热传导方程(扩散方程)
热传导方程与扩散方程

∂u 2 ∂2u 0 < x < l, t > 0 ∂t = a ∂x2 , 混合问题: ux (0, t) = u(l, t) = 0, t > 0 u(x,0) = ϕ(x) 0≤ x ≤l
ut − a 2u xx = 0, 0 < x < L u x | x =0 = 0, u x | x = L = 0 u | = ϕ ( x) t =0
u ( x, t ) = X ( x)T (t )
T ' /( a 2T ) = X " / X = −λ
X ' ( 0) = X ' ( L ) = 0
t2
交换积分次序 ∂u ∂ ∂u ∂ ∂u ∂ ∂u ∫t1 ∫∫∫ cρ ∂t − ∂x k ∂x − ∂y k ∂y − ∂z k ∂z dxdydzdt = 0 Ω
t2
注意到t1 , t 2 及Ω均是任意的, 则有热传导的齐次方程
分离结果的求解 空间方程解出 非零解条件 非零解 时间方程解出
X "+ω 2 X = 0 X ( 0) = X ( L) = 0
T '+ a 2ω 2T = 0
X ( x ) = C cos ω x + D sin ω x X ( 0) = C = 0 X ( L) = D sin ω L = 0
X = cos(wx), w = kπ / L, k = 0,1,2,L, λ = w2
热扩散方程的研究

热扩散方程的研究热扩散方程是描述热能传递过程的方程,它在物理学、工程学、科学计算等领域有着广泛的应用。
它的形式是 $u_t = \alpha u_{xx}$,其中 $u$ 表示温度场,$t$ 表示时间,$x$ 表示空间位置,$\alpha$ 是热扩散系数。
本文将探讨热扩散方程的基本性质、数学解法以及应用实例。
1. 基本性质热扩散方程是一种偏微分方程,具有以下基本特征:1.1 不存在瞬间传递热的传递需要时间,热扩散方程中的 $\alpha$ 系数就是用来描述热的传递速度的。
显然, $\alpha$ 越小,热的传递越慢。
因此,不存在瞬间传递的情况。
这也是热扩散方程与热传导方程的区别。
1.2 保持温度平衡热扩散方程中,温度场会随着时间不断变化,但是在空间上保持着平衡状态。
也就是说,在一个区域内,温度场的变化和扩散是相互平衡的,它们能够保持一定的稳定性。
1.3 稳定性分析热扩散方程是一个稳定性问题,它的稳定性与初始条件和边界条件有关。
通过数学分析,可以证明热扩散方程在满足一些条件的情况下是稳定的,这为实际应用提供了理论基础。
2. 数学解法求解热扩散方程是一种常见的数学问题,有多种数值方法可以用来求解。
下面介绍几种常见的解法:2.1 分离变量法分离变量法是一种简单但有效的求解热扩散方程的方法。
它利用了热扩散方程的线性性质和特殊的解法形式,可以快速得到精确的解。
2.2 有限差分法有限差分法是一种常用的数值求解方法,它利用有限差分的技巧将热扩散方程转化为一个差分方程,然后通过迭代求解来得到近似解。
这种方法的求解速度较快,但精度较低。
2.3 有限元法有限元法是一种比较新的数值解法,它利用有限元分析的技术将热扩散方程转化为一个线性方程组,然后通过求解线性方程组得到精确解。
这种方法的计算量较大,但精度较高,可以用于复杂的热传递问题。
3. 应用实例热扩散方程在实际应用中有着广泛的应用,下面介绍几个实例:3.1 材料热处理材料热处理是一种重要的制造工艺,通过控制材料的温度来改变其微观结构和性质。
三类边界条件热传导方程扩散方程

表示边界Γ处(向外)的法向
f ( x ) 是给定的函数 拉普拉斯算子 梯度 表示内积
散度
散度(divergence)可用于表征空间各点矢量场发散的强弱程度,物理上, 散度的意义是场的有源性。当div F>0 ,表示该点有散发通量的正源(发散 源);当div F<0 表示该点有吸收通量的负源(洞或汇);当div F=0,表示该 点无源。 散度的运算关系: div(F ) grad( ) div( F )
ted with Aspose.Slides for .NET 3.5 Profile 5.2 u u u u Client c k k k 0 t x 2004-2011 x y y Aspose z z Pty Ltd. Copyright
其中zcdzycdyxcdxtc?????????????????cdtc2????2222222zyx???????????傅立叶实验定律?物体在无穷小时段内沿法线方向流过一个无穷小面积的热量与物体温度沿曲面法方向的方向导数成正比物体在无穷小时段内沿法线方向流过一个无穷小面积的热量与物体温度沿曲面法方向的方向导数成正比2热传导基本方程yzodsn???u?t?nsdqdnu???注
k * u f x 0 x G Evaluation u g ( x) x
Neumann (诺伊曼边界条件)
在数学中,诺伊曼边界条件(Dirichlet boundary condition)也被称为常微 分方程或偏微分方程的“第二类边界条件”。 诺伊曼边界条件的偏微分方程表示:
交换积分次序
t2
t1
u u u u k k k dxdydzdt 0 c t x x y y z z
大学物理-热传导方程的定解问题

在各向同性的介质中,热流强度 q 与温度的负梯度成正比, 即
(k:热传导系数)
|q|:单位时间垂直通过等温面单位面积的热量,即 q 的方向:等温面的法线方向 (由高温指向低温) 定律的物理意义:q 正比于温度的下降率 单位时间内流入 / 流出 V 的热量为
单位时间内热源在 V 中释放 / 吸收的热量为
单位时间内,V 中介质温度升高/降低所需/放出的热量为
能量守恒定律:Q3 = Q1 + Q2 则 由 V 的任意性,得到
若介质均匀,即 k 为常量,有来自定义:,因此得到
当 V 内无热源,即 f = 0,故有
二、扩散方程 1. 扩散现象:当空间各点浓度分布不均匀时,就有粒子
从高浓度处流向低浓度处。(浓度:单位体 积中的粒子数) 2. 方程的推导 设:空间中任一小体积 V,其边界面为 S
粒子源强度:F (x, y, z, t) ——单位时间,单位体积 内产生的粒子数
求:空间各点粒子浓度 u(x, y, z, t) 的方程 V 内粒子数增加的来源:扩散 + 粒子源
扩散浓度:N ——单位时间通过垂直于 v (粒子定向运动速 度) 的单位面积的粒子数 N=uv,方向:v 的方向
对于扩散现象,有斐克定律: 扩散强度与浓度的负梯度成正比,即 D:扩散系数
扩散导致 V 内粒子增加的数量:
粒子源 V 粒子增加的数量: 内粒子数总的增加数:
因粒子数守恒,有 由 V 的任意性,得到 若 D 为常量,且设 D = a2,则
若 V 内无粒子源,即 F = 0,因而
总结:热传导:热量的传递;扩散:粒子的运动,两 者物理本质不同,但满足同一微分方程。
物理学概念知识:拉普拉斯方程和热扩散方程

物理学概念知识:拉普拉斯方程和热扩散方程物理学是研究自然现象的科学。
在物理学中,拉普拉斯方程和热扩散方程都是非常重要的概念。
本文将详细介绍这两个概念,并探讨它们的应用。
一、拉普拉斯方程拉普拉斯方程是指在某个区域内的任何一个点的拉普拉斯函数值等于零的偏微分方程。
数学上,拉普拉斯方程可表示为:Δu = 0其中,Δ是拉普拉斯算子,u是某个函数。
对于三维空间中的拉普拉斯方程,可以表示为:∇²u = (d²u/dx²) + (d²u/dy²) + (d²u/dz²) = 0其中,∇²是三维空间中的拉普拉斯算子,x、y、z是坐标轴。
拉普拉斯方程在物理学中的应用非常广泛。
例如,在静电场和重力场中,电场和引力场的方程就是拉普拉斯方程。
此外,拉普拉斯方程也被应用于热传导、电介质中的介电常数和电势分布等领域。
二、热扩散方程热扩散方程是指在平衡状态下,温度在空间内的变化取决于热扩散。
简单地说,就是能量从温度高的区域流向温度低的区域,直到整个区域内温度达到平衡。
数学上,热扩散方程可表示为:∂u/∂t = α∇²u其中,u是温度,t是时间,∇²是二阶偏微分算子,α是热扩散系数。
热扩散方程的应用非常广泛。
在材料科学中,热扩散方程被广泛应用于研究材料的热传导性能。
在地球物理学中,热扩散方程被用于研究地热和岩石的热传导性能。
在气象学中,热扩散方程被用于预测气象变化,如大气环流等。
三、拉普拉斯方程和热扩散方程的联系拉普拉斯方程和热扩散方程之间存在联系。
事实上,在某些情况下,热扩散方程可以简化为拉普拉斯方程。
例如,在稳态情况下,热扩散方程可以简化为拉普拉斯方程,即:∇²u = 0这时,热扩散的时间因素被忽略,只考虑空间因素。
另外,拉普拉斯方程和热扩散方程也可以通过数学变化联系起来。
例如,在高维空间中,热扩散方程可以转化为拉普拉斯方程。
热传导与扩散方程

热传导与扩散方程热传导是指物质内部通过分子间的热量传递的过程。
在自然界中,热通常会由高温物体传递给低温物体,使得两者的温度趋向于平衡。
而热扩散方程是描述热传导过程的数学模型。
本文将介绍热传导与扩散方程的基本概念、物理原理和数学表达式。
一、热传导的基本概念热传导是指物质内部因温度梯度产生的热流动现象。
热量会从高温区域流向低温区域,直到温度达到平衡。
这种传导是通过物质的分子间碰撞和传递能量而实现的。
热传导的速度和程度取决于物质的导热性能,常用导热系数来描述。
二、热传导方程的物理原理热传导方程是由热传导现象的物理规律推导而来的。
其基本假设是:热传导过程中,物质内部各点的温度变化率与该点处的温度梯度成正比。
即:∂u/∂t = α∇²u其中,u表示温度,t表示时间,∇²表示拉普拉斯算子,α表示热扩散系数。
热传导方程描述了温度分布随时间的演化过程。
三、热传导方程的数学表达式热传导方程可用数学形式表示为:∂u/∂t = α(∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z²)其中,u(x, y, z, t)表示空间位置和时间的温度分布,α表示热扩散系数。
这是一个偏微分方程,其求解需要借助适当的数值方法或解析方法。
四、应用示例热传导与扩散方程在现实生活中有着广泛的应用。
例如,在工程领域,可以用于热传导材料的设计和优化。
在能源领域,用于研究热传导在热电材料中的影响,以提高能量转换效率。
在气象学中,可以用来描述大气中的温度变化和传播规律。
此外,在材料科学、地质学等领域也有着重要的应用。
总结:热传导就是物质内部因温度梯度引起的热量传递现象,可以通过热扩散方程进行描述。
热传导方程是热传导规律的数学模型,它表达了温度随时间和空间变化的关系。
热传导方程的求解对于理解和预测热传导现象具有重要意义,并在各个领域的应用中发挥着重要作用。
通过深入研究热传导与扩散方程,我们可以更好地理解和应用于实际问题中。
热扩散原理

热扩散原理热扩散原理是指物质内部热量传播的基本规律,它在自然界和工程技术中有着广泛的应用。
热扩散原理的研究不仅对于材料科学和工程技术有着重要的意义,同时也对于地球科学、天文学等领域有着深远的影响。
本文将从热扩散原理的基本概念、数学表达式以及应用领域等方面进行介绍。
热扩散是指物质内部由于温度差异而产生的热量传导现象。
在一个热力学平衡状态下,热量会沿着温度梯度从高温区域传播到低温区域,直到整个系统达到热力学平衡。
热扩散的速度和方式受到物质本身的热导率、密度和比热容等因素的影响。
热扩散过程可以用数学模型来描述,其中最常见的就是热传导方程,它可以描述热量在空间和时间上的分布规律。
热传导方程是描述热扩散过程的重要数学工具,它可以用来计算材料内部温度分布随时间的变化。
热传导方程的一般形式为:∂u/∂t = α∇^2u。
其中,u是温度分布函数,t是时间,α是热扩散系数,∇^2是拉普拉斯算子。
通过求解热传导方程,可以得到材料内部温度分布的解析解,从而为工程设计和科学研究提供重要的参考依据。
热扩散原理在工程技术中有着广泛的应用,例如在材料加工、热处理、电子器件散热设计等方面都需要考虑热扩散的影响。
在材料加工中,热扩散原理可以用来分析材料的热处理过程,优化加工工艺参数,提高材料的性能。
在电子器件散热设计中,热扩散原理可以用来计算器件内部温度分布,设计散热结构,保证器件正常工作。
另外,热扩散原理还可以应用于地球科学领域,例如地球内部热量传播、地壳温度分布等方面的研究。
总之,热扩散原理是研究物质内部热量传播规律的重要理论,它对于材料科学、工程技术、地球科学等领域都具有重要意义。
通过深入研究热扩散原理,可以更好地理解物质内部的热量传播规律,为科学研究和工程应用提供有力支撑。
希望本文的介绍可以帮助读者更好地理解热扩散原理,激发对于热传导方程和热扩散应用的兴趣。
动态分布公式

动态分布公式动态分布,也称为动力学分布,是描述在空间和时间上变化的某一属性(如温度、密度、浓度等)的分布规律。
在物理学、化学、生物学等领域,动态分布广泛应用于研究各种现象和行为。
在描述动态分布的过程中,科学家们通常使用数学公式来表达分布的规律。
以下是一些常用的动态分布公式:1. 热传导方程(Heat conduction equation):热传导方程描述了热量在物质中传导的过程。
它的数学表达式为∂T/∂t = α∇²T,其中T表示温度,t表示时间,α表示热扩散系数,∇²表示拉普拉斯算子。
热传导方程可以用来研究热量在固体、液体和气体中的传导过程。
2. 扩散方程(Diffusion equation):扩散方程用于描述物质的扩散过程,如气体或溶液中溶质的扩散。
其数学表达式为∂C/∂t = D∇²C,其中C表示溶液中溶质的浓度,t表示时间,D为扩散系数。
扩散方程可以用来研究化学反应中物质的扩散速率和分布。
3. 广义扩散方程(Generalized diffusion equation):广义扩散方程是对扩散方程的拓展,用于描述非线性扩散过程。
其数学表达式为∂C/∂t = D(∇²)ⁿC,其中n为非线性指数。
广义扩散方程适用于描述由非线性因素引起的扩散过程,如多相流体中的界面传递过程。
4. 简单定向运动模型(Simple directional movement model):简单定向运动模型用于描述个体在空间中的运动趋势。
其数学表达式为dx/dt = vcosθ,dy/dt = vsinθ,其中(x, y)表示个体的坐标,t表示时间,v表示速度,θ表示方向。
简单定向运动模型可以应用于研究动物迁徙、人群行为等。
以上是一些常见的动态分布公式,在实际应用中,科学家们还根据研究对象和研究目的设计了许多其他的分布公式。
这些公式的使用可以帮助科学家们理解和预测各种现象和行为,促进对自然界和人类社会的认知和探索。
热传导和扩散问题的傅里叶解

于是
,即 .
得到本征值:
相应的本征函数是:
第四步,求特解,并进一步叠加出一般解:
对于每一个本征值 ,解(8-2.5)式得出相应的 :
.
得到了满足偏微分方程和边界条件的特解:
.
得到方程的一般解为
(8-2.7)
第五步,利用本征函数的正交性确定叠加系数:
现在根据初始条件中的已知函数 定出叠加系数 ,将上面的一般解代入初始条件,并利用本征函数 的正交性得到系数为
(8-2.8)
公式(8-2.7)给出了均匀细杆上温度场的分布,表明温度场随时间做指数衰减。
第三节 初值问题的傅里叶解
8.3.1 利用傅里叶积分求出热传导的初值问题
对于无穷长一维介质上的热传导问题,可以表示为
解:令
代入泛定方程(8-3.1),得到两个常微分方程:
(8-3.3)
(8-3.4)
解式(8-3.3)得到:
(8-3.5)
由公式(8-3.5)可以看出:当 时,温度随时间的变化将趋于无穷大,这与物理事实不符,因此, ,令 。(8-3.3)和(8-3.4)的解为与 有关系的一系列解,记为
(8-3.6)
解式(8-3.4)得到:
于是得到热传导的一系列解为
(8-3.7)
由于这里的 没有边界条件的限制,所以为任意实数值。则 的一般解为公式(8-3.7)对所有 值对应解的叠加,由于 为连续实数,因此, 的一般解为公式(8-3.7)对 从 到 进行积分。即
第一步,定变量。研究介质x位置处在t时刻的温度 。
第二步,取局部。在介质内部隔离出从x到 一段微元长度,在t到 时间内温度的变化 。
第三步,立假设。假设均匀介质的横截面积为A,质量密度为 ,比热为c,热传导系数为k。
各类偏微分方程的解法

各类偏微分方程的解法偏微分方程是数学中的重要分支,广泛应用于物理学、工程学以及许多其他科学领域。
本文档将介绍几种常见的偏微分方程以及它们的解法。
1. 热传导方程热传导方程描述了物体内部的温度分布随时间的变化情况。
它的一般形式如下:$$\frac{\partial u}{\partial t} = \alpha \nabla^2 u$$其中,$u$ 是物体的温度分布,$t$ 是时间,$\alpha$ 是热传导系数。
常见的解法包括分离变量法、变换法和格林函数法。
这些方法可以用来求解不同边界条件下的热传导方程。
2. 波动方程波动方程描述了波的传播和振动现象,常用于描述声波、电磁波等。
它的一般形式如下:$$\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = \nabla^2 u$$其中,$u$ 是波函数,$t$ 是时间,$c$ 是波速。
常用的解法包括分离变量法、变换法和傅里叶变换法。
这些方法可以求解不同边界条件下的波动方程。
3. 粒子扩散方程粒子扩散方程描述了物质粒子的扩散过程。
它的一般形式如下:$$\frac{\partial u}{\partial t} = D \nabla^2 u$$其中,$u$ 是物质浓度分布,$t$ 是时间,$D$ 是扩散系数。
常见的解法包括分离变量法、变换法和格林函数法。
这些方法可以用来求解不同边界条件下的粒子扩散方程。
4. 薛定谔方程薛定谔方程描述了量子力学系统中粒子的行为。
它的一般形式如下:$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2 \Psi + V\Psi$$其中,$\Psi$ 是波函数,$t$ 是时间,$\hbar$ 是约化普朗克常数,$m$ 是质量,$V$ 是势能。
求解薛定谔方程涉及到一些特殊的数学技巧,如变换方法和定态解法。
热传导与热学中的热扩散方程解析

热传导与热学中的热扩散方程解析热传导是热学中的重要概念,它描述了热量在物质中的传递过程。
在热学中,我们经常使用热扩散方程来解析热传导问题。
本文将探讨热传导与热学中的热扩散方程解析。
热扩散方程是描述热传导过程的数学方程,它的一般形式可以表示为:∂u/∂t = α∇²u其中,u是温度场的分布,t是时间,α是热扩散系数,∇²u是温度场的拉普拉斯算子。
这个方程可以用来描述热传导过程中温度分布随时间的变化。
为了解析热扩散方程,我们需要考虑一些边界条件和初始条件。
边界条件可以是给定的温度值或者热通量值,而初始条件则是在初始时刻温度场的分布情况。
通过给定这些条件,我们可以求解热扩散方程,得到温度场随时间的变化。
热扩散方程的解析解通常是通过分离变量法来求解的。
我们假设温度场可以表示为时间和空间的乘积形式,即u(x, t) = T(t)X(x)。
将这个形式代入热扩散方程中,我们可以得到两个独立的方程,一个是关于时间的方程,另一个是关于空间的方程。
关于时间的方程可以表示为dT/dt = -λT,其中λ是一个常数。
这个方程的解是T(t) = e^(-λt),它描述了温度场随时间的指数衰减。
关于空间的方程可以表示为X''(x)/X(x) = -λ,其中X''(x)是X(x)的二阶导数。
这个方程的解是X(x) = Asin(√λx) + Bcos(√λx),其中A和B是常数。
这个解描述了温度场在空间中的分布。
通过将时间和空间的解合并,我们可以得到热扩散方程的解析解。
这个解可以表示为:u(x, t) = Σ(A_nsin(√(λ_n)x) + B_ncos(√(λ_n)x))e^(-λ_nt)其中,n是一个整数,A_n和B_n是与n相关的常数,λ_n是由空间方程决定的常数。
这个解析解的形式非常通用,可以适用于各种不同的边界条件和初始条件。
通过选择合适的常数和函数形式,我们可以得到特定问题的解析解。
物理学概念知识:拉普拉斯方程和热扩散方程

物理学概念知识:拉普拉斯方程和热扩散方程拉普拉斯方程和热扩散方程是物理学中非常重要的两个方程。
它们分别描述了静电场和热传导过程中的物理规律。
在本文中,我们将分别介绍拉普拉斯方程和热扩散方程的定义、物理意义以及数学特性。
同时,我们将讨论这两个方程在实际问题中的应用,以及它们之间的联系和区别。
1.拉普拉斯方程拉普拉斯方程是描述静电场分布的基本方程。
在电磁学中,通过拉普拉斯方程可以求解电荷分布产生的电势分布。
其数学表达式为:∇^2φ = 0其中,∇^2是拉普拉斯算子,φ是电势。
拉普拉斯方程的物理意义是描述电势在无电荷分布的区域内的分布规律。
具体来说,对于一个没有电荷分布的区域,电势满足拉普拉斯方程。
从物理意义上来说,拉普拉斯方程描述了电势的均匀传播和分布规律。
通过求解拉普拉斯方程,可以获得电势在空间内的分布情况,从而更好地了解电场的性质和分布规律。
另外,拉普拉斯方程也在一些其他物理领域有着广泛的应用。
比如在热力学中,拉普拉斯方程可以用来描述温度分布;在流体力学中,可以用来描述速度场的分布。
因此,拉普拉斯方程可以说是物理学中一个非常基础且重要的方程。
2.热扩散方程热扩散方程是描述热传导过程的方程。
在热传导问题中,热扩散方程可以用来描述热量在材料或物体内的传播规律。
其数学表达式为:∂u/∂t = α∇^2u其中,u是温度分布,t是时间,α是热扩散系数,∇^2是拉普拉斯算子。
热扩散方程描述了温度分布随时间的演化规律,可以用来求解材料内部温度的分布情况。
从物理意义上来说,热扩散方程描述了热量在空间内的传导规律。
通过求解热扩散方程,可以获得材料内部温度的分布情况,从而更好地了解热传导的性质和规律。
除了热传导问题,热扩散方程在其他物理领域中也有着广泛的应用。
比如在地球内部热量传导问题中,可以用热扩散方程来描述地球内部温度的分布;在材料工程中,可以用来描述材料内部温度的分布等。
3.拉普拉斯方程和热扩散方程的联系拉普拉斯方程和热扩散方程在数学表达形式上有一定的相似性。
热传导方程与热扩散现象

热传导方程与热扩散现象人们在日常生活中常常会遇到许多与温度有关的现象,比如热水瓶中的水会逐渐变凉,夏天的火车座位会感觉非常热,生活中这些看似简单的现象都与热传导方程和热扩散现象有着密切的联系。
热传导是物质内部微观粒子的能量传递过程。
热扩散现象指的是在没有外力作用的情况下,由高温区域或高能量区域向低温区域或低能量区域进行能量传递的过程。
这两者之间存在着紧密的关联。
热传导方程是描述物质内部温度分布随时间变化的数学模型。
它是一个偏微分方程,一般形式为:∂u/∂t = D∇²u其中,u是温度分布函数,∂u/∂t表示温度随时间的变化率,D是热扩散系数,∇²是拉普拉斯算子。
这个方程告诉我们温度分布随时间的变化是由热扩散引起的。
热传导方程中的拉普拉斯算子∇²表示温度梯度的二阶空间导数。
简单来说,它描述了温度分布的曲率或弯曲程度。
如果曲率较大,也就是温度变化非常剧烈的地方,热能将更快地向相邻区域传递,引起热扩散现象。
热传导方程可以应用于许多领域,比如工程、物理、地球科学等等。
在工程领域中,我们可以利用热传导方程来研究材料的热导率和热传导性能,以便设计更高效的热能利用装置或者保温材料。
在物理领域中,热传导方程可以用来解释物质的热响应和温度变化。
在地球科学中,热传导方程常被应用于地球内部的温度研究,以推断地球的构造和演化过程。
热传导方程的解析解通常是非常困难的,需要借助数值计算方法进行求解。
一种常用的数值方法是有限差分法。
该方法将空间和时间离散化,将连续的热传导问题转化为离散的代数问题。
通过迭代求解离散的代数方程组,可以得到温度分布随时间的变化情况。
热扩散现象的具体表现形式有很多,比如杯中的热茶慢慢变凉、热水瓶中的热水逐渐降温以及夏天的火车座位感觉烫手等。
这些现象都是由于热能在物质内部通过热传导的方式进行传递导致的。
通过研究热扩散现象,我们能够更好地理解和解释这些现象的原因,并根据需要采取相应的措施。
热传导方程

在理想状态下一根棍子的热传导,配上均匀的边界条件。
其中函数 f 是给定的。再配合下述边界条件 .
让我们试着找一个非恒等于零的解,使之满足边界条件 (3) 并具备以下形式:
这套技术称作分离变量法。现在将 u 代回方程 (1),
由于等式右边只依赖 x,而左边只依赖 t,两边都等于某个常数 − λ,于是:
汉 漢▼ [编辑]
其中:
u =u(t, x, y, z) 表温度,它是时间变量 t 与 空间变量 (x,y,z) 的函数。
/ 是空间中一点的温度对时间的变化率。
,
与
温度对三个空间座标轴的二次导数。
k 决定于材料的热传导率、密度与热容。
热方程是傅里叶冷却律的一个推论(详见条目热传导)。
一维热方程图解 (观看动画版)
热传导方程 - 维基百科,自由的百科全书
以傅里叶级数解热方程
以下解法首先由约瑟夫·傅里叶在他于1822年出版的著作 Théorie analytique de la chaleur(中译:解析热学)给出。先考虑只有一个 空间变量的热方程,这可以当作棍子的热传导之模型。方程如下:
[编辑]
其中 u = u(t, x) 是t 和 x 的双变量函数。 x 是空间变量,所以 x ∈ [0,L],其中 L 表示棍子长度。 t 是时间变量,所以 t ≥ 0。
最后,序列 {en}n ∈ N 张出 L2(0, L) 的一个稠密的线性子空间。这就表明我们实际上已将算子 Δ 对角化。
非均匀不等向介质中的热传导
[编辑]
一般而言,热传导的研究奠基于以下几个原理。首先注意到热流是能量流的一种形式,因此可以谈论单位时间内流进空间中一 块区域的热量。
单位时间内流入区域 V 的热量由一个依赖于时间的量 qt(V) 给出。假设 q 有个密度 Q(t,x),于是
§1.2 扩散方程

F (x,t) C
2
u 进一步简化为: ( x , t ) t u ( x , t ) f ( x , t )
2
2、扩散方程
当流体内部的密度不均匀时,物体内部就会出现物质由 浓度大的地方向浓度低的地方扩散。
扩散运动满足粒子数守恒定律和Fick定律,Fick定律表 示为: j Du(x,t)
K u ( x , t )V t
2
2u ( x , t ) 2u ( x , t ) 2u ( x, t ) K V t 2 2 2 y z x
若热量无损耗,只造成了物体温度得变化,且物体为各 项同性介质,则:
Q C m u C V u ( x, t ) t t
考虑图中的小三维空间,根据Fourier定律,热流的分量:
jx K jy K jz K u x u y u z
则在dt时间内流入四方体内的热量为:
Q j x j x dx y z
j
y
j y dy x z
j z j z dz y x t
jx y z j y x z jz y x t
jy jx jz xyz xyz xyz t y z x
2 u ( x , t )t D u ( x , t ) F ( x , t )
另外,扩散方程可表示为: u(x,t) Du(x,t) F (x,t) t 或:
t u(x,t) q F (x,t)
2、扩散方程
1、热传导方程
扩散系数方程

扩散系数方程
摘要:
1.扩散系数方程的概念
2.扩散系数方程的公式
3.扩散系数方程的应用
4.扩散系数方程的举例
正文:
1.扩散系数方程的概念
扩散系数方程是描述物质在介质中扩散过程的偏微分方程,它是热传导方程和质量传输方程的基础。
在物理、化学和工程领域,扩散系数方程被广泛应用于研究各种扩散现象,例如热量传导、质量传输和动量传输等。
2.扩散系数方程的公式
扩散系数方程一般可以表示为:
c/t = k * c
其中,c 表示物质的浓度,t 表示时间,k 表示扩散系数,c 表示浓度的二阶梯度。
扩散系数方程说明,物质的浓度随时间的变化是与浓度梯度成正比的,且与扩散系数k 有关。
3.扩散系数方程的应用
扩散系数方程在许多领域都有广泛的应用,例如:
- 在化学工程中,扩散系数方程可以用来研究催化剂的性能和反应速率;
- 在生物学中,扩散系数方程可以用来研究细胞生长和扩散过程;
- 在地球物理学中,扩散系数方程可以用来研究地下资源的分布和变化等。
4.扩散系数方程的举例
假设有一个边长为L 的正方形空间,内部充满了某种物质,该物质在x 方向上的浓度分布为c(x,t),我们可以根据扩散系数方程求解该物质在时间t 时的浓度分布。
取c(x,t) = (L/2)^2 * exp(-k * (x - L/2)^2 / (4 * D * t)),其中D 表示扩散系数,k 表示扩散系数,t 表示时间。
通过求解该方程,我们可以得到物质在时间t 时的浓度分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 热传导动方程
第一节 热传导方程的导出和定解条件
一、热传导方程的导出: 模型:给定一空间内物体 G ,设其上的点 ( x, y, z)
在时刻 t 的温度为 u( x, y, z, t)。 问题: 研究温度 u( x, y, z, t) 的运动规律。
边界条件:( G )
1、第一边界条件( Dirichlet 边界条件)
u g( x, y, z, t), ( x, y, z) , t 0, (1.8)
特别地:g(x, y, z, t) 0 时,物体表面保持恒温。
2、第二边界条件 ( Neumann 边界条件)
注:
为 u1(x, y, z, t),它与物体表面的温度u(x, y, z, t)并不
相同。这给出了第三边界条件的提法。
热传导 从物体流到介质中的热量和两者的温差成正比:
u
g( x,
y,
z,
t ),
(x, y, z) ,
其中: k1 0,
k
g
k1 k
u1 .
t 0,
(1.10)
注意第三边界条件的推导:
研究物体与周围介质在物体表面上的热交换问题
把一个温度变化规律为 u(x, y, z, t)的物体放入 空
气介质中,已知与物体表面接触处的空气介质温度
分析:(两个物理定律和一个公式)
1、热量守恒定律:
温度变
化吸收
通过边 界流入
热源放 出的热
的热量
的热量
量
2、傅里叶(Fourier)热传导定律:
dQ k( x, y, z) u dS dt , n
k( x, y, z) 为热传导系数。
3、热量公式: Q cmu
热传导方程的推导:
那么包含点 (x, y, z)的体积微元dV的温度从 u(x, y, z, t1 ) 变为 u(x, y, z, t2 ) 所需要的热量为
dQ c[u( x, y, z, t2 ) u( x, y, z, t1 )]dV
整个 内温度变化所需要的能量Q
Q dQ c[u( x, y, z, t2 ) u( x, y, z, t1 )]dV
t1
t
t1 x x y y z z
[t2 F(x, y, z,t)dV ]dt t1
由 及 t1 , t2 的任意性知
c u
u (k )
u (k )
u (k ) F(x, y, z, t).(1.4)
t x x y y z z
t1 S
n
由高斯公式
divAdxdydz A ndSx
S
知
Q1
[t2
t1
( (k u) (k u) (k u))dV ]dt .(1.2) x x y y z z
(3)热源提供的热量Q2
用 F( x, y, z, t)表示热源强度,即单位时间内从单位
段时间内通过曲面S 流入(或流出) 内的
热量和热源提供(或吸收)的热量之和。即
内温度变化所需要的热量 Q =通过曲面 S 流入 内的热量 Q1+热源提供的热量 Q2
下面分别计算这些热量
(1) 内温度变化所需要的能量 Q
设物体 G 的比热(单位质量的物体温度改变 1 C
所需要的热量为c c(x, y, z), 密度为 (x, y, z),
第一章
数学建模和基本原理介绍
从不同的物理模型出发,建立数学物理中三类 典型方程
根据系统边界所处的物理条件和初始状态列出 定解条件
提出相应的定解问题
§1.1 数学模型的建立
数学模型建立的一般方法:
确定所研究的物理量; 建立适当的坐标系; 划出研究小单元,根据物理定律和实验资料写出
体积内放出的热量,则从 源所提供的热量为
t1
到
t2
这段时间内
内热
由Q热2 量 守tt12恒[ 定 律F得( x:, y, z, t)dV ]dt
(1.3)
[t2 c u dV ]dt [t2 ( (k u) (k u) (k u))dV ]dt
u t
a2
2u x 2
2u y 2
2u z 2
0
.
(1.6)
通常称(1.5)为非齐次的热传导方程,而称(1.6) 为齐次热传导方程。
二、定解条件(初始条件和边界条件) 初始条件:
u(x, t) (x, y, z), (x, y, z) G, t 0 : (1.7)
u k n g( x, y, z, t), ( x, y, z) ,
t 0, (1.9)
特别地:g(x, y, z, t) 0 时,表示物体绝热。
u 表示 u 沿边界 上的单位外法线方向 n 的方向导数
n
3、第三边界条件 ( D-N 混合边界条件 )
u n
c( t2 udt)dV [t2 c u dV ]dt
t1 t
t1
t
(1.1)
(2)通过曲面 S 进入 内的热量 Q1
由傅里叶热传导定律,从 t1 到 t2 这段时间内通过 S
进入 内的热量为
Q1
t2
u k( x, y, z) dS dt ,
任取物体 G 内一个由光滑闭曲面 S 所围成的区
域 ,研究物体在该区域 内热量变化规律。
热量 守恒 定律
区域 内各点的温度从时刻 t1 的温度u(x, y, z, t1 ) 改变为时刻 t2 的温度 u(x, y, z, t2 ) 所吸收(或
放出)的热量,应等于从时刻 t1 到时刻 t2 这
三维有热源的热传导方程: (均匀且各向同性物 体,即 c, , k 都为常数的物体)
u t
a2
2u x 2
2u 2u
y2
2
f (x,
y, z, t),
(1.5)
其中 a2 k , f F , f 称为非齐次项(自由项)。
c
c
三维无热源热传导方程: