BP神经网络的非线性系统建模
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BP神经网络的非线性系统建模
一、题目
拟合的非线性函数为:y=x12+x22
二、模型建立
BP神经网络构建根据拟合非线性函数特点确定BP神经网络结构,由于该非线性函数有两个输入参数,一个输出参数,所以BP神经网络结构为2—5—1,即输入层有2个节点,隐含层有5个节点,输出层有1个节点。
从非线性函数中随机得到2000组输入输出数据,从中随机选择1900组作为训练数据,用于网络训练,100组作为测试数据,用于测试网络的拟合性能。
利用Matlab中工具箱函数。
三、Matlab实现
3.1数据选择和归一化
从输入输出数据中随机选取1900组数据作为网络训练数据,100组数据作为网络测试数据,并对训练数据进行归一化处理。
%%清空环境变量
clc
clear
%%训练数据预测数据提取及归一化
%下载输入输出数据
load data input output
%从1到2000间随机排序
k=rand(1,2000);
[m,n]=sort(k);
%找出训练数据和预测数据
input_train=input(n(1:1900),:)';
output_train=output(n(1:1900));
input_test=input(n(1901:2000),:)';
output_test=output(n(1901:2000));
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
3.2BP神经网络训练
用训练数据训练BP神经网络,使网络对非线性函数输出具有预测能力。
%%BP网络训练
%%初始化网络结构
net=newff(inputn,outputn,5);
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00004;
%网络训练
net=train(net,inputn,outputn);
3.3BP神经网络预测
%%BP网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps); %网络预测输出
an=sim(net,inputn_test);
%网络输出反归一化
BPoutput=mapminmax('reverse',an,outputps); %%结果分析
figure(1)
plot(BPoutput,':og')
hold on
plot(output_test,'-*');
legend('预测输出','期望输出')
title('BP网络预测输出','fontsize',12)
ylabel('函数输出','fontsize',12)
xlabel('样本','fontsize',12)
%预测误差
error=BPoutput-output_test;
figure(2)
plot(error,'-*')
title('BP网络预测误差','fontsize',12)
ylabel('误差','fontsize',12)
xlabel('样本','fontsize',12)
figure(3)
plot((output_test-BPoutput)./BPoutput,'-*');
title('神经网络预测误差百分比')
errorsum=sum(abs(error))
四、结果分析
用训练好的BP 神经网络预测函数输出,预测结果如图1所示。
样本
函数输出图1BP 神经网络预测
BP 神经网络预测输出和期望输出的误差如图2所示
0102030405060708090100
误差样本图2BP 神经网络预测误差