初中数学竞赛分专题训练试题与解析[共10套]
八年级数学竞赛题及答案解析(K12教育文档)
八年级数学竞赛题及答案解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学竞赛题及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学竞赛题及答案解析(word版可编辑修改)的全部内容。
八年级数学竞赛题(本检测题满分:120分,时间:120分钟)班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .4 2。
下列各式中计算正确的是( )A 。
9)9(2-=- B.525±= C.3311()-=- D.2)2(2-=-3。
若901k k <<+ (k 是整数),则k =( )A. 6B. 7C.8D. 9 4。
下列计算正确的是( ) A 。
ab ·ab =2abC.3—=3(a ≥0) D 。
·=(a ≥0,b ≥0)5。
满足下列条件的三角形中,不是直角三角形的是( ) A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3 C 。
三边长之比为3∶4∶5 D 。
三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对7。
将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h 的取值范围是( ) A .h ≤17 B .h ≥8 C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A.(4, -3) B 。
八年级数学竞赛试卷及解答
一、选择题(每题5分,共20分)1. 下列各数中,是正有理数的是()A. -3B. 0C. -1/2D. 2解答:D2. 若a < b,且a、b都是正数,那么下列不等式中正确的是()A. a² < b²B. a³ < b³C. a < b²D. a² < b解答:B3. 已知方程3x - 2 = 5,则x的值为()A. 1B. 2C. 3D. 4解答:C4. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)解答:A5. 若等腰三角形底边长为4,腰长为6,则该三角形的周长为()A. 14B. 16C. 18D. 20解答:B二、填空题(每题5分,共25分)1. 若a、b是方程x² - 5x + 6 = 0的两个根,则a + b = __________。
解答:52. 在等差数列{an}中,a₁ = 3,公差d = 2,则第10项a₁₀ = __________。
解答:213. 若a² + b² = 25,且a - b = 3,则ab的值为 __________。
解答:164. 已知正方形的对角线长为10,则该正方形的面积是 __________。
解答:505. 若a、b、c是等比数列,且a + b + c = 6,ab = 12,则c²的值为__________。
解答:18三、解答题(共55分)1. 解方程:2(x - 3) + 3(x + 1) = 5。
解答:2x - 6 + 3x + 3 = 55x - 3 = 55x = 8x = 8/52. 已知数列{an}是等差数列,且a₁ = 3,公差d = 2,求第10项a₁₀。
解答:a₁₀ = a₁ + (10 - 1)da₁₀ = 3 + 9 2a₁₀ = 213. 已知三角形的三边长分别为3、4、5,求该三角形的面积。
全国初中数学竞赛试题和答案解析
中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a ,b ,c 22||()||a a b c a b c -++-++可以化简为( ).(A )2c a - (B )22a b - (C )a - (D )a 1(乙).如果22a =-11123a+++的值为( ).(A )2- (B 2 (C )2 (D )222(甲).如果正比例函数y = ax (a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ). (A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)2(乙). 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ). (A )10 (B )9 (C )7 (D )53(甲).如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a - (C )12 (D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线, △ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5, 则CD 的长为( ).(A )23 (B )4 (C )52 (D )4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正OAB CED整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )44(乙).如果关于x 的方程 20x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).(A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99二、填空题(共5小题,每小题6分,共30分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 .6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB分别交于点M ,N ,则△DMN 的面积是 . 7(乙).如图所示,点A 在半径为20的圆O 上,以OA 为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。
初中数学竞赛专题训练试题及解析(共10套)
初中数学竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。
当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。
则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。
A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。
全国初三初中数学竞赛测试带答案解析
全国初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.如图,已知在Rt△ABC中,AB=35,一个边长为12的正方形CDEF内接于△ABC.则△ABC的周长为( ).(A)35 (B)40 (C)81 (D)842.设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有( )个.A.50B.90C.99D.1003.已知f(x)=x2+6ax-a,y=f(x)的图像与x轴有两个不同的交点(x1,0),(x2,0),且=8a-3.则a的值是( ).A.1B.2C.0或D.4.若不等式ax2+7x-1>2x+5对-1≤a≤1恒成立,则x的取值范围是( ).A.2≤x≤3B.2<x<3C.-1≤x≤1D.-1<x<15.在Rt△ABC中,∠B=60°,∠C=90°,AB=1,分别以AB、BC、CA为边长向△ABC外作等边△ABR、等边△BCP、等边△CAQ,联结QR交AB于点T.则△PRT的面积等于( ).(A) (B) (C) (D)6.在3×5的棋盘上,一枚棋子每次可以沿水平或者垂直方向移动一小格,但不可以沿任何斜对角线移动.从某些待定的格子开始,要求棋子经过全部的小正方格恰好一次,但不必回到原来出发的小方格上.在这15个小方格中,有( )个可以是这枚棋子出发的小方格.A.6B.8C.9D.10二、填空题1.正方形ABCD的边长为5,E为边BC上一点,使得BE=3,P是对角线BD上的一点,使得PE+PC的值最小.则PB= .2.设a、b、c为整数,且对一切实数x,(x-a)(x-8)+1="(x-b)(x-c)" 恒成立.则a+b+c的值为 .3.如图,在以O为圆心的两个同心圆图2中,MN为大圆的直径,交小圆于点P、Q,大圆的弦MC交小圆于点A、B.若OM=2,OP= 1,MA=AB=BC,则△MBQ的面积为 .4.从1, 2,…, 2 006中,至少要取出个奇数,才能保证其中必定存在两个数,它们的和为2 008.三、解答题1.(20分)实数x、y、z、w满足x≥y≥z≥w≥0,且5x+4y+3z+6w=100.求x+y+z+w的最大值和最小值.2.(25分)如图,在Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F,联结AD与内切圆相交于另一点P,联结PC、PE、PF.已知PC⊥PF.求证:(1)EP/DE=PD/DC;(2)△EPD是等腰三角形.3.(25分)在中,有多少个不同的整数(其中,[x]表示不大于x的最大整数)?全国初三初中数学竞赛测试答案及解析一、选择题1.如图,已知在Rt△ABC中,AB=35,一个边长为12的正方形CDEF内接于△ABC.则△ABC的周长为( ).(A)35 (B)40 (C)81 (D)84【答案】D【解析】分析:首先设BC=a,AC=b,由勾股定理与正方形的性质,可得:a2+b2=352,Rt△AFE∽Rt△ACB,再由相似三角形的对应边成比例,可得12(a+b)=ab,解方程组即可求得.解答:解:如图,设BC=a,AC=b,则a2+b2=352=1225.①又Rt△AFE∽Rt△ACB,所以=,即=,故12(a+b)=ab.②由①②得(a+b)2=a2+b2+2ab=1225+24(a+b),解得a+b=49(另一个解-25舍去),所以a+b+c=49+35=84.故答案为D.2.设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有( )个.A.50B.90C.99D.100【答案】C【解析】由于9=10-1,99=100-1,…,所以n="9+99+999+…+" =10+102+103+…1099-99×1.然后据此等式求出n的值后,即能得出n的十进制表示中,数码1有多少个.解:n=9+99+999+…+=10+102+103+…1099-99×1,=1111111…10(99个1)-99,=11111…1011(99个1).所以在十进制表示中,数码1有99个.故答案为:99.根据式中数据的特点将式中的数据变为10的n次方相加的形式是完成本题的关键.3.已知f(x)=x2+6ax-a,y=f(x)的图像与x轴有两个不同的交点(x1,0),(x2,0),且=8a-3.则a的值是( ).A.1B.2C.0或D.【答案】D【解析】本题考查二次函数与一元二次方程关系的综合应用问题。
初中数学竞赛试题及答案解析
初中数学竞赛试题二、填空题1、 41-的负倒数与4-的倒数之和等于 . 2、 甲、乙、丙、丁四个数之和等于90-.甲数减4-,乙数加4-,丙数乘4-,丁数除以4-彼此相等.则四个数中的最大的一个数比最小的一个数大 .3、 已知a 1999=,则=-+---+-200133314232323a a a a a a .4、 填数计算:〇中填入的最小的自然数.△中填入最小的非负数.□中填入不小于5-且小于3的整数的个数.将下式的计算结果写在等号右边的横线上.(〇+□)⨯△= .5、 从集合}5,4,1,2,3{---中取出三个不同的数,可能得到的最大乘积填在□中,可能得到的最小乘积填在〇中,并将下式计算的结果写在等号右边的横线上.-(-□)÷〇= .6、 计算:=------------)4151()3141()2131(1)4151()3141()2131(1 . 7、 x 是有理数,则22195221100++-x x 的最小值是 . 8、 如图,C 是线段AB 的中点,D 是线段AC 的中点.已知图中所有线段的长度之和为23,则线段AC 的长度为.9、 在1000到5000之间同时被24,36,30整除的最小整数是_________,最大整数是__________.10、 一个有理数的倒数的相反数的3倍是31,那么这个有理数是 . 11、 一个有理数的二次幂大于这个有理数,那么这样的有理数的取值范围是 .12、 若8919+=+=+c b a ,则=-+-+-222)()()(a c c b b a .13、 a 1的倒数是51-,那么=a _____. 14、 小丽写出三个有理数,其中每两个有理数的平均值分别是326,217,7,那么这三个有理数的平均值是 .15、 计算:=--+-)36173)(72.0()722(125.11.16、 m ,y 互为相反数,n 和y 互为倒数,则5)(y my n -的值是_____.17、 已知1171=x ,则3)114(3)711)(1(2++--x x x 的值是 . 18、 已知52,32<-<-b a a b .则化简98272-+++-----b a a b a b 所得的结果是 .19、 m ,n 是正整数,mn =120,则m +n 可能取到的最小值是_____.20、 若a=1997,则7122----+a a a a 的值是 .21、 若x = -0.239,则199********-------++-+-x x x x x x 的值等于_____.参考答案二、填空题1、 417- 解:41-的负倒数为411--,4-的倒数为41-, 二者之和为:411--+41-417414-=--=.2、 204解:设等数为a ,则 90)4()4()]4([)]4([-=-⨯+-+--+-+a a a a 即90412-=-a ,∴ a =40, 因此,甲数为36,乙数为44,丙数为-10,丁数为-160,其中,最大数-最小数=44-(-160)=204.3、 4000000 解:当a 1999=时,142314232323-+-=-+-a a a a a a=-+-200133323a a a 200133323-+-a a a ,所以,原式=142323-+-a a a )2001333(23-+--a a a2000200019992000)1(20002+⨯=++=++=a a a a400000020002000=⨯=.4、 0解:〇中填1,△中0,□填8. []⎣⎦⎡⎤00)81(=⨯+.5、 ⎣⎦⎡⎤2160)30(-=÷-- 解:由-3,-2,-1,4,5中任取三个相乘可得10种不同的乘积,它们是:124)1)(3(,205)2)(3(,244)2)(3(,6)1)(2)(3(=⋅--=⋅--=⋅--=---,105)1)(2(,84)1)(2(,6054)3(,155)1)(3(=⋅--=⋅---=⋅⋅-=⋅--,2054)1(,4054)2(-=⋅⋅--=⋅⋅-,最大乘积是30,最小的乘积是-60.∴ ⎣⎦⎡⎤2160)30(-=÷--.6、 137 解:)4151()3141()2131(1)4151()3141()2131(1------------ )4151()3141()2131(1)]4151([)]3141([)]2131([1---------------= )4151()3141()2131(1)4151()3141()2131(1-------+-+-+= 41513141213114151314121311+-+-+--+-+-+= 13710131075121151211==-++-=.7、 1715 解:一般解法是分三种情况讨论:(1)当22195-<x 时 ,,(2)当22110022195≤≤-x 时 ,,(3)当221100>x 时 ,.综合(1),(2),(3)可得,最小值是1715.最简单的解法是:根据绝对值的几何意义,22195221100++-x x 表示数轴上x 对应的点P 到22195-对应的点A 和221100对应的点B 的距离之和,易知当P 在线段AB 上时,P A +PB 最小值为2211001715)22195(=--.8、 1373 解:设线段AC 的长度为x ,则AD =2x ,则AB =2x ,DC =2x ,DB =x 23,CB =x ,所以 232321221=+++++x x x x x x ,即23213=x .∴13731346==x .即AB 长度为1373.9、 4680解:24,30,36三个数的最小公倍数是360,10803360=⨯,∴大于10000且能被24,30,36整除的最小整数是1080,又36010805000⋅+>n ,其中n 为自然数,解得9810<n .∴取10=n ,得4680360101080=⋅+.∴具有这种性质的最大整数是4680.10、 -9解:利用还原算法:某数a 的3倍是31,显然91=a ,而91应是一个有理数倒数的相反数,所以这个有理数的倒数为91-,故这个有理数是-9.11、 大于1的有理数和负有理数解:画出数轴如图.大于1的有理数的二次幂大于它自身;1的二次幂等于1;大于0且小于1的有理数的二次幂小于它本身;0的二次幂是0;负有理数的二次幂是正数,大于它自身.综上可知,二次幂大于其自身的有理数的范围,是大于1的有理数和负有理数.12、 222解:由8919+=+=+c b a 得:11,1,10=--=--=-a c c b b a .∴+-+-22)()(c b b a =-2)(a c 222121110011)1()10(222=++=+-+-.13、 51- 解:a 1的倒数是51-,那么a 1=-5,51-=a .14、 1817 解:设小丽写出的三个有理数为x ,y ,z ,则3262,2172,72=+=+=+z y z x y x , 所以15,340,14=+=+=+x z z y y x ,三式相加,3127)(2=++z y x , 则1817181273==++z y x .15、 -14 解:因为2179167212518511.125(2)(0.72)(3)73687100367214-+--=-+=-+=-. 所以原分式的值为-14.16、 0解:由m 和y 互为相反数,知m = -y ,由n 和y 互为倒数,知道0,0≠≠y n 且yn 1= ∴0=-=-y y y y y m y n ,故5)(ym y n -=0. ∴17、 38 解:由1171=x ,可知2114,1171=+=-x x ,所以原式= 37772(1117)322113838111111-+=+=.18、 -6解:由32<-a b ,得03272<--<--a b a b .由52<-b a ,得052>+-a b ,得 05282>+->+-a b a b .而853)2()2(=+<-+-=+b a a b a b . 089<-+<-+∴a b b a98272-+++-----b a a b a b9)()82()72(-+-+----=b a a b a b987+--=6-=.19、 22解:由222)(1204)(4)(n m n m mn n m -+⋅=-+=+当2)(n m -愈小时,2)(n m +越小,从而m +n 也愈小,m 、n 为120的约数,且n m -要最小,由53222120⋅⋅⋅⋅==mn所以,当m =12,n =10时,m +n =22为最小值.20、 4000解:当a =1997时,0719971997,011997199722>-->-+7122----+a a a a)7()1(22----+=a a a a7122++--+=a a a a62+=a4000619972=+⋅=.21、 999解:由b a x <≤,可得a b a x b x -=---,则原式)19961997()23()1(---++---+--=x x x x x x)19961997()23()01(-++-+-=个99921998111=÷+++= 999=.。
初中数学竞赛练习题及解析
初中数学竞赛练习题及解析问题一:某数列的前四项依次为1、2、3、4,从第五项起,每一项都是其前两项的和,求第十项的值。
解析:根据题目所给条件,我们可以逐步计算出数列的后续项。
首先确定数列的规律:第五项即为前两项1和2的和,为3;第六项为2和3的和,为5;第七项为3和5的和,为8;以此类推。
按照规律依次计算,我们可以得到数列的前十项如下:1、2、3、4、7、11、18、29、47、76因此,第十项的值为76。
问题二:设正方形的边长为x,圆的半径为r,且满足x = 2r,求正方形的面积与圆的面积之比。
解析:正方形的面积可以表示为x^2,圆的面积可以表示为πr^2。
根据题目所给条件,我们有x = 2r,代入上述公式,可得正方形的面积为(2r)^2=4r^2,圆的面积为πr^2。
将正方形的面积与圆的面积相除,得到比值为(4r^2)/(πr^2)。
化简该比值,可得2/π。
因此,正方形的面积与圆的面积之比为2/π。
问题三:已知两个数的和为20,差为4,求这两个数。
解析:设两个数分别为x和y,根据题目所给条件,我们可以列出以下方程组:x + y = 20x - y = 4通过联立解方程,可以求解出x和y的值。
首先将第二个方程进行变形,得到x = 4 + y,然后代入第一个方程中,得到(4 + y) + y = 20。
将方程化简,得到2y + 4 = 20,即2y = 16,解得y = 8。
将y的值代入x = 4 + y中,得到x = 4 + 8,即x = 12。
因此,这两个数分别为12和8。
总结:以上是对初中数学竞赛练习题的解析过程。
通过对不同类型的题目进行讲解,希望能够帮助同学们更好地理解数学知识,提高解题的能力。
在数学竞赛中,重要的是培养逻辑思维能力和解决问题的方法,希望同学们能够多加练习、思考,不断提升自己的数学水平。
祝愿大家在数学竞赛中取得优异成绩!。
初中数学竞赛试题及解析
初中数学竞赛试题及解析本文将提供一系列针对初中数学竞赛的试题,并为每道题给出解析过程。
希望通过这些题目和解析,能帮助读者更好地理解和掌握初中数学知识。
一、选择题1. 下列哪个数是无理数?A) 3.14 B) √2 C) 0.5 D) 5答案:B) √2解析:无理数是不能被表达为两个整数的比值的实数。
√2是一个无理数,因为它无法化简为整数的比值。
2. 若a + b = 5,a - b = 3,则a的值为多少?A) 7 B) 4 C) 8 D) 2答案:D) 2解析:通过解方程组可以求得a的值。
将两个方程相加得2a = 8,所以a = 4/2 = 2。
3. 二次函数y = 2x^2 + 3x - 1的顶点坐标为(-1, 0),则该二次函数的对称轴方程为:A) x = -1 B) x = 1 C) y = -1 D) y = 1答案:A) x = -1解析:二次函数的对称轴方程为x = -b/2a。
根据y = 2x^2 + 3x - 1的系数,代入公式算得对称轴方程为x = -1。
二、填空题1. 已知等差数列的首项为5,公差为3,若该数列的第10项为________。
答案:31解析:等差数列的通项公式为an = a1 + (n - 1)d,其中an表示第n 项,a1为首项,d为公差。
代入已知条件计算得a10 = 5 + (10 - 1) × 3 = 5 + 27 = 31。
2. 若正方形的边长为x,则其对角线长为________。
答案:x√2解析:对角线是两个相邻顶点之间的线段,根据勾股定理可知对角线长的平方等于两条边长的平方和。
所以对角线长为x√2。
三、解答题1. 在平行四边形ABCD中,AB = 6cm,BC = 8cm,且∠ABC = 120°。
求平行四边形的面积。
解析:首先绘制出平行四边形ABCD的示意图。
然后使用正弦公式求出∠BAC的大小,再利用正弦定理计算出AD的长度。
2024全国初中数学竞赛试题
1、已知直角三角形的两条直角边长度分别为3和4,则斜边上的高为:A. 2.4B. 1.2C. 5D. 不能确定(答案)A2、若a、b、c为三角形的三边长,且满足a² + b² + c² + 50 = 10a + 6b + 8c,则此三角形为:A. 直角三角形B. 等腰三角形C. 等边三角形D. 不能确定(答案)A3、解方程组 { x + 2y = 5, 3x - 4y = -2 } 时,若先消去y,则得到的方程是:A. 5x = 14B. 5x = 10C. 7x = 16D. 7x = 22(答案)B4、在平行四边形ABCD中,若∠A : ∠B = 2 : 3,则∠C的度数为:A. 60°B. 90°C. 120°D. 不能确定(答案)C5、已知 |x| = 5,y = 3,则x - y等于:A. 8或-2B. 2或-8C. -2或8D. -8或2(答案)D6、若关于x的一元二次方程x² - (k - 1)x - k = 0有两个相等的实数根,则k的值为:A. -3B. 3C. -1D. 1(答案)D7、在圆O中,弦AB的长度等于半径OA,则∠AOB的度数为:A. 30°B. 60°C. 120°D. 30°或150°(答案)B8、若a > b > 0,c < d < 0,则一定有:A. a² > b²B. c² > d²C. a/d > b/cD. a/d < b/c(答案)A9、已知一次函数y = kx + b的图像经过点(2, 3)和(-1, -3),则它的图像不经过:A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案)C10、在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°(答案)C。
山东初三初中数学竞赛测试带答案解析
山东初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列图形中既是中心对称图形,又是轴对称图形的是A.等边三角形B.等腰三角形C.平行四边形D.线段2.如图,A、B是数轴上的两点,在线段AB上任取一点C,则点C到表示-1的点的距离小于或等于2的概率是A. B. C. D.3.如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是A.AB2="BC·BD"B.AB2="AC·BD"C.AB·AD=BD·BC D.AB·AD="AD" ·CD4.如图⊙O中,半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC,若AB=8,CD=2,则EC的长度为A.B.8C.D.5.对于代数式的值的情况,小明作了如下探究的结论,其中错误的是A.只有当时,的值为2B.取大于2的实数时,的值随的增大而增大,没有最大值C.的值随的变化而变化,但是有最小值D.可以找到一个实数,使的值为06.方程=0有两个相等的实数根,且满足=,则的值是A.-2或3B.3C.-2D.-3或27.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则∠E 为A.25° B.30° C.35° D.45°8.在函数(为常数)的图象上有三点,,,则函数值的大小关系是A.B.C.D.9.冬至时是一年中太阳相对于地球位置最低的时刻,只要此时能采到阳光,一年四季就均能受到阳光照射.此时竖一根米长的竹杆,其影长为米,某单位计划想建米高的南北两幢宿舍楼(如图所示).当两幢楼相距多少米时,后楼的采光一年四季不受影响?A.米B.米C.米D.米10.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度是A.3㎝B.4㎝C.5 ㎝D.6㎝11.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是A.B.C.D.12.已知二次函数的图象开口向上,与 x轴的交点坐标是(1,0),对称轴x=-1.下列结论中,错误的是A.abc<0B.b=2a C.a+b+c=0D.2二、填空题1.已知三角形的两边长是方程x 2-5x+6=0的两个根,则该三角形的周长的取值范围是.2.已知二次函数y=(k-3)x 2+2x+1的图象与x轴有交点,则k的取值范围是.3.已知A是反比例函数的图象上的一点,AB⊥x轴于点B,且△ABO的面积是3,则k的值是.4.如果圆锥的底面周长是20πcm,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是.5.小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为.6.已知正六边形的边心距为,则它的周长是.7.如图,PA、PB切⊙O于A、B,,点C是⊙O上异于A、B的任意一点,则=.8.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在轴上,OC在轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是.三、解答题1.(本小题满分7分)近年来随着全国楼市的降温,商品房的价格开始呈现下降趋势,2012年某楼盘平均售价为5000元/平方米,2014年该楼盘平均售价为4050元/平方米.(1)如果该楼盘2013年和2014年楼价平均下降率相同,求该楼价的平均下降率;(2)按照(1)中楼价的下降速度,请你预测该楼盘2015年楼价平均是多少元/平方米?2.(本小题满分8分)如图,在平行四边形中,E是AB延长线上的一点,DE交BC于点F.已知,,求△CDF的面积.3.(本小题满分7分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7、-1、3,乙袋中的三张卡片上所标的数值分别为-2、1、6.先从甲袋中随机取出一张卡片,用表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用表示取出的卡片上标的数值,把、分别作为点的横坐标、纵坐标.(1)用适当的方法写出点的所有情况;(2)求点落在第三象限的概率.4.(本小题满分10分)如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.(1)求证:CT为⊙O的切线;(2)若⊙O半径为2,,求AD的长.5.(本小题满分8分)已知:如图,反比例函数的图象与一次函数y=x+b的图象交于点A(1,4)、点B (-4,n).(1)求△OAB的面积;(2)根据图象,直接写出不等式的解集.6.(本小题满分10分)某商店经营一种成本为每千克40美元的水产品,根据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为多少元时,获得的利润最大?最大利润是多少?7.(本小题满分10分)如图,抛物线与轴交、两点,直线与抛物线交于A、C两点,其中C点的横坐标为2.(1)求抛物线及直线AC的函数表达式;(2)若P点是线段AC上的一个动点,过P点作轴的平行线交抛物线于F点,求线段PF长度的最大值.山东初三初中数学竞赛测试答案及解析一、选择题1.下列图形中既是中心对称图形,又是轴对称图形的是A.等边三角形B.等腰三角形C.平行四边形D.线段【答案】D【解析】根据轴对称图形的概念与中心对称图形的概念可作答A、是轴对称图形而不是中心对称图形B、是轴对称图形而不是中心对称图形C、是中心对称图形而不是轴对称图形D、既是轴对称图形,也是中心对称图形.故选D【考点】中心对称图形;轴对称图形点评:掌握好中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合2.如图,A、B是数轴上的两点,在线段AB上任取一点C,则点C到表示-1的点的距离小于或等于2的概率是A. B. C. D.【答案】D【解析】将数轴上A到表示﹣1的点之间的距离不大于2、表1的点到表示﹣1 的点间的距离不大于2,而AB间的距离分为5段,根据概率公式可知故选D【考点】概率公式;数轴点评:此题结合几何概率考查了概率公式,将AB间的距离分段,利用符合题意的长度比上AB的长度即可3.如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是A.AB2="BC·BD"B.AB2="AC·BD"C.AB·AD=BD·BC D.AB·AD="AD" ·CD【答案】A【解析】∵△ABC∽△DBA,∴;∴故选A【考点】相似三角形的性质点评:此题主要考查的是相似三角形的性质,正确地判断出相似三角形的对应边和对应角是解答此题的关键4.如图⊙O中,半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC,若AB=8,CD=2,则EC的长度为A.B.8C.D.【答案】D【解析】连结BE,设⊙O的半径为R,由OD⊥AB,根据垂径定理得AC=BC=AB=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,根据勾股定理得到,解得R=5,则OC=3,由于OC为△ABE的中位线,则BE=2OC=6,再根据圆周角定理得到∠ABE=90°,然后在Rt△BCE中利用勾股定理可计算出故选D【考点】垂径定理;勾股定理;三角形中位线定理;圆周角定理点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理5.对于代数式的值的情况,小明作了如下探究的结论,其中错误的是A.只有当时,的值为2B.取大于2的实数时,的值随的增大而增大,没有最大值C.的值随的变化而变化,但是有最小值D.可以找到一个实数,使的值为0【答案】D【解析】根据二次函数的最值及图象上点的坐标特点解答A、因为该抛物线的顶点是(2,2),所以正确;B、根据图象可知对称轴的右侧,即x>2时,y随x的增大而增大,正确.C、因为二次项系数为1>0,开口向上,有最小值,正确;D、根据二次函数的顶点坐标知它的最小值是2,且开口向上,故错误;故选D【考点】二次函数的性质点评:本题考查的是二次函数的最值及二次函数图象上点的坐标特点,比较简单6.方程=0有两个相等的实数根,且满足=,则的值是A.-2或3B.3C.-2D.-3或2【答案】C【解析】根据根与系数的关系有:∴,解得m=3或m=﹣2,∵方程有两个相等的实数根,∴解得m=6或m=﹣2∴m=﹣2.故选:C【考点】根与系数的关系点评:本题考查了一元二次方程根的判别式当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程的根与系数的关系:若方程的两根为,则7.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则∠E 为A.25° B.30° C.35° D.45°【答案】B【解析】连接OC∵EC切⊙O于C,∴∠OCE=90°,∵∠CDB=30°,∴∠A=∠CDB=30°,∵OA=OC,∴∠ACO=∠A=30°,∴∠COE=30°+30°=60°,∴∠E=180°﹣90°﹣60°=30°,故答案为:B【考点】切线的性质点评:本题考查了切线性质,三角形的外角性质,圆周角定理,等腰三角形的性质的应用,此题比较好,综合性比较强8.在函数(为常数)的图象上有三点,,,则函数值的大小关系是A.B.C.D.【答案】D【解析】根据反比例函数的性质推出函数图象在第一、三象限,y随x的增大而减小,求出,根据在第三象限,求出因此故选D.【考点】反比例函数图象上点的坐标特征;反比例函数的性质点评:本题主要考查对反比例函数的性质,反比例函数图象上点的坐标特征等知识点的理解和掌握,能熟练地根据性质进行说理是解此题的关键9.冬至时是一年中太阳相对于地球位置最低的时刻,只要此时能采到阳光,一年四季就均能受到阳光照射.此时竖一根米长的竹杆,其影长为米,某单位计划想建米高的南北两幢宿舍楼(如图所示).当两幢楼相距多少米时,后楼的采光一年四季不受影响?A.米B.米C.米D.米【答案】A【解析】∵光线是平行的,影长都在地面上,∴光线和影长组成的角相等;楼高和竹竿与影长构成的角均为直角,∴竹竿与影长构成的三角形和旗杆和影长构成的三角形相似,设楼的影长的长度为x,解得米故选A【考点】相似三角形的应用点评:考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例10.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度是A.3㎝B.4㎝C.5 ㎝D.6㎝【答案】B【解析】设底面圆的半径是r则,∴r=3cm,∴圆锥的高=故选B【考点】圆锥的计算点评:由题意得圆锥的底面周长为cm,母线长5cm,从而底面半径为3cm,利用勾股定理求得圆锥高为4cm11.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是A.B.C.D.【答案】C【解析】连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN⊥CD,且CE=DE,∴CD=2CE,∵MN∥AB,∴CD⊥AB,∴△CMN∽△CAB,∴,∵在△CMN中,∠C=90°,MC=6,NC=,∴=CM•CN=×6×=,∴=4=4×=,∴S四边形MABN=﹣=﹣=.故选C【考点】翻折变换(折叠问题)点评:此题考查了折叠的性质、相似三角形的判定与性质以及直角三角形的性质.此题难度适中,解此题的关键是注意折叠中的对应关系,注意数形结合思想的应用12.已知二次函数的图象开口向上,与 x轴的交点坐标是(1,0),对称轴x=-1.下列结论中,错误的是A.abc<0B.b=2a C.a+b+c=0D.2【答案】D【解析】根据二次函数的图象与性质对各选项逐一判断由已知可得,抛物线开口向上,则;对称轴是x=-1<0,则;又与x轴的交点坐标是(1,0),则与x轴的另一个交点是(-3,0),因此与y轴交于负半轴,所以。
初三竞赛数学试题及答案
初三竞赛数学试题及答案一、选择题(每题4分,共40分)1. 若a、b、c是三角形的三边长,且满足a²+b²+c²=ab+ac+bc,则该三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定2. 已知a、b、c是实数,且a+b+c=0,那么下列式子中一定成立的是()A. ab+bc+ca=0B. (a+b)(b+c)(c+a)=0C. a²+b²+c²=ab+bc+caD. a³+b³+c³=3abc3. 一个等腰三角形的两边长分别为6和8,那么这个三角形的周长是()A. 16B. 20C. 22D. 244. 已知x²-3x+1=0,那么x³-5x+1的值为()A. 0B. 1C. -4D. -85. 一个数的平方根是2和-2,那么这个数是()A. 4B. -4C. 0D. 26. 已知一个二次函数y=ax²+bx+c(a≠0),其图像开口向上,且与x轴有两个交点,那么下列说法正确的是()A. a>0,b²-4ac>0B. a<0,b²-4ac>0C. a>0,b²-4ac<0D. a<0,b²-4ac<07. 一个圆的半径为r,那么这个圆的面积是()A. πrB. πr²C. 2πrD. 2πr²8. 已知一个等差数列的首项为a,公差为d,那么这个数列的第n项是()A. a+(n-1)dB. a-(n-1)dC. a+ndD. a-nd9. 已知一个等比数列的首项为a,公比为q,那么这个数列的第n项是()A. aq^(n-1)B. aq^nC. a/q^(n-1)D. a/q^n10. 已知一个函数y=f(x),那么下列说法正确的是()A. f(a)=f(b) 则a=bB. f(a)≠f(b) 则a≠bC. f(a)=f(b) 则a≠bD. f(a)≠f(b) 则a=b二、填空题(每题4分,共20分)11. 已知一个三角形的三边长分别为3、4、5,那么这个三角形的面积是_________。
全国初中数学竞赛试题(含答案)-20220207144625
全国初中数学竞赛试题(含答案)20220207144625一、选择题(每题5分,共20分)1. 下列哪个数是质数?A. 2B. 3C. 4D. 52. 如果一个三角形的两边长分别为3和4,那么这个三角形的周长可能是多少?A. 7B. 10C. 11D. 123. 下列哪个分数可以化简为最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个正方形的面积是36平方厘米,那么这个正方形的边长是多少厘米?A. 6B. 7C. 8D. 9二、填空题(每题5分,共20分)1. 7的平方根是______。
2. 0.25的小数点向右移动两位后是______。
3. 一个等边三角形的边长是10厘米,那么这个等边三角形的周长是______厘米。
4. 下列哪个数是立方数?A. 2B. 3C. 4D. 5三、解答题(每题10分,共30分)1. 解方程:2x 5 = 11。
2. 计算下列表达式的值:3(2 + 4) 7。
3. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。
四、答案部分一、选择题1. A2. B3. A4. D二、填空题1. ±√72. 253. 304. C三、解答题1. x = 82. 133. 32平方厘米全国初中数学竞赛试题(含答案)20220207144625四、应用题(每题15分,共30分)1. 小明家有一块长方形的地,长是12米,宽是8米。
小明计划将这块地分成两个相同大小的正方形区域。
请问每个正方形的边长是多少米?2. 小红有一笔钱,她将其中的1/3用于购买书,剩下的钱再将其中的1/2用于购买文具。
她剩下的钱是100元。
请问小红最初有多少钱?五、证明题(每题15分,共30分)1. 证明:对于任意实数a和b,如果a < b,那么a² < b²。
2. 证明:等腰三角形的底角相等。
六、答案部分四、应用题1. 每个正方形的边长是6米。
2. 小红最初有300元。
讲解初中数学竞赛试题及答案
讲解初中数学竞赛试题及答案初中数学竞赛试题通常涵盖代数、几何、数论和组合等数学领域。
下面是一个模拟的初中数学竞赛试题及其答案的讲解。
题目一:代数问题题目:已知 \( a, b \) 为正整数,且满足 \( a^2 - b^2 = 1 \),求 \( a \) 和 \( b \) 的所有可能值。
答案:根据题目中的等式 \( a^2 - b^2 = 1 \),我们可以将其转换为 \( (a+b)(a-b) = 1 \)。
因为 \( a \) 和 \( b \) 都是正整数,所以 \( a+b \) 和 \( a-b \) 也必须是正整数,并且它们的乘积为1。
考虑到正整数的性质,可能的组合只有 \( (a+b, a-b) = (1, 1) \)或 \( (2, 1) \)。
对于 \( (a+b, a-b) = (1, 1) \),显然不可能,因为 \( a+b \) 和\( a-b \) 不能同时为1。
对于 \( (a+b, a-b) = (2, 1) \),我们可以得到 \( a =\frac{3}{2} \) 和 \( b = \frac{1}{2} \),但这不是正整数,所以不符合题意。
因此,我们考虑 \( (a+b, a-b) = (3, 2) \) 或 \( (4, 3) \)。
对于 \( (a+b, a-b) = (3, 2) \),我们可以得到 \( a = 2.5 \) 和\( b = 0.5 \),这同样不是正整数。
对于 \( (a+b, a-b) = (4, 3) \),我们可以得到 \( a = 3.5 \) 和\( b = 0.5 \),这也不是正整数。
但是,如果我们考虑 \( (a+b, a-b) = (2, 1) \) 的整数解,我们可以得到 \( a = 2 \) 和 \( b = 1 \),这满足题目要求。
讲解:这个问题考察了平方差公式的应用,通过将等式转换为\( (a+b)(a-b) = 1 \) 并考虑正整数的性质来找到可能的解。
初中数学竞赛试题及答案pdf
初中数学竞赛试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方等于9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 计算下列算式的结果:(2x + 3)(2x - 3) = ?A. 4x^2 - 6x + 6B. 4x^2 - 9C. 4x^2 + 6x - 9D. 4x^2 + 9答案:B4. 如果一个三角形的两边长分别为3和4,且这两边之间的夹角为90度,那么这个三角形的周长是多少?A. 7B. 8C. 9D. 10答案:D5. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A6. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C7. 以下哪个是完全平方数?A. 36B. 49C. 64D. 81答案:C8. 一个数的立方等于-8,这个数是?A. -2B. 2C. -2或2D. 以上都不是答案:A9. 计算下列算式的结果:(a + b)^2 = ?A. a^2 + 2ab + b^2B. a^2 - 2ab + b^2C. a^2 + b^2D. a^2 - b^2答案:A10. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的平方根是2,那么这个数是______。
答案:412. 一个等差数列的首项是2,公差是3,那么这个数列的第5项是______。
答案:1713. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是______厘米。
答案:2214. 如果一个数除以3余2,除以5余1,那么这个数可能是______(写出一个符合条件的数即可)。
答案:1115. 一个直角三角形的两直角边长分别是3厘米和4厘米,那么这个三角形的斜边长是______厘米。
竞赛初中数学试题及答案
竞赛初中数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. ±3D. ±93. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 84. 以下哪个分数是最接近1的?A. 1/2B. 3/4C. 4/3D. 5/45. 一个圆的半径是5,它的面积是多少?A. 25πB. 50πC. 100πD. 125π6. 一个数的立方是-8,这个数是多少?A. -2B. 2C. -4D. 47. 一个数的绝对值是5,这个数可以是?A. 5B. -5C. 5或-5D. 都不是8. 以下哪个是二次方程?A. x + 3 = 0B. x^2 + 3x + 2 = 0C. x^3 - 6x^2 + 11x - 6 = 0D. x^4 - 1 = 09. 一个数的相反数是-7,这个数是多少?A. 7B. -7C. 0D. 1410. 一个数的倒数是1/4,这个数是多少?A. 4B. 1/4C. 1/2D. 4/1二、填空题(每题2分,共20分)11. 一个数的平方根是4,这个数是______。
12. 一个数的立方根是2,这个数是______。
13. 一个数的倒数是2,这个数是______。
14. 一个数的绝对值是8,这个数可以是______。
15. 如果一个数的平方是16,那么这个数是______。
16. 一个圆的直径是10,它的半径是______。
17. 一个直角三角形的斜边长度是13,一条直角边是5,另一条直角边是______。
18. 一个数的平方是25,这个数是______。
19. 一个数的立方是-125,这个数是______。
20. 如果一个数的绝对值是-5的相反数,这个数是______。
三、解答题(每题10分,共50分)21. 解方程:2x + 5 = 13。
初中数学竞赛试题和答案解析(分值可修改)
初中数学竞赛试题和答案解析(分值可修改)姓名:_______________班级:_______________考号:_______________一、填空题(每空? 分,共? 分)1、计算:(2+6)﹣3= .2、化简:= .3、__________.4、李志明、张斌、王大为三个同学毕业后选择了不同的职业,三人中只有一个当了记者。
一次有人问起他们的职业,李志明说:“我是记者。
”张斌说:“我不是记者。
”王大为说:“李志明说了假话。
”如果他们三人的话中只有一句是真的,那么_______是记者。
5、如图,边长为n的正方形OABC的边OA,OC在坐标轴上,点A1,A2…,A n﹣1为OA 的n等分点,点B1,B2.,….B n﹣1为CB的n等分点,连结A1B1,A2B2,…A n﹣1B n﹣1,分别交曲线(x>0)于点C1,C2,…,C n﹣1.若C15B15=16C15A15,则n的值为.(n为正整数)6、如果a,b为给定的实数,且1<a<b,1,a+1,2a+b,a+b+1这四个数据的平均数与中位数之差的绝对值是 .7、已知M、N两点关于y轴对称,且点M在双曲线y=上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x 的最大值为________.8、已知实数满足。
9、已知求的值10、已知为整数,且为整数,则所有符合条件的的值的总和=11、已知关于x,y的二元一次方程(m+1)x+(2m-1)y+2-m=0,无论实数m取何值,此二元一次方程都有一个相同的解,则这个相同的解是 .12、定义一种新的运算叫对数,如果有,那么, 其中且,. 例如,如果,那么;如果,那么_________.由于,,因此,. 可以验证. 请根据上述知识计算:_______.13、1、过桥问题:今有A、B、C、D 四人在晚上都要从桥的左边到右边。
此桥一次最多只能走两人,而且只有一支手电筒,过桥是一定要用手电筒。
初中数学奥林匹克竞赛题和答案
初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
全国初中数学竞赛试题及答案大全
全国初中数学竞赛试题及答案大全试题一:代数基础题目:若\( a \), \( b \), \( c \)为实数,且满足\( a + b + c = 3 \),\( ab + ac + bc = 1 \),求\( a^2 + b^2 + c^2 \)的值。
解答:根据已知条件,我们可以使用配方法来求解。
首先,我们知道\( (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \)。
将已知条件代入,得到\( 3^2 = a^2 + b^2 + c^2 + 2 \times 1 \)。
简化后,我们得到\( a^2 + b^2 + c^2 = 9 - 2 = 7 \)。
试题二:几何问题题目:在直角三角形ABC中,∠A=90°,AB=6,AC=8,求斜边BC的长度。
解答:根据勾股定理,直角三角形的斜边BC的平方等于两直角边的平方和,即\( BC^2 = AB^2 + AC^2 \)。
代入已知数值,得到\( BC^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。
因此,\( BC = \sqrt{100} = 10 \)。
试题三:数列问题题目:一个等差数列的首项是2,公差是3,求第10项的值。
解答:等差数列的第n项可以通过公式\( a_n = a_1 + (n - 1)d \)来计算,其中\( a_1 \)是首项,d是公差,n是项数。
将已知条件代入公式,得到\( a_{10} = 2 + (10 - 1) \times 3 = 2 + 9 \times 3 = 29 \)。
试题四:概率问题题目:一个袋子里有5个红球和3个蓝球,随机取出2个球,求取出的两个球颜色相同的概率。
解答:首先计算总的可能情况,即从8个球中取2个球的组合数,用组合公式C(8,2)计算。
然后计算取出两个红球或两个蓝球的情况。
两个红球的情况有C(5,2)种,两个蓝球的情况有C(3,2)种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。
当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。
则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( )A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。
A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。
3、已知正整数a 、b 之差为120,它们的最小公倍数是其最大公约数的105倍,那么,a 、b 中较大的数是_____。
4、设m 是不能表示为三个互不相等的合数之和的最大整数,则m =_________5、满足19982+m 2=19972+n 2(0<m <n <1998)的整数对(m 、n )共有____个6、已知x 为正整数,y 和z 均为素数,且满足zy x yz x 111=+= ,则x 的值是___ 三、解答题1、试求出这样四位数,它的前两位数字与后两位数字分别组成的二位数之和的平方,恰好等于这个四位数。
2、从1、2、3、4……205共205个正整数中,最多能取出多少个数使得对于取出来的数中的任意三个数a 、b 、c (a <b <c ),都有ab ≠c 。
3、已知方程0324622=---n n x x 的根都是整数。
求整数n 的值。
4、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡是1的倍数的开关拉了一下,接着第二个学生进来,由是2的倍数的开关拉一下,第n 个(n ≤100)学生进来,凡是n 的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。
5、若勾股数组中,弦与股的差为1。
证明这样的勾股数组可表示为如下形式:122221222++++a a a a a , , ,其中a 为正整数。
初中数学竞赛专项训练(2)(代数式、恒等式、恒等变形)一、选择题:下面各题的选项中,只有一项是正确的,请将正确选项的代号填在括号。
1、某商店经销一批衬衣,进价为每件m 元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是 ( ) A. m(1+a%)(1-b%)元 B. m·a%(1-b%)元 C. m(1+a%)b%元 D. m(1+a%b%)元2、如果a 、b 、c 是非零实数,且a+b+c=0,那么||||||||abc abc c c b b a a +++的所有可能的值为( ) A. 0B. 1或-1C. 2或-2D. 0或-23、在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B =60°,则bc ab ac +++的值为( ) A. 21B. 22C. 1D. 24、设a <b <0,a 2+b 2=4ab ,则ba ba -+的值为( )A. 3B. 6C. 2D. 35、已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab-bc-ca 的值为 ( ) A. 0 B. 1 C. 2 D. 3 6、设a 、b 、c 为实数,226232222πππ+-=+-=+-=a c z c b y b a x ,,,则x 、y 、z 中,至少有一个值( )A. 大于0B. 等于0C. 不大于0D. 小于07、已知abc ≠0,且a+b+c =0,则代数式abc ca b bc a 222++的值是 ( )A. 3B. 2C. 1D. 08、若136498322++-+-=y x y xy x M (x 、y 是实数),则M 的值一定是 ( ) A. 正数 B. 负数C. 零D. 整数二、填空题1、某商品的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过d%,则d 可用p 表示为_____a2、已知-1<a <0,化简4)1(4)1(22+-+-+aa a a 得_______3、已知实数z 、y 、z 满足x+y=5及z 2=xy+y-9,则x+2y+3z=_______________4、已知x 1、x 2、……、x 40都是正整数,且x 1+x 2+……+x 40=58,若x 12+x 22+……+x 402的最大值为A ,最小值为B ,则A +B 的值等于________5、计算=+⋯⋯+++++⋯⋯++++)441()417)(413)(49)(45()439()415)(411)(47)(43(4444444444________________ 6、已知多项式154723--+x bx ax 可被13+x 和32-x 整除,则=+b a _____ 三、解答题:1、已知实数a 、b 、c 、d 互不相等,且x ad d c c b b a =+=+=+=+1111,试求x 的值。
2、如果对一切x 的整数值,x 的二次三项式c bx ax ++2的值都是平方数(即整数的平方)。
证明:①2a 、ab 、c 都是整数。
②a 、b 、c 都是整数,并且c 是平方数。
反过来,如果②成立,是否对于一切x 的整数值,x 的二次三项式c bx ax ++2的值都是平方数?3、若22221996199619951995+⋅+=a ,求证:a 是一完全平方数,并写出a 的值。
4、设a 、b 、c 、d 是四个整数,且使得222222)(41)(d c b a cd ab m --+-+=是一个非零整数,求证:|m |一定是个合数。
5、若2a 的十位数可取1、3、5、7、9。
求a 的个位数。
初中数学竞赛专项训练(3)(方 程)一、选择题:1、方程018)8(2=-++-a x a x 有两个整数根,试求整数a 的值 ( )A. -8B. 8C. 7D. 9 2、方程1)1(32=-++x x x 的所有整数解的个数是( )A. 2B. 3C. 4D. 53、若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的大小关系是( ) A. △>M B. △=MC. △<MD. 不能确定4、已知ac b 42-是一元二次方程)0(02≠=++a c bx ax 的一个实数根,则ab 的取值围为( )A. ab ≥81 B. ab ≤81 C. ab ≥41 D. ab ≤41 5、已知1x 、2x 是方程0)53()2(22=+++--k k x k x 的两个实根,则2221x x +的最大值是( ) A. 19B. 18C. 955D. 以上答案都不对6、已知z y x 、、为三个非负实数,且满足132523=-+=++z y x z y x , ,z y x u 73-+=若,则u 的最大值与最小值之和为 ( )A. 7762-B. 7764-C. 7768-D. 7774-7、若m 、n 都是正实数,方程022=++n mx x 和方程022=++m nx x 都有实数根,则m+n 的最小值是 ( ) A. 4 B. 6 C. 8 D. 108、气象爱好者孔宗明同学在x (x 为正整数)天中观察到:①有7个是雨天;②有5个下午是晴天;③有6个上午是晴天;④当下午下雨时上午是晴天。
则x 等于( ) A. 7 B. 8 C. 9 D. 10 二、填空题1、已知两个方程0022=++=++a bx x b ax x 与有且只有一个公共根,则这两个方程的根应是____________2、若)(016110161122b a b b a a ≠=++=++, ,则=-ba ab _______3、已知关于x 的方程012)1(2=-+++n x n x 的两根为整数,则整数n 是_____4、设1x 、2x 是方程02)1(222=+++-k x k x 的两个实数根,且8)1)(1(21=++x x ,则k 的值是__________5、已知a 、b 是方程042=+-m x x 的两个根,b 、c 是方程0582=+-m x x 的两个根,则m =__________6、设1x 、2x 是关于x 的一元二次方程22=++a ax x 的两个实数根,则)2)(2(1221x x x x --的最大值为__________ 三、解答题1、关于x 的方程01)1(2=+--x k kx 有有理根,求整数k 的值。
2、设方程0120012003200222=-⋅-x x 的较大根是r ,方程01200220012=+-x x 的较小根是s ,求r -s 的值。
3、确定自然数n 的值,使关于x 的一元二次方程07635108222=-+-+-n n x nx x 的两根均为质数,并求出此两根。
4、已知关于x 的一元二次方程054)15117()9)(6(2=+----x k x k k 的两个根均为整数,求所有满足条件的实数k 的值。