如何求代数式的值

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何求代数式的值

求代数式的值是数学中的一个重要的内容,它是中考和数学竞赛中的必考内容.求代数式的值的一般步骤是先代入,再计算求值.但在实际解题时,常常需要综合运用知识求值,现介绍一些求代数式的值的一些常用的方法,以供同学们参考.

一、单值代入求值

用单一的字母数值代替代数式中的字母,按代数式指明的运算,计算出结果;

例1当x=2时,求x3+x2-x+3的值.

析解:当x=2时,原式=23+22-2+3=13.

二、多值代入求值

用多个的字母数值代替代数式中的相应字母,按代数式指明的运算,计算出结果

例2当a=3,a-b=1时,代数式a2-ab的值.

析解:将a=3代入a-b=1得b=2,则原式=32-32=3.

三、整体代入求值

根据条件,不是直接把字母的值代入代数式,而是根据代数式的特点,将整体代入以求得代数式的值.

例3如果代数式的值为18,那么代数式的值等于( )

A. B. C. D.

分析:根据所给的条件,不可能求出具体字母a b的值,可考虑采用整体代入的方法,所要求的代数式可变形为

3(-2a+3b+8)-22,,从而直接代入的值求出答案.

解:原式=3(-2a+3b+8)-22=318-22=32.

例4如果,那么代数式2 的值为( )

A、64

B、5

C、4

D、5

分析:本题中没有给出的值,所以不能直接代入求值.所以我们应设法把原代数式化成用含的式子来表示的形式,然后再把看作一整体,把它的值整体代入求值.

解:原式= =-4,所以选C.

例5当x=1时,代数式px3+qx+1的值为2019,则x=-1时,代数式px3+qx+1的值为[( )

A.-2019

B.-2019

C.-2019

D.2019

解, 当x=1时

px3+qx+1=p+q+1=2019,p+q=2019.

当x=-1时,px3+qx+1=-p-q+1=-2019+1= -2019

唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。

至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。

四、特值代入求值

要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。

课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课

前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。

在选择题与填空题中,由于不用计算过程,也可以用特殊值法来计算,即选取符合条件的字母的值,直接代入代数式得出答案。

相关文档
最新文档