Linux内核调试技术——进程上下文R状态死锁监测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Linux内核调试技术——进程上下文R
状态死锁监测
一、lockup detector机制分析
lockup detector机制在内核代码的kernel/watchdog.c中实现,本文以Linux 4.1.15版本源码为例进行分析。首先了解其背后的设计原理:利用进程上下文、中断、nmi中断的不同优先级实现死锁监测。它们3者的优先级关系为“进程上下文< 中断< nmi中断”,其中进程上下文优先级最低,可通过中断来进行监测进程的运行状态,nmi中断的优先级最高,它是一种不可屏蔽的中断,在中断上下文中发生死锁时,nmi中断处理也可正常进入,因此可用来监测中断中的死锁。不过可惜的是目前绝大多数的arm32芯片都不支持nmi中断,也包括我手中树莓派的bcm2835芯片。从程序的命名中就可以看出,该程序其实实现了一种软看门狗的功能,下面给出整体的软件流程框图:
该程序为每个cpu创建了一个进程和一个高精度定时器,其中进程用来喂狗,定时器用来唤醒喂狗进程和检测是否存在死锁进程,在检测到死锁进程后就触发报警,接下来详细分析源代码:
[cpp] view plain copy 在CODE上查看代码片派生到我的代码片
void __init lockup_detector_init(void)
{
set_sample_period();
if (watchdog_enabled)
watchdog_enable_all_cpus();
}
首先入口函数lockup_detector_init(),该函数会在内核启动流程中按如下路径调用:start_kernel() --> rest_init() --> kernel_init()(启内核线程)--> kernel_init_freeable() --> lockup_detector_init()。该函数首先计算高精度定时器的到期时间(即喂狗时间),该值为监测超时时间值的1/5,默认为4s(20s/5),然后判断开关标识来确定是否启用监测机制,该标识在没有启用hard lockup detect的情况下默认为SOFT_WATCHDOG_ENABLED,表示开
启soft lockup detect。于此同时内核也提供了如下的__setup接口,可从内核启动参数cmd line 中设置值和开关:
[cpp] view plain copy 在CODE上查看代码片派生到我的代码片
static int __init softlockup_panic_setup(char *str)
{
softlockup_panic = simple_strtoul(str, NULL, 0);
return 1;
}
__setup("softlockup_panic=", softlockup_panic_setup);
static int __init nowatchdog_setup(char *str)
{
watchdog_enabled = 0;
return 1;
}
__setup("nowatchdog", nowatchdog_setup);
static int __init nosoftlockup_setup(char *str)
{
watchdog_enabled &= ~SOFT_WATCHDOG_ENABLED;
return 1;
}
__setup("nosoftlockup", nosoftlockup_setup);
此处假定开启soft lockup detect,接下来调用watchdog_enable_all_cpus()函数,该函数会尝试为每个CPU创建一个喂狗任务(并不会立即启动主函数执行):
[cpp] view plain copy 在CODE上查看代码片派生到我的代码片
static int watchdog_enable_all_cpus(void)
{
int err = 0;
if (!watchdog_running) {
err = smpboot_register_percpu_thread(&watchdog_threads);
if (err)
pr_err("Failed to create watchdog threads, disabled\n");
else
watchdog_running = 1;
} else {
/*
* Enable/disable the lockup detectors or
* change the sample period 'on the fly'.
*/
update_watchdog_all_cpus();
}
return err;
}
该函数首先判断是否已经启动了任务,若没有则调用smpboot_register_percpu_thread()函数来创建任务,否则则调用update_watchdog_all_cpus()函数来更新定时器的到期时间。首先分析前一个分支,看一下watchdog_threads结构体的实现:
[cpp] view plain copy 在CODE上查看代码片派生到我的代码片
static struct smp_hotplug_thread watchdog_threads = {
.store = &softlockup_watchdog,
.thread_should_run = watchdog_should_run,
.thread_fn = watchdog,
.thread_comm = "watchdog/%u",
.setup = watchdog_enable,
.cleanup = watchdog_cleanup,
.park = watchdog_disable,
.unpark = watchdog_enable,
};
该结构注册了许多的回调函数,先简单了解一下:(1)softlockup_watchdog是一个全局的per cpu指针,它用来保存创建任务的进程描述符task_struct结构;(2)watchdog_should_run()是任务运行的判断函数,它会判断进程是否需要调用thread_fn指针指向的函数运行;(3)watchdog()是任务运行的主函数,该函数实现线程喂狗的动作;(4)setup回调函数watchdog_enable会在任务首次启动时调用,该函数会创建高精度定时器,用来激活喂狗任务和监测死锁超时;(5)cleanup回调函数用来清除任务,它会关闭定时器;(6)最后的park 和unpark回调函数用于暂停运行和恢复运行任务。(7)thread_comm是任务名字,cpu0是watchdog/0,cpu1是watchdog/1,以此类推。
下面来简单看一下smpboot_register_percpu_thread()函数是如何为每个cpu创建任务的,同时又在何处调用上述的那些回调函数的(kernel/smpboot.c):
[cpp] view plain copy 在CODE上查看代码片派生到我的代码片
int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
{
unsigned int cpu;
int ret = 0;
get_online_cpus();
mutex_lock(&smpboot_threads_lock);
for_each_online_cpu(cpu) {
ret = __smpboot_create_thread(plug_thread, cpu);
if (ret) {
smpboot_destroy_threads(plug_thread);
goto out;
}
smpboot_unpark_thread(plug_thread, cpu);
}
list_add(&plug_thread->list, &hotplug_threads);