(完整版)高中数学必修3概率统计知识点归纳,推荐文档

合集下载

(超详)高中数学知识点归纳汇总

(超详)高中数学知识点归纳汇总

高中数学知识总结归纳(打印版)引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。

不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

选修课程有4个系列:系列1:由2个模块组成。

选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。

选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。

系列3:由6个专题组成。

选修3—1:数学史选讲。

选修3—2:信息安全与密码。

选修3—3:球面上的几何。

选修3—4:对称与群。

选修3—5:欧拉公式与闭曲面分类。

选修3—6:三等分角与数域扩充。

系列4:由10个专题组成。

选修4—1:几何证明选讲。

选修4—2:矩阵与变换。

选修4—3:数列与差分。

选修4—4:坐标系与参数方程。

选修4—5:不等式选讲。

选修4—6:初等数论初步。

选修4—7:优选法与试验设计初步。

选修4—8:统筹法与图论初步。

选修4—9:风险与决策。

选修4—10:开关电路与布尔代数。

2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质 示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B = A(B)或B A真子集 A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ A B B ⊆BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ A B B ⊇BA补集U A ð{|,}x x U x A ∈∉且1()U A A =∅ð 2()U A A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<<||(0)x a a >> |x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.()()()U U U A B A B =痧?()()()U U U A B A B =痧?②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象.yxo利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴 ()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0) nna a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mn m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数函数名称指数函数定义函数(0xy a a =>且1)a ≠叫做指数函数图象1a >01a <<定义域 R值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.xa y =xy(0,1)O1y =xa y =xy (0,1)O 1y =(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且 【2.2.2】对数函数及其性质(5)对数函数函数名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a >01a <<定义域 (0,)+∞ 值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a ∆=-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f kxy1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔x y1x 2x 0>a O∙ab x 2-=k 0)(>k f xy1x 2x O∙ab x 2-=k 0<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O∙kxy1x 2x O ∙k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k 2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k 2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k ∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =x>O-=f(p) f (q)()2b f a-x>O-=f (p)f (q)()2bf a-x>O-=f (p)f (q)()2bf a-(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

(完整版)人教版高中数学必修3各章知识点总结,推荐文档

(完整版)人教版高中数学必修3各章知识点总结,推荐文档

高中数学必修3知识点第一章算法初步i.i.i 算法的概念算法的特点:(i)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的^(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题^(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法^(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

5、在图形符号内描述的语言要非常简练清楚。

(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若1个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。

(完整版)(最全)高中数学概率统计知识点总结(可编辑修改word版)

(完整版)(最全)高中数学概率统计知识点总结(可编辑修改word版)

∑ (x - x ) ∑ ( y - y ) n2n2i =1i i =1i∑ (x - x ) ∑ ( y - y ) n 2n2i =1i i =1i1 2 n 1 2 n n i iiii一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。

概率与统计x + x + ⋅⋅⋅ + x x + x + ⋅⋅⋅ + x 2、平均数:①、常规平均数: x = 1 2 nn②、加权平均数: x = 1 1 2 2 n n+ + ⋅⋅⋅ + 1 2 n3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。

4、方差: s 2= 1[(x - x )2+ (x - x )2+ ⋅⋅⋅ + (x - x )2 ]n1 2 n二、频率直方分布图下的频率1、频率 =小长方形面积: f = S = y ⨯ d ;频率=频数/总数2、频率之和: f + f + ⋅⋅⋅ + f = 1;同时 S + S + ⋅⋅⋅ + S = 1 ;三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。

2、平均数: x = x f + x f + x f + ⋅⋅⋅ + x f x = x S + x S + x S + ⋅⋅⋅ + x S 1 12 23 3n n1 12 23 3n n3、中位数:从左到右或者从右到左累加,面积等于 0.5 时 x 的值。

4、方差: s 2 = (x - x )2 f + (x - x )2 f + ⋅⋅⋅ + (x - x )2 f1122nn四、线性回归直线方程: y ˆ = b ˆx + a ˆn n∑(x i - x )( y i - y ) ∑ x i y i - nxy 其中: b ˆ = i =1 = i =1 ,a ˆ = y -b ˆx∑n (x - x )2 ∑ x 2 - nx 2i =1iii =11、线性回归直线方程必过样本中心(x , y ) ;2、b ˆ > 0 : 正相关; b ˆ < 0 : 负相关。

(完整版)高中数学统计与概率知识点归纳(全)

(完整版)高中数学统计与概率知识点归纳(全)

高中数学统计与概率知识点(文)的平均数就是中位数。

③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平 均数。

四、 中位数与众数的特点。

⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据;⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若 这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数;⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单 位相同; (6) 众数可能是一个或多个甚至没有;(7) 平均数、众数和中位数都是描述一组数据集中趋势的量。

五、 平均数、中位数与众数的异同:⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位; ⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系, 所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。

六、 对于样本数据 X i , X 2,…,X n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散 程度,那么这个平均距离如何计算?|X i - x| + |X 2- X| + L + |X n - x|思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差, 一般用s 表示•假设样本数据X i , X 2,…,X n 的平均数为X ,则标准差的计算公式是:(X i - X)2 + (X 2 - x)2 + L +(x n - X)2七、简单随即抽样的含义一般地,设一个总体有 N 个个体,从中逐个不放回地抽取 n 个个体作为样本(n W N ),如果每次 抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样•八、 根据你的理解,简单随机抽样有哪些主要特点?一、 众数:一组数据中出现次数最多的那个数据。

(完整版)高中数学概率统计知识点总结

(完整版)高中数学概率统计知识点总结

高中数学概率统计知识点总结一、抽样方法1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法.3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模)4.分层抽样:二、样本估计总体的方式1、用样本的频率分布估计总体分布(1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。

化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。

2、用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数的算法;(2)标准差、方差公式.3、样本均值:nx x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 222212)()()(-++-+-==三、两个变量的线性相关1、正相关2、负相关正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减)四、概率的基本概念(1)必然事件(2)不可能事件(3)确定事件(4)随机事件(5)频数与频率(6)频率与概率的区别与联系必然事件和不可能事件统称为确定事件1他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值4、频率值一般容易得到,所以一般用来代替概率进行定量分析,首先要知道系统各元件发生故障的频率或概率.事件的频率与概率是度量事件出现可能性大小的两个统计特征数.频率是个试验值,或使用时的统计值,具有随机性,可能取多个数值。

因此,只能近似地反映事件出现可能性的大小概率是个理论值,是由事件的本质所决定的,只能取唯一值,它能精确地反映事件出现可能性的大小虽然概率能精确反映事件出现可能性的大小,但它通过大量试验才能得到,这在实际工作中往往是难以做到的.所以,从应用角度来看,频率比概率更有用,它可以从所积累的比较多的统计资料中得到需要指出的是用频率代替概率,并不否认概率能更精确、更全面地反映事件出现可能性的大小,只是由于在目前的条件下,取得概率比取得频率更为困难。

高中数学必修3概率统计学习知识点归纳.docx

高中数学必修3概率统计学习知识点归纳.docx

概率知点平均数、众数和中位数平均数、众数和中位数.要描述一数据的集中,最重要也是最常的方法就是用“三数”来明.一、正确理解平均数、众数和中位数的概念1.平均数平均数是反映一数据的平均水平的特征数,反映一数据的集中.平均数的大小与一数据里的每一个数据都有关系,任何一个数据的化都会引起平均数的化.2.众数在一数据中出次数最多的数据叫做一数据的众数.一数据中的众数有不唯一.众数着眼于各数出的次数的考察,就告我在求一数据的众数,既不需要排列,又不需要算,只要能找出本中出次数最多的那一个(或几个)数据就可以了.当一数据中有数据多次重复出,它的众数也就是我所要关心的一种集中.3.中位数中位数就是将一数据按大小序排列后,在最中的一个数(或在最中的两个数的平均数).一数据中的中位数是唯一的.二、注意区平均数、众数和中位数三者之的关系平均数、众数和中位数都是描述一数据的集中的量,但它描述的角度和适用的范又不尽相同.在具体中采用哪种量来描述一数据的集中,那得看数据的特点和要关注的.三、能正确用平均数、众数和中位数来解决由于平均数、众数和中位数都是描述一数据的集中的量,所以利用平均数、众数和中位数可以来解决生活中的.极差、方差、准差极差、方差和准差都是用来研究一数据的离散程度的,反映一数据的波范或波大小的量 .一、极差一数据中最大与最小的差叫做数据的极差,即极差=最大 - 最小 . 极差能反映数据的化范 , 差是最的一种度量数据波情况的量,它受极端的影响大.二、方差方差是反映一数据的整体波大小的特征的量. 它是指一数据中各个数据与数据的平均数的差的平方的平均数,它反映的是一数据偏离平均的情况 . 方差越大,数据的波越大;方差越小,数据的波越小 .求一数据的方差可以先求平均,再求差,然后平方,最后求平均数.一数据x1、x2、x3、⋯、x n的平均数为x,则该组数据方差的计算公式为:S21[( x1 x )2( x2 x )2( x n x) 2 ] . n三、标准差在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差 .即标准差 =方差.四、极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小 . 两组数据中极差大的那一组并不一定方差也大 . 在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象 .一、随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。

【精编】新课标高中数学必修三《概率》知识点2021

【精编】新课标高中数学必修三《概率》知识点2021

资高中数学必修(新课标)第三章概率(知识点)3.1 随机事件地概率及性质、基本概念:(1)必然事件:一般地,在条件S下,一定会发生地事件,叫做相对于条件S 地必然事件,简称必然事件;(2)不可能事件:在条件S 下,一定不会发生地事件,叫做相对于条件S 地不可能事件,简称不可能事件;(3)确定事件:必然事件与不可能事件统称为相对于条件S 地确定事件,简称确定事件;(4)随机事件:在条件S 下可能发生也可能不发生地事件,叫做相对于条件S 地随机事件,简称随机事件;精品(5)确定事件与随机事件统称为事件,一般用大写字母表示A、B、C⋯⋯表示.学习(6)频数与频率:在相同地条件S 下重复n 次试验,观察某一事件 A 为否出现,称n 次试料,nA 名验中事件 A 出现地次数n A 为事件 A 出现地频数;称事件 A 出现地比例 f n(A)=师归纳出现地频率:总为事件 An结对于给定地随机事件A,如果随着试验次数地增加,事件A 发生地频率 f n(A) 稳定在某个常数上,把这个常数记作P(A),称为事件 A 地概率。

(7)频率与概率地区别与联系:随机事件地频率,指此事件发生地次数n A 与试验总次数n地比值nA,它具有一定地稳定性,总在某个常数附近摆动,且随着试验次数地不断增多,n这种摆动幅度越来越小,接近某个常数。

我们把这个常数叫做随机事件地概率,概率从数量上反映了随机事件发生地可能性地大小。

频率在大量重复试验地前提下可以近似地作为这个师事件地概率(8)任何事件地概率为0~之间地一个确定地数,它度量该事件发生地地可能性.概率地基本性质1)一般地、对于事件 A 与事件B,如果事件 A 发生,则事件 B 一定发生,这时称事件B 包含事件A(或称事件 A 包含于事件 B ),记作不可能事件记作?,任何事件都包含不可能事件.2)如果事件C发生,那么事件 D 一定发生,反过来也对,这时我们说这两个事件相等,记作C=D.一般地,若,且,那么称事件 A 与事件 B 相等,记作A=B. )若某事件发生当且仅当事件 A 发生或事件 B 发生,则称此事件为事件 A 或事件 B 地并事件(或与事件),记作(或A+B).精4)若某事件发生当且仅当事件 A 发生且事件 B 发生,则称此事件为事件 A 与事件 B 地品学交事件(或积事件),记作(或AB).习资料5)若为不可能事件(? ),那么称事件 A 与事件 B 互斥.不可能同时发生. ,名6)若为不可能事件,为必然事件,那么称事件 A 与事件 B 互为对立事件.有归纳且仅有一个发生.总结任何事件地概率在0~之间,即0≤P(A)≤.必然事件地概率为,不可能事件地概率为0.(4)当事件 A 与B 互斥时,满足加法公式:P(A∪B)= P(A)+ P(B) ;若事件 A 与B 为对立事件,则A∪B 为必然事件,所以P(A∪B)= P(A)+ P(B)= ,于为有P(A)= —P(B) .3.2 古典概型基本概念:⑴基本事件:一次试验中可能出现地每一个基本结果;基本事件有如下特点:①任何两个基本事件为互斥地;②任何事件(除不可能事件)都可以表示成基本事件地与.⑵古典概型地特点:①试验中所有可能出现地基本事件只有有限个;②每个基本事件出现地可能性相等.我们将具有这两个特点地概率模型称为古典概率模型,简称古典概型。

高中数学必修3概率统计常考题型随机事件的概率

高中数学必修3概率统计常考题型随机事件的概率

随机事件的概率【知识梳理】.事件的分类()前提:对于给定的随机事件,在相同的条件下重复次试验,观察事件是否出现.()频数:指的是次试验中事件出现的次数.频率:指的是事件出现的比例()=..概率()定义:对于给定的随机事件,如果随着试验次数的增加,事件发生的频率()稳定在某个常数上,把这个常数记作(),称为事件的概率.()范围:[].()意义:概率从数量上反映了随机事件发生的可能性的大小.【常考题型】题型一、事件的分类【例】 指出下列事件是必然事件、不可能事件还是随机事件:()某人购买福利彩票一注,中奖万元;()三角形的内角和为°;()没有空气和水,人类可以生存下去;()同时抛掷两枚硬币一次,都出现正面向上;()从分别标有的四张标签中任取一张,抽到号标签;()科学技术达到一定水平后,不需任何能量的“永动机”将会出现.[解] ()购买一注彩票,可能中奖,也可能不中奖,所以是随机事件.()所有三角形的内角和均为°,所以是必然事件.()空气和水是人类生存的必要条件,没有空气和水,人类无法生存,所以是不可能事件.()同时抛掷两枚硬币一次,不一定都是正面向上,所以是随机事件.()任意抽取,可能得到号标签中的任一张,所以是随机事件.()由能量守恒定律可知,不需任何能量的“永动机”不会出现,所以是不可能事件.【类题通法】对事件分类的两个关键点()条件:在条件下事件发生与否是与条件相对而言的,没有条件,无法判断事件是否发生;()结果发生与否:有时结果较复杂,要准确理解结果包含的各种情况.【对点训练】指出下列事件是必然事件、不可能事件,还是随机事件.()我国东南沿海某地明年将受到次冷空气的侵袭.()若为实数,则≥.()抛掷硬币次,至少有一次正面向上.()同一门炮向同一目标发射多枚炮弹,其中的炮弹击中目标.()没有水分,种子发芽.解:()我国东南沿海某地明年可能受到次冷空气侵袭,也可能不是次,是随机事件.()对任意实数,≥总成立,是必然事件.()抛掷硬币次,也可能全是反面向上,也可能有正面向上,是随机事件.()同一门炮向同一目标发射,命中率可能是,也可能不是,是随机事件.()没有水分,种子不可能发芽,是不可能事件.题型二、试验及重复试验的结果的分析【例】指出下列试验的条件和结果:()某人射击一次,命中的环数;()从装有大小相同但颜色不同的,,,这个球的袋中,任取个球;()从装有大小相同但颜色不同的,,,这个球的袋中,一次任取个球.[解]()条件为射击一次;结果为命中的环数:,共种.()条件为从袋中任取个球;结果为:,,,,共种.()条件为从袋中任取个球;若记(,)表示一次取出的个球是和,则试验的全部结果为:(,),(,),(,),(,),(,),(,),共种.【类题通法】分析试验结果的方法()首先要准确理解试验的条件、结果等有关定义,并能使用它们判断一些事件,指出试验结果,这是后续学习求事件的概率的前提和基础.()在写试验结果时,一般采用列举法写出,必须首先明确事件发生的条件,根据日常生活的经验,按一定的次序一一列举,才能保证没有重复,也没有遗漏.【对点训练】下列随机事件中,一次试验各指什么?它们各有几次试验?试验的可能结果有哪几种?()一天中,从北京站开往合肥站的列列车,全部正点到达;()某人射击两次,一次中靶,一次未中靶.解:()一列列车开出,就是一次试验,共有次试验.试验的结果有“只有列列车正点到达”“只有列列车正点到达”“全部正点到达”“全部晚点到达”,共种.()射击一次,就是一次试验,共有次试验.试验的结果有“两次中靶”“第一次中靶,第。

高一数学必修三统计知识点

高一数学必修三统计知识点

高一数学必修三统计知识点统计学是数学的一个重要分支,主要研究数据的收集、整理、分析和解释等问题。

在高中数学的学习中,统计学也是一个重要的内容。

本文将介绍高一数学必修三中的一些统计知识点,帮助同学们更好地理解和掌握相关知识。

一、数据的整理和描述在统计学中,数据的整理和描述是最基本也是最重要的工作。

通过整理和描述数据,可以直观地了解数据的分布和特征。

1. 数据的收集数据的收集可以通过观察、实验、调查等方式进行。

在收集数据的过程中,需要注意数据的真实性和可靠性,避免出现误差。

2. 数据的整理在获得一组数据后,需要对数据进行整理。

可以通过制表、绘图等方式将数据进行整理和归纳,以便更好地进行分析和描述。

3. 数据的描述数据的描述可以从集中趋势和离散程度两个方面进行。

常见的描述方法有平均数、中位数、众数、极差、四分位数等。

二、频数分布和频率分布频数分布和频率分布是对数据进行分类、整理和统计的方法,可以直观地展示数据的分布情况。

1. 频数分布频数分布是指将一组数据按照不同数值进行分类,并统计每个类别中数据出现的次数。

通过频数分布表或频数分布图可以清晰地看出数据的分布情况。

2. 频率分布频率分布是指将频数转化为频率,即将每个类别中数据出现的次数除以总数据量得到的比率。

频率分布可以更好地比较不同数据集之间的差异。

三、概率统计概率统计是统计学的重要分支之一,主要研究随机事件的概率和随机变量的分布。

1. 随机事件的概率随机事件的概率可以通过理论计算和实验估计两种方法得到。

在计算概率时,需要考虑事件的互斥性和独立性等性质。

2. 随机变量的分布随机变量的分布决定了其取值的概率分布情况。

常见的随机变量分布有离散型和连续型两种,如二项分布、正态分布等。

四、抽样调查抽样调查是统计学中常用的一种方法,通过选取样本进行统计分析,从而推断总体的特征和规律。

1. 简单随机抽样简单随机抽样是指从总体中随机选择样本的方法,每个样本具有相同的概率被选中。

数学必修三统计和概率知识点总结

数学必修三统计和概率知识点总结

数学必修三统计和概率知识点总结统计和概率是数学必修三中的重要知识点,下面是统计和概率的一些基本概念和常见应用总结:1. 统计的基本概念:- 总体:研究对象的全体。

- 样本:从总体中抽取的一部分个体。

- 参数:总体的特征值,通常用来描述总体的某种性质。

- 统计量:样本的某种函数,用来描述样本的某种性质。

2. 随机事件和概率:- 随机事件:在一定条件下,可能发生也可能不发生的事件。

- 样本空间:随机试验的所有可能结果组成的集合。

- 概率:用来描述某个随机事件发生的可能性大小的数值。

3. 随机变量和概率分布:- 随机变量:将随机试验的结果与某个数值相对应的变量。

- 离散型随机变量:只能取有限个或者可列个数个值的随机变量。

- 连续型随机变量:可以取连续范围内的任意值的随机变量。

- 概率分布:随机变量取各个值的概率。

4. 二项分布和正态分布:- 二项分布:描述了在n次独立重复试验中,成功次数的概率分布。

- 正态分布:在自然界中许多现象可以用正态分布来描述,它是最常见的概率分布。

5. 随机事件的独立性与相关性:- 独立事件:一个事件的发生与另一个事件的发生没有关联。

- 相关事件:一个事件的发生与另一个事件的发生有关联。

6. 统计推断:- 估计:通过样本数据推断总体参数的值。

- 假设检验:基于样本数据对总体参数提出的某种假设进行推断。

7. 相关系数和回归分析:- 相关系数:用来描述两个变量之间的相关程度。

- 回归分析:通过已知数据建立函数关系模型,可以预测未来的可能结果。

这些是统计和概率的一些基本知识点,掌握了这些知识,可以帮助我们在实际问题中进行数据的处理和分析,并进行相应的推断和预测。

(完整word版)高中数学必修3统计与概率

(完整word版)高中数学必修3统计与概率

统计1:简单随机抽样(1)总体和样本①在统计学中, 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查(5)随机数表法:2:系统抽样(1)系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。

第一个样本采用简单随机抽样的办法抽取。

K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。

可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。

如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,实施也比较简单。

更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

3:分层抽样(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

高中数学统计知识点高中数学概率与统计

高中数学统计知识点高中数学概率与统计

高中数学统计知识点高中数学概率与统计
高中数学统计知识点包括以下内容:
1. 数据的收集和整理:包括原始数据的收集和整理,如问卷调查、实验结果等。

2. 描述统计:用于对数据进行总结和描述的方法,包括平均数、中位数、众数、极差、标准差等。

3. 概率:研究随机事件发生的可能性的数学分支,包括基本概念、概率的计算方法和
性质。

4. 概率分布:描述随机变量取值与相应概率的分布,包括离散型随机变量和连续型随
机变量的分布。

5. 统计推断:从样本数据中推断总体的特征的方法,包括点估计和区间估计。

6. 假设检验:用于推断总体参数的假设检验方法,包括单样本检验、双样本检验和相
关性检验等。

7. 相关分析:研究两个或多个变量之间关系的方法,包括相关系数和回归分析等。

8. 抽样调查:从总体中随机选择样本进行调查和统计分析的方法,包括简单随机抽样、系统抽样和分层抽样等。

以上是高中数学概率与统计的主要知识点,通过掌握这些知识,可以进行数据的整理
和分析,并进行相关的统计推断和假设检验。

高中数学必修3概率统计知识点归纳

高中数学必修3概率统计知识点归纳

高中数学必修3概率统计知识点归纳概率统计是高中数学必修3中的一门重要课程,它研究的是随机事件的发生规律和变化趋势。

概率统计知识点在高中数学习中占据着重要的位置,对于培养学生的逻辑思维、数学建模和解决实际问题的能力具有重要意义。

下面将对高中数学必修3概率统计知识点进行全面归纳。

1.基础概念概率统计的基础概念包括样本空间、随机事件、事件的概率等。

样本空间是指所有可能的结果组成的集合,用S表示;随机事件是样本空间的子集,用A、B、C等表示;事件的概率是指一个随机事件发生的可能性大小,用P(A)表示。

2.排列组合排列组合是概率统计中常用的工具,主要用于计算事件的可能性。

在排列中,元素的顺序是重要的,而在组合中,元素的顺序是不重要的。

排列可以表示为n!,组合可以表示为C(n,m)。

3.基本概率公式基本概率公式是指计算事件的概率的公式。

对于一个随机事件A,它的概率可以用公式P(A) = n(A) / n(S)来表示,其中n(A)表示事件A 的样本点数量,n(S)表示样本空间的样本点数量。

4.互斥事件与对立事件互斥事件是指两个事件不可能同时发生的事件,它们的概率相加等于两个事件发生的总概率。

对立事件是指两个事件互为对方的补集,它们的概率之和等于1。

5.条件概率条件概率是指在已知某个条件下,事件发生的概率。

条件概率可以用公式P(A|B) = P(A∩B) / P(B)来表示,其中P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。

6.全概率公式和贝叶斯公式全概率公式和贝叶斯公式是处理复杂事件概率的重要方法。

全概率公式可以用于计算一个事件在不同条件下发生的概率,贝叶斯公式可以用于根据已知条件计算相应的概率。

7.随机变量与概率分布随机变量是指与随机事件相对应的数值,概率分布是指随机变量各取值的概率情况。

常见的概率分布有离散型概率分布和连续型概率分布。

高中数学必修三概率知识点

高中数学必修三概率知识点

高中数学必修三概率知识点一、概述高中数学必修三中的概率知识点是数学学科的重要组成部分,也是日常生活和工作中经常涉及的重要内容之一。

概率论是研究随机现象的数学学科,通过对随机事件的分析和推断,揭示其内在规律和特点。

概率知识点作为高中数学必修三的重要内容,涉及概率的基本概念、事件的关系和运算、古典概型、几何概型以及离散型随机变量等知识点。

掌握这些知识点对于理解现实生活中的各种随机现象,进行科学合理的决策和风险评估具有重要意义。

在学习概率知识点时,需要掌握其基本概念和原理,学会运用概率思维解决实际问题,培养逻辑思维能力和数据处理能力。

概率知识点也是后续学习统计学、金融数学等学科的基础,对于提高数学素养和综合能力具有不可替代的作用。

1. 概率论的重要性概率论是数学的一个分支,用于研究随机现象的数量规律。

在高中数学必修三的学习中,概率知识点的重要性不容忽视。

它不仅仅是一门学科的核心内容,更是理解现实世界的一把钥匙。

在我们的日常生活中,无论是天气预测、金融投资、医学研究,还是游戏设计、风险评估等各个领域,概率知识都有着广泛的应用。

学习概率论不仅能够提高学生解决实际问题的能力,更能培养他们的逻辑思维和决策能力。

概率论是理解和预测随机事件的重要工具。

在日常生活和工作中,我们经常会遇到各种随机事件,比如抛硬币、抽奖等。

通过学习概率,我们可以知道这些随机事件的规律和趋势,从而更好地做出预测和决策。

其次val 序列深入式学习,概率论对于决策制定具有指导意义。

在金融投资领域,投资者可以通过学习概率知识,分析股票市场的走势和风险,从而做出更明智的投资决策。

在医学领域,医生可以根据疾病的发病率和患者的症状概率来做出诊断。

掌握概率知识对于个人和社会都具有重要意义。

它使我们能够更好地理解世界,做出明智的决策。

对于现代社会的发展,人们更需要有利用数学方法来理解世界的技能,这已成为我们教育的一大目标。

通过学习概率知识,学生可以为他们的未来生涯发展打下坚实的基础。

高中数学必修3概率统计常考题型:(整数值)随机数(random numbers)的产生.doc

高中数学必修3概率统计常考题型:(整数值)随机数(random numbers)的产生.doc

(整数值)随机数(random numbers)的产生【知识梳理】1.随机数的产生(1)标号:把n个大小,形状相同的小球分别标上1,2,3,…,n;(2)搅拌:放入一个袋中,把它们充分搅拌;(3)摸取:从中摸出一个.这个球上的数就称为从1~n之间的随机整数,简称随机数.2.伪随机数的产生(1)规则:依照确定算法;(2)特点:具有周期性(周期很长);(3)性质:它们具有类似随机数的性质.计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数.3.利用计算器产生随机数的操作方法用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.例如,用计算器产生1到25之间的取整数值的随机数,方法如下:4.利用计算机产生随机数的操作程序每个具有统计功能的软件都有随机函数,以Excel软件为例,打开Excel软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1.(2)选定A1格,按Ctrl+C快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl+V快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.(4)选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率.【常考题型】题型一、随机数的产生方法【例1】某校高一年级共有20个班1 200名学生,期末考试时,如何把学生随机地分配到40个考场中去?[解]第一步,n=1;第二步,用RANDI(1,1 200)产生一个[1,1 200]内的整数随机数x表示学生的座号;第三步,执行第二步,再产生一个座号,若此座号与以前产生的座号重复,则执行第二步,否则n=n+1;第四步,如果n≤1 200,则重复执行第三步,否则执行第五步;第五步,按座号的大小排列,作为考号(不足四位的前面添上“0”,补足位数),程序结束.【类题通法】产生随机数需要注意的两个问题(1)利用抽签法时,所设计的试验要切实保证任何一个数被抽到的可能性是相等的,这是试验成功的基础(关键词:等可能).(2)利用计算器或计算机产生随机数时,由于不同型号的计算器产生随机数的方法可能会有所不同,故需特别注意操作步骤与顺序的正确性,具体操作需严格参照其说明书(关键词:步骤与顺序).【对点训练】用随机模拟方法抛掷一枚均匀的硬币100次,产生计算机统计这100次试验中“出现正面朝上”随机数.解:利用计算机统计频数和频率,用Excel演示.(1)选定C1格,键入频数函数“=FREQUENCY(A1:A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中比0.5小的数的个数,即0出现的频数,也就是反面朝上的频数;(2)选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率.题型二、利用随机模拟法估计概率【例2】(1)已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35B.0.25C.0.20 D.0.15[解析]由题意知模拟三次投篮的结果,经随机模拟产生了20组随机数,在20组随机数中表示三次投篮恰有两次命中的有191,271,932,812,393,共5组随机数,∴所求概率为520=1 4=0.25.故选B.[答案] B(2)种植某种树苗,成活率是0.9.若种植该种树苗5棵,用随机模拟方法估计恰好4棵成活的概率.[解]利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,1至9的数字代表成活,这样可以体现成活率是0.9.因为种植5棵,所以每5个随机数作为一组,可产生30组随机数,如下所示:698016609777124229617423531516297472494557558652587413023224374454434433315271202178258555610174524144134922017036283005949765617334783166243034401117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率近似为930=0.3.【类题通法】利用随机模拟估计概率应关注三点用整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;(3)当每次试验结果需要n 个随机数表示时,要把n 个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复.【对点训练】甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数.034 743 738 636 964 736 614 698 637 162332 616 804 560 111 410 959 774 246 762428 114 572 042 533 237 322 707 360 751据此估计乙获胜的概率为________.解析:就相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367. 答案:0.367【练习反馈】1.利用抛硬币产生随机数1和2,出现正面表示产生的随机数为1,出现反面表示产生的随机数为2,小王抛两次,则出现的随机数之和为3的概率为( )A.12B.13C.14D.15解析:选A 抛掷硬币两次,产生的随机数的情况有(1,1),(1,2),(2,1),(2,2)共四种,其中随机数之和为3的情况有(1,2),(2,1)两种,故所求概率为24=12. 2.已知某射击运动员每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0~9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:5727 0293 7140 9857 03474373 8636 9647 1417 46980371 6233 2616 8045 60113661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中3次的概率为( )A .0.85B .0.819 2C .0.8D .0.75解析:选D 该射击运动员射击4次至少击中3次,考虑该事件的对立事件,故看这20组数据中含有0和1的个数多少,含有2个或2个以上的有5组数,故所求概率为1520=0.75,故选D.3.一个正方体,它的表面涂满了红色,在它的每个面上切两刀,可得27个小正方体,从中任取一个它恰有一个面涂有红色的概率是________.解析:恰有一个面涂有红色在每一个侧面上只有一个,共有6个,故所求概率为29. 答案:294.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________.解析:从5个数中任取两个,共有10种取法,两个数相差1的有1,2;2,3;3,4;4,5四种,故所求概率为410=25. 答案:255.盒中有大小、形状相同的5只白球2只黑球,用随机模拟法求下列事件的概率:(1)任取一球,得到白球;(2)任取三球,都是白球.解:用1,2,3,4,5表示白球,6,7表示黑球.(1)步骤:①利用计算器或计算机产生1到7的整数随机数,每一个数一组,统计组数n ;②统计这n 组数中小于6的组数m ;③任取一球,得到白球的概率估计值是m n. (2)步骤:①利用计算器或计算机产生1到7的整数随机数,每三个数一组,统计组数n ;②统计这n 组数中,每个数字均小于6的组数m ;③任取三球,都是白球的概率估计值是mn.。

高二数学必修三概率知识点

高二数学必修三概率知识点

高二数学必修三概率知识点概率是数学中的一个重要分支,它研究的是不确定性事件的可能性。

在高二数学必修三中,我们将学习概率的相关概念、性质和计算方法。

本篇文章将围绕高二数学必修三概率知识点展开讲解。

一、概率的基本概念概率是描述一个事件发生可能性的数值,通常用一个介于0到1之间的数表示。

0表示不可能事件,1表示必然事件。

在概率的计算中,我们利用概率公式来计算事件的概率。

概率公式为:P(A) = n(A) / n(S),其中P(A)表示事件A发生的概率,n(A)表示事件A 的样本点个数,n(S)表示样本空间中的样本点个数。

二、事件的依赖与独立在概率的计算中,我们需要考虑事件之间的依赖关系。

如果两个事件相互独立,即一个事件的发生不影响另一个事件的发生,则它们的概率相乘。

如果两个事件不独立,即一个事件的发生会影响另一个事件的发生,则需要考虑条件概率的计算。

三、排列与组合在概率的计算中,经常会涉及到排列与组合的问题。

排列是指从n个元素中取出m个元素进行排列的方法数,符号表示为A(n,m)。

组合是指从n个元素中取出m个元素进行组合的方法数,符号表示为C(n,m)。

在计算概率时,我们需要利用排列与组合的方法来确定样本空间和事件的个数,从而计算事件的概率。

四、加法与乘法法则在概率的计算中,我们可以利用加法法则和乘法法则来计算复杂事件的概率。

加法法则适用于两个事件之一发生的情况,乘法法则适用于两个事件同时发生的情况。

根据事件的情况,我们可以灵活运用这两个法则进行概率计算,从而得到准确的结果。

五、贝叶斯定理贝叶斯定理是概率论中的重要定理,它用于在已知一些先验概率的情况下,根据新的观察结果来更新概率。

贝叶斯定理的公式为:P(A|B) = P(B|A) * P(A) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率,P(B|A)表示在事件A发生的条件下,事件B发生的概率,P(A)和P(B)分别表示事件A和事件B的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
(5)事件 A 与事件 B 互斥: A B 为不可能事件,即 A B= ,即事件 A 与事件 B 在任何一 次试验中并不会同时发生。
(6)事件 A 与事件 B 互为对立事件: A B 为不可能事件, A B 为必然事件,即事件 A 与事 件 B 在任何一次试验中有且仅有一个发生。
2、概率的几个基本性质 (1) 0 P( A) 1.
(2)必然事件的概率为 1. P(E) 1.
(3)不可能事件的概率为 0. P(F ) 0 .
(4)事件 A 与事件 B 互斥时,P(A B)=P(A)+P(B)——概率的加法公式。
(5)若事件 B 与事件 A 互为对立事件,,则 A B 为必然事件, P( A B) 1 .
三、古典概型 1、基本事件的特点:(1)任何两个事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本事件的和。 2、古典概型:(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等。 具有这两个特点的概率模型称为古典概型。
三类概率问题的求解策略
对于一个概率题,我们首先要弄清它属于哪一类型的概率,因为不同的类型需要采取不同类型 的概率公式和求解方法;其次,要审清题意,注意问题中的关键语句,因为这些关键语句往往蕴含 着解题的思路和方法。
一、可能性事件概率的求解策略
3
对于可能性事件的概率问题,利用概率的古典定义来求可能性事件的概率时,应注意按下列步 骤进行:求出基本事件的总个数 n;②求出事件 A 中包含的基本事件的个数 m;③求出事件 A 的概率,
1
求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据
x1、x2、x3、…、xn 的平均数为 x ,则该组数据方差的计算公式为:
S2
1 n [(x1
x)2Biblioteka x2x)2(xnx)2 ].
三、标准差 在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常
概率统计知识点归纳 平均数、众数和中位数 平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这 “三数”来说明. 一、正确理解平均数、众数和中位数的概念 1.平均数 平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均 数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化. 2.众数 在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数 有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需 要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一 组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势. 3.中位数 中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最 中间的两个数的平均数).一组数据中的中位数是唯一的. 二、注意区别平均数、众数和中位数三者之间的关系 平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范 围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注 的问题. 三、能正确选用平均数、众数和中位数来解决实际问题 由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位 数可以来解决现实生活中的问题.
常将求出的方差再开平方,此时得到量为这组数据的标准差. 即标准差= 方差 .
四、极差、方差、标准差的关系 方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据 中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据 的单位一致,且能缓解方差过大或过小的现象.
一、 随机事件的概率 1、必然事件:一般地,把在条件 S 下,一定会发生的事件叫做相对于条件 S 的必然事件。 2、不可能事件:把在条件 S 下,一定不会发生的事件叫做相对于条件 S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件 S 的确定事件。 4、随机事件:在条件 S 下可能发生也可能不发生的事件,叫相对于条件 S 的随机事件。 7、概率:随机事件 A 的概率是频率的稳定值,反之,频率是概率的近似值. 概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。认识了 这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。 2、 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件 A 与事件 B,如果事件 A 发生,则事件 B 一定发生,称事件 B 包含事件 A(或事件 A 包含于事件 B),记作 B A(或A B) 。 不可能事件记作 。 (2)相等。若 B A且A B ,则称事件 A 与事件 B 相等,记作 A=B。 (3)事件 A 与事件 B 的并事件(和事件):某事件发生当且仅当事件 A 发生或事件 B 发生。 (4)事件 A 与事件 B 的交事件(积事件):某事件发生当且仅当事件 A 发生且事件 B 发生。
极差、方差、标准差 极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大 小的量. 一、极差 一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数 据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.
二、方差 方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均 数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差 越小,数据的波动越小.
3、公式: P( A)= A包含的基本事件的个数 基本事件的总数
四、几何概型 1、几何概型:每个事件发生的概率只有与构成该事件区域的长度(面积或体积)成比例的概率 模型。 2、几何概型中,事件 A 发生的概率计算公式:
P( A)
构成事件A的区域长度(面积或体积)
试验的全部结果所构成的区域长度(面积或体积)
相关文档
最新文档