A ∩B=A. {x|1≤x ≤3}B. {x|0≤x ≤3}C. {1,2,3}D. {0,1,2,3} 2.已知i 为虚数单位,复数z 满足(1-i)z=2+2i,则z z ⋅=A.4B.2C.-4D.-23.已知等差数列{a n }的前n 项和为S n ,若888,S a ==则公差d 等于1.4A 1.2B C.1 D.24.新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为A,B,C,D,E 五个等级。某试点高中2019年参加“选择考”总人数是2017年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2017年和2019年“选择考”成绩等级结果,得到如下图表:针对该校“选择考”情况,2019年与2017年比较,下列说法正确的是A.获得A 等级的人数不变B.获得B 等级的人数增加了1倍C.获得C 等级的人数减少了D.获得E 等级的人数不变 5.函数()cos x x y e e x -=-的部分图象大致是6.已知双曲线2222:1(0,x y C a b a b-=>>0)的一条渐近线与圆22(2)1x y -+=相切,则双曲线C 的离心率为23.A .3B .22C .2D7.在△ABC 中5,AC AD E =u u u r u u u r 是直线BD 上一点,且2,BE BD =u u u r u u u r ,若,AE mAB nAC =+u u u r u u u r u u u r 则m+n= 2.5A 2.5B - 3.5C 3.5D - 8.若函数()3sin cos f x x x =+在区间[a,b]上是增函数,且f(a)=-2,f(b)=2,则函数()3cos sin g x x x =-在区间[a,b]上A.是增函数B.是减函数C.可以取得最大值2D.可以取得最小值-2 9.若曲线y=ln(x+a)的一条切线为y=ex-b(e 为自然对数的底数),其中a,b 为正实数,则11ea b +的取值范围是A. [2,e)B. (e,4]C. [2,+∞)D. [e,+∞)10.在三棱锥P- ABC 中,已知,,43APC BPC PA ππ∠=∠=⊥AC,PB ⊥BC,且平面PAC ⊥平面PBC,三棱锥P- ABC 的体积为3,若 点P,A,B,C 都在球O 的球面上,则球O 的表面积为A.4πB.8πC.12πD.16π11.已知函数22()3,()()f x x g x f x x =-+=+b,若函数y= f(g(x))有6个零点,则实数b 的取值范围为 A. (2,+∞)B. (-1,+∞)C. (-1,2)D.(-2,1) 12.已知抛物线2:2(0)C y px p =>,其焦点为F,准线为l,过焦点F 的直线交抛物线C 于点A 、B(其中A在x 轴上方),A,B 两点在抛物线的准线上的投影分别为M,N,若||3,MF =|NF|=2,则||||AF BF = .3A B.2 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.二项式6()x x展开式中的常数项为____ 14.在平面直角坐标系中,若角α的始边是x 轴非负半轴,终边经过点22(sin,cos ),33P ππ则cos(π+α)=____15.已知函数f(x)是定义域为R的偶函数,∀x∈R,都有f(x+2)=f(-x),当0<x≤1时,213log,02 ()11,12x xf xx x⎧-<<⎪⎪=⎨⎪-≤≤⎪⎩,则9()(11)4f f-+=____.16.已知各项均为正数的数列{a n}的前n项和为S n,满足333321232n n na a a a S S++++=+L,设,2nn nab=数列{b n}的前n项和为T n,则使得T n<m成立的最小的m的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17. (12分)在△ABC中,内角A,B,C的对边分别为a,b,c,满足2acos A=bcos C+ccos B.(1)求A;(2)若△ABC的面积为63,27,a=求△ABC的周长。18. (12分)如图,在四棱锥P- ABCD中,底面ABCD为长方形,PA⊥底面ABCD,PA=AB=4,BC=3,E为PB的中点,F 为线段BC上靠近B点的三等分点。(1)求证:AE⊥平面PBC;(2)求平面AEF与平面PCD所成二面角的正弦值。19. (12分)2019新型冠状病毒(2019- nCoV)于2020年1月12日被世界卫生组织命名,冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病。某医院对病患及家属是否带口罩进行了调查,统计人数得到如下列联表:(2)从.上述感染者中随机抽取3人,记未戴口罩的人数为X,求X 的分布列和数学期望,参考公式:22()()()()()n ad bc K a b c d a c b d -=++++ ,其中n=a+b+c+d. 参考数据:20. (12分)已知点12,F F 是椭圆C 2222:1(0)x y a b a b+=>>)的左、右焦点,椭圆上一点P 满足1PF x ⊥轴,2112|5||,||PF PF F F ==(1)求椭圆C 的标准方程;(2)过2F 的直线l 交椭圆C 于A,B 两点,当△ABF 1的内切圆面积最大时,求直线l 的方程.21. (12分)已知函数2()ln(2)()f x x a x a =++∈R(1)当x ∈[-1,1]时,求函数f(x)的最大值;(2)若函数f(x)存在两个极值点12,,x x 求证12()() 2.f x f x +>(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22. [选修4-4:坐标系与参数方程](10分)在平面直角坐标系中,直线l 的参数方程为415315x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),以直角坐标系的原点为极点,以x 轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为).4πρθ=- (1)求直线l 的极坐标方程和曲线C 的直角坐标方程;(2)已知直线l 与曲线C 交于A,B 两点,试求A,B 两点间的距离.23.[选修4- 5:不等式选讲](10分)已知a>0,b>0,a+b=1.(1);(2)若不等式11|||1|x m x a b+-+≤+对任意x ∈R 及条件中的任意a,b 恒成立,求实数m 的取值范围.。

安徽省合肥皖智高考复读学校高三数学上学期第三次半月考试试题 理 新人教A版

安徽省合肥皖智高考复读学校高三数学上学期第三次半月考试试题 理 新人教A版

数学(理科)试题第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合{}(){}0,1,2,,210x-2y-1MN x y x y ==-+≥≤∈且0,x,y M ,则N 中的元素个数为( )A.9B.6C.4D.2 2.下列函数中,既是奇函数又是增函数的为( ) A .1y x =+ B .2y x =- C .1y x= D .||y x x = 3.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f (x )图象上的是( )A .(,())a f a --B .(,())a f a -C .(,())a f a -D .(,())a f a --- 4.若ab c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( ) A. (),b c 和(),c +∞内 B.(),a -∞和(),a b 内 C.(),a b 和(),b c 内 D.(),a -∞和(),c +∞内5.如图是导函数y=f′(x )的图象,则下列命题错误的是( )A . 导函数y=f′(x )在x=x 1处有极小值B . 导函数y=f′(x )在x=x 2处有极大值C . 函数y=f (x )在x=x 3处有极小值D . 函数y=f (x )在x=x 4处有极小值6.若曲线()cos f x a x =与曲线2()1g x x bx =++在交点(0,)m 处有公切线, 则a b += ( )A .1-B .0C .1D .2 7.将函数x x y sin cos 3+=的图像向左平移()0m m >个长度单位后,所得到的图像关 y 轴对称,则m 的最小值是( )A.12π B.6π C.3π D.65π8.已知函数0,4,4)(22<≥⎩⎨⎧---=x x x x x x x f ,若()2()0f a f a -+>,则实数a 的取值范围是( )A .13a <-- 或13a >-+B .1>aC .33a <- 或 33a >+D .1<a9. 函数()f x 的定义域为D ,若对任意12,x x D ∈且12x x ≤,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数,设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00f =;②()132x f f x ⎛⎫= ⎪⎝⎭;③()()11f x f x -=-,则1138f f ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭等于( ) A.34 B. 12 C. 1 D.2310.已知f (x )是定义在(0,+∞)上的可导函数,且满足xf′(x )﹣f (x )≥0,对任意正数a ,b ,若a >b ,则必有( ) A . a f (a )≤bf(b ) B . b f (b )≤af(a ) C . a f (b )≤bf(a ) D . b f (a )≤af(b )第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合肥皖智高复学校2020届高三上学期第三次半月考数学(理科)试题第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合{}(){}0,1,2,,210x-2y-1MN x y x y ==-+≥≤∈且0,x,y M ,则N 中的元素个数为( )A.9B.6C.4D.2 2.下列函数中,既是奇函数又是增函数的为( ) A .1y x =+ B .2y x =- C .1y x= D .||y x x = 3.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f (x )图象上的是( )A .(,())a f a --B .(,())a f a -C .(,())a f a -D .(,())a f a --- 4.若ab c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( ) A. (),b c 和(),c +∞内 B.(),a -∞和(),a b 内 C.(),a b 和(),b c 内 D.(),a -∞和(),c +∞内5.如图是导函数y=f′(x )的图象,则下列命题错误的是( )A . 导函数y=f′(x )在x=x 1处有极小值B . 导函数y=f′(x )在x=x 2处有极大值C . 函数y=f (x )在x=x 3处有极小值D . 函数y=f (x )在x=x 4处有极小值6.若曲线()cos f x a x =与曲线2()1g x x bx =++在交点(0,)m 处有公切线, 则a b += ( )A .1-B .0C .1D .2 7.将函数x x y sin cos 3+=的图像向左平移()0m m >个长度单位后,所得到的图像关y 轴对称,则m 的最小值是( )A.12π B.6π C.3π D.65π 8.已知函数00,4,4)(22<≥⎩⎨⎧---=x x x x x x x f ,若()2()0f a f a -+>,则实数a 的取值范围是( )A .13a <-- 或13a >-+B .1>aC .33a <- 或 33a >+D .1<a9. 函数()f x 的定义域为D ,若对任意12,x x D ∈且12x x ≤,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数,设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00f =;②()132x f f x ⎛⎫= ⎪⎝⎭;③()()11f x f x -=-,则1138f f ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭等于( ) A.34 B. 12 C. 1 D.2310.已知f (x )是定义在(0,+∞)上的可导函数,且满足xf′(x )﹣f (x )≥0,对任意正数a ,b ,若a >b ,则必有( ) A . a f (a )≤bf(b ) B . b f (b )≤af(a ) C . a f (b )≤bf(a ) D . b f (a )≤af(b )第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分。

把答案填在答题卡上。

11.若周期为2的函数f (x )满足当x ∈[1,3]时,,且,则ab 的值为 .12.设当x θ=时,函数x x x f cos 2sin )(+=取得最大值,则cos θ= .13.设22cos sin 0,0,,x ya x yb x yθθ>>=+=⋅,则a 与b 的大小关系是 .14. 方程x 3-3x =k 有3个不等的实根, 则常数k 的取值范围是 .15. 关于函数)0(||1lg )(2≠+=x x x x f ,有下列命题: ①其图象关于y 轴对称;②当x >0时,f (x )是增函数;当x <0时,f (x )是减函数; ③f (x )的最小值是lg 2;④f (x )在区间(-1,0)、(2,+∞)上是增函数; ⑤f (x )无最大值,也无最小值.其中所有正确结论的序号是. .三、解答题:本大题共6小题,共75分。

解答应写出文字说明,证明过程或演算步骤。

16.(本小题满分12分) 设函数)0π( )2sin()(<<-+=ϕϕx x f ,)(x f y =图像的一条对称轴是直线8π=x .(1)求ϕ及函数)(x f y =的单调增区间(2)证明:直线025=+-cy x 与函数)(x f y =的图像不相切.17.(本小题满分12分)已知函数f (x )是定义在R 上的偶函数,且当x≤0时,f (x )=x 2+2x .现已画出函数f (x )在y 轴左侧的图象,如图所示,并根据图象 (1)写出函数f (x )(x ∈R )的增区间; (2)写出函数f (x )(x ∈R )的解析式;(3)若函数g (x )=f (x )﹣2ax+2(x ∈[1,2]),求函数g (x )的最小值.18.(本小题满分12分)某海滨浴场的岸边可以近似的看成直线,位于岸边A 处的救生员发现海中B 处有人求救,救生员没有直接从A 处游向B 处,而是沿岸边自A 跑到距离B 最近的D 处,然后游向B 处。

若救生员在岸边的行进速度是6米/秒,在海中的行进速度是2米/秒。

(不考虑水流速度等因素) (1)请分析救生员的选择是否正确;(2)在AD 上找一点C ,使救生员从A 到B 的时间最短, 并求出最短时间.19. (本小题满分12分) 设正有理数x 是3的一个近似值,令xy ++=121. (Ⅰ)若3>x,求证:<y 3;(Ⅱ)求证:y 比x 更接近于320.(本小题满分13分) 设()ln(1)f x x ax =++(a R ∈且0a ≠).(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若1a =,证明:(0,5)x ∈时,9()1xf x x <+成立. 21.(本小题满分14分) 已知函数2()ln(1)1xf x a x x -=+--(a R ∈).(1)若函数()f x 在区间[2,)+∞上是单调递增函数,试求实数a 的取值范围; (2)当2a =时,求证:112ln(1)241x x x -<-<--(2x >); (3)求证:11111...ln 1 (46221)n n n +++<<+++-(*n N ∈且2n ≥).数学试卷(理科)参考答案 C D B C C C B D A C 11. 24 12.552 13. a b > 14. -2<k<2 15. ①③④ 16.解:(Ⅰ)∵8π=x 是函数y=f (x )的图象的对称轴,∴1)82sin(±=+⨯ϕπ,∴Z k k ∈+=+,24ππϕπ, ……………2分∵0<<ϕπ,∴43πϕ-=。

……………4分 ∴)432sin(π-=x y 。

由题意得Z k k x k ∈+≤-≤-,2243222πππππ,所以函数)432sin(π-=x y 的单调增区间为Z k k k ∈++],85,8[ππππ。

………7分(Ⅱ)证明:∵|/y |=|(/))432sin(π-x |=|)432cos(2π-x |≤2所以曲线y=f (x )的切线的斜率取值范围是[-2,2], ……………10分 而直线5x -2y+c =0的斜率为25>2, 所以直线5x-2y+c =0与函数)432sin(π-=x y 的图象不相切。

……………12分 17 解:(1)如图,根据偶函数的图象关于y 轴对称,可作出f (x )的图象,(2分),则f (x )的单调递增区间为(﹣1,0),(1,+∞);(4分)(2)令x >0,则﹣x <0,∴f (﹣x )=x 2﹣2x ∵函数f (x )是定义在R 上的偶函数,∴f (x )=f (﹣x )=x 2﹣2x ∴解析式为f (x )=(9分)(3)g (x )=x 2﹣2x ﹣2ax+2,对称轴为x=a+1, 当a+1≤1时,g (1)=1﹣2a 为最小;当1<a+1≤2时,g (a+1)=﹣a 2﹣2a+1为最小; 当a+1>2时,g (2)=2﹣4a 为最小; ∴g (x)=.18. 解析:(1)从A 处游向B 处的时间)(2150223001s t ==, 而沿岸边自A 跑到距离B 最近的D 处,然后游向B 处的时间)(200230063002s t =+=而2002150>,所以救生员的选择是正确的. ……4分 (2)设CD=x ,则AC=300-x,22300x BC +=,使救生员从A 经C 到B 的时间3000,2300630022≤≤++-=x x x t ……………………6分290000261xx t ++-=',令275,0=='x t又0,300275;0,2750>'<<<'<<t x t x , ……………………9分 知)(210050,275min s t x +== ……………………11分 答:(略) …………………12分19.证明:(I )xx x x x x y +--=+-+-=-++=-1)3)(31(133331213 ∵x 3>,∴03>-x ,而031<-,∴<y 3; ………………(6分) (II )∵|3|1)3)(31(|3||3|--+--=---x xx x y)123(|3|)1113(|3|xxx x x +---=-+--=, ∵0>x ,023<-,0|3|>-x ,∴0|3||3|<---x y ,即|3||3|-<-x y ,∴y 比x 更接近于3. ………………(6分) 20.解:(Ⅰ)函数()f x 的定义域为(1,)-+∞,1()1f x a x '=++, 当0a >时,()0f x '>,∴函数()f x 在(1,)-+∞上是增函数;当0a <时,1()1ax a f x x ++'=+,又11a a+->-;由()0f x '>得,11a x a +-<<-;由()0f x '<得,1a x a+>-∴函数()f x 在1(1,)a a +--上是增函数;在1(,)a a+-+∞上是减函数.………4分(Ⅱ)当1a =时,()ln(1)f x x x =++, 要证(0,5)x ∈时9()1xf x x <+成立,由于10x +>, ∴只需证2(1)ln(1)80x x x x +++-<在(0,5)x ∈时恒成立, 令2()(1)ln(1)8g x x x x x =+++-,则()ln(1)27g x x x '=++- 设()ln(1)27h x x x =++-,1()201h x x '=+>+,(0,5)x ∈ ∴()g x '在(0,5)上单调递增,∴(0)()(5)g g x g '''<<,即7()ln 63g x '-<<+; 即0(0,5)x ∃∈,使()g x 在0(0,)x 上单调递减,在0(,5)x 上单调递增, 而2(0)0,(5)6ln 6156ln 1562150g g e ==-<-=⨯-<,∴当(0,5)x ∈时,2(1)ln(1)80x x x x +++-<恒成立,即原命题得证.………12分21. (1)因为'2(1)1()(1)a x f x x --=-,若函数()f x 在区间[2,)+∞上是单调递增函数,则' ()0f x ≥ 恒成立,即11a x ≥-恒成立,所以max 1()1a x ≥-. 又[2,)x ∈+∞,则1011x <≤-,所以1a ≥.(2)当2a =时,由(Ⅰ)知函数2()2ln(1)1xf x x x -=+--在[2,)+∞上是增函数,所以当2x >时,()(2)f x f >,即22ln(1)01x x x -+->-,则212ln(1)111x x x x -->=---.令()242ln(1)g x x x =---,则有'22(2)()211x g x x x -=-=--, 当(2,)x ∈+∞时,有'()0g x >,因此()242ln(1)g x x x =---在(2,)+∞上是增函数,所以有()(2)0g x g >=,即可得到242ln(1)x x ->-.综上有112ln(1)241x x x -<-<--(2x >). (3)在(2)的结论中令11t x t+-=,则1112ln 21t t t t +<<⋅+,取*1,2,,1,(,2)t n n N n =-∈≥L 时,得到(1)n -个不等式,将所得各不等式相加得,1112311...2(ln ln ...ln )2(1...)2312121n n n n +++<+++<+++--, 所以11111...2ln 2(1...)2321n n n +++<<+++-,即11111...ln 1 (46221)n n n +++<<+++-(*n N ∈且2n ≥)。

相关文档
最新文档