缺血再灌注损伤机制及保护综述

合集下载

脑缺血再灌注损伤机制PPT课件

脑缺血再灌注损伤机制PPT课件

其他治疗方式
控制危险因素
如高血压、糖尿病、高血脂等,降低脑缺血的发生风险。
康复治疗
针对脑缺血后遗留的功能障碍,进行康复训练,提高生活 质量。
健康宣教
提高公众对脑缺血的认识,加强预防措施的宣传和教育。
05
CATALOGUE
脑缺血再灌注损伤的研究进展与展望
研究进展
01
脑缺血再灌注损伤的病理生理机制
深入探讨了脑缺血再灌注损伤过程中炎症反应、氧化应激、细胞凋亡等
关键环节的作用机制,为治疗提供了理论基础。
02
脑缺血再灌注损伤的药物治疗
研究发现了多种具有神经保护作用的药物治疗方法,如抗血小板聚集药
物、溶栓药物、抗炎药物等,为临床治疗提供了新的选择。
03
脑缺血再灌注损伤的基因治疗
通过基因敲除或基因转染技术,调控关键基因的表达,以达到治疗脑缺
分类
根据缺血时间和再灌注时间的不 同,脑缺血再灌注损伤可分为急 性期、亚急性期和慢性期。
发生机制
能量代谢障碍
缺血时,脑组织能量生成不足, 导致细胞内ATP耗竭,细胞膜离 子泵功能受损,细胞内钠离子和 钙离子浓度升高,引发细胞毒性
水肿和细胞死亡。
炎症反应
再灌注后,炎症细胞因子和趋化 因子被激活,引发炎症反应,导
细胞信号转导异常
信号转导通路紊乱
脑缺血再灌注损伤过程中,细胞内信号转导通路发生紊乱,导致 细胞功能异常。
信号分子异常
参与信号转导的分子在脑缺血再灌注损伤后出现异常,影响信号转 导过程。
信号转导抑制剂的作用
某些物质在脑缺血再灌注损伤后发挥信号转导抑制剂的作用,干扰 信号转导过程。
细胞内蛋白质合成异常
致白细胞浸润和组织损伤。

外科手术技术中的组织缺血再灌注损伤

外科手术技术中的组织缺血再灌注损伤

外科手术技术中的组织缺血再灌注损伤组织缺血再灌注损伤是指在外科手术中,当组织由于缺血而受到严重损害后,再次引入氧合血液时,反而会加重组织损伤的现象。

这一现象在临床上较为常见,特别是在心血管手术和器官移植手术中。

了解组织缺血再灌注损伤的发生机制和预防方法对于外科手术的成功和患者恢复至关重要。

组织缺血再灌注损伤的发生机制主要包括两个主要的生理过程:氧供减少和氧需增加。

当组织遭受缺血时,氧供不足会导致细胞能力下降,细胞代谢异常。

当再次引入氧合血液时,细胞内的氧需增加,导致细胞内产生氧自由基和活性氧物质,引起细胞损伤和炎症反应。

此外,再灌注过程中,血管内皮细胞也会受到损伤,释放出一系列促炎因子,引起炎症反应的进一步加重。

预防组织缺血再灌注损伤的方法主要包括手术操作技巧和药物干预两个方面。

首先,外科手术操作技巧是预防组织缺血再灌注损伤的关键。

手术时应避免长时间的缺血,尽量减少器官和组织的缺血时间。

一些先进的手术技术如冷缺血保护、短期缺血和再灌注等技术可以最大程度地减少组织缺血对患者的伤害。

此外,在手术操作过程中应尽量减少局部组织的创伤程度,避免局部血管损伤和缺血,提高局部血液循环。

其次,药物干预也是预防组织缺血再灌注损伤的重要手段。

一些药物如抗氧化剂、自由基清除剂和炎症抑制剂等可以帮助减轻再灌注损伤的程度。

例如,超氧化物歧化酶类似物能够清除细胞内产生的自由基,减少氧自由基引起的损伤;肝素可以抑制炎症反应,减少内皮细胞损伤。

此外,提高患者的整体状况和免疫力也可以减轻组织缺血再灌注损伤的发生。

饮食均衡、合理的营养摄入和适当的运动可以增强患者的免疫功能,减轻组织缺血再灌注损伤的程度。

总之,组织缺血再灌注损伤是外科手术中常见的并发症之一,在临床实践中需要引起足够的重视。

为了预防和减轻该损伤,外科医生应注意手术操作技巧,尽量减少组织的缺血时间和创伤程度。

此外,药物干预和提高患者整体状况也是重要的预防策略。

通过综合采取措施,我们可以最大程度地减少组织缺血再灌注损伤的发生,提高手术成功率,并促进患者的康复。

缺血再灌注损伤

缺血再灌注损伤

缺血再灌注损伤
缺血再灌注损伤是一种常见而严重的疾病,其发生率和死亡率日益增加。

缺血再灌注损伤是指缺血情况下,组织再次被血液灌注时所引起的组织损伤。

这种损伤主要发生在心脏、肝脏、肾脏和大脑等器官中,严重时甚至会导致器官功能障碍和死亡。

缺血再灌注损伤的形成机制十分复杂。

一方面,血管内皮细胞和周围组织血管收缩后,血液无法到达组织细胞,从而导致局部缺血。

另一方面,当血液重新被灌注回组织细胞时,血管内皮细胞和周围组织会释放出大量的自由基和炎症因子,引起组织细胞的氧化损伤和炎症反应。

为了预防和治疗缺血再灌注损伤,目前的主要方法是采用抗氧化剂、炎症因子抑制剂、细胞凋亡抑制剂等药物,以及利用低温、缺氧等方法来减少缺血再灌注损伤的发生。

此外,合理的营养和运动也可以起到预防和治疗缺血再灌注损伤的作用。

总之,缺血再灌注损伤是一种十分严重的疾病,其发生机制十分复杂,需要多方面的方法来进行预防和治疗。

未来,随着医学技术的不断发展,相信我们一定可以更好地预防和治疗缺血再灌注损伤,为人类健康事业作出更大的贡献。

十章缺血-再灌注损伤

十章缺血-再灌注损伤
基因沉默
通过抑制特定基因的表达,减轻组织损伤。
作用机制
通过调控基因表达、促进细胞增殖和分化、抑制炎症反应和凋亡 等机制,改善组织功能和促进修复。
05
缺血-再灌注损伤的案例分析
心梗患者的缺血-再灌注损伤
总结词
心梗患者心肌缺血后,血液再灌注时可 能导致心肌细胞死亡和心功能受损。
VS
详细描述
心梗患者心肌缺血后,血液再灌注时,大 量氧自由基和炎症因子释放,导致心肌细 胞死亡和心功能受损。此外,钙离子过载 、线粒体功能障碍等也参与了心肌细胞的 死亡过程。
分类
根据缺血时间和再灌注时间的不同, 缺血-再灌注损伤可分为急性、亚急性 、慢性等类型。
缺血-再灌注损伤的病理生理机制
自由基爆发
01
再灌注后,大量活性氧自由基爆发,导致细胞膜脂质过氧化,
细胞功能受损。
钙离子过载
02
缺血时细胞内钙离子浓度降低,再灌注后钙离子大量涌入细胞
内,引发细胞内钙离子过载,导致细胞死亡。
脑梗患者的缺血-再灌注损伤
总结词
脑梗患者脑组织缺血后,血液再灌注时可能导致脑细胞死亡和神经功能受损。
详细描述
脑梗患者脑组织缺血后,血液再灌注时,大量氧自由基和炎症因子释放,导致脑细胞死亡和神经功能受损。此外, 血脑屏障破坏、细胞内钙离子过载等也参与了脑细胞的死亡过程。
肢体缺血-再灌注损伤
总结词
肢体缺血后,血液再灌注时可能导致肢体肌肉细胞死亡和功能障碍。
第十章 缺血-再灌注损伤
• 缺血-再灌注损伤概述 • 缺血-再灌注损伤的病理变化 • 缺血-再灌注损伤的防治策略 • 缺血-再灌注损伤的研究进展 • 缺血-再灌注损伤的案例分析
01
缺血-再灌注损伤概述

缺血再灌注损伤机制与保护综述

缺血再灌注损伤机制与保护综述

脑缺血再灌注损伤机制及医治进展西安交通大学医学院第二附属医院麻醉科710004薛荣亮脑缺血一按时间恢复血液供给后,其功能不但未能恢复,却出现了加倍严重的脑性能障碍,称之为脑缺血再灌注损伤(cerebral ischemia reperfusion injury,CIR)。

脑缺血再灌注损伤与自由基的生成、细胞内钙超载、兴奋性氨基酸毒性、白细胞高度聚集和高能磷酸化合物的缺乏等有关。

急性局灶性脑缺血引发的缺血中心区死亡以细胞坏死为主,目前熟悉的比较清楚,即脑缺血后5-7分钟内,细胞能量耗竭,K+通道受阻,膜电位降低,神经末梢释放谷氨酸,通过兴奋谷氨酸受体(包括NMDA 、AMPA和KA受体)致使细胞膜上的Ca2+通道开放,引发Ca2+超载,高Ca2+可激活NOS,使NO和氧自由基的形成增加,引发脂质过氧化,引发膜结构和DNA的损伤;Ca2+还可活化各类酶类,加重细胞损伤和能量障碍,引发缺血级联反映,结果细胞水肿、细胞膜破裂,细胞内酶和炎性介质释放,引发细胞坏死。

最近几年来熟悉到半暗带区域于再灌注数天后出现了迟发性神经元死亡(DND),DND常出此刻缺血再灌注后2-4日,主要发生在海马、纹状体及皮质区域,DND需要数日时间、有新蛋白质合成的、需要消耗能量的、为无水肿的细胞自杀进程,称之为细胞凋亡(PCD)。

脑缺血再灌注损伤既包括急性细胞坏死也包括细胞凋亡,对于DND的确切机制目前仍不清楚,尚需进一步深切研究。

现对脑缺血再灌注损伤机制的研究进展及保护办法简述如下:1.基因活化脑缺血再灌注损伤后可出现大量基因表达,大约有374种基因出现转变,绝大多数基因与凋亡有关,其中57种基因的蛋白表达是缺血前的倍,而34种基因的表达量出现下降,均发生在4小时到72小时, 包括蛋白质合成,基因突变,促凋亡基因,抑凋亡基因和损伤反映基因转变等,这些基因的彼此作用最终决定了DND的发生。

2.兴奋性氨基酸毒性兴奋性氨基酸毒性是指EAA受体活化而引发的神经元死亡,是脑缺血性损伤的重要触发物和介导物。

骨骼肌缺血再灌注损伤机制

骨骼肌缺血再灌注损伤机制

骨骼肌缺血再灌注损伤机制骨骼肌缺血再灌注损伤(ischemia-reperfusion injury, IRI)是指骨骼肌组织在缺血一段时间后重新灌注血液时发生的损伤现象。

缺血再灌注损伤机制复杂,涉及多种生物学过程。

缺血阶段:1. 血流供应不足:由于血管堵塞或狭窄等原因,骨骼肌组织无法得到足够的血流供应,导致氧气和营养物质供应不足。

2. 细胞能量缺乏:缺血导致ATP生成减少,细胞无法维持正常的代谢活动和功能,进而引发细胞死亡。

再灌注阶段:1. 缺血-再灌注诱导的氧化应激:当血流重新供应到缺血骨骼肌组织时,氧气重新进入细胞,导致氧化应激反应,产生大量的活性氧(reactive oxygen species, ROS),如超氧阴离子、过氧化氢和羟基自由基等。

这些ROS能够引发氧化损伤,导致细胞膜的脂质过氧化、细胞骨架的蛋白质氧化、DNA断裂等。

2. 炎症反应的激活:缺血再灌注损伤能够激活炎症反应,包括细胞黏附分子和细胞因子的表达,引起炎性细胞浸润和炎性介质的释放。

炎症反应进一步加剧细胞损伤和细胞死亡。

3. 钙离子失衡:缺血再灌注损伤会破坏细胞内外的钙离子平衡,导致细胞内钙浓度增加。

高浓度的细胞内钙离子可以引发线粒体膜通透性转变、肌纤维收缩的持续性、激活酶和信号通路等,从而对细胞产生损伤。

4. 肌纤维溶解和细胞凋亡:缺血再灌注损伤可导致骨骼肌肌纤维的破裂和溶解,损害肌细胞的结构和功能。

同时,缺血再灌注损伤还能够激活细胞凋亡,进一步加剧细胞死亡。

总的来说,骨骼肌缺血再灌注损伤机制是一个复杂的过程,涉及氧化应激、炎症反应、钙离子失衡、肌纤维溶解和细胞凋亡等多个方面,这些因素相互作用,共同促使骨骼肌细胞发生损伤和死亡。

了解这些机制,有助于针对性地预防和治疗骨骼肌缺血再灌注损伤。

肾脏缺血再灌注损伤机制

肾脏缺血再灌注损伤机制

肾脏缺血再灌注损伤机制1. 引言肾脏是人体重要的排泄器官,肾脏缺血再灌注损伤是临床常见的疾病情况。

它常见于肾脏移植、心脏手术及肾动脉阻塞等情况下,给肾脏带来严重的损伤,进而导致肾功能的丧失。

因此,了解肾脏缺血再灌注损伤的机制对于预防和治疗该病情具有重要意义。

2. 肾脏缺血再灌注损伤的机制2.1 缺血期机制在肾脏缺血的初期,由于血液供应不足,肾脏细胞无法得到足够的氧和营养物质供应。

这时,细胞内能量代谢发生紊乱,导致细胞的ATP水平下降。

此外,缺血还会导致肾脏内氧自由基的生成增加,进而引发氧化应激反应。

这些机制的紊乱导致了细胞能量的丧失,细胞膜的损伤以及氧化应激反应的增加。

2.2 再灌注期机制再灌注是指在肾脏缺血后进行再次血流灌注。

尽管再灌注恢复了肾脏的血液供应,但同时也引发了新一轮的损伤机制。

在肾脏再灌注期,细胞内的缺氧状态使得再灌注后细胞内Ca2+离子浓度升高。

高浓度的Ca2+离子进入线粒体,导致线粒体功能异常。

此外,再灌注还会进一步增加氧自由基的生成,引发更严重的氧化应激反应。

同时,再灌注还会激活炎症反应,导致炎症因子的释放和炎症细胞的聚集。

2.3 损伤机制综述肾脏缺血再灌注损伤的机制涉及多种生物学过程,包括细胞能量的丧失、氧化应激反应的增加、细胞膜的损伤、Ca2+离子异常、线粒体功能异常以及炎症反应的激活。

这些机制相互作用,共同导致肾脏细胞和组织的严重损伤,最终导致肾功能的丧失。

3. 预防和治疗肾脏缺血再灌注损伤3.1 氧自由基清除剂的应用由于氧自由基在肾脏缺血再灌注损伤的发生中起到重要作用,因此应用氧自由基清除剂具有预防和治疗肾脏缺血再灌注损伤的潜力。

常用的氧自由基清除剂包括超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPx)以及维生素C和E。

这些清除剂能够中和过多的氧自由基,减轻氧化应激反应,从而保护肾脏细胞。

3.2 脂质过氧化抑制剂的应用脂质过氧化在肾脏缺血再灌注损伤中也起到了重要作用。

肠缺血再灌注损伤综述

肠缺血再灌注损伤综述

肠缺血再灌注损伤综述肠缺血再灌注损伤(ischemia reperfusion injury,IR)是外科常见的病理变化,是发生于肠道组织的再灌注损伤,经专家证实其在严重感染、创伤休克的致死性疾病发生与进展中起到重要作用,是创伤休克、严重感染等致死性疾病主要直接致死原因。

该研究者从事肠胃工作多年,在这方面具有丰富的工作经验和实践能力,对肠缺血再灌注损伤的具体机有一定的研究,该文针对性提出了疾病防治策略,有助于逆转疾病进程,降低死亡风险,希望能够与同行业的相关技术人员一同分享。

标签:肠缺血再灌注损伤;病理性机制;防治策略缺血再灌注损伤(ischemia reperfusion injury,IR)是缺血所引的组织损伤,是致死性疾病的主要原因。

在缺血性疾病抢救和治疗过程中,医学家们渐渐发现,对组织造成损伤的主要因素不是缺血本身,而是恢复血液供应后,过量的自由基攻击顺血供,对功血供恢复细胞造成冲击,而这种冲击损害便是肠IR发生的直接病机。

肠缺血再灌注损伤即发生于肠道组织的再灌注损伤,被证实其在严重感染、创伤休克的致死性疾病发生与进展中起到重要作用,研究其具体机制,并针对性提出防治策略,有助于逆转疾病进程,降低死亡风险。

现报道如下。

1 目前研究的现状,可能存在的机制1.1 细胞层面上的研究现状细胞的死亡可分为坏死与凋亡,过去学术界普遍认为肠IR中伴有大量自由基灌注所造成的毒理损害可直接致细胞坏死,最近有研究表明,肠IR中损伤细胞有相当一部分以细胞凋亡形式死亡。

众所周知,细胞的凋亡是通过基因控制的,是一种“自杀”。

研究证实细胞凋亡是小肠缺血再灌注损伤时豁膜细胞死亡的主要机制,占死亡细胞总数的80%,其诱导机制包括:①氧自由基直接造成细胞损伤;②当小肠细胞受损时,可能会释放炎性递质,加速细胞凋亡反应;③肠豁膜屏障功能不全时,菌群移位促进豁膜细胞凋亡[1]。

Kaszaki J,Wolfard A,Szalay L,Boros M[2]研究结果表明:①病理生理学意义内皮素对受体激活在缺血/再灌注诱导主要从事微循环的变化;②胶体液治疗有效地改善了羟乙基淀粉主要从事微循环血容量减少的后果,这是一个较低的内皮素释放;③缺血预处理在应用前60 min,抑制了缺血再灌注诱导超氧化物生产,改善毛细血管灌注,降低白细胞活化在肠道内移植。

脑缺血再灌注损伤机制与治疗现状

脑缺血再灌注损伤机制与治疗现状

脑缺血再灌注损伤机制与治疗现状近年来,脑缺血再灌注损伤(CIRI)成为神经科学研究领域的热点之一。

在脑缺血的情况下,脑组织会因为血流减少而缺氧,导致神经细胞死亡。

然而,当血流重新恢复时,这种损伤往往会加剧,引发脑水肿、炎症反应和氧化应激等病理变化。

因此,了解脑缺血再灌注损伤的机制和治疗现状对于防治卒中和其他脑血管疾病具有重要意义。

脑缺血再灌注损伤的机制十分复杂,主要包括以下几个方面:氧化应激:当血流重新恢复时,大量氧分子与自由基产生,导致氧化应激反应。

这些自由基可攻击细胞膜和线粒体等细胞结构,引发细胞死亡。

细胞内钙离子超载:在脑缺血期间,细胞内钙离子水平上升。

当血流恢复时,由于钠-钙交换异常,钙离子水平会进一步升高,导致细胞死亡。

炎症反应:脑缺血再灌注后,炎症细胞会被激活,释放炎性因子,引发炎症反应。

这些炎性因子可导致神经细胞死亡和血脑屏障破坏。

凋亡和坏死:脑缺血再灌注后,神经细胞可发生凋亡和坏死。

这些细胞死亡过程可导致神经功能缺损和认知障碍。

目前,针对脑缺血再灌注损伤的治疗主要包括以下几个方面:溶栓治疗:通过使用溶栓药物,如尿激酶、组织型纤溶酶原激活物等,溶解血栓,恢复血流,减轻脑缺血再灌注损伤。

神经保护剂治疗:使用神经保护剂,如钙通道拮抗剂、抗氧化剂、抗炎药物等,保护神经细胞免受氧化应激、炎症反应等的损害。

低温治疗:通过降低体温来减少脑代谢和氧化应激反应,保护神经细胞。

低温治疗已在动物实验中显示出良好的疗效,但其在临床试验中的效果尚不明确。

细胞治疗:利用干细胞、免疫细胞等修复受损的神经细胞,或通过调节免疫反应减轻炎症反应。

细胞治疗为脑缺血再灌注损伤的治疗提供了新的可能性,但尚处于研究阶段。

血管生成治疗:通过促进新血管形成,改善脑组织供血。

血管生成治疗包括血管内皮生长因子(VEGF)和其他促血管生成因子的应用。

这种治疗方法在动物实验中取得了显著成效,但仍需进一步的临床验证。

脑缺血再灌注损伤是卒中和脑血管疾病中一个重要的病理过程,其机制复杂,包括氧化应激、细胞内钙离子超载、炎症反应、凋亡和坏死等多个方面。

缺血—再灌注损伤与缺血预处理及缺血后处理的保护作用机制(一)

缺血—再灌注损伤与缺血预处理及缺血后处理的保护作用机制(一)

缺血—再灌注损伤与缺血预处理及缺血后处理的保护作用机制(一)作者:马建伟杜会博温晓竞【关键词】缺血;再灌注损伤;缺血预处理缺血是临床上最常见的症状之一,尤其是心脏缺血损伤一直是众多学者研究和关注的问题。

既往认为短暂的心肌缺血造成的心肌可逆性损伤会使之更难以耐受再次缺血损伤。

因此认为多次短暂缺血必然发生累加而导致心肌坏死。

80年代Murry1]首次在狗的实验中发现短暂的冠脉缺血可以使心脏在经历后续长期缺血时的心梗面积较单纯长期缺血时的面积明显缩小,于是提出缺血预处理的概念。

而在2003年,Zhao等2]在犬心肌缺血后再灌注前进行了3次30s的再灌注,发现冠状动脉的内皮功能较单纯长时间再灌注得到明显改善,而且心肌梗死范围也明显缩小,其保护程度与缺血预处理相似。

因而提出了缺血后处理的概念。

这两方面的发现为缺血心肌的保护开辟了新的研究领域。

1心肌的缺血-再灌注损伤1.1心肌的缺血—再灌注损伤的概念及损伤表现缺血-再灌注(ischemiareperfusion,IR)是指心肌缺血时,心肌的代谢出现障碍,从而出现一系列功能异常;缺血一定时间的心肌再重新恢复血液供应后,心肌不一定都会恢复其正常功能和结构,反而出现心肌细胞损伤加重的表现,即所谓缺血—再灌注损伤,IRI)。

这一损伤是心脏外科、冠脉搭桥术等手术期间心肌损伤的主要因素。

其损伤表现为心肌细胞的坏死、凋亡、线粒体功能障碍、脂质过氧化物增多、自由基大量生成,并导致恶性心率失常发生,左心室收缩力减弱、室内压下降等心肌功能的抑制。

1.2心肌的缺血再灌注损伤的机制尽管几十年来人们一直在进行研究,但至今其详细的机制未被阐明,根据近年来的研究其可能的机制有:1.2.1G蛋白、腺苷酸环化酶的功能异常心肌缺血时,对于G蛋白、腺苷酸环化酶活性的变化各家报道不一,有研究表明在体大鼠缺血区G蛋白含量明显降低3],有结果表明,离体大鼠缺血区G蛋白含量无明显变化4],也有结果表明,在体狗心肌缺血时,心肌G蛋白含量出现明显增加5]。

缺血再灌注损伤机制

缺血再灌注损伤机制

缺血再灌注损伤机制缺血再灌注损伤(ischemia-reperfusion injury)是一种普遍存在的生理现象,常见于心血管外科手术、心肌梗死、脑中风等各种临床情况中。

本文将以缺血再灌注损伤机制为主题,从深度和广度两个方面探讨该主题的各个方面,以帮助读者更全面地理解这一现象。

一、缺血再灌注损伤的基本概念缺血再灌注损伤指的是当组织或器官遭受缺血(血液供应中断)一段时间后,再次供血恢复时所引发的损伤反应。

尽管再灌注的目的是恢复局部供血,但却可能对组织或器官造成更严重的伤害,导致细胞坏死、炎症反应和功能丧失等不良后果。

二、缺血再灌注损伤的机制1. 氧化应激和自由基产生在缺血时,组织或器官缺乏氧气和能量供应,导致线粒体功能障碍和ATP合成降低。

当再灌注发生时,由于血液中大量的氧气重新供应,导致活化的线粒体释放更多反应性氧种和自由基,从而引发氧化应激反应,破坏细胞膜和细胞器功能。

2. 炎症反应激活缺血再灌注损伤可引发炎症反应,释放细胞因子、趋化因子和炎症介质,进一步导致炎症细胞浸润、血管扩张和血小板聚集等炎症反应。

这些炎症反应激活了免疫细胞和炎性细胞,进一步加剧了组织损伤。

3. 钙离子紊乱缺血再灌注损伤会导致细胞内和细胞外钙离子浓度失衡,破坏细胞内钙离子平衡和细胞外钙离子浓度梯度。

这种钙离子紊乱会引发线粒体功能失调、细胞凋亡和细胞死亡等多种病理生理过程。

4. 血管内皮功能损伤缺血再灌注损伤可导致血管内皮细胞的受损和功能异常,进而引发血管扩张、血小板聚集和血管渗透性增加等现象。

这些改变会进一步造成血管内皮功能的破坏,加重缺血再灌注损伤。

三、缺血再灌注损伤防治策略1. 保护组织氧供在缺血再灌注过程中,保持良好的氧供对减轻损伤非常重要。

提前做好血液输注、氧气供应和改善心血管循环等措施,可以有效预防缺血再灌注损伤的发生。

2. 抗氧化治疗应用抗氧化剂,如维生素C、维生素E和谷胱甘肽等,可以减轻缺血再灌注引起的氧化应激反应。

心肌缺血再灌注损伤的研究新进展

心肌缺血再灌注损伤的研究新进展

心肌缺血再灌注损伤的研究新进展心肌缺血再灌注损伤是指心肌在短暂缺血后重新获得血液供应时,反而加重心肌损伤的过程。

近年来,随着相关研究的深入,人们对心肌缺血再灌注损伤的认识不断加深,也为寻求有效的治疗方法提供了新的思路。

在以往的研究中,心肌缺血再灌注损伤的机制主要包括氧化应激、钙离子超载、炎症反应等。

其中,氧化应激是最为重要的一个环节,自由基的过度产生和清除失衡会导致心肌细胞的进一步损伤。

另一方面,钙离子超载也会导致心肌细胞死亡,而在再灌注过程中炎症反应的加剧也会加重心肌损伤。

针对这些机制,临床上已经开展了一系列治疗措施,如缺血预处理、远程缺血预处理、药物干预等。

其中,缺血预处理和远程缺血预处理可以有效地减少心肌细胞的死亡,而药物干预则可以通过调节炎症反应、清除自由基等方式减轻心肌损伤。

随着研究的不断推进,干细胞修复和新技术的应用为心肌缺血再灌注损伤的治疗提供了新的可能性。

干细胞修复是指利用干细胞的分化能力,将干细胞移植到受损的心肌组织中,以替代受损的心肌细胞。

新技术的应用则包括基因治疗、细胞治疗、纳米技术等,这些技术可以更加精准地调控细胞的生长和分化,为心肌损伤的治疗提供了新的途径。

尽管已经取得了一定的研究成果,但是心肌缺血再灌注损伤的治疗仍然面临许多挑战。

如何确保干细胞在心肌组织中的生长和分化是一个亟待解决的问题。

新技术的应用尚处于初步阶段,其长期效果和安全性需要进一步验证。

如何在临床实践中将这些治疗方法与传统的冠心病治疗方法相结合,以提高患者的生存率和生活质量,也是未来研究的重要方向。

心肌缺血再灌注损伤的研究新进展为冠心病的治疗提供了新的思路和方法。

然而,仍需要更多的研究来明确其机制和治疗方法。

通过深入探讨心肌缺血再灌注损伤的机制,我们可以更精准地制定出有效的治疗方案。

同时,随着新技术的不断发展,相信未来会有更多创新的治疗方法问世,为心肌缺血再灌注损伤患者带来希望。

在未来的研究中,我们还需要以下几个方面:深入探讨干细胞修复和新技术治疗心肌缺血再灌注损伤的机制,以期发现更为有效的治疗方法。

脑缺血再灌注损伤机制护理

脑缺血再灌注损伤机制护理

急救护理
快速识别
在脑缺血发生时,快速识别并采 取急救措施是至关重要的。应密 切观察患者的症状和体征,及时
发现并处理。
保持呼吸道通畅
确保患者呼吸道通畅,及时清理 呼吸道分泌物,防止窒息和吸入
性肺炎等并发症。
降低颅内压
对于脑缺血引起的颅内压升高, 应及时采取措施降低颅内压,以
减轻脑水肿和保护脑组织。
康复护理
THANKS FOR WATCHING
感谢您的观看
特点
脑缺血再灌注损伤具有不可逆性 ,且会导致脑组织功能严重受损 ,甚至危及生命。
脑缺血再灌注损伤的病理生理机制
自由基爆发
脑缺血再灌注后,大量自由基产 生并攻击细胞膜和线粒体,导致
细胞死亡。
炎症反应
脑缺血再灌注后,炎症细胞浸润和 炎症因子释放,加重脑组织损伤。
钙离子内流
脑缺血再灌注后,细胞内钙离子浓 度升高,引发细胞凋亡和坏死。
溶栓药物
总结词
溶栓药物是用于治疗急性脑缺血再灌注损伤的重要药物之一,通过溶解血栓,恢复脑组织的血流灌注 ,从织型纤溶酶原激活物等,这些药物通过激活纤溶酶原,使其转化为纤 溶酶,从而溶解血栓。在脑缺血再灌注损伤的药物治疗中,溶栓药物可以有效地减轻脑缺血的症状和 损伤,但需要在发病后早期使用,并严格掌握适应症和禁忌症。
康复训练
在脑缺血恢复期,应根据患者的具体情况制定康复训练计划,包 括肢体功能训练、语言康复、认知训练等。
心理护理
脑缺血患者往往存在焦虑、抑郁等心理问题,应及时进行心理疏导 和干预,帮助患者树立信心,积极配合康复治疗。
定期随访
在康复过程中,应定期对患者进行随访,评估康复效果,及时调整 康复计划,促进患者全面康复。

缺血-再灌注损伤发生的最重要机制

缺血-再灌注损伤发生的最重要机制

缺血-再灌注损伤发生的最重要机制下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!缺血再灌注损伤的最重要机制简介缺血再灌注损伤是一种常见的病理生理过程,其发生机制涉及多种复杂的生物学反应。

缺血再灌注损伤机制

缺血再灌注损伤机制

缺血再灌注损伤机制
缺血再灌注损伤是一种复杂的细胞损伤机制,它发生在血液和氧气供应突然中断后重新恢复时。

当机体缺氧时,组织便无法得到足够的氧气,因此细胞活力减弱,其功能受到影响,而细胞代谢也减缓。

当血液和氧气再次供应时,就可以恢复原有的功能,但细胞却面临着一系列有害的影响,这种细胞损伤被称为“缺血再灌注损伤”。

缺血再灌注损伤的机制主要包括氧自由基的产生、炎症反应、脂质过氧化和细胞凋亡等。

氧自由基是一种活性氧物质,它可以损伤DNA、蛋白质和脂质,从而导致细胞功能丧失,并引发细胞炎症反应。

炎症反应是一种促使细胞分裂和死亡的过程,它可以刺激白细胞介素,进而产生炎症,导致细胞壁通透性增加,肿瘤坏死因子等致病因子流出,造成更多的细胞损伤。

另外,缺血再灌注损伤还会导致脂质过氧化,这是一种将脂质从正常状态变成活性物质的过程,这些活性物质可能会诱导细胞凋亡,从而导致细胞死亡。

总的来说,缺血再灌注损伤的机制主要包括氧自由基的产生、炎症反应、脂质过氧化和细胞凋亡等,这些机制
可以导致细胞功能丧失、炎症反应、细胞凋亡,从而最终造成组织损伤。

病理生理学总结:缺血-再灌注损伤

病理生理学总结:缺血-再灌注损伤

缺血-再灌注损伤一、概述1.缺血性疾病心脏:冠心病、心肌梗死脑:脑血管痉挛、脑血管狭窄,脑梗塞四肢:血栓,骨折,长期卧床,血栓闭塞性脉管炎外伤:骨折,休克,DIC手术:止血带(骨科手术,整形手术)2.骨折骨折使某一骨折段的血液供应被破坏,而发生该骨折段的缺血性坏死。

由于股骨头动脉血供缺乏丰富的侧枝循环,当股骨头颈骨折移位明显、血管损伤后常引起股骨头缺血性坏死。

3.骨筋膜室综合征骨筋膜室内的肌肉和神经因急性缺血而产生的一系列早期症状和体征。

常由创伤骨折的血肿和组织水肿使其室内内容物质体积增加或外包扎过紧,局部压迫使骨筋膜室容积减小而导致骨筋膜室内压力增高所致。

4.治疗手段改进溶栓治疗介入:PCI动脉搭桥术休克治疗的进步体外循环断肢再植器官移植eg 心脏介入治疗股动脉或桡动脉穿刺,将带有球囊的导管放入血管,将球囊送到冠状动脉狭窄病变合适位置,加大球囊内压力,使其扩张并压迫动脉壁上的粥样硬化斑块。

经预扩张后,将金属支架送到病变处,支撑在冠状动脉内的狭窄病变处,使狭窄或塌陷的血管向外扩张,达到血管重建的目的。

5.缺血再灌注历史1955年,Sewell结扎狗冠状动脉后,如突然解除结扎,恢复血流,动物室颤而死亡1960年,Jennings第一次提出心肌再灌注损伤的概念1967年,Bulkley和Hutchins发现冠脉搭桥血管再通后病人发生心肌细胞反常性坏死1968年,Ames报道了脑缺血-再灌注损伤现象1972年,Flore报道了肾缺血-再灌注损伤现象1978年,Modry报道了肺缺血-再灌注损伤现象1981年,Greenberg报道了肠缺血- 再灌注损伤现象二、缺血-再灌注损伤的原因和影响因素缺血再灌注损伤(ischemia-reperfusion injury, IRI)缺血器官在恢复血液灌注后缺血性损伤进一步加重的现象,称为缺血-再灌注损伤1.原因1.1 组织器官缺血后恢复血液供应如休克治疗后微循环的再灌注、心脏骤停后心肺复苏等1.2 新医疗技术的应用如PCI(经皮冠状动脉介入手术)、溶栓疗法、断肢再植等2.影响因素2.1 缺血时间(首要因素)过短——功能恢复过长——坏死不同动物、不同器官发生IRI的缺血时间不同阻断狗冠状动脉左旋支15-20min,心肌IRI的发生率很高;而在15min以内或40min以上再灌注,心肌IRI均较少发生。

中药有效成分对心肌缺血再灌注损伤的防治作用及机制研究概述

中药有效成分对心肌缺血再灌注损伤的防治作用及机制研究概述

2、3抑制细胞凋亡
细胞凋亡是MIRI中另一种重要的细胞死亡途径。许多中药及其有效成分能够抑 制细胞凋亡,从而保护心肌细胞。例如,人参皂苷Rg3、白藜芦醇等能够抑制 凋亡信号的传导,降低细胞凋亡率,从而减轻MIRI的程度。
三、总结与展望
中药在防治MIRI方面具有独特的优势和潜力。越来越多的研究表明,中药及其 有效成分可以通过多靶点、多途径起到保护心肌的作用。然而,尽管已经取得 了一些进展,但还需要更多的研究来深入了解中药防治MIRI的作用机制,以及 开发更有效的中药防治方案。
5、改善能量代谢:心肌细胞的能量代谢在缺血再灌注过程中会发生紊乱。中 药有效组分如虫草酸、葛根素等可以改善能量代谢,提高心肌细胞的ATP生成, 从而增强心肌的收缩和舒张功能。
6、调节血管舒缩功能:心肌缺血再灌注过程中,血管舒缩功能会受到影响。 中药有效组分如川芎嗪、丹参酮等可以调节血管舒缩功能,减轻心肌的缺血和 再灌注损伤。
一、中药对心肌缺血再灌注损伤 的防治作用
1、1单味中药及其有效成分
许多中药及其有效成分被发现对MIRI具有防治作用。例如,丹参、川芎、红花 等活血化瘀的中药,能够改善微循环,保护心肌细胞。研究发现,这些药物能 够抑制炎症反应和氧化应激,从而减轻MIRI。此外,一些中药如冬虫夏草、灵 芝等也具有明显的抗氧化、抗炎作用,可以显著降低MIRI的程度。
3、调节氧化应激:氧化应激是心肌缺血再灌注损伤的重要机制之一。中药有 效组分如姜黄素、绿茶多酚等具有强大的抗氧化作用,可以减轻氧化应激对心 肌细胞的损伤。
4、抑制细胞凋亡:细胞凋亡是心肌缺血再灌注损伤的另一种重要机制。中药 有效组分如冬虫夏草素、灵芝多糖等可以抑制细胞凋亡,延长细胞的生存期, 从而对心肌起到保护作用。
结论

心肌缺血再灌注损伤 机制

心肌缺血再灌注损伤 机制

心肌缺血再灌注损伤机制
心肌缺血再灌注损伤的机制主要有以下三种理论:
1. 钙超载理论:当心肌缺血缺氧时,心脏就像是一块长期缺乏肥料的土地。

在充氧或再灌流时,会有钙离子进入到细胞中,以尝试对受损的细胞进行修复。

然而,这种钙离子的突然增加会导致细胞内的钙超载,反而加重细胞的损伤。

2. 白细胞渗透论:当组织受到伤害时,细胞的细胞膜会破裂,产生更多的花生四烯酸。

这些物质对人体产生强烈的诱惑力,从而导致大量的白细胞浸润,引发炎症反应。

这种炎症反应在再灌注时可能加重心肌的损伤。

3. 自由基理论:在再灌注过程中,细胞会产生大量的氧自由基。

这些自由基具有强氧化性,会损伤细胞膜和线粒体等细胞结构,导致细胞死亡。

以上内容仅供参考,如需更专业的信息,建议查阅相关文献或咨询专业医生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

缺血再灌注损伤机制及保护综述脑缺血再灌注损伤机制及治疗进展西安交通大学医学院第二附属医院麻醉科 710004薛荣亮脑缺血一定时间恢复血液供应后,其功能不但未能恢复,却出现了更加严重的脑机能障碍,称之为脑缺血再灌注损伤(cerebral ischemiareperfusion injury,CIR)。

脑缺血再灌注损伤与自由基的生成、细胞内钙超载、兴奋性氨基酸毒性、白细胞高度聚集和高能磷酸化合物的缺乏等有关。

急性局灶性脑缺血引起的缺血中心区死亡以细胞坏死为主,目前认识的比较清楚,即+脑缺血后5-7分钟内,细胞能量耗竭,K通道受阻,膜电位降低,神经末梢释放谷氨酸,通过兴奋谷氨酸受体(包括NMDA 、AMPA和KA2+2+2+受体)致使细胞膜上的Ca通道开放,引起Ca超载,高Ca可激活NOS,使NO和氧自由基的形成增加,引发脂质过氧化,引起膜结构和2+DNA的损伤;Ca还可活化各种酶类,加剧细胞损伤和能量障碍,引发缺血级联反应,结果细胞水肿、细胞膜破裂,细胞内酶和炎性介质释放,引起细胞坏死。

近年来认识到半暗带区域于再灌注数天后出现了迟发性神经元死亡(DND),DND 常出现在缺血再灌注后2-4日,主要发生在海马、纹状体及皮质区域,DND需要数日时间、有新蛋白质合成的、需要消耗能量的、为无水肿的细胞自杀过程,称之为细胞凋亡(PCD)。

脑缺血再灌注损伤既包括急性细胞坏死也包括细胞凋亡,对于DND的确切机制目前仍不清楚,尚需进一步深入研究。

现对脑缺血再灌注损伤机制的研究进展及保护措施简述如下: 1(基因活化脑缺血再灌注损伤后可出现大量基因表达,大约有374种基因出现1变化,绝大多数基因与凋亡有关,其中57种基因的蛋白表达是缺血前的 1.7倍,而34种基因的表达量出现下降,均发生在4小时到 72小时, 包括蛋白质合成,基因突变,促凋亡基因,抑凋亡基因和损伤反应基因变化等,这些基因的相互作用最终决定了DND的发生。

2(兴奋性氨基酸毒性兴奋性氨基酸毒性是指EAA受体活化而引起的神经元死亡,是脑缺血性损伤的重要触发物和介导物。

EAA可活化胞内信号转导通路,触发缺血后致炎基因表达。

CA1区神经细胞分布着大量的EAA受体,而抑制性氨基酸受体分布很小,这就为缺血后的兴奋性毒性提供了基础。

另外,CA1区较CA3区对缺血损伤敏感是由于其兴奋性氨基酸受体的类型不同,CA1区以NMDA受体为主,CA3区以KA受体为主,而KA受体对缺血敏感性较差,可能是造成DND发生的重要原因。

3(自由基及脂质过氧化脑缺血再灌注期间产生大量自由基。

其有害作用可概括为:? 作用于多价不饱和脂肪酸,发生脂质过氧化。

? 诱导DNA、RNA、多糖和氨基酸等大分子物质交联,交联后的大分子则失去原来的活性或功能降低。

? 促使多糖分子聚合和降解。

自由基可广泛攻击富含不饱和脂肪酸的神经膜与血管,引发脂质过氧化瀑布效应(oxygen burst),蛋白质变性,多核苷酸链断裂,碱基重新修饰,细胞结构的完整性破坏,膜的通透性、离子转运、膜屏障功能均受到严重影响,从而导致细胞死亡。

自由基还能导致EAA释放增加,促使脑缺血后DND发生。

4(热休克蛋白表达紊乱热休克蛋白是在多种应激原的作用下生成的分子量为7-200KD的2蛋白大家族,但研究的较多的是HSP70,有报道称CA1区神经细胞能表达大量的Hsp70mRNA,而脑缺血再灌注后CA1神经细胞Hsp70表达受到严重抑制。

此外,Hsp70基因表达发生变化并不只出现在预处理之后,许多其它基因的表达水平也相继发生变化。

目前相继有证据发现脑缺血后HSP60 、HSP10、HSP40、HSC70 、hsc70, hsp90, hsp105和 trkB均可被诱导产生。

5(线粒体功能障碍脑缺血再灌注后线粒体mRNA的表达紊乱可造成细胞能量产生进行性降低,ATP合成障碍,导致神经细胞死亡。

再灌注早期免疫反应性减弱,其中在海马CA1区最明显。

线粒体DNA编码13条氧化磷酸化所必需的多肽链及细胞色素氧化酶的3个亚基,因此线粒体DNA的表达紊乱可引起能量产生进行性衰竭,导致细胞死亡。

6( NO与脑缺血再灌注损伤NO是一氧化氮合酶(NOS)催化下生成的起维持和调节血管张力的一种自由基,其广泛分布于神经组织。

NO脑保护方面的机制有:?作用于血管平滑肌,活化鸟氨酸环化酶产生GMP,钙依赖性钾通道开放,产生舒张血管作用,抑制粘附分子发挥抗血小板凝聚和白细胞粘附功能,使脑血流得以维持和改善。

?通过巯基亚硝酸化及NMDA受体变构作用,限制EAA的细胞毒性作用。

?在一定条件下消除OH,中断自由基的链式反应。

NO毒性方面的机制有:?与超氧阴离子形成过氧化亚硝酸-(ONOO),灭活线粒体MnSOD,促进大量自由基生成,介导氧化损伤。

?抑制甘油酰-3-磷酸脱氢酶、肌酸激酶、顺乌头酸酶、NADPH-辅酶Q和琥珀酸氧化还原酶等,减弱氧化磷酸化过程从而阻止能量合成。

还可3抑制核糖核酸还原酶,引发碱基脱氨导致DNA损伤,继之活化PARS,使细胞能量耗竭而死亡。

?介导细胞凋亡。

2+7(Ca超载2+脑缺血再灌注中Ca超载是各种因素综合作用的结果,也是造成脑2+缺血损伤过程中各种因素作用的共同通路。

Ca在脑缺血再灌注损伤的2+作用主要有几个方面:?线粒体功能障碍;大量Ca涌入细胞,触发线2+2+2+粒体摄取Ca,使Ca聚集在线粒体内。

Ca可抑制ATP合成,使能量2+生成障碍。

Ca活化线粒体上的磷脂酶,引起线粒体膜损伤,并在线粒2+体内形成磷酸钙沉淀,改变了线粒体膜的通透性,Ca外流,又使细胞造成不可逆损伤。

除ATP合成外,线粒体对细胞氧化还原反应、渗透压、PH值、胞质内信号的维持都有重要作用,线粒体是细胞受损的重要靶2+2+目标。

?酶的活化,Ca活化Ca依赖性磷脂酶(主要是磷脂酶C和磷脂酶A2),促进膜磷脂分解;在膜磷脂分解过程中产生的游离脂防酸,2+前列腺素,白三烯,溶血磷脂等,均对细胞产生毒害;Ca还活化钙依赖蛋白酶,使胞内无害的黄嘌呤脱氢酶转变黄嘌呤氧化酶,生成大量氧2+自由基;Ca可活化一氧化氮合酶(NOS)。

8(Caspase-3与脑缺血神经细胞损伤Caspase-3属于IL-1β转化酶家族。

正常情况下,胞质中的Caspase-3以无活性的酶原形式存在,细胞凋亡信号的出现可导致Caspase-3的活化。

Caspse-3的活化可能是由多个胞质蛋白酶所介导的,Cyto C、Apaf-1和Bc1-2对其活化起重要调节作用。

Caspase-3的底物包括聚二磷酸腺苷-核糖多聚酶(PARP)、DNA依赖性蛋白激酶催化亚基DNA-PKCS、类固醇调节元件结合蛋白等。

这些底物多数为细胞的功能蛋白质,参与DNA修复、mRNA裂解、固醇合成和细胞骨架重建等,Caspase-3的活化能4使上述生理机能破坏,可能导致DND的发生。

9(核因子кB与脑缺血再灌注损伤核因子кB (Nuclear FactorкB, NF-кB) 是指能与某些基因的增强子上кB 位点结合、启动相应基因转录、具有多向性调节的蛋白质分子。

NF-кB的活化过程主要通过其抑制物—IкB的降解来实现。

NF-кB调节的基因数量众多,它既能做为促凋亡又能做为抑凋亡的调节因子。

目前,对于NF-кB在脑缺血再灌注损伤中的作用仍然不是很清楚。

10(神经胶质细胞与脑缺血再灌注损伤神经胶质细胞(gliacyte)对神经元起支持、营养和保护等作用。

目前认识到大脑在受到缺血、高热、放射照射等应激原刺激下,胶质细胞可出现iNOS、细胞因子、神经营养因子、内皮素以及其它多种因子的表达,这种表达受到内毒素和其它细胞因子的调节,其中iNOS和一些其它毒性细胞因子的表达可促进细胞凋亡,11(预处理的概念和方法缺血预处理:指给予动物亚致死性脑缺血可减轻下一次致死性脑缺血的损伤,对于前一次脑缺血称做缺血预处理。

其机制与腺苷的产生、热休克蛋白的诱导和表达、预处理促进线粒体氧化功能的维持、凋亡相关基因的表达、自由基清除系统的活化有关。

在缺血预处理的基础上,目前发展为多种预处理。

药物预处理:采用的药物有: ? 腺苷A1受体激动剂:CPA ;? ATP敏感性钾通道开放剂(KCO):levcromakalin;? 神经生长因子类:NGF、BDGF、BFGF等;? 抗氧化剂:PEG-SOD、PEG-CAT、LYD8002等;? 细胞间粘附因子单克隆抗体;? 降钙素基因相关肽;? 重组肿瘤坏死因5子a(rhTNFa);? 另外有钙离子拮抗剂、NMDA受体拮抗剂、蛋白合成抑制剂、IL和血红素氧化酶拮抗剂等。

热预处理:可能机制之一是启动HSP基因,使HSP表达增加,从而起到保护作用。

研究发现经短暂缺血预处理和未经预处理的动物相比,前者HSP 70在CA1区的表达明显增强,CA1区神经细胞存活的数目亦明显增多。

12(脑缺血神经保护药(1)钙拮抗剂:二氢吡啶类,如尼莫地平,为特异性阻滞L型钙通道。

(2)NMDA受体阻滞剂竞争性NMDA受体拮抗剂:磷酸盐或塞福太。

非竞争性NMDA受体拮抗剂:苯环利定、氯胺酮等。

(3) AMPA受体拮抗剂阻断AMPA/红藻氨酸受体可防止钠流入细胞并防止细胞去极化及引发的钙超载。

(4)γ-氨基丁酸(γ-GABA)受体激动剂可使细胞膜超极化和膜静息电位稳定,且可抑制梗死周围去极化,从而抑制半暗带区的细胞凋亡。

药物有:氯美塞唑和氨甲基羟异恶唑。

(5)钠通道阻滞剂药物为罗比唑。

原理:可使NOS产生减少。

(6)自由基清除剂药物:MnSOD、梯利拉扎和依布硒林等。

作用原理是自由基生成6减少,打断级联反应。

(7)抗细胞粘附分子抗体:防止白细胞活化、趋向和聚集作用,改善微循环。

(8)抑制细胞因子对IL-1β和TNF-a,TNF-a,IL-1、IL-6、血小板活化因子和TGF-1β的抑制有利于脑缺血损伤。

(9)他仃类药物:3-羟基3-甲基戊二酰辅酶还原酶抑制剂,可上调NOS,改善脑血流。

(10)麻醉药物:异丙酚、利多卡因等许多药物都有保护作用。

)生长因子类: (11碱性成纤维细胞生长因子、脑源性细胞生长因子、胰岛素样生长因子和成骨蛋白1。

(12)抑酶肽:牛胰腺或其它组织提取的单链多肽,含58个氨基酸,分子量6500,为广谱的蛋白酶抑制剂(激肽原酶、胰蛋白酶、糜蛋白酶、纤维蛋白溶酶、胃蛋白酶等)。

目前发现抑酶肽可抑制激肽释放酶及补体系统而抑制组织损伤所致的炎症反应;抑制NO合成酶等从而抑制自由基的产生,保护组织器官免受自由基所致的过氧化反应,从而发挥器官保护作用。

(13)益智药:γ-氨基丁酸衍生物,通过恢复细胞膜的流动性和维持与膜有关的细胞功能起神经保护作用。

(14)乌司他丁:7是从人新鲜尿液中分离纯化的分子量为67000的糖蛋白,它不仅能抑制胰蛋白酶,对脂肪酶、透明质酸酶等脂质分解和多糖分解酶也有抑制作用。

相关文档
最新文档