三校生高考数学模拟试卷3

合集下载

2025届江西省南昌三校高三第三次模拟考试数学试卷含解析

2025届江西省南昌三校高三第三次模拟考试数学试卷含解析

2025届江西省南昌三校高三第三次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( ) A .14B .13C .532D .3162.函数的图象可能是下面的图象( )A .B .C .D .3.阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:《红楼梦》、《三国演义》、《水浒传》及《西游记》,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划共有( ) A .120种B .240种C .480种D .600种4.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是( )A .3?i ≤B .4?i ≤C .5?i ≤D .6?i ≤5.已知集合{}10A x x =+≤,{|}B x x a =≥,若A B R =,则实数a 的值可以为( )A .2B .1C .0D .2-6.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( ) A .12B .12-C .12i D .12i -7.函数2|sin |2()61x f x x=+ )A .B .C .D .8.如图是计算11111++++246810值的一个程序框图,其中判断框内应填入的条件是( )A .5k ≥B .5k <C .5k >D .6k ≤9.已知函数()5sin 12f x x π⎛⎫=+ ⎪⎝⎭,要得到函数()cos g x x =的图象,只需将()y f x =的图象( )A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 10.已知实数x ,y 满足2212x y +≤,则2222267x y x y x +-++-+的最小值等于( )A .625B .627C 63-D .962-11.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .23B .21C .35D .3212.()6321x x x ⎫-⎪⎭的展开式中的常数项为( ) A .-60B .240C .-80D .180二、填空题:本题共4小题,每小题5分,共20分。

上海数学三校生高考模拟卷-3

上海数学三校生高考模拟卷-3

三校生高考 (数学) 模拟考试卷(3)一、选择题(每题3分, 共18分)1、已知集合A =*x |x 2−x −6=0+,集合B =*x |x 2−3x −10=0+,则集合 A⋃B 为( )A.{−2};B.{−2,3};C.{−2,5};D.{−2,3,5 }.2、绝对值不等式:|x −1|>2,则它的解集是( )A.*x | −1<x <3+;B.*x | −1≤x ≤3+;C.{x | x <−1或 x >3};D.{x | x ≤−1或 x ≥3 }.3、若,0<<b a 下列不等式成立的是( )A 、22b a <B 、ab a <2C 、1<a bD 、b a 11<4、函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为,a −3,2a -,则( )A 、a =1,b =0B 、a =−1,b =0C 、a =1,b =0D 、a =3,b =05、若四个幂函数y =a x ,y =b x ,y =c x ,y =d x 在同一坐标系中的图象如右图,则a 、b 、c 、d 的大小关系是( )A 、d >c >b >aB 、a >b >c >dC 、d >c >a >bD 、a >b >d >c6、在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为() A .14 B .16 C .12 D .34二、填空题(每题3分,共36分)7、函数f (x )=1x−2+√x −1的定义域为 .8、若向量a ⃗=(3,−1),b ⃗⃗=(1,0),则a ⃗−2b ⃗⃗=______ _.9、若直线 与直线y =2x −7平行,截距为5,则直线 方程为______ __.10、不等式(x+2)(x−7)<0的解集为.11、等差数列*a+中,若a=2,a2+a=13,则数列公差d= ___ __.12、有6名男生,4名女生,现选3名参加比赛,要求至少一男一女,则有种不同选法.13、在∆ABC中,已知sinA:sinB:sinC=3:5:7,且最大边长为14,则∆ABC的面积是 .14、已知角 α 终边上一点 P(−3,4),则 sinα+cosα=。

三校生高考模拟数学试卷

三校生高考模拟数学试卷

一、选择题(本大题共20小题,每小题5分,共100分)1. 下列函数中,在实数域内单调递增的是()A. y = -x^2 + 2xB. y = 2^xC. y = log2xD. y = √x2. 已知等差数列{an}的前n项和为Sn,若S10 = 100,S20 = 300,则第15项a15的值为()A. 10B. 15C. 20D. 253. 若复数z满足|z - 1| = |z + 1|,则复数z的实部是()A. 0B. 1C. -1D. 无法确定4. 下列命题中,正确的是()A. 函数y = x^3在R上单调递增B. 等差数列{an}的通项公式为an = a1 + (n - 1)dC. 若a > b > 0,则a^2 > b^2D. 函数y = log2x在(0,+∞)上单调递减5. 已知函数f(x) = x^3 - 3x^2 + 2,则f(x)的极小值为()A. -1B. 0C. 1D. 26. 下列方程组中,无解的是()A. x + y = 1B. 2x + 3y = 6C. 3x - 4y = 2D. 4x - 5y = 107. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第10项a10的值为()A. 18B. 54C. 162D. 4868. 下列函数中,在区间(0,+∞)上为减函数的是()A. y = x^2B. y = 2^xC. y = log2xD. y = √x9. 若复数z满足|z - 1| = |z + 1|,则复数z的虚部是()A. 0B. 1C. -1D. 无法确定10. 下列命题中,正确的是()A. 函数y = x^3在R上单调递增B. 等差数列{an}的通项公式为an = a1 + (n - 1)dC. 若a > b > 0,则a^2 > b^2D. 函数y = log2x在(0,+∞)上单调递减11. 已知函数f(x) = x^3 - 3x^2 + 2,则f(x)的极大值为()A. -1B. 0C. 1D. 212. 下列方程组中,有唯一解的是()A. x + y = 1B. 2x + 3y = 6C. 3x - 4y = 2D. 4x - 5y = 1013. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第10项a10的值为()A. 18B. 54C. 162D. 48614. 下列函数中,在区间(0,+∞)上为增函数的是()A. y = x^2B. y = 2^xC. y = log2xD. y = √x15. 若复数z满足|z - 1| = |z + 1|,则复数z的虚部是()A. 0B. 1C. -1D. 无法确定16. 下列命题中,正确的是()A. 函数y = x^3在R上单调递增B. 等差数列{an}的通项公式为an = a1 + (n - 1)dC. 若a > b > 0,则a^2 > b^2D. 函数y = log2x在(0,+∞)上单调递减17. 已知函数f(x) = x^3 - 3x^2 + 2,则f(x)的极大值为()A. -1B. 0C. 1D. 218. 下列方程组中,无解的是()A. x + y = 1B. 2x + 3y = 6C. 3x - 4y = 2D. 4x - 5y = 1019. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第10项a10的值为()A. 18B. 54C. 162D. 48620. 下列函数中,在区间(0,+∞)上为减函数的是()A. y = x^2B. y = 2^xC. y = log2xD. y = √x二、填空题(本大题共10小题,每小题5分,共50分)21. 已知等差数列{an}的前n项和为Sn,若S10 = 100,S20 = 300,则第15项a15的值为______。

三校生数学高考模拟试卷

三校生数学高考模拟试卷

三校生数学高考模拟试卷一、是非选择题。

(对的选A ,错的选B。

每小题3分,共30分)1.如果A={0.1.2.3},B={1},则B ∈A …………………………………………( ) 2.已知直线上两点A (-3,3),B (3,-1),则直线AB 的倾斜角为65π( ) 3.lg 2+lg5=lg7………………………………………………………………………( ) 4.函数f(x)=245x x -+的定义域是【-1,5】…………………………( )5.sin750·sin3750=41-……………………………………………………………( )6.在等比数列{a n }中,a 1=31,a 4=89,则数列的公比为23…………………( )7.若向量32=+,则∥……………………………………( )8.双曲线13422=-y x 的渐近线方程为x y 23±=,焦距为2………………( ) 9.直线l ⊥平面α,直线m ∥平面β,若l ∥m ,则α⊥β………………( )10.二项式1033⎪⎭⎫⎝⎛-x x 展开式中二项式系数最大的项是第五项…………………( )二、选择题(每小题5分,共40分) 11.函数f(x)=lg(x-3)的定义域是 ( )A.RB.(-3,3)C.(-∞,-3)∪(3,+∞)D.【0,+∞) D.112.以点M (-2,3)为圆心且与x 轴相切的圆的方程( )A.(x +2)2+(y -3)2=4 B . (x -2)2+(y +3)2=4C.(x +2)2+(y -3)2=9 D . (x -2)2+(y +3)2=913.10件产品中,3件次品,甲、乙两人依次各取一件产品,按取后放回,求恰有一件次品的概率为( ) A.10021 B. 241 C. 4521 D. 502114.若函数f(x)在定义域R 上是奇函数,且当x ﹥0时,f(x)=2410x x -,则f(-2)=( ).A. -104B.104C. 1D.10-1215.a=2是直线(a 2-2)x +y=0和直线2x +y +1=0互相平行的( ).A.充分条件 B.必要条件 C.充要条件 D.即不充分也不必要条件 16.设数列{a n }的前n 项和为2n s n=,则a 8=()A.64B.49C.16D.1517.在直角坐标系中,设A (-2,3),B (-3,-3),现沿x 轴把直角坐标系折成直二面角,则AB 的长为( )A.6B.5C.19D.118.a =(1,2),b =(x ,5),且b a⊥2,则x= ( )A .10B .-10 C.25 D.25-三、填空题(每题5分,共30分)19.已知x ∈(ππ,-),已知sinx=21, 则x= _ 已知tanx=-1,则x= _20.已知正方形ABCD 的边长为2,AP ⊥平面ABCD ,且AP=4,则点P 到BD 的距离 21.过圆3622=+y x 上一点(4,52)的切线方程为 _ _22.椭圆1422=+y x 的离心率为23.4名男生和2名女生站成一排,其中2名女生站在两端的站法有 种24.函数1422+-=x x y 的值域为 班级: 姓名: 座号:四、解答题(第25、26、题,每小题10分,第27.28题,每小题15分,共50分) 255=8=,<b a ,> =32π,求()()b a b a -∙+2。

三校生高考数学模拟试卷

三校生高考数学模拟试卷

数学试卷 一、 单项选择题(每小题3分,共2×12=24分)1.集合{}{}13,15A x x B x x =-<≤=<<则A B ⋃=( )A .{}15x x -<< B.{}35x x << C. {}11x x -<< D. {}13x x <≤2.不等式24210x x --+≥的解集是( )A .(,7][3,)-∞-⋃+∞B .[7,3]-C .(,3][7,)-∞-⋃+∞D .[3,7]-3.下列函数既是奇函数又是增函数的是( )A .3y x =B .1y x =C .22y x =D .13y x =- 4.已知3log 2=则x=( )A .3B .9C .27D .815.已知{}n a 是等比数列,252,6a a ==则8a =( )A . 12B .18C . 24D .366.已知两点坐标A (-1,2),B (1,-2),则下列各式正确的是( )A .5OA OB →→∙= B .OA BO →→=C .(2,4)AB →=-D .10AB →=7.一个袋子中有7个球,其中3个绿球,4个红球,问从中摸出一个球是红球的概率是( )A .14B .13C .112D .478.如右图,O 为正六边形对角线的交点,则与OA →共线的向量有( )个A .2B .3C .7D .99.已知直线2310x y +-=,则斜率和在y 轴上的截距是() A .21,33- B .21,33- C .21,33 D .21,33-- 10.已知球的大圆周长为6π,求该球的表面积和体积( ) A .9,18ππ B .9,36ππ C .18,36ππD .36,36ππ11.甘肃省3家省属单位被安排某县4个材开展“联村联户,为民富民”活动,要求每家单位至少对口帮助其中1个村且每村只受1家单位帮扶,则不同的安排方法总数是 ( )A .7B .12C .36D .7212.如图为1500辆汽车通过某路段 AO40 50 60 70 80时的速度频率分布直方图,在速度为[60,70]的车辆约有( )辆A .450B .600C .800D .1000二、填空题(每小题3分,共12分)12、已知3cos 5θ=,且θ在第四象限,则sin θ= 13、过点()3,1-且垂直于直线032=+-y x 的直线方程为14、在等差数列}{n a 中,已知42=a ,84=a 则该数列的前10项之和等于15、函数lg(4)3x y x -=-的定义域是 ____________________________.三、解答题(共14分,17、18每题4分,19题6分)16.(6分)解不等式358x -<.17.(6分)已知等差数列{}n a 中,3915,9a a ==-求1a 和20S 的值.18.(7分)求经过点M (3,2),圆心在直线2y x = .。

最新三校生数学高考模拟试卷

最新三校生数学高考模拟试卷

三校生数学高考模拟试卷一、是非选择题。

(对的选A ,错的选B。

每小题3分,共30分)1.如果A={0.1.2.3},B={1},则B ∈A …………………………………………( ) 2.已知直线上两点A (-3,3),B (3,-1),则直线AB 的倾斜角为65π( ) 3.lg 2+lg5=lg7………………………………………………………………………( ) 4.函数f(x)=245x x -+的定义域是【-1,5】…………………………( )5.sin750·sin3750=41-……………………………………………………………( )6.在等比数列{a n }中,a 1=31,a 4=89,则数列的公比为23…………………( )7.若向量32=+,则∥……………………………………( )8.双曲线13422=-y x 的渐近线方程为x y 23±=,焦距为2………………( ) 9.直线l ⊥平面α,直线m ∥平面β,若l ∥m ,则α⊥β………………( )10.二项式1033⎪⎭⎫⎝⎛-x x 展开式中二项式系数最大的项是第五项…………………( )二、选择题(每小题5分,共40分) 11.函数f(x)=lg(x-3)的定义域是 ( )A.RB.(-3,3)C.(-∞,-3)∪(3,+∞)D.【0,+∞) D.112.以点M (-2,3)为圆心且与x 轴相切的圆的方程( )A.(x +2)2+(y -3)2=4 B . (x -2)2+(y +3)2=4C.(x +2)2+(y -3)2=9 D . (x -2)2+(y +3)2=913.10件产品中,3件次品,甲、乙两人依次各取一件产品,按取后放回,求恰有一件次品的概率为( ) A.10021 B. 241 C. 4521 D. 502114.若函数f(x)在定义域R 上是奇函数,且当x ﹥0时,f(x)=2410x x -,则f(-2)=( ).A. -104B.104C. 1D.10-1215.a=2是直线(a 2-2)x +y=0和直线2x +y +1=0互相平行的( ).A.充分条件 B.必要条件 C.充要条件 D.即不充分也不必要条件 16.设数列{a n }的前n 项和为2n s n=,则a 8=()A.64B.49C.16D.1517.在直角坐标系中,设A (-2,3),B (-3,-3),现沿x 轴把直角坐标系折成直二面角,则AB 的长为( )A.6B.5C.19D.118.a =(1,2),b =(x ,5),且b a⊥2,则x= ( )A .10B .-10 C.25 D.25-三、填空题(每题5分,共30分)19.已知x ∈(ππ,-),已知sinx=21, 则x= _ 已知tanx=-1,则x= _20.已知正方形ABCD 的边长为2,AP ⊥平面ABCD ,且AP=4,则点P 到BD 的距离 21.过圆3622=+y x 上一点(4,52)的切线方程为 _ _22.椭圆1422=+y x 的离心率为23.4名男生和2名女生站成一排,其中2名女生站在两端的站法有 种24.函数1422+-=x x y 的值域为 班级: 姓名: 座号:四、解答题(第25、26、题,每小题10分,第27.28题,每小题15分,共50分)255=8=,<b a ,> =32π,求()()b a b a -∙+2。

2024年高考第三次模拟考试高三数学(考试版)

2024年高考第三次模拟考试高三数学(考试版)

2024年高考第三次模拟考试高三数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}4A x x =∈<N ,{}21,B x x n n A ==-∈,P A B = ,则集合P 的子集共有()A .2个B .3个C .4个D .8个2.古希腊数学家毕达哥拉斯通过研究正五边形和正十边形的作图,发现了黄金分隔率,黄金分割率的值也可以用2sin18°表示,即12sin182-=,设12m =,则2tan 811tan 81=+()A.4mB.2m C.m3.若5(4)(2)x m x --的展开式中的3x 的系数为600-,则实数m =()A.8.B.7C.9D.104.甲、乙、丙、丁、戊5位同学报名参加学校举办的三项不同活动,每人只能报其中一项活动,每项活动至少有一个人参加,则甲、乙、丙三位同学所报活动各不相同的概率为()A .518B .625C .925D .895.设n S 为正项等差数列{}n a 的前n 项和.若20232023S =,则4202014a a +的最小值为()A.52B.5C.9D.926.已知函数()()()sin f x x x ωω=+,若沿x 轴方向平移()f x 的图象,总能保证平移后的曲线与直线1y =在区间[]0,π上至少有2个交点,至多有3个交点,则正实数ω的取值范围为()A.82,3⎡⎫⎪⎢⎣⎭B.102,3⎡⎫⎪⎢⎣⎭C.10,43⎡⎫⎪⎢⎣⎭D.[)2,47.已知()6116,ln ,log 71ln 510115a b c =+==-,则()A.a b c >> B.b c a>> C.a c b >> D.c a b>>8.已知正方体1121ABCD A B C D -的棱长为2,P 为线段11C D 上的动点,则三棱锥P BCD -外接球半径的取值范围为()A.,24⎤⎥⎣⎦B.4⎣C.1⎣D.4⎣二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数123,,z z z ,下列说法正确的有()A.若1122z z z z =,则12||||z z =B.若22120z z +=,则120z z ==C.若1213z z z z =,则10z =或23z z =D.若1212||||z z z z -=+,则120z z =10.已知抛物线2:4C x =y 的焦点为F ,准线为l ,过F 的直线与抛物线C 交于A,B 两点,M 为线段AB 中点,,,A B M '''分别为A,B,M 在ι上的射影,且||3||AF BF =,则下列结论中正确的是A.F 的坐标为(1,0)B.||2||A B M F '''=C.,,,A A M F ''四点共圆D.直线AB 的方程为313y x =±+11.对于[]()0,1,x f x ∈满足()()()11,23x f x f x f x f ⎛⎫+-== ⎪⎝⎭,且对于1201x x ≤≤≤.恒有()()12f x f x ≤.则()A .10011011002i i f =⎛⎫=⎪⎝⎭∑B .112624f f⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭C .118080f ⎛⎫= ⎪⎝⎭D .1113216016f ⎛⎫≤≤⎪⎝⎭第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某工厂生产的产品的质量指标服从正态分布2(100,)N σ.质量指标介于99至101之间的产品为良品,为使这种产品的良品率达到95.45%,则需调整生产工艺,使得σ至多为.(若2~(,)X N μσ,则{||2}0.9545)P X μσ-<=13.ABC △中,,,a b c ,分别为角,,A B C的对边,若3A π=,a b c +=+,则ABC △的面积S 的最小值为.14.函数sin cos ()e e x x f x =-在(0,2π)范围内极值点的个数为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)己知函数()ln f x x ax =-,其中a R ∈.(I)若曲线()y f x =在1x =处的切线在两坐标轴上的截距相等,求a 的值;(II)是否存在实数a ,使得()f x 在(0,]x e ∈上的最大值是-3?若存在,求出a 的值;若不存在,说明理由.16.(本小题满分15分)某景区的索道共有三种购票类型,分别为单程上山票、单程下山票、双程上下山票.为提高服务水平,现对当日购票的120人征集意见,当日购买单程上山票、单程下山票和双程票的人数分别为36、60和24.(1)若按购票类型采用分层随机抽样的方法从这120人中随机抽取10人,再从这10人中随机抽取4人,求随机抽取的4人中恰有2人购买单程上山票的概率.(2)记单程下山票和双程票为回程票,若在征集意见时要求把购买单程上山票的2人和购买回程票的m (2m >且*m ∈N )人组成一组,负责人从某组中任选2人进行询问,若选出的2人的购票类型相同,则该组标为A ,否则该组标为B ,记询问的某组被标为B 的概率为p .(i )试用含m 的代数式表示p ;(ii )若一共询问了5组,用()g p 表示恰有3组被标为B 的概率,试求()g p 的最大值及此时m 的值.17.(本小题满分15分)如图,在平行六面体1111ABCD A B C D -中,AC BD O = ,2AB AD ==,13AA =,11π3BAA BAD DAA ∠=∠=∠=,点P 满足1221333DP DA DC DD =++ .(1)证明:O ,P ,1B 三点共线;(2)求直线1AC 与平面PAB 所成角的正弦值.18.(本小题满分17分)已知椭圆22:11612x y E +=的左右焦点分别为12,F F ,点A 在椭圆E 上,且在第一象限内,满足1|| 5.AF =(1)求12F AF ∠的平分线所在的直线l 的方程;(2)在椭圆E 上是否存在关于直线l 对称的相异的两点,若存在,请找出这两点;若不存在请说明理由;(3)已知双曲线M 与椭圆E 有共同的焦点,且双曲线M 与椭圆E 相交于1234,,,P P P P ,若四边形1234P P P P 的面积最大时,求双曲线M 的标准方程.19.(本小题满分17分)已知数列{}n a ,记集合()(){}*1,,...,1,,N i i j T S i j S i j a a a i j i j +==+++≤<∈.(1)若数列{}n a 为1,2,3,写出集合T ;(2)若2n a n =,是否存在*,N i j ∈,使得(),512S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若n a n =,把集合T 中的元素从小到大排列,得到的新数列为12,,...,,...m b b b ,若2024m b ≤,求m 的最大值.。

【高教版】2020年三校生高考模拟考试数学试卷(三)

【高教版】2020年三校生高考模拟考试数学试卷(三)


A. 1 3
B. 3
1
C.
3
D. 3
18、某小组有 6 名男生,7 名女生,从中各选一名学生去听讲座,则不同选法种数是(

A.6
B.7
C . 13
D . 42
第Ⅱ卷(非选择题 共 80 分)
三、填空题:本大题共 6 小题,每小题 5 分,共 30 分. 19、 lg100 log2 1 ( 3 1)0 _____________________; 20、已知 f (x) x 6 ,则 f (0) __________________;
24、以椭圆焦点 F1、 F2 为直径的两个端点的圆,恰好过椭圆的两顶点,则这个椭圆的离心率
是____________________ .
四、解答题:本大题共 6 小题,25~28 小题每小题 8 分,29~30 小题每小题 9 分,共 50 分. 解答应写出过程或步骤. 25、已知集合 A {x x2 ax 15 0} ,B {x x2 5x b 0} ,如果 A B {3},求 a,b 及 A B .
21、已知 5 件产品中有 3 件正品,2 件次品,若从中任取一件产品,则取出的产品是正品的概
率等于______________;
22、已知
a
3,
b

2
,则
a

b
的夹角为 45o
,则
a

b
_____________;
23、已知 A(1,3), B(5,1) ,则线段 AB 的中点坐标为__________________;
江西省 2020 年三校生高考模拟考试数学试卷(三)

高三数学试卷三模

高三数学试卷三模

1. 已知函数f(x) = x^3 - 3x + 2,若f(x)的图像与x轴有三个交点,则f(x)的导数f'(x)在x=0处的值为()A. -2B. 0C. 2D. -12. 在三角形ABC中,已知∠A=60°,∠B=45°,∠C=75°,则sinB+cosC的值为()A. √3/2B. √2/2C. √6/2D. √33. 若等差数列{an}的首项a1=1,公差d=2,则第10项a10的值为()A. 19B. 20C. 21D. 224. 已知函数f(x) = ax^2 + bx + c(a≠0),若f(1) = 2,f(-1) = -2,则f(0)的值为()A. 0B. 1C. -1D. 25. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (3,2)B. (2,3)C. (-3,-2)D. (-2,-3)6. 已知等比数列{an}的首项a1=1,公比q=2,则第n项an的值为()A. 2n-1B. 2^nC. n^2D. n7. 若向量a=(1,2),向量b=(2,1),则向量a与向量b的点积为()A. 3B. -3C. 5D. -58. 在直角坐标系中,点A(1,2),点B(-2,3),则线段AB的中点坐标为()A. (-1,2.5)B. (-1,1.5)C. (1,2.5)D. (1,1.5)9. 已知函数f(x) = e^x + x^2 - 2x,若f(x)在区间[0,2]上单调递增,则f(0)的值为()A. 0B. 1C. 2D. e10. 若复数z=3+4i,则|z|的值为()A. 5B. 7C. 9D. 1211. 已知函数f(x) = x^2 - 4x + 4,若f(x)的图像的顶点坐标为()。

12. 在三角形ABC中,若AB=AC,则角B与角C的度数之和为()。

13. 已知等差数列{an}的首项a1=3,公差d=2,则第5项a5的值为()。

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

三校生高考数学模拟试卷

三校生高考数学模拟试卷

三校生高考数学模拟试卷班级 姓名 学号 得分第I 卷(选择题 70分)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 答案(请将是非选择题、单项选择题答案写到表格中)一、是非选择题:本大题共10小题,每小题3分,共30分.对每小题的命题作出选择,的选A,错的选B.1. 实数0与集合A={0,1}的关系是.0A ∈(A B) 2. 点M(1,1)在圆.1)1(22上=+-y x(A B) 3. 若非零向量.0,//,=∙b a b a b a 则满足(A B) 4. }.10{02<<<+x x x x 的解集是不等式(A B)5. 342tan ,2tan ==θθ则若(A B)6. 24lg 25lg =+(A B) 7. 函数x y πsin = 的最小周期是2(A B) 8. 若点A,B 到平面a 的距离都等于1,则直线.//a AB(A B)9. 当6)32(3的系数是的展开式中x x +(A B) 10,等差数列).(125,3,1*N n n a n ∈-=的通项公式为(A B)二、单项选择题:本大题共8小题,每小题5分,共40分.11. 的离心率为椭圆125922=+y x ( )A.53 B.54 C.43 D.45 12. 已知的值域是函数xy 2=( )A.{}0≤y yB. {}0≥y yC. {}0>y yD. {}R y y ∈13. 已知[]()=⋂==B A B A 则集合,5,2,3,0( )A. (]3,2B. [)5,0C. ()3,2D. []3,214. 不等式[]的最小值为函数2,1,32-∈+-=x x y ( ) A. -1 B. 0 C. 2 D. 315. 的大小关系是,,三个数53cos 5cos )8-(cos πππ( ) A.)53cos()5cos()8cos(πππ<<-B.⎪⎭⎫⎝⎛-<<8cos )5cos()53cos(πππ B.C.⎪⎭⎫⎝⎛<-<5cos )8cos()53cos(πππD.⎪⎭⎫⎝⎛<<-5cos )53cos()8cos(πππ16. 不等式的取值范围是,则是直线与平面所成的角若θθ( ) A.[)π,0B. )2,0(πC. )2,0[πD.]2,0[π17. 那么下列说法正确的是如果,b a >( )A.1>baB. 22b a >C.ba 11< D. 33b a > 18. 从1,2,3,4,5,6中任取两个数,则这两个数之和为9的概率是( )A.154B.51 C. 152D. 151第I 卷(非选择题 80分)三、填空题:本大题共6小题,每小题5分,共30分.19.在直角坐标系中,过点(0,1)和(1,0)的直线l 的方程是20. 在===∠=∠∆AC BC B A ABC ,则,,中,4453021. 到右焦点的距离为,则点到右焦点的距离为右支上一点若双曲线p p x x 3116922=- 22. 已知一个圆柱的底面半径为1,高为2,则该圆柱的全面积为 23. 已知向量),1,2(),1,1(-=-=b a =+b a 则24.甲乙两人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示,用甲、乙训练的成绩的方差大小关系是,乙甲22s s四、解答题:本大题共6小题,25-28小题每小题8分,29-30小题每小题9分,共50分. 25. (本小题满分8分)的值,求实数若,已知向量m b a m b a ⊥=-=),,1()2,1(.)()2()()1(cos 11)()8.26的奇偶性判断函数的定义域;求函数已知函数分(本小题满分x f x f x x f +=27. (本小题满分8分).}{68}{221的通项公式求数列,的前项和,若是递增等比数列已知n n n a S a a a S ==28. 已(本小题满分8分)已知).0(0542:22>=-+--+m m y x y x C 的方程是.0943:)2(;)1(的值相切,求实数与直线若圆的坐标求圆心m y x l C C =++29. (本小题满分9分).),1(]1,(),()(2单调递增上上单调递增,在区间在区间已知函数+∞-∞∈++=R b a b ax x x f .2]0,1[)()2(.)1(的值,求实数上的最小值为在若的值求实数b x x f a -∈30. (本小题满分9分).1111-AA BC AB C B A ABC ==形,的底面是等腰直角三角如图,已知直三棱柱(1)求异面直线所成的角与11CC AB .(2)若M 为线段AC 的中点,N 为线段1111//:BMC N AB C A 平面平面的中点,求证(3)。

三校生高考数学模拟试卷3

三校生高考数学模拟试卷3

三校生高考数学模拟试卷3三校生高考数学模拟试卷3对于许多即将参加三校生高考的同学们来说,数学是一门至关重要的科目。

而在高考前,进行模拟考试是非常必要的。

最近,我们学校组织了一次高考数学模拟试卷3的考试,旨在帮助同学们熟悉考试形式和提升应试能力。

在本文中,我将分享一些有关这次模拟试卷的看法和体会。

首先,让我们来了解一下什么是三校生高考。

三校生高考是指中等职业学校、中等技术学校和职业高中的毕业生参加的高考。

与普通高考相比,三校生高考在考试科目、考试形式和内容上都有所不同。

其中,数学科目在三校生高考中占有较大比重,对于很多同学来说也是相对较难的一门课程。

在这次模拟试卷3的考试中,我们遇到了各种类型的题目,包括计算题、应用题和证明题等。

总体来说,这次模拟试卷的难度适中,但也有一些比较有挑战性的题目。

从题型上来看,填空题和选择题的比例较大,这也符合三校生高考数学的实际考试情况。

在备考过程中,我发现自己在一些基础知识方面还需要加强。

例如,在这次模拟试卷中,有一道关于三角函数的题目,如果对相关概念掌握不够扎实,就很难顺利解答。

此外,我还需要提高自己的解题速度和准确率,特别是在做一些计算题和应用题时,需要更加细心和耐心。

为了提高自己的数学成绩,我采取了一些具体的措施。

首先,我会对每个知识点进行系统的学习和复习,确保自己对基础知识有更加深入的理解。

其次,我会通过做题来巩固自己的知识,特别是做一些历年高考数学真题和模拟试卷,这样可以更好地了解自己的薄弱环节,并针对性地进行提高。

最后,我会积极参加各种数学竞赛和辅导班,这样可以与其他同学进行交流和学习,同时也可以拓展自己的解题思路和方法。

总之,这次高考数学模拟试卷3的考试对我来说是一次非常有价值的经历。

通过这次考试,我更加清晰地了解了自身的数学水平,同时也发现了自己在备考过程中需要加强的地方。

我相信,在未来的备考过程中,我会更加努力地学习和提高自己的数学能力,争取在高考中取得优异的成绩。

【高教版】江西省2020年三校生高考数学全真模拟题(三)

【高教版】江西省2020年三校生高考数学全真模拟题(三)

江西省2020年三校生高考数学全真模拟题(三)命题人:赖斌 审核人:李发彬 命题时间:2019.3 份数:95第Ⅰ卷(选择题 共70分)一、是非选择题:本大题共10小题,每小题3分,共30分.对每小题的命题做出判断,对的选A ,错的选B.1、R ∈2…………………………………………………………………………………(A B )2、若a>b,则-5a>-5b ………………………………………………………………………(A B )3、函数42)(x x x f +=是一个偶函数……………………………………………………(A B )4、81632=…………………………………………………………………………………(A B ) 5、若)3,1(-=a )2,2(,-=a 则)1,1(=+b a ……………………………………………(A B )6、过直线外一点,可以作无数个平面与这条直线平行…………………………………(A B )7、如果,54sin =a 则53cos -=α………………………………………………………(A B )8、由数字1,2,3,4,5可以组成60个数字不重复的三位数………………………………(A B ) 9、5>x 是3>x 的必要不充分条件……………………………………………………(A B )10、椭圆14322=+y x 的焦点坐标为(-1,0),(1,0)……………………………………(A B ) 二、单项选择题:本大题共8小题,每小题5分,共40分。

11、函数x y lg =的定义域是( ) .A .()+∞∞-,B .[0,+∞]C .(0,+∞)D .(1,+∞) 12.式子log 39的值为( ) .A .1B .2C .3D .9 13.已知锐角α的终边经过点(1,1),那么角α为( ) . A .30° B .90° C .60° D .45°14、已知一个圆的半径是2,圆心点是A (1,0),则该圆的方程是( ) . A .4)1(22=+-y x B .4)1(22=++y x C. 2)10(22=+-y x D .2)1(22=++y x 15、已知a=4, b=9,则a 与b 的等比中项是( ) . A .6 B . -6 C .±6 D .±61 16、同时抛掷两枚均匀的硬币,出现 两个反面的概率是( ) .A .21 B .31 C .41 D .51 17、设椭圆14522=+y x 的两个焦点分别是F 1、F 2,AB 是经过F 1的弦,则△ABF 2的周长是( ) .A .25B .45C .252+D .254+ 18、如图,直线PA 垂直于直角三角形ABC 所在的平面,且∠ABC=90°,在△PAB ,△PBC,,△PAC 中,直角三角形的个数是( ) .A .0B .1C .2D . 3第Ⅱ卷(非选择题 共80分)三、填空题:本大题共6小题,每小题5分,共30分.19、cos 300°=______________________ .20、设a =x 2+2x ,b =x 2+x +2,若x >2,则a 、b 的大小关系是_________________ . 21、已知正方体的表面积是54cm 2,则它的体积是________________ .22、已知双曲线162x -192=y 则它的离心率是____________ . 23、四本不同的图书,分给四个同学,每人一本,则不同的分法有________种(用数字作答). 24、当a >0且a ≠1时,函数f(x)=a x -2-3的图象必过定点______________ .四、解答题:本大题共6小题,25~28小题每小题8分,29~30小题每小题9分,共50分.解答应写出过程或步骤.25、已知)5,3(-=a,),15(m b -=(1)当实数m 为何值时,b a ⊥;(2)当实数m 为何值时b a// .班级:_____________________姓名:_____________________座位号:_________________***************************密*********************封*********************线****************************26、已知数列{}n a 满足a 1=1, a 2=3,a n+2+a 2=2a n +1(n ∈N *) (1)求a 3,a 4的值; (2)求数列{}n a 的前N 项和S .27、现用长8m 的铝合金制作一个矩形窗户的边框,问怎样设计,才能既使铝合金恰好用完,又使窗户的面积最大?28、已知函数f(x)=lg xx+-11.(1)f(-31)+f(-32)的值;(2)求证:函数f (x )为奇数函数;(3)解不等式f (x )<129、如图,已知矩形ABCD ,MA ⊥平面ABCD ,若AB=MA=1,AD=3。

江西省贵溪市实验中学2021届高三三校生第三次模考考试数学试卷 (解析版)

江西省贵溪市实验中学2021届高三三校生第三次模考考试数学试卷 (解析版)

2021年江西省鹰潭市贵溪实验中学三校生高考数学三模试卷一、是非选择题(共10小题).对的选A,错的选B。

1.与的等比中项是2.(判断对错)2.a>b是ac2>bc2充要条件.(判断对错)3.小明有4个电子邮箱,他要发3个电子邮件,发送方法的种数为43.(判断对错)4.圆x2+y2+4x+2y﹣5=0的圆心坐标为(2,﹣1).(判断对错)5.若直线a与平面α垂直,则a与平面α内的所有直线都垂直.(判断对错)6.将函数y=sin2x的图象向右平移个单位可得到函数的图象.(判断对错)7.已知集合A={x|x≤0},且A∩B=A,则集合B可能是{x|x≤﹣1}.(判断对错)8.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log3x,则f(﹣3)=1.(判断对错)9.已知一个正方体的所有顶点在一个球面上,若该球的表面积12π,则正方体的体积为8.(判断对错)10.已知函数f(x)=ax2+bx+c,关于x的不等式f(x)<0的解集为(﹣1,3),则f(4)>f(0)>f(1).(判断对错)二、单项选择题(共8小题).11.已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∪B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2}12.已知点(﹣4,3)是角α终边上的一点,则sin(π﹣α)=()A.B.C.D.13.在等比数列{a n}中,a3、a15是方程x2﹣7x+12=0的两个根,则的值为()A.B.2C.﹣2D.414.已知(1+x)n的展开式中,第三项与第十项的二项式系数相等,则二项式系数和为()A.212B.211C.210D.2915.设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β16.已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.17.定义运算:a*b=,则函数f(x)=1*2x的图象大致为()A.B.C.D.18.长方体ABCD﹣A1B1C1D1,AB=4,AD=2,,则异面直线A1B1与AC1所成角的余弦值为()A.B.C.D.三.填空题(共6小题).19.函数y=的定义域为.20.已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m=.21.过点(1,3)且平行于直线x+2y+3=0的直线方程为.22.已知函数f(x)=log2(x2+a),若f(3)=1,则a=.23.过抛物线y2=6x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=5,那么|AB|等于.24.在锐角三角形△ABC中,S△ABC=2,AB=5,AC=1,则BC=.四、解答题:本大题共6小题,25-28小题每小题8分,29-30小题每小题8分,共50分;解答应写出过程或步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年三校生高考模拟考试(三)
数 学 试 题
注意事项:
1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的,答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将答题卡交回。

一、选择题:(本大题共20小题,每小题2分,满分40分.在每小题给出的四个选项中,
只有一项符合题目要求).
1.已知集合{}2,A a =,{}4B =,且{}1,2,4A B =则a =( )
A .4
B .3
C .2
D .1
2.函数0.2log (1)x -的定义域为( )
A (1,2)
B ](
1,2 C []1,2 D )1,2⎡⎣
3.已知,a b 是实数,则“0a =”是“()30a b -=”的( )
A .充分非必要条件
B .必要非充分条件
C .充分必要条件
D .非充分非必要条件
4.不等式2560x x --≤的解集是( )
A . {}23x x -≤≤
B .{}61x x -≤≤
C . {}16x x -≤≤
D .{}16x x x ≥≤或
5.下列函数中,在区间(0,+∞)上为增函数的是( )
A .y =x +1
B .y =(x -1)2
C .y =2-x
D .y =log 0.5(x +1)
6.函数cos 2y x ⎛⎫=- ⎪⎝⎭π在区间,43ππ⎡⎤⎢⎥⎣⎦
上的最大值是( ) A .1 B .32 C .22 D .1
2
7.已知向量a =(3,1),b =(-2,1),则2a b -=( )。

A 、64
B 、65
C 、65
D 、64
8.数列{}n a 中,452,2a a ==,则数列{}n a 的前8项和等于 ( )
A .16
B .15
C .14
D .13
9.2
(sin 2cos 2)1y x x =--是 ( ) A .最小正周期为π2的偶函数
B .最小正周期为π2的奇函数
C .最小正周期为π的偶函数
D .最小正周期为π的奇函数
10.函数()f x 是奇函数,()y f x =的图象经过点()2,5-,则下列等式恒成立的是
A . ()25f -=
B .()25f -=-
C . ()52f -=
D .()52f -=-
11.抛物线y x 82
-=的准线方程是 ( )
A .4=y
B .4-=y
C .2=y
D .2-=y
12.已知向量(3,5)a =,(2,)b x =,且a b ⊥,则x =( )
A 、65
B 、65-
C 、 56
D 、56-
13.直线l 的倾斜角是4
π,在x 轴上的截距为2,则直线l 的方程是( ) A .20x y +-= B .20x y ++= C .20x y -+= D .20x y --=
14.双曲线19
252
2=-y x 上的一点到左焦点的距离是6,则它到右焦点的距离( ). A 、16 B 、4或-16 C 、4 D 、-4或16
15.等差数列}{n a 中,,105=a 且3321=++a a a ,则有( )
A .3,21=-=d a
B .3,21==d a
C .2,31=-=d a
D .2,31-==d a
16.过点A (2,3),且垂直于直线2x +y -5=0的直线方程是( ).
A 、 x -2y +4=0
B 、y -2 x +4=0
C 、2x -y -1=0
D 、 2x +y -7=0
17. 函数()4sin cos ()f x x x x R =∈的最大值是( ).
A. 1
B. 2
C. 4
D. 8
18.已知角α终边上的一点4cos ),4,3(k P =
-α,则k 的值是( ) A .516- B .5
12 C .4- D .3- 19.函数sin 2y x =的图象按向量(,1)6a=π-
平移后的图象对应的函数为( ). A 、sin(2)13y x π=-
- B 、sin(2)16y x π=++ C 、sin(2)16y x π=-- D 、sin(2)13
y x π=++ 20. 已知数列{}n a 的前n 项和1
n n S n =+,则5a = ( ). A. 142 B. 130 C. 45 D. 56
二、填空题:本大题共5小题,每小题4分,满分20分.
21.已知等比数列{}n a ,满足0n a >()*n N ∈且579a a =,则6a =
.
22. 已知向量a 和b 的夹角为34
π,且|||3==a b ,则⋅=a b .
23.圆2240x x y -+=的圆心到直线40x +-=的距离是 。

24.()f x 是定义在(0,+∞)上的增函数,则不等式()(23)f x f x >-的解集 是 。

25.若sin 6παα⎛⎫-= ⎪⎝⎭
,则tan =α .
三、解答题:本大题共5小题,满分40分.解答题应写出文字说明、证明过程或演算步骤.
26. 在ABC ∆中,,,a b c 分别是A B C ,,∠∠∠的对边,已知3,4b c ==,1cos A=3
.
(1)求a 的值; (2)求sinC 的值.
27.设函数()f x m n =⋅,其中向量(2sin ,3cos )m x x =-, (sin 2cos ,2cos )n x x x =+-
求:(1) f(x)的最小正周期 (2) 函数的最小值和以及相应的x,其中
(0,)2x π∈
28.已知椭圆x2a2+y2b2
=1(a >b >0)的右焦点为F(c,0).且c =2。

(1)若椭圆的两准间的距离为焦距的4倍,求椭圆的方程;
(2)过该椭圆的右焦点的直线的斜率为-1,求直线与椭圆所截得的线段的长度。

29. B 船位于A 船正东26公里处,现A 、B 两船同时出发,A 船以每小时12公里的速度
朝正北方向行驶,B 船以每小时5公里的速度朝正西方向行驶,那么何时两船相距最近,最近距离是多少
30.已知数列{}n a 满足111,22,(*)n n a a a n N +==+∈。

(1)求4a
(2)证明数列
{}2n a +是等比数列.并求数列{}n a 的通项公式。

相关文档
最新文档