如何求代数式的值
代数式求值的常用方法
代数式求值的常用方法一、代入法代入法是最常见和最简单的一种代数式求值方法。
它的基本思想是将代数式中的未知数换成给定的具体数值,然后计算出结果。
代入法的具体步骤如下:1.将未知数换成给定的具体数值,常用的数值有整数、分数、小数等;2.将代入后的具体数值代入代数式中,计算代数式的值。
举例来说,假设给定的代数式是4x+3,要求当x取2时的值。
那么按照代入法,我们将代数式中的x换成2,并进行计算:4×2+3=8+3=11、所以,当x取2时,代数式4x+3的值为11除了求给定的代数式的值外,代入法还可以用来验证代数等式的真假。
比如,已知等式2x+3=11,我们可以将等式中的x换成具体的数值,然后计算出等式的右边和左边的值,如果两边的值相等,就说明该等式成立。
二、化简法化简法是将复杂的代数式通过一系列的化简步骤,简化成更简洁的形式。
在实际问题中,常常遇到一些复杂的代数式,如果直接代入数值计算,会非常繁琐。
此时,我们可以利用化简法将代数式化简成更简单的形式,从而便于计算。
化简法的基本思想是运用代数式的基本运算法则,比如合并同类项、分配律、移项等,将代数式中的项进行合并和简化。
举例来说,假设给定的代数式是(x+2)(3x-4),我们可以运用分配律将其展开,并结合同类项进行简化:x×3x+x×(-4)+2×3x+2×(-4)=3x^2-4x+6x-8=3x^2+2x-8通过化简,原来的复杂代数式被简化成了一个二次多项式。
这样,在给定具体数值后,就可以直接计算出其值。
三、分解法分解法是将代数式中的复杂项分解成多个简单项的乘积,并进一步进行计算的方法。
具体而言,分解法包括提取公因式、配方法、平方差公式等。
1.提取公因式:通过将代数式中的公共因子提取出来,将代数式分解成多个因子的乘积。
比如,对于代数式3x+6,可以提取公因式3,得到3(x+2)。
2.配方法:通过运用二次项的平方公式,将代数式分解成两个平方项的差、和的形式。
求代数式值的几种常用方法
求代数式值的几种常用方法王一成求值的方法很多,中考数学中,也经常出现这类习题,假设不掌握一定的方法,一些习题确实不容易解答。
初中阶段,常见的求值方法有哪些呢?一、化简求值例:先化简,再求值:GbVab'-b'Lb-k+bXa-b),其中a ・〈,b--l o解:原式■a'-2ab-b 3-(a 2-b 2)«a 2-2ab-b 2-a 2+b 2三-2ab o原式.-2ab∙-2x7χ(-1)-1。
二、倒数法求值I, 例:X∙一∙4,求-7解: 所以T⅛77的值为专例:a>b 、C 为实数且a+b=5c 2=ab+b-9,求a+b+c 之值。
R 的值。
例: X 2 X 2 -2 ^ l-√3-√2 '-X 1 + x X)÷(^——+ X )的值。
X -1 解由,得X 2-2X 2 三、 例:所以,1—— = 1 — V3 - V2 X那么一W=一百一 √iJC二二•二I ==二一6一出I-X 2 X 3 X 2配方求值a 2+b 3 + 2a-4b÷5-0,求2a04b-3的值。
解: 由 a ' + b' + 2∂ — 4b ÷ 5 ≡ O,得G + 2a + l)÷(b a -4b + 4)«0,即(a + 】> + (b- 2)1。
,由非负数的性质得a÷l≡0,b -2-0, 解得a-1, b ・2。
薪以值⅛-2∙'*4bf jcgF+4x2∙3-7四、构造一元二次方程求值解Va+b=5c2=ab+b-9b+(a+∖)=6b(a+1)=C2+9那么b,a+1为t2-6t+c2+9=0两根Va,b为实数Λb,a+1为实数,那么t2-6t+c2+9=0有实根ΛΔ=36-4(C2+9)=-4C⅛0c=0Λa+b+c=5五、整体求值i1,a-3a⅛÷b^|J:a+b-,那么2a-2b-7ab- ----------------------- 。
如何求代数式的值
如何求代数式的值1.直接求值法 先把整式化简,然后代入求值.例1 先化简,再求值:3-2xy+2yx 2+6xy-4x 2y ,其中x=-1,y=-2.2.隐含条件求值法 先通过隐含条件将字母取值求出,然后化简求值.例2 若单项式-3a 2-m b 与b n+1a 2是同类项,求代数式m 2-(-3mn+3n 2)+2n 2的值.例3 已知2-a +(b+1)2=0,求5ab 2-[2a 2b-(4ab 2-2a 2b)]的值.3.整体代入法 不求字母的值,将所求代数式变形为与已知条件有关的式子,如倍差关系、和差关系等. 例4 已知x 2+4x-1=0,求2x 4+8x 3-4x 2-8x+1的值.例5 已知x 2-x-1=0,求x 2+21x 的值.4.换元法 出现分式或某些整式的幂的形式时,常常需要换元.例6 已知b a b a +-2=6,求代数式b a b a +-)2(2+)2()(3b a b a -+的值.5.特值代入求值在选择题与填空题中,由于不用计算过程,也可以用特殊值法来计算,即选取符合条件的字母的值,直接代入代数式得出答案.例7 已知-1<b <0, 0<a <1,那么在代数式a -b 、a+b 、a+b 2、a 2+b 中,对任意的a 、b ,对应的代数式的值最大的是(A) a+b (B) a -b (C) a+b 2 (D) a 2+b解:取21-=b ,21=a ,分别代入四个选择支计算得:(A)的值为0;(B)的值1;(C) 的值为43;(D)的值为43,所以选(B)例8 设,)1()1(322dx cx bx a x x +++=-+则=+++d c b a析解:d c b a +++恰好是32dx cx bx a +++当1=x 时的值。
故取1=x 分别代入等式,)1()1(322dx cx bx a x x +++=-+左边是0,右边是d c b a +++,所以d c b a +++=06.阅读模仿求值例9 在数的原有法则中我们补充定义新运算“⊕”如下:当a >b 时,a ⊕b=b 2;当a<b 时,a ⊕b=a.则当x=2时,(1⊕x) ∙x-(3⊕x)的值为 (“∙”和“-”仍为原运算中的乘号和减号)。
5种方法求代数式的值
5种方法求代数式的值在数学中,我们经常需要求一个代数式的值。
这个代数式可能包括各种运算符号和变量,我们希望找到一个具体的数值来代替变量,从而得到代数式的真实值。
在这篇文章中,我们将介绍五种方法来求代数式的值。
方法一:代入法代入法是求代数式值的最基本方法之一、它的思想很简单:我们将变量代入代数式中,并计算出代数式的数值。
举个例子来说,如果我们有一个代数式2x+3,我们可以选择给x赋一个具体的数,比如说x=4,然后计算2*4+3,得到11、这就是这个代数式在x=4时的值。
代入法可以在计算中非常方便,特别是当代数式中只有一个变量的时候。
但是,当代数式中有多个变量的时候,代入法可能会变得非常困难。
因此,在这种情况下,我们需要使用其他的方法来求代数式的值。
方法二:展开法展开法是求代数式值的另一种常见方法。
它适用于那些包含括号和指数的代数式。
展开法的思想是将代数式中的括号展开,然后根据指数的规则进行运算。
举个例子来说,假设我们有一个代数式(x+2)(x-3),我们可以将这个代数式展开为x^2-3x+2x-6、然后,我们可以将这些项合并,得到最简形式的代数式x^2-x-6展开法不仅适用于二次代数式,也可以应用于更复杂的代数式。
但是,在展开法中,要注意正确地应用指数法则和合并项的规则,以避免漏项和错误运算。
方法三:因式分解法因式分解法是求代数式值的另一个常见方法。
它适用于那些可以分解为乘积形式的代数式。
因式分解法的思想是将代数式分解为括号和因子的乘积,然后计算每个乘积的值。
举个例子来说,假设我们有一个代数式x^2-4,我们可以使用因式分解法将其分解为(x+2)(x-2)。
然后,我们可以选择一个数值给x,并计算每个乘积的值。
比如说,当x=3时,代数式的值为(3+2)(3-2)=5因式分解法可以用于求解各种类型的代数式,包括多项式、二次方程等。
但是,它需要一定的代数知识和技巧来正确地进行因式分解,这可能需要一些练习和实践。
5种方法求代数式的值
5种方法求代数式的值根据代数式中字母的值去求代数式的值是本章学习的一个重要方法,下面举几例说明如何去求代数式的值.一、 直接代入求代数式的值例1:当x=1,y=-2,z=3 ,求代数式x 2-3xy+zy 的值: 解:当x=1,y=-2,z=3时,x 2-3xy+zy= 12-3×1×(-2)+3×(-2)=1+6-6=1.本例中的代数式中是以省略乘号的形式表达的,代入数字后出现数字和数字相乘时,应添上乘号.然后按照有理数的混合运算顺序进行即可. 二 整体代入求代数式的值例2:已知a+a 1=3求代数式(a+a 1)2+a-3+a1的值 解:该题给出的不是字母的值,而是一个代数式a+a1的值,因此,必须将要求值的代数式转变成一个用a+a 1表示的式子.通过观察,代数式(a+a 1)2+a-3+a1可变为(a+a 1)+a+a 1-3的形式.然后将a+a1的值代入,即可得到其值.当a+a 1=3,时(a+a 1)2+a-3+a 1=(a+a 1)+a+a1-3=32+3-3=9求代数式值的方法是:用字母的取值代替字母,根据代数式所表示的运算顺序按有关运算法则计算出结果,当知道整体代数式的值的时候,可以采用整体代入的方法进行计算. 三、重新定义新运算求代数式的值例3:在实数的原有运算法则中我们补充定义新运算“○+”如下:当a ≥b 时,a ○+b =b 2;当a <b 时,a ○+b =a .则当x =2时,(1○+x )·x -(3○+x )的值为 (“· ”和“-”仍为实数运算中的乘号和减号).解:因为x =2,所以1○+x=1○+2=1,3○+x=3○+2=22=4.所以,当x =2时,(1○+x )·x -(3○+x )=1×2-4=-2.本题是一类重新定义运算的新题型.在近几年的各地中考试题中,这一类试题出现的频率很高.解决这类试题的关键是要弄清重新定义的运算.要读懂题目的意思.四、根据数值转换机求值例4:下图是一个数值转换机,请求出当输入x=8时,输出的值y 是多少?输入x -2 ×x +4 ÷x 输出y解:根据数值转换机的运算过程将x=8代入即可.[(8-2)×8+4]÷8=(6×8+4)÷8=52÷8=.所以,输出的y是.五、根据表格求代数式的值例5、观察下表:输入x-3 -2 -1 0 1 2 3 4 5输出-10 -7 -4 -1 2 5 8 11 14(1)列出符合所给表格规律的输出的代数式;(2)设计计算这个代数式的值的计算程序;(3)利用设计的计算程序求输入2007时的输出值.解:(1)从表格可以发现,输出的值都是输入的3倍少1,即用代数式表示是3x-1;(2) 计算这个代数式的值的计算程序是:输入x ×3 -1 输出(3)当x=2007时,输出的值为3×2007-1=6021-1=6020.。
代数式求值的方法
试一试:
(1) 若 x 1 5 ,则
x 1
2
1 24 ;
(2) 若 x 5 y 4 ,则 2 x 7 10y 15 ;
(3) 若 x 2 3x 5 4 ,则 2 x 2 6 x 10 8 ;
(4) 《同步》P34的3题。
= 4a - 3b 当a=-3,b=2时,原式=4×(-3)- 3×2 = -12 – 6 = -18 思考:该代数式的值为什么能求得?
知识归纳
1、什么是一般步骤是什么?
动动脑
已知(x -1)2 +∣y - 2∣= 0 ,求代数式2xy-4x+3的值。
想一想:该代数式的值能求到吗?怎么求? 解:∵ (x -1)2 +∣y - 2∣= 0 ∴ x =1 y= 2 ∴ 原式= 2×1×2 - 4×1 +3 = 4 - 4 +3 =3
先确定字母 的值,再代 入求值。
你能做吗?
已知a2 - a=2 , 求代数式 3(a2-a)2 +5 的值。
思考: 你能求出a的值吗? 怎样才能求出该代数式的值?
整体代入求值。
《启航》P56的3题。
能力提升训练 若 x 2 y 2 5 的值为7,求代数式 3x 6 y 2 4 的值。 你有办法求出这个代数式的值吗?
变形后再代入求值
《启航》P57的13题。
《同步》P35的4题。
小结:
求代数式的值的方法:
1、直接代入求值 2、先确定字母的值再代入求值 3、整体代入求值 4、变形后再代入求值
做一做
求代数式的值:
a + 2(2a - b) - (a + b), 其中a= -3, b=2。
代数式求值
代数式求值的方法一、概念:代数式求值:一般地,用数值代替代数式中的字母,按照 代数式中指明的运算计 算的结果叫做代数式求值。
二、代数式求值的几种方法:1.直接代入求值;2.化简代入求值;3.求值带入法;4..整体代入求值1、直接代入法例1.当2,2-==y x 时,则代数式)1(+-y x x = .分析:当2,2-==y x 时,原式=[]1222+--⨯)(=2×5=10.点评:直接代入求值法就是把条件中给出的字母的值直接代入所求的代数式中,计算出其结果,这是代数式求值的最基本,最常见的方法。
2、化简代入法例 2.当x=-2时,则代数式(3x 2-2)-(4x 2-2x-3)+(2x 2-1)的值为 。
分析:这里如果使用上面的直接代入法一定很麻烦,所以我们可以先化简,再代入,这样既可以节省时间,准确率也能提高.原式=3x 2-2-4x 2+2x 2+3+2x 2-1=(3x 2-4x 2+2x 2)+2x-2+3-1=x 2+2x=(-2)2+2×(-2)=0.点评:先把要求的代数式进行化简,然后将所给字母的值代入化简后的代数式,计算出结果,一般情况下,求代数式的值多按此步骤进行。
3、求值代入法例 3.若(x-y+1)2+1y x ++=0,则代数式x 2+xy+y 2的值是 。
分析:观察题目,可知可以先求出x ,y 的值,在代入求解即可。
由非负数的性质可知,⎩⎨⎧=++=+-0101y x y x 解之得:⎩⎨⎧=-=01y x , 故原式=(-1)2+(-1)×0+02点评:常见的求值条件中,除了应用非负数的性质外,还会结合一些基本概念,如a ,b 互为相反数,x,y 互为倒数,解答时可以现根据条件求出字母的值或部分和与积得值,再代入计算。
4、整体代入法例 4.已知2a-b=3,则代数式(b-2a)2-4a+2b+2000的值是 。
分析:将2b-a 当做一个整体,将所求的代数式变形后,代入计算即可。
代数式求值的几种方法
代数式求值的几种方法代数式是由变量、运算符和常数组成的数学表达式。
求代数式的值,即是将给定的变量赋予特定的值,并计算表达式的结果。
以下是几种常见的代数式求值方法:1.代数式的替换法:该方法适用于所给代数式具有较少变量的情况。
将代数式中的每个变量替换为其对应的值,然后按照运算符优先级依次计算,最终得到结果。
2.代数式的展开法:对于含有括号的代数式,可以使用展开法进行求值。
根据分配律和结合律,将括号内的表达式逐步展开,并按照运算符优先级计算,最终得到结果。
3.代数式的因式分解法:对于含有多个项的代数式,可以尝试使用因式分解法进行求值。
将代数式分解为多个因式的乘积,然后逐个计算每个因式的值,最后将各个因式的值相乘得到结果。
4.代数式的化简法:若代数式中含有一些常见的代数式化简规则,可以利用这些规则简化代数式,并求得最终结果。
例如,合并同类项、化简分数、约分等。
5.代数式的求和法:对于含有求和符号的代数式,例如累加求和式,可以通过逐步迭代求和的方式,将其中的变量替换为特定的数值,并将每次迭代的结果相加,最终得到总和。
6.代数式的数学软件求解法:在现代数学中,有许多数学软件可以用来求解代数式的值,例如MATLAB、Mathematica等。
通过输入代数式,并赋予特定的数值,这些软件可以自动计算代数式的值。
7.代数式的数值逼近法:对于一些复杂的代数式,往往难以通过简单的替换和化简求得精确值。
此时,可以采用数值逼近的方法,通过迭代等数值计算方法,逼近代数式的值。
以上是几种常见的代数式求值方法,不同的方法适用于不同的情况。
在实际应用中,可以根据具体的代数式和求解的要求选择最合适的方法。
代数式求值的十种常用方法
解:原式 。
当 , 时,
原式 。
练习:(2009年河北省)已知 , ,求 的值。
提示:原式 。
当 , 时,原式=1。
三、整体代入法
当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到待求的代数式中去求值的一种方法。通过整体代入,实现降次、归零、约分的目的,以便快速求得其值。
例1若 和 互为相反数,则 =_______。
解:由题意知, ,则 且 ,解得 , 。因为 ,所以 ,故填37。
练习:(2010年深圳市)若 ,则 的值是()
A. 0B.1C. –1D. 2007
提示: , ,选C。
二、化简代入法
化简代入法是指先把所求的代数式进行化简,然后再代入求值,这是代数式求值中最常见、最基本的方法。
例4请将式子 化简后,再从0,1,2三个数中选择一个你喜欢且使原式有意义的x的值代入求值。
解:原式
。
依题意,只要 就行,当 时,原式 或当 时,原式 。
练习:先将式子 化简,然后请你自选一个理想的x值求出原式的值。
提示:原式 。只要 和 的任意实数均可求得其值。
五、倒数法
倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法。
代数式求值的十种常用方法
代数式求值问题是历年中考试题中一种极为常见的题型,它除了按常规直接代入求值外,还要根据其形式多样,思路多变的特点,灵活运用恰当的方法和技巧,本文结合近几年各地市的中考试题,介绍十种常用的求值方法,以供参考。
一、利用非负数的性质
若已知条件是几个非负数的和的形式,则可利用“若几个非负数的和为零,则每个非负数都应为零”来确定字母的值,再代入求值。目前,经常出现的非负数有 , , 等。
求代数式的值的方法
求代数式的值的方法代数式是由一个或多个数、字母和运算符号组成的数学式子。
它可以表示数学中的各种问题和关系,例如方程、不等式等。
计算代数式的值可以通过以下几种方法实现。
一、直接代入数值法:将代数式中的字母用具体数值代入,然后按照运算规则计算表达式的值。
这种方法适用于代数式中只包含基本的四则运算和整数的情况。
例如:计算2x+3y-4z的值,当x=2,y=3,z=1时,可以直接将数值代入进行计算。
2x+3y-4z=2*2+3*3-4*1=4+9-4=9二、化简代数式法:当代数式比较复杂时,可以通过化简来简化代数式,然后再通过直接代入数值法计算。
例如:计算3x^2 - 4xy + 2x - y^2的值,当x=2,y=3时,可以按照下面的步骤进行计算。
1.将代数式按照运算规则进行排列和化简:3x^2 - 4xy + 2x - y^2 = (3x^2 + 2x) + (-4xy - y^2)2.按照运算符号的优先级进行计算:(3x^2 + 2x) + (-4xy - y^2) = 3*2^2 + 2*2 + (-4*2*3 - 3^2)=12+4+(-24-9)=12+4-24-9=-17三、因式分解法:将代数式进行因式分解,然后根据因式分解的结果计算代数式的值。
例如:计算x^2-4x的值,可以进行因式分解:x^2-4x=x(x-4)当x=3时,可以代入计算:x(x-4)=3(3-4)=3*(-1)=-3四、解方程法:将代数式等于一些数,将该方程化简成一元一次方程,然后解方程得到代数式的值。
例如:计算3x+4=10的值,可以将该方程化简为一元一次方程:3x+4=103x=10-43x=6x=6/3x=2以上是计算代数式的几种常见方法,根据具体的代数式的特点和要求,也可以使用其他更为复杂的方法,如配方法、试错法等。
总之,根据代数式的特点和问题的要求,选择合适的方法来计算代数式的值。
求代数式值的几种代入法
求代数式值的几种代入法我们知道用数值替代数式里的字母,按照代数式指明的运算,计算出的结果,就叫做这个代数式的值。
结合初一数学的知识结构,就求代数式的值,谈几种常见的代入法:一. 单独字母代入法例1. 当x=1时,求代数式42-+x x 的值。
解:当x =1时,4411422-+=-+=x x二. 整体代入法例2. 已知24321322x xy y xy -=-=-,,求代数式48922x xy y -+的值。
解: 24321322x xy y xy -=-=-,,则 48942692233224313817222222x xy y x xy xy y x xy y xy -+=--+=-+-=⨯+⨯-⎛⎝ ⎫⎭⎪=-=()()例3. 已知a b a b+-=7,求代数式23()()a b a b a b a b +---+的值。
解: a b a b+-=7, ∴-+=a b a b 17,则 2327131714121132021()()a b a b a b a b +---+=⨯-⨯=-=三. 统一字母法例4. 当3a b =时,求代数式b a b a a ba b 332--÷-+÷-()()的值。
解: b a =3 ∴--÷-+÷-=--÷-⋅+÷-=+--b a b a a ba b a a a a a a a a 3323333323131923()()()()() =-=479329例5. 已知b a bc ==1213,,求代数式35252a c b a c b +--+的值。
解: b a b c ==1213, ∴==a b c b 23,352523253252236152106195345a c b a c b b b b b b b b b b b b b b b +--+=⋅+⋅-⋅-⋅+=+--+==()()()()四 特殊值代入法例 6. 已知()x x a x a x a x a x a 26121211111010101-+=+++++…,求代数式a a a a a 1210820+++++…的值。
代数式求值的几种方法
代数式求值的几种方法代数式的求值问题,是初中代数基础知识与基本技能的重要内容。
求代数式的值应对所给定的代数式加以具体情况具体分析,针对题设条件与所求代数式的本质特点及内在联系,灵活选用适当方法与技巧,方能使求解过程简捷、科学、合理。
一、公式法例1 :已知a + b = 1,a2 + b2 = 2 求a6 +b6的值分析:本题若根据已知条件先求出a、b的值,然后代入所求式中计算,虽不失为一种思考途径,但求出的a、b的值均为复杂的无理数,而所求代数式中的a、b又均为高次幕,从而使运算非常复杂。
若借助乘法公式先将所求代数式化为“ a + b ”与“ab”的结构形式,则问题的解答将简便得多。
解:由a + b = 1有(a + b)2 =1,即a2 2ab b2 1 又a 2 + b2 =2,二a b =—-26a b6 2 .2a b 4 a b4 3 — ab仏3a b2・・2 2 . 2 2 2 2 3a b a ab b a b2a b ab a b3111122221242871 8x另外考虑a 7 + b 7的值的求法 二、参数法 例2:若a b c,求2a b c的值245a b c分析:本题题设给出a 、b 、c 的三个连比式,若引入一个参数,求解。
数特点出发,本题使用“倒数法”较为简便。
再由未知式取倒数:1549四、消元法则所求代数式的分子、 分母均由三元转化为一元, 从而通过化简而解:设a b24所以a b c三、倒数法 k ,由题意 k 工0,贝S a = 2k , b = 4k , c =5k 4k 4k 5k 2k 4k 5k3k 3k例3:已知x x 2 x 1分析:由已知式与所求式之间的结构及各自分子、分母的幕次解:由已知取倒数,则x 2 x 1 x所以2 X 42x x 149 15例4已知x、y、z均不为零,且满足4x —3y —6z =02 2 2x + 2y —7z = 0,求%3y> 6z r的值。
代数式求值的几种方法
代数式求值的几种方法本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March2代数式求值的几种方法代数式的求值问题,是初中代数基础知识与基本技能的重要内容。
求代数式的值应对所给定的代数式加以具体情况具体分析,针对题设条件与所求代数式的本质特点及内在联系,灵活选用适当方法与技巧,方能使求解过程简捷、科学、合理。
一、公式法例1 :已知a + b = 1 ,a 2 + b 2 = 2 求a 6 +b 6 的值分析:本题若根据已知条件先求出a 、b 的值,然后代入所求式中计算,虽不失为一种思考途径,但求出的a 、b 的值均为复杂的无理数,而所求代数式中的a 、b 又均为高次幂,从而使运算非常复杂。
若借助乘法公式先将所求代数式化为“a + b ”与“ab ”的结构形式,则问题的解答将简便得多。
解:由a + b = 1,有(a + b )2 =1 ,即1222=++b ab a又a 2 + b 2 =2 ,∴a b = -21()()()()()[]()()87112141222121232322222223443442266=⨯⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛+⨯=+--++-+=--++=+∴b a ab b a b a b ab a b a b a b a b a b a b a3另外考虑a 7 + b 7 的值的求法二、参数法例2:若542c b a== ,求cb ac b a +--+2的值 分析:本题题设给出a 、b 、c 的三个连比式,若引入一个参数,则所求代数式的分子、分母均由三元转化为一元,从而通过化简而求解。
解:设k c b a ===542 ,由题意k ≠0,则a = 2k ,b = 4k ,c =5k 所以c b a c b a +--+2 = 133542544==+--+k k k k k k k k 三、倒数法例3:已知 712=+-x x x ,求 1242++x x x 的值 分析:由已知式与所求式之间的结构及各自分子、分母的幂次数特点出发,本题使用“倒数法”较为简便。
代数式求值的常用方法
代数式求值的常用方法代数式的求值问题出了可以按常规直接代入求值外,还可以其形式多样、思路多样的特点,灵活运用恰当的方法和技巧.本文介绍几种常用的求职方法,供同学们在复习时参考.一、化简代入求值例1 (2009年长沙市)222)())((a b a b a b a -++-+,其中3=a ,31-=b . 解析:化简代入法是指先把所求的代数式进行化简,然后代入求值. 原式=2222222a b ab a b a -+++-=ab 2.当3=a ,31-=b 时,原式=)31(32-⨯⨯=—2. 二、设参数求值例2 (2008年芜湖市)已知113x y -=,则代数式21422x xy y x xy y----的值为 . 解析:本题是比较有新意的,刚开始我们可能无从下手,因为无法确切求出未知数(x 、y 、z )的值,但我们可以通过设参数的形式解决. 将311=-yx 变形为3=-xy x y ,设k x y 3=-(即k y x 3-=-),k xy =.(0≠k ) ∴y xy x y xy x ----22142=xy y x xy y x 2)(14)(2----=k k k k 2314)3(2----⨯=k k 520--=4. 故本题填4.三、整体代入求值例3 (2009年江苏省)若2320a a --=,则2526a a +-= .解析:本题若通过利用2320a a --=求a 的值,计算将会比较复杂,所以我们可以根据题目特点考虑整体思想.由2320a a --=,得232=-a a .所以2526a a +-=5262++-a a =5)3(22+--a a =—2×2+5=1. 故本题填1.四、因式分解求值例4 (2009年枣庄市)若m +n =3,则222426m mn n ++-的值为( ) A.12 B.6 C.3 D.0解析:注意到22242n mn m ++能分解成2)(2n m +,可将3=+n m 整体代入,进而求值. 624222-++n mn m =6)(22-+n m =6322-⨯=12.故选A .五、平方求值例5 (2009年烟台市)设0a b >>,2260a b ab +-=,则的值等于 .解析:本题直接求值比较困难,可先求出待求式子平方的值,然后再开根号(即以退为进的策略),但要注意最后结果的符号.∵0622=-+ab b a ,即ab b a 622=+, ∴ab b a ab b a a b b a 22)(22222-+++=-+=abab ab ab ab ab 482626=-+=2. 又∵0a b >>,∴a b b a +->0,故a b b a +-=2.。
代数式的求值
代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:a2+b2+c2=1,①求a+b+c的值.解将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,所以 a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3m?xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y 与xy的值,由此得到以下解法.解 x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解 x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即 (x-2)2+|3x-y|=0.所以 y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m2x2+m2y2-2mxy-2mny+y2+n2=0,(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即 (mx-y)2+(my-n)2=0.5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:分析直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算.同样(但请注意算术根!)将①,②代入原式有练习六2.已知x+y=a,x2+y2=b2,求x4+y4的值.3.已知a-b+c=3,a2+b2+c2=29,a3+b3+c3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.5.设a+b+c=3m,求(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)的值.8.已知13x2-6xy+y2-4x+1=0,求(x+y)13?x10的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何求代数式的值
求代数式的值是数学中的一个重要的内容,它是中考和数学竞赛中的必考内容.求代数式的值的一般步骤是先代入,再计算求值.但在实际解题时,常常需要综合运用知识求值,现介绍一些求代数式的值的一些常用的方法,以供同学们参考.
一、单值代入求值
用单一的字母数值代替代数式中的字母,按代数式指明的运算,计算出结果;
例1当x=2时,求x3+x2-x+3的值.
析解:当x=2时,原式=23+22-2+3=13.
二、多值代入求值
用多个的字母数值代替代数式中的相应字母,按代数式指明的运算,计算出结果
例2当a=3,a-b=1时,代数式a2-ab的值.
析解:将a=3代入a-b=1得b=2,则原式=32-32=3.
三、整体代入求值
根据条件,不是直接把字母的值代入代数式,而是根据代数式的特点,将整体代入以求得代数式的值.
例3如果代数式的值为18,那么代数式的值等于( )
A. B. C. D.
分析:根据所给的条件,不可能求出具体字母a b的值,可考虑采用整体代入的方法,所要求的代数式可变形为
3(-2a+3b+8)-22,,从而直接代入的值求出答案.
解:原式=3(-2a+3b+8)-22=318-22=32.
例4如果,那么代数式2 的值为( )
A、64
B、5
C、4
D、5
分析:本题中没有给出的值,所以不能直接代入求值.所以我们应设法把原代数式化成用含的式子来表示的形式,然后再把看作一整体,把它的值整体代入求值.
解:原式= =-4,所以选C.
例5当x=1时,代数式px3+qx+1的值为2019,则x=-1时,代数式px3+qx+1的值为[( )
A.-2019
B.-2019
C.-2019
D.2019
解, 当x=1时
px3+qx+1=p+q+1=2019,p+q=2019.
当x=-1时,px3+qx+1=-p-q+1=-2019+1= -2019
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
四、特值代入求值
要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课
前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。
在选择题与填空题中,由于不用计算过程,也可以用特殊值法来计算,即选取符合条件的字母的值,直接代入代数式得出答案。