供热热网水力计算共52页
合集下载
供热工程 热水采暖系统的水力计算PPT课件

压差为30kPa。图4-3表示出系统两个支路中的一支路。
散热器内的数字表示散热器的热负荷。楼层高为3m。
第22页/共29页
课题3 机械循环单管热水采暖系统的水力计 算
图4-4例题4-1的管路计算图
第23页/共29页
课题3 机械循环单管热水采暖系统的水力计 算
3.2机械循环同程式热水采暖系统管路的水力计算例题
第16页/共29页
课题2 热水采暖系统水力计算的任务和方法
图4-2 单管顺流式散热器进流系数
第17页/共29页
课题2 热水采暖系统水力计算的任务和方法 • 跨越式热水采暖系统中,由于一部分直接经跨越管流入下层散热器,散热
器的进流系数α取决于散热器支管、立管,跨越管管径的组合情况和立管 中的流量、流速情况,进流系数可查图4-3确定。
目录
1 课题1 管路水力计算的基本原理 2 课题2 热水采暖系统水力计算的任务和方法 3 课题3 机械循环单管热水采暖系统的水力计算
第1页/共29页
课题1 管路水力计算的基本原理
1.1 基本公式
• (1)沿程压力损失
• 根据达西公式,沿程压力损失可用下式计算
Py
l
d
2
R
2
Pa
(4-1)
单位长度的沿程压力损失,也就是比摩阻R的计算公式为
Rpj P l
(4-17)
式中 Rpj —不利环路的循环作用压力,Pa; α ——沿程压力损失占总压力损失的估计百分数,查附录
4-7确定α值;
∑ —l—环路的总长度,m。
第13页/共29页
课题2 热水采暖系统水力计算的任务和方法
• (4) 根据Rpj和各管段流量,查附录4-1选出最接近的管 径,确定该管径下管段的实际比摩阻R和实际流速υ。
供热热网的水力计算

Qt KtQn
式中 Q t ——建筑物的通风热负荷,kW;
K t ——计算建筑物通风、空调热负荷的系数,一般
取0.3~0.5;
Q
——建筑物的采暖热负荷,kW。
n
第9页,此课件共52页哦
课题1 集中供热系统方案的确定
9.1.1.3生活热负荷 生活热负荷可以分为热水供应热负荷和其他生活用热热负荷
第7页,此课件共52页哦
课题1 集中供热系统方案的确定
(1)通风体积热指标法 建筑物的通风热负荷可按下式进行概算 :
Q tqtVw(tntw t)103
式中 Q t ——建筑物的通风热负荷,kW;
V
t
w
n
——建筑物的外围体积,m3; ——采暖室内计算温度,℃;
t w t ——通风室外计算温度,℃;
(2)通风年耗热量
Qt,a
ZQt
tn tn
tpj twt
N
式中
0.0036ZQtttnn
tpj tw t
N
Q t , a ——通风年耗热量,按不同式子计算时,单位分别为
kWh/a或GJ/a;
Z ——采暖期内通风装置每日平均运行小时数,h/d;
Q
——通风设计热负荷,kW;
t
t w t ——冬季通风室外计算温度,℃;
0.0036——单位换算系数(1kWh =3600×10-6 GJ)。
第16页,此课件共52页哦
课题1 集中供热系统方案的确定
(3)热水供应年耗热量 热水供应年耗热量可按下式计算:
Q r,a24Q rpNQ rpttrr ttllx350N
0.0864QrpNttrr ttllx350N
Q r , a ——热水供应年耗热量,按不同式子计算时,单位分别为
热水系统水力计算PPT课件

p j
v2
......Pa
2
_ 管段中总的局部阻力系数.
_ 系统管路附件的局部阻力系数,可查表确定.
第6页/共53页
4.当量局部阻力法和当量长度法
➢当量局部阻力法
将管段的沿程损失转变为局部损失来计算。
p j
设管段的沿程损失相当于某一局部损失
则:
p j
d
v2
2
d
l
v 2
2
d
d
l.........当. 量局部阻力系数.
_ 热媒的密度, kg / m3.
第3页/共53页
热水在室内供暖系统管路内的流动状态,几 乎都是处在过渡区内。
室外热水网路都采用较高的流速,热水的流 动状态大多处于阻力平方区内。
方便的R计算6.公25式1:08
•
G2 d5
......Pa /
m
G _ 管段的水流量, Pa / m.
第4页/共53页
_ 沿程损失占总压力损失的估计百分数,查附录得 50%。
将各数字代入上Rpj式 0,.1506得8.518 3.84 pa / m
第23页/共53页
根据各管段的热负荷,求出各管段的流量,计 算公式如下:
G
3600Q
0.86Q ......kg / h
4.1
8
71
03
(t
, g
th, )
t
2.例题1
径确。th,定热 7重媒0力c参循数环:双供管水热温tg, 水度9供5c暖
系
统
管路的管 ,回水温
度
。锅炉中心距底层散热器中心距
离为3m,层高为3m。每组散热器的供水
支管上有一截止阀。
第4章 供热管网的水力计算

n
11
4.2 管网系统压力分布
4.2.1管流能量方程及压头表达式
12
2 p2 Z 2 g
2 2
p1 Z1 g
2
p12
2 p1 12 p2 2 H Z1 Z2 H12 g 2g g 2g
4.2.2管网的压力分布图
总水压线与测压管 水头线
12
4.2.2管网的压力分布图
利用水压图分析热水供热(暖)系统中管路的水力工况时,以下几方面
是很重要的
: (1)利用水压曲线,可以确定管道中任何一点的 压力(压头)值。 (2)利用水压曲线,可表示出各段的压力损失值。 (3)根据水压曲线的坡度,可以确定管段的单位 管长的平均压降的大小 (4)由于热水管路系统是一个水力连通器,
水管网的水力计算。
27
4.1.1.2热水管网局部损失 局部损失的当量长度ιd
Pj
d
2
2
d1.25 ld 9.1 0.25 K
K lsh.d sh K bi
0.25
修正 : 估算 :ld=αj· l
热介质
蒸汽 热水、凝结水 套管及波形补偿器 0.3~0.4 0.2~0.3
23
4.3.2 蒸汽供热管网水力计算步骤与例题
【例题4-3】如下图所示,试进行蒸汽管网水
力计算。已知热源为1MPa表压的饱和蒸汽, 各用户用汽参数及管网构造注于图中。
24
4.4凝结水管网水力计算
4.4.1凝结水回收系统
分类:
凝结水回收系统按其是否与大气相通,可分为开
式凝结水回收系统和闭式凝结水回收系统。 按凝结水流动形式不同分为,单相凝水满管流、 非满管流和蒸汽与凝结水两相混合物流动形式 按驱动凝结水流动的动力不同,可分为机械回水、 重力回水和余压回水
11
4.2 管网系统压力分布
4.2.1管流能量方程及压头表达式
12
2 p2 Z 2 g
2 2
p1 Z1 g
2
p12
2 p1 12 p2 2 H Z1 Z2 H12 g 2g g 2g
4.2.2管网的压力分布图
总水压线与测压管 水头线
12
4.2.2管网的压力分布图
利用水压图分析热水供热(暖)系统中管路的水力工况时,以下几方面
是很重要的
: (1)利用水压曲线,可以确定管道中任何一点的 压力(压头)值。 (2)利用水压曲线,可表示出各段的压力损失值。 (3)根据水压曲线的坡度,可以确定管段的单位 管长的平均压降的大小 (4)由于热水管路系统是一个水力连通器,
水管网的水力计算。
27
4.1.1.2热水管网局部损失 局部损失的当量长度ιd
Pj
d
2
2
d1.25 ld 9.1 0.25 K
K lsh.d sh K bi
0.25
修正 : 估算 :ld=αj· l
热介质
蒸汽 热水、凝结水 套管及波形补偿器 0.3~0.4 0.2~0.3
23
4.3.2 蒸汽供热管网水力计算步骤与例题
【例题4-3】如下图所示,试进行蒸汽管网水
力计算。已知热源为1MPa表压的饱和蒸汽, 各用户用汽参数及管网构造注于图中。
24
4.4凝结水管网水力计算
4.4.1凝结水回收系统
分类:
凝结水回收系统按其是否与大气相通,可分为开
式凝结水回收系统和闭式凝结水回收系统。 按凝结水流动形式不同分为,单相凝水满管流、 非满管流和蒸汽与凝结水两相混合物流动形式 按驱动凝结水流动的动力不同,可分为机械回水、 重力回水和余压回水
供热工程室内热水供暖系统的水力计算课件

和管径都没有改变的一段管子称为一个计
算管段。任何一个热水供暖系统的管路都 供热工程室内热水供暖系统的水力 计算课件
二、当量局部阻力法和当量长度法
在实际工程设计中,为了简化计算,也 有采用所谓“当量局部阻力法”或“当量长 度法”进行管路的水力计算。
当量局部阻力法(动压头法) 当量局部阻 力法的基本原理是将管段的沿程损失转变为 局部损失来计算。
GI
I Gl
GII (1
I )G供l 热工程室内热水供暖系统的水力
计算课件
在垂直式顺流系统中,散热器单侧连接时, 1.0;散 热器双侧连接,当两侧支管管径及其长度都相等时,
0.5 ;当两侧支管管径及其长度不相等时,两侧散热 器的进流系数就不相等。
影响两侧散热器之间水流量分配的因素主要有两 个:
计算课件
例题4-2计算步骤 1.在轴测图上,与例题4-1相同,进行管段编
号,立管编号并注明各管段的热负荷和管长 2.确定最不利环路。本系统为异程式单管系统,
一般取最远立管的环路作为最不利环路 3.计算最不利环路各管段的管径
推荐平均比摩阻 Rpj 60 120 Pa m 来确定最不利环路各管
段的管径,
供热工程室内热水供暖系统的水力 计算课件
4、对机械循环双管系统,一根立管上的各层 散热器是并联关系,水在各层散热器冷却所 形成的重力循环作用压力不相等,在进行各 立管散热器并联环路的水力计算时,应计算 各层自然循环的作用压差,不可忽略。 5、对机械循环单管系统,如建筑物各部分层 数相同时,每根立管所产生的重力循环作用 压力近似相等,可忽略不计;如建筑物各部 分层数不同时,高度和各层热负荷分配比不 同,各立管环路之间所产生的重力循环作用 压力不相等,在计算各立管之间并联环路的 压降不平衡率时,应将其重力循环作用压力 的差额计算在内。重力循环作用压力可按设 计工况下的最大值的2/3计算(约相应于采暖 平均水温下的作用压力值)。 供热工程室内热水供暖系统的水力
室内热水供暖系统的水力计算课件

压力损失的降低方法
通过优化管道设计、选择合适的管材和设备等措施可以降低压力损 失。
水力计算中的热负荷计算
1 2
热负荷的概念
热负荷是指供暖系统在单位时间内需要提供的热 量。
热负荷的计算方法
根据建筑物的热负荷需求、室内温度要求以及室 外气候条件等因素,进行热负荷的计算。
3
热负荷的分布与调节
合理分布热负荷并采取适当的调节措施对于保证 供暖效果和节能减排具有重要意义。
。
可靠性
供暖系统的设计应保证 运行的稳定性和可靠性 ,避免出现故障或停机
。
02
室内热水供暖系统的水力计算基础
水力计算的基本原理
压头损失
压头损失是指水流在管道中流动 时由于克服摩擦阻力而产生的压
力降。
水流速度
水流速度是影响压头损失的重要因 素,随着水流速度的增加,压头损 失会相应增加。
管径大小
管径大小也是影响压头损失的因素 之一,管径越大,压头损失越小。
标准要求,避免出现水力失调的情况。
提高热水供暖系统的热效率
选用高效节能设备
选择高效节能的锅炉、换热器等设备,提高设备 的热效率。
降低热损失
通过加强保温措施、减少管道散热等手段,降低 热损失。
利用余热回收
通过余热回收技术,将排烟余热、冷却水余热等 回收再利用,提高能源利用效率。
THANKS
感谢观看
热水供暖系统的水力特征
系统循环阻力
热水供暖系统的循环阻力包括沿程阻力和局部阻力。沿程阻力是指水流在管道中流动时由 于摩擦阻力而产生的压力降,局部阻力是指水流通过阀门、弯头等部件时由于局部阻力而 产生的压力降。
系统流量
热水供暖系统的流量是指单位时间内流过管道的水量。流量的大小直接影响供暖效果和能 源消耗。
通过优化管道设计、选择合适的管材和设备等措施可以降低压力损 失。
水力计算中的热负荷计算
1 2
热负荷的概念
热负荷是指供暖系统在单位时间内需要提供的热 量。
热负荷的计算方法
根据建筑物的热负荷需求、室内温度要求以及室 外气候条件等因素,进行热负荷的计算。
3
热负荷的分布与调节
合理分布热负荷并采取适当的调节措施对于保证 供暖效果和节能减排具有重要意义。
。
可靠性
供暖系统的设计应保证 运行的稳定性和可靠性 ,避免出现故障或停机
。
02
室内热水供暖系统的水力计算基础
水力计算的基本原理
压头损失
压头损失是指水流在管道中流动 时由于克服摩擦阻力而产生的压
力降。
水流速度
水流速度是影响压头损失的重要因 素,随着水流速度的增加,压头损 失会相应增加。
管径大小
管径大小也是影响压头损失的因素 之一,管径越大,压头损失越小。
标准要求,避免出现水力失调的情况。
提高热水供暖系统的热效率
选用高效节能设备
选择高效节能的锅炉、换热器等设备,提高设备 的热效率。
降低热损失
通过加强保温措施、减少管道散热等手段,降低 热损失。
利用余热回收
通过余热回收技术,将排烟余热、冷却水余热等 回收再利用,提高能源利用效率。
THANKS
感谢观看
热水供暖系统的水力特征
系统循环阻力
热水供暖系统的循环阻力包括沿程阻力和局部阻力。沿程阻力是指水流在管道中流动时由 于摩擦阻力而产生的压力降,局部阻力是指水流通过阀门、弯头等部件时由于局部阻力而 产生的压力降。
系统流量
热水供暖系统的流量是指单位时间内流过管道的水量。流量的大小直接影响供暖效果和能 源消耗。
热水供热系统的水力计算PPT课件

09:19:12
13
第13页/共61页
⑶与热水网路直接连接的用户系统,无论网路循环水泵 是否运行,其用户系统回水管出口处的压力必须高于用 户系统的充水高度,以防止系统倒空吸入空气,破坏正 常运行和腐蚀管道。
P 回 > H 系 统 ( 系 统 充 水 高 度 ) 不 倒 空 ⑷网路回水管道内任一点的压力,都应比大气压力至少
09:19:12
31
第31页/共61页
第七节 供热系统的定压方式
• 供热系统的定压方式主要有:膨胀水箱定压,补给水泵定压,补给水泵变频调速定压,气体定压罐定压和 蒸汽定压等。
09:19:12
32
第32页/共61页
一、膨胀水箱定压 • 1.定义:利用膨胀水箱来维持定压点压力恒定的定压方式称为膨胀水箱定压。 • 2.作用:贮水、排气、定压。 • 3.原理
36
第36页/共61页
二、补给水泵定压 ⑴定义:用供热系统的补给水泵保持定压点压力固定不变的方法称为补给水泵定压。 ⑵补给水泵定压方式 • 补给水泵连续补水定压方式 • 补给水泵间歇补水定压方式 • 补给水泵定压点设在旁通管处的定压方式
09:19:1237第37页/共61页⑶补水泵定压的特点 • 优点:设备简单,投资少,便于操作。 • 缺点:怕停电,对于大型供热系统应设双路电源。 ⑷适用范围 • 当系统恒压点压力要求较高,无法采用膨胀水箱定压时,可采用补给水泵定压。是目
09:19:12
33
第33页/共61页
4.结构:一般用钢板制成,通常是圆形或矩形。膨胀水箱上一般装有膨胀管、溢流管、 信号管、循环管和排污管
5.膨胀水箱容积
6.膨胀水箱的高度
Vp tVs
Z
j
Pq
室内供暖系统的水力计算

3)紊流粗糙区:
第5页/共52页
对于热水供暖系统,根据运行时间积累的资料,K值 目前推荐采用下面的数值:
对室内热水供暖系统管路 对室外热水网路
第6页/共52页
热水的流动状态:
对室内热水供暖系统管路: 处在紊流过渡区
对室外热水网路: 处在紊流粗糙区 (阻力平方区)
第7页/共52页
热媒流速与流量的关系
第17页/共52页
第二节、系统管路水力计算的任务及方 法
第一种情况的水力计算有时也用在已知各管段 的流量和选定的比摩阻R值或者流速v值的场合, 此时选定的R值和v值,常采用经ቤተ መጻሕፍቲ ባይዱ值,称经济 比摩阻或经济流速。 如选用较大的R值,管径可缩小,单系统的压力损 失增大,水泵的电能消耗增加。 为了各循环环路易于平衡,最不利循环环路的平 均比摩阻不宜选得过大。
由此可知:在串联管路中,管路的总阻力数为 各串联管段阻力数之和。
第27页/共52页
一、热水管路的阻力数
s1 G1
G
s2 G2
s3 G3
P
对于由并联管段组成 热水管路,管路的总流量为各并联 管段流量之和:
可得:
第28页/共52页
一、热水管路的阻力数
设:
则有: 又因:
可得: 在并联管路上,各分支管段的流量分配与其通导数成正比。 各分支管段的阻力状况不变时,管路的总流量在各分支管 段上的流量分配比例不第变29。页/共52页
在管路的水力计算中,通常把管路中水流量和管径都没有改变的一段管子称为一个计算管段。任何一个热 水供暖系统的管路都是由许多串联或并联的计算管段组成的。
第3页/共52页
复习知识点
比摩阻的计算:
Pa / m
摩擦阻力系数:
第5页/共52页
对于热水供暖系统,根据运行时间积累的资料,K值 目前推荐采用下面的数值:
对室内热水供暖系统管路 对室外热水网路
第6页/共52页
热水的流动状态:
对室内热水供暖系统管路: 处在紊流过渡区
对室外热水网路: 处在紊流粗糙区 (阻力平方区)
第7页/共52页
热媒流速与流量的关系
第17页/共52页
第二节、系统管路水力计算的任务及方 法
第一种情况的水力计算有时也用在已知各管段 的流量和选定的比摩阻R值或者流速v值的场合, 此时选定的R值和v值,常采用经ቤተ መጻሕፍቲ ባይዱ值,称经济 比摩阻或经济流速。 如选用较大的R值,管径可缩小,单系统的压力损 失增大,水泵的电能消耗增加。 为了各循环环路易于平衡,最不利循环环路的平 均比摩阻不宜选得过大。
由此可知:在串联管路中,管路的总阻力数为 各串联管段阻力数之和。
第27页/共52页
一、热水管路的阻力数
s1 G1
G
s2 G2
s3 G3
P
对于由并联管段组成 热水管路,管路的总流量为各并联 管段流量之和:
可得:
第28页/共52页
一、热水管路的阻力数
设:
则有: 又因:
可得: 在并联管路上,各分支管段的流量分配与其通导数成正比。 各分支管段的阻力状况不变时,管路的总流量在各分支管 段上的流量分配比例不第变29。页/共52页
在管路的水力计算中,通常把管路中水流量和管径都没有改变的一段管子称为一个计算管段。任何一个热 水供暖系统的管路都是由许多串联或并联的计算管段组成的。
第3页/共52页
复习知识点
比摩阻的计算:
Pa / m
摩擦阻力系数:
供热水力计算

附录5-5给出按式 p A zhG 2 编制的水力计算表。
第17页/共27页
在工程设计中,对常用的垂直单管顺流式 系统,由于整根立管与干管、支管以及支管与 散热器的连接方式,在施工规范中都规定了标 准的连接图式;
因此,为了简化立管的水力计算,也可 以将由许多管段组成的立管视为一根管段,根 据不同情况,给出整根立管的值。其编制方法 和数值可见附录5-6和附录5-7。
一、水力计算基本公式
设计热水供暖系统,为了使系统中各管段 的水流量符合设计要求,以保证流进各散热器 的水流量符合要求,就要进行管路的水力计算。
当流体沿管道流动时,由于流体分子间及其 与管壁间的摩擦,就要损失能量;而当流体流 过管道的一些附件(如阀门、弯头、三通、散热 器等)时,由于流动方向或速度的改变,产生局 部旋涡和撞击,也要损失能量。前者称为沿程 损失,后者称为局部损失。
第7页/共27页
粗糙管区(阻力平方区)( )
粗糙管区的摩擦阻力系数值,可用尼古拉兹公
式计算:
1 1.14 2lg
d
2
K
对于管径等于或大于40mm的管子,用希弗林
松推荐的、更为简单的计算公式也可得出很接
近的数值:
0.11
K
0.25
d
第8页/共27页
管壁的当量绝对粗糙度K值与管子的使用情
况(流体对管壁腐蚀和沉积水垢等状况)和管 子的使用时间等因素有关。
民用建筑 1.2m/s 1.5m/s
生产厂房的辅助建筑
2.0m/s
生产厂房
3.0m/s
整个热水供暖系统总的计算压力损失,宜增 加10%的附加值,以此确定系统必需的循环 作用压力。
第26页/共27页
谢谢您的观看!